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Abstract 
In this paper, we present a study on the effective elastic properties of finely fractured rock based on energy 
equivalence. For a rock body weakened by many penny-shaped microcracks, its effective elastic properties 
such as apparent Young’s modulus, shear modulus and Poisson’s ratio are particularly important to many 
applications. To determine these macroscopic parameters, we first adopted a dilute solution approach 
outlined in Kachanov (1992, App. Mech. Res.) where a crack compliance tensor is defined and used 
extensively to express the energy perturbation caused by cracks. In parallel, a self-consistent method is 
employed where an asymptotic form of the Eshelby’s tensor (Eshelby, 1957, Proc. R. Soc. Lond. Ser. A) is 
developed to treat a penny-shaped microcrack as an extreme case of a spheroid-shaped inhomogeneity. The 
asymptotic approximation permits the local Eshelby tensor as well as its global expression to be derived 
analytically, and to be further used to construct an equivalent eigenstrain problem based on energy 
equivalence. The effective values for parameters of interest can then be evaluated. The formulation and 
results obtained through the asymptotic self-consistent approach are compared to those in the non-
interacting scheme.  

1 Introduction 
One of the classic problems in solid mechanics, geophysics and material science is the determination of the 
effective elastic properties of cracked solids. It is particularly important for constitutive modelling of brittle 
microcracking materials such as rocks with large quantities of microcracks. The elastic properties of cracked 
rocks depend on a number of facts: the mineral properties and distribution, the porosity type, magnitude and 
distribution; and the state of saturation. There are two major theoretical approaches in the literature 
addressing the problem of effective elastic moduli of cracked rocks. The first class is the effective medium 
theories that assume the separate pores and cracks that may or may not connect in the rocks; the second 
theory is the poroelastic theory which assumes the significant portions of the pores and cracks are connected. 
The poroelastic theories were pioneered by the constitutive equations developed by Biot (1941) which are 
essentially phenomenological in nature and thus do not require characterisation of matrix and pore space 
geometry. In contrast, the effective medium theories generally require parameters characterising the pore 
shape and distribution, and can be traced back as early as to the classical bounds provided by Voigt (1928) 
and Reuss (1929) and Hashin and Shtrikman (1961, 1962). Pioneering works were motivated by 
microcracking in either metals or in rocks, and the effective constants were derived in the isotropic case of 
randomly oriented cracks of circular/penny shapes in the non-interaction approximation (Bristow, 1960; 
Walsh 1965a, b). A major flaw of these early non-interaction studies is that, when the crack densities are so 
high that interactions among cracks become significant, the non-interaction predictions will inevitably lose 
their accuracy. To account for crack interactions, numerous improved approximate schemes have been 
proposed (see Kachanov, 2007 for a latest review). Amongst them are the well-known self-consistent scheme 
(Budiansky and O’Connell, 1976), the differential method (Vavakin and Salganik, 1975, Norris, 1985; 
Hashin, 1988; Zimmerman, 1991), the Mori-Tanaka method (Mori and Tanaka, 1973; Benveniste, 1987), 
and the non-interacting method (Kachanov, 1992).  

A common feature in most of these schemes is that they consider the interactions by placing non-interacting 
cracks into an “effective environment”. Many early studies focus on a general solid with a matrix containing 
inclusions, from which the problem of effective elastic moduli of cracked solids can be regarded as a limiting 
case. In this limit case, it is assumed the inclusions shrink to surfaces and meanwhile their elastic moduli 



 

tend to zero. As remarked in a review by Kachanov (1992), however, there are some difficulties pertaining to 
this approach, such as the dependence of transition order of the limit, the definition of crack density 
parameter which can not take into account the crack shape, and the problems associated with some existing 
approaches in doing the degeneration. Predictions by these various schemes also diverge significantly as 
crack density increases. The self-consistent scheme gives strong softening effect of interactions, while the 
differential scheme gives rise to substantially milder softening effect. The Mori-Tanaka scheme for materials 
with interacting inclusions predicts no interaction effect at all when applied to cracked solids. As far as 
cracks are concerned, the seminal Hashin-Shtrikman (1963) bounds fail to provide any guidance. The 
Hashin-Shtrikman (1963) bound on the effective modulus *κ  of a three-dimensional two-phase composite is: 
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where , , 1κ 2κ 1μ  and 2μ  ( 2 1μ μ≤ ) are the phase bulk and shear moduli, and  and  are the phase 
volume fractions. Now consider the case of cracks where the quantities 

1c 2c

2κ , 2μ  and  all tend to zero, then 
the upper bound in the Hashin-Shtrikman expression degenerates into the following trivial one: 
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with the lower bound totally indeterminable. Comprehensive comparisons and comments of the various 
approaches in application to cracked solids can be referred to Kachanov (1992).  

In view of the above, direct approaches have been suggested to solve the problem of effective moduli of 
cracked solids by Kachanov (1992).  In this paper we employ two different approaches, one is the non-
interacting scheme outlined in Kachanov (1992) based on a crack compliance tensor, and another by a self-
consistent approach based on an asymptotic approximation of the Eshelby’s tensor. We demonstrate that the 
two method can lead to the same results as developed by Budiansky and O’Connell (1976). Predictions of 
effective moduli by using the two methods are compared, as well as with an approximate analytical solution 
by differential scheme.   

2 Non-interacting scheme based on crack compliance tensor 

2.1 Crack density parameter 
Budiansky and O’Connell (1976) defined the following 2D scalar crack density ρ  for a microcracked solid 
as: 

 2N lβ =        (1) 

where  is the number of microcracks per unit area in the plane, l  is the half length of a 2D slit-like 
microcrack, and 

N
2l  stands for the average of  over all microcracks. The matrix is assumed to be 

isotropic. Kachanov (1980, 1987) defined the following symmetric second-order crack density tensor for the 
general case of 3D solids with penny-shaped cracks: 
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Where V  is the volume of averaging,  is the unit normal to the crack and kn thk kγ is a weighting factor 
characterizing the contribution of the crack to α  and depending on the physical problem of interest. In 
the case of effective properties , where  is the radius of the crack for the 3D solids with penny-

shaped cracks. For a 2D solid with slit-like cradcks, 

thk
k
3

k rγ = kr thk
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k lkγ =  where l is the half-length of the crack and 
 should be changed to the area of averaging. Note that the trace of α , 

k thk
V trρ = α , coincides with the scalar 



crack density as defined in Eq.(1) for a general 2D case, and with the scalar crack density 3N aρ =  for a 

general case, which implies α  represents a tensorial generalisation of ρ  accounting for the crack orientation 
statistics. The crack density plays a role roughly similar to the role of the volume fraction for two-phase 
composites. Note that similar expression as Eq.(2) has been used as damage tensor for crack rocks, see, e.g., 
Zhao et al. (2005) and Zhao and Sheng (2006).  

2.2 Crack compliance and the non-interacting scheme 
Kachanov (1992, 1994) introduced a crack compliance tensor to characterise the crack open displacement 
(COD)of a crack in a matrix under external force. A similar expression was first used by Hill (1963) for a 
more general case of arbitrary cavities. It is assumed that, across the crack surfaces the displacements are 
discontinuous such that the strains are singular, which can be denoted by the following expression: 
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where the first term in the right-hand side, 0
ijkl klM σ , denotes the regular part with 0

ijklM being the linear 

elastic compliance tensor of the matrix. ( )δ ⋅  is a delta function concentrated on the k th crack’s surfaces 
( )ks .  is the vector for displacement jump across the crack surfaces (or crack opening 

displacement, COD). And n  the unit normal to a crack. Both n  and are generally variable along cracks. 
Averaging the above expression over the volume of the material body V  and using the property of 
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where ijklMΔ  is the change in compliance due to cracks and ijklM  is the effective compliance.  

It is assumed that the material body contains a statistically homogeneous field of cracks and is sufficiently 
large to be representative. Then it can be reasonably hypothesized that the average stress is equal to the 
constant boundary traction stress: 0

kl kl klσ σ σ ∞= = . We hereafter omit the averaging signs for both stresses 
and strains. For flat cracks where the unit outer normal is constant for each crack, we have: 
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It is thus observed that the contribution of a given crack into the overall strain is proportional to the product 
of crack surface with COD. It is Hill (1963) who firstly proposed this type of expression for a more general 
case of arbitrary cavities. Hill (1963) expressed the cavity’s contribution into the overall strain as an integral 
over the cavity surface: 
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It reduces to the second term of the (5) when the cavities shrink to cracks. The elastic potential of a cracked 
solid can be obtained by: 
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where  (0 ijP )σ  is the potential of a matrix material without cracks, which has the following the expression 

for an isotropic (no crack) material with Young’s modulus  and Poisson’s ratio 0E 0ν : 
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In a 2D case,  is replaced with  where 0E 0E′ 0E E0′ =  for the plane stress case and ( )2
0 0 01E E ν′ = −  for the 

plane strain case.  in (6) is the perturbation of potential induced by the introduction of cracks into the 
material body, which is crucial in determining the effective moduli of the cracked rocks. To this end, 
Kachanov (1992) introduced a second rank tensor B  to relate the uniform traction t  applied at the crack 
surface and the resulting average crack opening displacement: 

PΔ

j ib t B= ij       (8) 

which he called crack compliance tensor. For an infinite material body, B  demons on crack size, shape and 
the elastic properties of the matrix and in the case of anisotropic matrix, on the orientation of the crack with 
respect to the anisotropy axes of the matrix as well. In the case of an single crack in an infinite body with 
stress at infinity, Eq.(8) can be rewritten as 

j l il ijb n Bσ=       (9) 

ijB  is a symmetric tensor. In a local coordinate system ( ),n tn n  where  is the in plane tangential direction 

of the crack. The diagonal components COD are denoted by 

t

nB  and tB , respectively. The off-diagonal 
components characterise coupling of the modes that is relevant for anisotropic matrix and for non-circular 
cracks in isotropic matrix.  

For non-interacting cracks randomly distributed in an infinite isotropic solid, the compliance is linear in 
crack density parameter, and the normal and shear modes are uncoupled. In the 2D case, B  is proportional 
to a unit tensor: 

0
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where  is the half-length of the crack. In this case, the compliances in the normal and shear directions are 
equal to each other. The perturbed potential 

r
PΔ  in (6) is now: 
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where α  is defined in Eq.(2). The elastic potential density P  now is a function of ijσ  and ijα  and PΔ  a 

simultaneous invariant of ijσ (quadratic) and ijα  (linear), which ensures the isotropy of the material. 

 

For a 3D case, if the crack is a circular one with radius of  r , the compliance tensor is given by Kachanov 
(1992) by: 
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where I  is the second-order identity tensor. The perturbation of potential QΔ  in (6) is: 
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Substitute Eq.(2) into (13) we have: 
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If the crack is of elliptical shape, Kachanov (1992) constructed B  by using Eshelby’s ellipsoidal inclusion 
approach (see also Budiansky and O’Connell, 1976).  

By using the result in Eq.(13) or (14), the effective moduli of a cracked rocks can now be estimated. For a 
rock with randomly distributed cracks, for example: 
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It follows from Eq.(14) that 
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And the corresponding effective moduli can be readily obtained as: 
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For a rock with parallel cracks, say the normal of the crack is to the 1x  direction: 

 ρ= 1 1α a a       (19) 

where  is the unit base vector in the 1a 1x  direction. Eq.(14) now has the following expression 
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The corresponding effective moduli in this case are: 
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3 Self-consistent scheme by asymptotic approximation of Eshelby’s tensor 
In deriving the self-consistent equations which govern the effective elastic constants of composites, two 
approaches have been used in the literature. The first is based on energy consideration (Budiansky, 1975) 
and the second involves a direct averaging of the components of stress and strain in the constituent phases of 
the body (Hill, 1965). The two methods are totally equivalent to each other. We consider a solid matrix 
containing a single ellipsoidal void inclusion with the semi-axes being ,  and , respectively. The 

matrix is assumed to be placed in an equilibrated state of uniform elastic strain by external loads. 
According to Eshelby theory (Eshelby, 1957, 1959), the inclusion also reaches a state of strain  which is 

1a 2a 3a
∞ε

iε
uniform inside the void, provided is uniform. Eshelby termed this strain as eigenstrain. The relation 
between the two strains is given by: 

 ∞ε  



 

: ∞⎡ ⎤⎣ ⎦
-1iε = I - S ε      (22) 

 

where  is the fourth-order identity tensor and  is the Eshelby’s tensor, which depends on the aspect 
tios o e ellipsoid and on the Poisson ratio 
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In Voigt’s notation, the exact mathematical definition of 
configuration can be found as follows (see, Mura, 1982): 

the Eshelby tensor for this geometrical 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦Z
X 0

S
0

      (24) 

 

Where the submatrice  and  have the following expressions: s X Z

( )

( ) ( ) ( )
( ) ( )

11 1 12 1 1 2 13
2 2 2

12 1 22 2 1 2 23
1 1 2 3 1 2 ( )

( ) ( ) ( )

2 2 2
1 1

2 2
2 2 2

13 3 1 23 3 1 2 33 3

3 1 2 1 2 1 2
1 2

8 1
1 2 1 2 3 1 2

I I e I I e e I I
I I e I I e e I I
I I e I I e e I I

ν ν ν
ν

π ν
ν ν ν

⎡ ⎤+ − − − − −
⎥− −

− ⎢ ⎥− − − − + −⎣ ⎦

 ν ν⎢= − + − −⎢ ⎥X

( )

11

22

33

0 0
1 0 0

8 1
0 0

Z
Z

Z
π ν

⎡ ⎤
⎢ ⎥= ⎢ ⎥−
⎢ ⎥⎣ ⎦

Z  

And  

( ) ( )
( )

2
1 2

2 2 2
1 1 2

4 , ,

1 1

e e p q p q

e e e

π −⎡ ⎤⎣ ⎦
− −

F � E �
, 

( ) ( )
( )( )

( )
( ) ( )

2 2 2 2
2 1 2 1 2 2

2 22 2 2 2 2 2 2
21 2 1 2 1 1 2

4 1 , 4 , 4
11 1 1 1 1

e e e p q e e p q eI
ee e e e e e e

π π π−
= −

−− − − − −

E � F �
1I = − , 

( )
( )

( )
2

3 2 2 2
2 2 1

4 ,4
1 1 1

e p q
I

e e e

ππ
= −

− − −

E �
2
2e

,          2 2
1 2arcsin 1p e e= − , 

2
1

2 2
1 2

1
1

eq
e e
−

=
−

 

( ) ( )( )2
11 1 12 1 21 1 2Z e I I Iν= + + − + , ( ) ( )( )2 2

22 1 2 23 2 31 1 2Z e ν= e I I I+ + − + ,  

( ) ( )(2 2
33 1 2 13 11 1 2 )3Z e e I I Iν= + + − +  

( )
2 20

,
1 sin

p dp q
q
α

α
=

−
∫F � , ( ) 2 2

0
, 1 sin

p
p q q dα α= −∫E �  

( ) ( ) ( )
( )( )

4 2 2 2 2 2 2 2 2 2 2
1 1 2 1 2 1 2 1 1 2 3 1 2 1

11 2 2 2
1 1 2

2 2 3 11

3 1 1

I e e e e e I e e e I e e e
I

e e e

− − + + − + −
=

− −
 

( ) ( ) ( )
( )( )

2 2 2 2 2 2 2
1 2 2 1 2 1 2 3 2 1

22 2 2 2
1 1 2

1 2 3 2

3 1 1

I e I e e e e I e e
I

e e e

− + − + − + −
=

− −
 

1



( ) ( ) (
( )( )

)2 2 2 2 2 2 4
1 2 2 1 2 3 1 2 1 2

2

33 2 2 2 2 2
1 2 2 1 2

1 1 1 2 3 2

3 1 1

I 2e I e e I e e e e e
I

e e e e e

− + − + − + −
=

− −
 

2 1
12 2

11
I II

e
−

=
−

, 3 1
13 2 2

1 21
I II

e e
−

=
−

, 
( )
3 2

23 2 2
1 21
I II

e e
−

=
−

 

The general Eshelby’s tensor in this case is actually a function of 1,eυ  and : 2e

( )1 2, ,e eυS = S       (25) 

ect ), the  tensor can be 

approximated by its Taylor series with respect to abo

When a crack of any type is concerned (such that  the asp ratio →2 0e S

2e  ut 2 0e = : 

( )
2

2

2
2 20

2
e

e

e e
e=

∂
+ +
∂

SS = S O     (26) 
0=

 

If we write  

 and 
2

2 0e
e

=

∂
=
∂

SM
2 0e =

S = S      (27) 

Then we have: 

( ) ,  1,eυS = S ( )       (28) 1,eυ=M M

Therefore, if we
following asym

 neglect the higher-order terms other than the first two terms in the right-hand side of (8), the 
ptotic form can be regarded as a good approximation of the Eshelby’s tensor for a cracks: 
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If penny-shaped cracks are treated such that 1 2a a r= =  and 1 1e =  is very small, we further have (see, Yang 
et al., 2001): 
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We now restrict our discussion to the case of penny-shape crack only. In 
be written in the following form: 
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The energy perturbation produced by a single isolated crack in an infinite medium, as stated b
and O’Connell (1976), is only influenced by the resolved normal stress 
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4 1 2 1 2 1π υ π υ π υ+ − −

y Budiansky 
σ  and τ  normal and tangential to 

the plane of the crack and must be a quadratic function of these stresses. Yang et al. (2001) presented a 
mathematical derivation of the expression for this energy perturbation based on the asymptotic 
approximation method. For an isotropic media, an asymptotic expression for the eigenstrain is firstly found 
in terms of nS , tS  and the aspect ratio 2e : 
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Note that in deriving (37), Eq.(36) has been used. Then the energy perturbation is obtained by: 
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where  is the compliance tensor of the virgin material,
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where the tensor  and are associated with the normal and tangential components of a stress tensor in 
the direction of :
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Eq.(38) can thus be reformulated as: 
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Eq.(41) recovers the exact same form as developed by Budiansky and O’Connell (1976). Now we rewrite 
 : 
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    (43) 

Eq.(37) represents the energy perturbation contributed by a single crack. If it is assumed the cracks are non-
interacting such that the energy perturbation for all cracks can be superposed, we are able to sum up Eq.(43) 
for all cracks in the material body and then divide it by the material volume , which leads to the following 
potential density

V
: Q VΔ∑
 a non-interacting 

. It is readily to observe that this result is identical with the one in Eq.(14) which 
was derived from method. However, a key point the self-consistent method is based on is 
that a crack is placed into a matrix with the effective elastic moduli, not the virgin ones. For randomly 
distributed cracks, the elastic potential is thus now a function of the effective Young’s modulus E  and 
effective Poisson’s ratio υ , both of which are dependent on the crack density ρ . As a result we now have: 
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The total elastic potential s then: i
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Therefore we have: 
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Solving (45) for E  and υ  we can then obtain the effective moduli of the cracked rocks by self-consistent 
scheme, which are essentially softer than the non-interacting results at larger crack densities. It is assumed 
the inclusion of cracks in the matrix does not change the Poisson’s ratio too much such that one can safely 
assume that υ υ= . In this case, the self-consistent results lead to the following solutions to the elastic 
moduli: 
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It is interesting to point out that, based on an assumption that the Poisson’s ratio does not change 
significantly by the cracks, Berryman et al. (2002) employed a differential scheme and derived the following 
approximate analytical solutions for a randomly distributed cracked rock: 
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where is the aspect ratio defined in Eq.(23). Eq.(47) takes into account the effect of aspect ratio on the 

re 2 present the effective moduli predicted by Eqs.(18), (46) and (47) for a rock with 

4 Discussion and conclusion 
based on crack compliance tensor and a self-consistent approach 

2e  
effective moduli. 

Figure 1 and Figu
randomly distributed cracks in 3D case. Four values of 2e  are used for Eq.(47). As can be seen, Eq.(47) 
predicts a effective Young’s modulus whose value is between that by Eq.(18) and Eq.(46). The larger  2e  is, 
the higher E  is. For effective shear modulus, however, Eq.(47) gives magnitude between those by Eq 8) 
and (46) on  when 2e  is large. When 2e  is as small as 0.1, Eq.(47) gives the smallest G  of the three. 

.(1
ly

We have used a non-interacting approach 
based on an asymptotic approximation of the Eshelby’s tensor to investigate the problem of effective elastic 
properties of cracked rocks. It is shown the asymptotic method can be used to estimate the effective moduli 
and can be easily degenerated to the non-interacting approach when the energy perturbation is assumed to be 
superposable. The non-interacting method is generally known as good approximation when the crack density 
is low. The same can be said for the self-consistent scheme. When crack density is high, a well-know 
problem occurs for SCS. For porous media with spherical voids the SCS predicts that the effective elastic 
moduli diminish linearly with void volume fraction until they vanish at 50%, which is in disagreement with 
experiemental results. Similar problems are encountered in the SCS results for penny-shaped cracks. The 
effective Young’s modulus diminishes linearly with crack density parameter and the effective shear modulus 
nearly so, both moduli abruptly vanishing for a value of crack density parameter at 9/16. Similar behaviour 
can be observed by the approximation in Eq.(46) in Figure 1 and 2. This is not reasonable since the moduli 
should vanish asymptotically with increasing crack density. Linear variation with crack density parameter is 
restricted to small crack density when the cracks do not interact and is not therefore necessarily valid for 
large density. There are still some issued needing to be resolved on the study of cracked rocks. In a recent 
comment, Kachanov (2007) pointed out that in deriving the effective elastic properties of cracked solids, the 
importance of crack shapes and influence of fluid filled in the cracks and the definition on the crack density 
parameter in relation with the approximate schemes should be taken into account. Steady effort is needed 
towards these areas on the study of cracked rocks. 
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Figure 1 Effective Young’s modulus for a rock with randomly distributed cracks in 3D case. 
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Figure 2 Effective shear modulus for a rock with randomly distributed cracks in 3D case. 

 



 

c
enveniste, Y. (1987). A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. 

Mater., 6, 147-157. 
Berryman, J.G., Pride, S.R., Wang, H.F. (2002) A differential scheme for elastic properties of rocks with dry or 

racks. Geophys, J. Int., 151, 597-611. 
 General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164. 

pl. Phys., 11, 81-85  

Eshelb  of an ellipsoidal inclusion and related problems. Proc. R. 

, J. Franklin 

Hashin onal approach to the theory of the elastic behaviour of multiphase materials. J. 

Hill, R rties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 13, 357-372. 

1. 

335 

, 23-43. 

, 571-574 

Norris, ial scheme for the effective moduli of composites. Mech. Mater. 4, 1-16 

. 
99-411. 

ity structure. 

Referen es 
B

saturated c
Biot, M.A. (1941)
Briston, J.R. (1960) Microcracks and the static and dynamic elastic constants of annealed and heavily cold-worked 

metals. British J. Ap
Budiansky, B., O’Connell, R.J. (1976) Elastic moduli of a cracked solid, Int. J. Solids Structures. 12, 81-97 

y, J.D. (1957) The determination of the elastic field
Soc. Lond. Ser. A, 241, 376-396. 

Hashin, Z., shtrikman, S., 1962. A variational approach to the theory of elastic behaviour of polycrystals. J. Mech. Phys. 
Solids, 10, 343-352. 

Hashin, Z., shtrikman, S., 1961. Note on a variational approach to the theory of composite elastic materials
Inst., 271, 336-341. 
, Z., shtrikman, S., 1963. A variati
Mech. Phys. Solids, 11, p.127-. 
. (1963) Elastic prope

Horii, H, Nemat-Nasser, S. (1983) Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. 
Solids 31(2), 155-17

Kachanov, M. (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Applied 
Mechanics Review. 45(10), 304-

Kachanov, M. (1994) Elastic solids with many cracks and related problems. Adv. Appl. Mech., 30, 259-445 
Kachanov, M. (2007) On the effective elastic properties of cracked solids – editor’s comments. Int. J. Fract, 146, 295-

299. 
Kachanov, M. (1980) Continuum model of medium with cracks. Journal of Engineering Mechanics Division, 

106(EM5), 1039-1051. 
Kachanov, M. (1987) Elastic solids with many cracks: a simple method of analysis. Int. J. Solids Structures, 23
Mori, T., Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. 

Acta Met., 21
Mura, T. (1982) Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff, Dordrecht. 

 A.N. (1985) A different
Reuss, A. (1929) Berechung der Fliessgrenze von Mischkristallen, Z. Angrw. Math. Mech., 9, 55-. 
Vavakin, A.S., Salganik, R.L. (1975) Effective characteristics of nonhomogeneous media with isolated 

inhomogeneities. Mechanics of Solids, 10, 65-75. 
Voigt, W. (1928) Lehrbuch der Kristallphysik, Teubner, Leipzig, p.962. 
Walsh, J.B. (1965) The effect of cracks on the compressibility of rocks. J .Geophys. Res., 70(2), 381-389
Walsh, J.B. (1965) The effect of cracks on unaxial compression of rocks. J. Geophys. Res., 70(2), 3
Yang, Q., Zhou, W.Y., Swoboda, G. (2001) Asymptotic solutions of penny-shaped inhomogeneities in global Eshelby’s 

tensor. App. Mech. ASME, 68, 740-750.  
Zhao, J.D., Sheng, D. (2005) Strain gradient plasticity by internal-variable approach with normal

International Journal of Solids and Structures 43(18-19):5836-5850. 
Zhao, J.D., Sheng, D., Zhou, W.Y. (2005). Shear banding analysis of geomaterials by strain gradient enhanced damage 

model. International Journal of Solids and Structures, 42(20):5335-5355. 
rman, R.W. (1985) The effect of microcraZimme cks on the elastic moduli of brittle materials. J. Mater. Sci. Letters, 4, 
1457-1460. 
rman, R.W. (1991) Elastic moduli of a solid containing spherical inclZimme usions. Mech. Mater., 12, 17-24. 


	Abstract
	1 Introduction
	2 Non-interacting scheme based on crack compliance tensor
	2.1 Crack density parameter
	2.2 Crack compliance and the non-interacting scheme

	3 Self-consistent scheme by asymptotic approximation of Eshelby’s tensor
	4 Discussion and conclusion
	References

