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ABSTRACT: In this paper, shakedown limits of non-homogeneous soils in a half-space under rolling and sliding 
surface loads are investigated. The inhomogeneity of the soil is described by a power law for the variation of 
Young’s modulus with the depth. Mohr-Coulomb criterion is employed to characterise the cohesive-frictional 
behaviour of the soil. Analytical solutions to the elastic stress field under Hertzian surface contact are derived and 
then used in conjunction with Melan’s shakedown theorem to compute the shakedown limits. The elastic graded 
effect of the soil on the various shakedown limits is investigated with reference to the corresponding 
homogeneous case. The results obtained can serve as benchmarks for future numerical shakedown analysis of 
pavements as well as valuable reference for practical design. 

1 Introduction 
Prediction of the long term behaviour of cohesive-frictional soils under cyclic moving surface loads is of significant 
importance to geotechnical and pavement engineering. It is difficult, however, to determine the pavement 
response to successive individual load applications by conducting step-by-step calculations as the processes are 
usually tedious and computationally expensive. Shakedown theory, on the other hand, can provide a rational and 
convenient way to determine the long term load-bearing capacity of the pavements. In particular, the elastic 
shakedown theorem proposed by Melan (1938) has been proved useful for design purposes in many structural 
and geotechnical applications. It has been repeatedly applied to the shakedown analysis of a cohesive-frictional 
half space under moving surface loads (see, e.g., Booker et al., 1985; Collins and Cliffe, 1987; Krabbenhoft et al, 
2007; Zhao et al., 2007). In all these studies, the soil in the half space has been predominately assumed to be 
homogeneous for simplicity. Naturally deposited geomaterials, however, such as in-situ soils, clays and rocks are 
more often highly inhomogeneous, and their elastic parameters (e.g., Young’s modulus) typically exhibit a graded 
effect for many soils. For example, Gibson (Gibson, 1967, Gibson et al., 1971, 1974) has employed a linear 
relation for the Young’s modulus and the soil depth for characterising the so-called “Gibson soil”. Many other 
practical soils, such as the Gault clay at Cambridge (UK), the London clay and chalk and Pliocence clays, the 
sensitive Ottawa clay and the Redcar glacial clays (UK), also demonstrate a highly inhomogeneous elastic 
properties (see, Giannakopoulos and Suresh, 1997). Therefore, it would be beneficial to account for the elastic 
inhomogeneity of the soil when performing shakedown analyses for engineering design. Numerical tools such as 
finite elements could be of use for the shakedown analysis of inhomogeneous soils, however, the success is 
mostly limited and the numerical results remain to be benchmarked. Analytical solutions to the shakedown limit 
that account for the elastic graded effect of soils are therefore highly desirable as they provide both benchmarks 
for the numerical modelling and reliable and convenient reference for practical designs.  

2 Theoretical formulations 

2.1 A power law model for the inhomogeneous Young’s modulus in the soil 
For the problem of rolling and sliding contact between vehicle wheels and a pavement, it is common to assume 
the deformation in the half space is plain strain such that all stresses are independent of the out-of-plane 
coordinates (say y for example, refer to Fig.1).  The soil is assumed to be linearly elastic, inhomogeneous and 
locally isotropic within the context of small strains and small rotations. The Poisson’s ratio is assumed to be 
constant over z for simplicity. While large values of Poisson’s ratio (υ → 0.5) correspond to situations of 
undrained saturated soils, a typical value of 0.25 is adopted throughout this paper. In the literature, two models of 
elastic inhomogeneity of geomaterials are commonly used. The first one assumes the Young’s modulus E of the 
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material being dependent on the depth z according to a simple power law: 

       (1) 0
kE E z=

where E  has a dimension of [m-1
0 Pa]. For decaying values of stresses with depth, the power exponent, k, has to 

be in the interval: 0 ≤ k ≤ 1.  This model is believed to be suitable for dense sands and clay earth deposits. The 
second model of soil inhomogeneity assumes dependence of Young’s modulus on the depth according to an 
exponential law E = E0eαz, where E  has the normal dimension of stress, and α has a dimension of [m-1

0 ]. 
Variations of the Young’s modulus over the depth according to these two models are depicted in Fig.1. In this 
paper, we will restrict our discussions to the power law case only.  
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Figure 1. Two types of variation for Young’s modulus in a half-space soil profile.  

(a) the power law model, ; (b) the exponential law model,  (0 0kE E z k= ≤ ≤ ( )0 0 0zE E e Eα= >

2.2 Contact approximation and elastic stress solution 
Booker et al. (1985a, b) and Giannakopoulos and Pallot (2000) have investigated the elastic distribution in the 
half space under line and point loads by assuming a power law model for the Young’s modulus as in Eq.(1). The 
stresses in a half space subjected to distributed normal and tangential tractions can be obtained by integrating 
the line load function over the traction surface (see, e.g., Johnson, 1985). By using the results obtained in Booker 
et al. (1985a) for line loads, the stresses in the elastic graded half space obeying the power law model and 
subjected to tractions as shown in Fig.2 can be obtained by the following integrals: 
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Figure 2. An elastic half space subjected to normal 
and tangential tractions over the strip ( ) 

Figure 3. Approximation of the contact of pavement 
surface subject to rolling and sliding loading. b x a− ≤ ≤
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⎟        (4) 

Γ (·) is the gamma function and υ is the Poisson’s ratio. Note that when υ =1/(k+2) such that β =1, the Holl’s case 
can be obtained (Holl, 1940), while the incompressible Gibson soil model is attained by letting k =1, β =1 and  
Fkβ=2/π.  
 
For a homogeneous soil, the rolling and sliding contact between the vehicle wheels and road surface has been 
frequently approximated by a Hertzian contact (as shown in Fig.3), where the pressure distribution due to the 
moving roller is given by the following parabolic expression: 

( )2
0 1p p x a

q pμ

⎧ = −⎪
⎨

=⎪⎩
       (5) 

where p0 denotes the maximum vertical pressure at  x = 0. Coulomb’s friction law has been assumed to relate the 
shear traction to the vertical pressure. We note that Hertzian contact approximation is considered to be generally 
adequate for small contact length, e.g., a < 0.2R, where R is the roller radius. In the case of heavy vehicles with 
low tyre pressure the contact length may be much larger, such that Hertzian contact approximation is no longer 
applicable, and trapezoidal form of pressure distribution is then widely used (see Collins and Cliffe, 1987; Zhao et 
al., 2007). Considering elastic graded soil we assume that the normal and tangential tractions for the contact 
length obey a similar parabolic distribution to one given by (5). However, in this case, these tractions are 
dependent on the elastic graded parameter k according to the following (c.f., Booker et al, 1985b; 
Giannakopoulos and Pallot, 2000):  
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where P denotes the total vertical force applied to the pavement surface. To make the results comparable, we 
assume the total force P and contact length 2a are identical for both homogeneous and inhomogeneous cases. 
As we know, the maximum pressure p  in Eq.(5) for the homogeneous case is given by p0 0 = 2P / (πa). Hence 
Eq.(6) can be expressed in terms of p , viz: 0
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( )( )3 2kΓ π+ =With  such that 0k → 2 ( )3 2kΓ + = 1ζ = and , , the homogeneous model is attained 
and the above expressions reduce to the Hertzian case in Eq.(5). Substituting the pressure distribution in Eq.(7) 
into Eq.(2) and implementing the integrations, we can obtain the elastic stresses in the elastic graded half space 
subjected to surface moving loads. Special attention is required when computing the stresses at the pavement 
surface, which will be discussed in the following section. 

2.3 Mohr-Coulomb yield criterion for the pavement soil 
The Mohr-Coulomb criterion is used to model the cohesive-frictional behaviour of the soil under plane strain 
conditions: 

( ) ( ) ( )2 2, , 4 sin 2 cos 0xx zz xz zz xx xz zz xxf cσ σ σ σ σ σ σ σ φ φ= − + − + − =  (9) 

where c is the cohesion and φ is the internal friction angle. In this paper, a convention of tension being positive is 
adopted. 

2.4 Melan’s static shakedown theorem 
Melan’s shakedown theorem states that a sufficient condition for shakedown to occur is that a time-independent, 
self-equilibrated, residual stress field can be found such that, when added to the elastic stress field, it produces a 
combined stress field that nowhere and at no time violates the yield condition. For the plane strain rolling and 
sliding contact problem, the permanent deformation and the residual stress distribution are independent of x. The 
equilibrium of the residual stresses thus implies that there is only one non-zero component ρxx, which is a function 
of z only.  The yield condition on the total stresses for the plane strain half space then reads as follows: 

( ) ( ) ( )2 2 2, 4 sinij xx zz xx xx xz zz xx xxf cλσ ρ λσ λσ ρ λ σ λσ λσ ρ φ φ= − − + − + + − 2 cos 0=  (10) 
λwhere  is the load factor. It is worth to mention here that in the case of two-point load domain with zero being 

one of them, a common mistake made in many past investigations on analytical shakedown analysis when using 
the Melan’s shakedown theorem is that by merely setting 0

xx
f ρ∂ ∂ = and enforcing inequality (10) only for elastic 

stresses corresponding to non-zero load point. Then, the optimum residual stress is found to be: 
2

*
2

1 sin2 tan
cosxx xxc φρ φ λ σ

φ
⎛ ⎞+

= + −⎜
⎝ ⎠

zzσ ⎟     (11) 

and the corresponding shakedown limit is given by (see, also, Collins and Cliffe, 1987; Yu, 2005; Krabbenhøft et 
al., 2007a): 
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It has been indicated in our recent papers (Zhao et al., 2007, Krabbenhøft et al., 2007) that the shakedown limit 
so obtained is always an overestimated one when surface failure is critical, i.e., at large values of frictional 
coefficient. In this case, the optimum residual stress presented in Eq.(11) is found to be frequently well outside 
the yield surface correspondent to zero point load, which is not only theoretically unreasonable but also practically 
dangerous for design. It is therefore important to enforce yield constraints for all points of load domain when 
computing shakedown limit. It is also found to be the case that the equilibrium condition on the residual stress is 
sometimes neglected in numerical shakedown analysis of pavement, which could result in another overestimation 
for the static shakedown limit. Concluding all mentioned above, the Melan’s static shakedown theorem for the 
pavement problem should take the following mathematical expression: 
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where  

2 tan ,     2 tan
2 4 2 4xx xxc cφ π φρ ρ+ −⎛ ⎞ ⎛= − − = − +⎜ ⎟ ⎜

⎝ ⎠ ⎝
π ⎞

⎟
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    (13) 

( ) 0xxf ρ =are the two bounds for xxρ  obtained by enforcing . They actually represent the compressive and 
tensile strength limits of the soil, respectively. 

3 Numerical results and discussions 

3.1 Elastic stresses in the non-homogeneous soil 
The integrands in Eq.(2) are too complex for the stresses to be derived analytically. Numerical solution in this 
case is the only option. To compute the stresses at subsurface points in the half space (z > 0), we employ a 
recursive adaptive Simpson quadrature integration method (see, Gander and Gautschi, 2000). An absolute 
tolerance of 1E-06 is used to control the integration error. The same procedure, however, cannot be applied for 
the computation of stresses at the pavement surface as the integration functions in Eq. (2) have singularities at z 
= 0 and serious numerical problems can arise. As will be demonstrated later, the accuracy of stresses at the 
surface is crucial for determining the reliable shakedown limit when surface failure becomes critical. They have to 
be computed very accurately. To resolve the situation a Fourier transformation is employed to express the 
surface stresses in terms of some hypergeometric functions first and then to evaluate the stresses subsequently. 
Details regarding this procedure are too lengthy to be reported here. 
 
Fig.4 shows the stresses obtained for a roller coefficient μ =1.0 for both the homogeneous and non-
homogeneous cases. In the non-homogeneous case, the elastic graded index k is set to a value of 0.3. The 
Poisson’s ratio adopts a value of 0.25 as said before. As can be seen, the relative magnitudes of stresses in both 
cases are comparable. The specific distributions, however, are slightly different. For σxx, the non-homogeneous 
case yields a distribution with a certain degree of stress concentration at the surface. Further computations show 
that with the soil becoming even linear (k tends to 1), this concentration becomes more pronounced. In contrast, 
the inhomogeneity of Young’s modulus seems to have little impact on the other stresses, σzz and σxz, in 
comparison with the corresponding homogeneous case. The surface stresses, in particular σxx, are crucial in 
predicting the failures of frictional contact. As such we would like to have a further look on the influence of 
inhomogeneity on the stresses at the surface. In Fig.5 we present the variation of surface stresses at different 
value of k. We adopt μ = 0.5 for this case. Note that the “Hertzian stress” denoted in the figure is that obtained for 
the homogeneous case which is in the literal meaning the solution derived by Hertz. As is shown in Fig.5, the 
elastic inhomogeneity has a significant impact on the surface stress distribution within the contact length. In 
particular, greater compressive stresses are developed at the contact surface for inhomogeneous case 
comparing to homogeneous one. And the larger the value of k, the greater this difference is, as illustrated in 
Fig.4. Outside the contact region, both σzz and σxz vanish just analogous to the homogeneous case, whereas σxx 
tends to zero at infinity.  
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Figure 4. Elastic stresses in the half space under rolling and sliding contact. (a) Homogeneous case; (b) Non-

homogeneous case with k = 0.4 and υ = 0.25. 

3.2 Shakedown limits 
Using the elastic stress field obtained above, we compute next the shakedown limit for the non-homogeneous 
half space under rolling and sliding surface contact by enforcing Eq.(12) with the yield function given by Eq.(9). 
The procedure follows closely those presented in Zhao et al.(2007). Fig.6 presents the shakedown limits for 
various values of k at a frictional angle of 15o against the corresponding ones in the homogeneous case. Elastic 
limits are also included in the figure for comparison. As is shown, in all cases, the shakedown curve exhibits an 
obvious transition with the increase of roller coefficient μ, which distinguishes the failures of subsurface and 
surface nature. Further computations show the critical value of μ for this transitional point is ranged from 0.07 to 
0.38 for various frictional angles (see also Zhao et al., 2007). The impact of inhomogeneity of the soil on the 
shakedown limit is evident from Fig.6. With the increase of k, the shakedown limit at small values of μ is 
increased compared to the homogeneous case (k = 0). This increase is significant especially for cases where 
subsurface failure is critical. When μ is large and surface failure prevails, shakedown limits for the non-
homogeneous case remain larger than those for the homogeneous case whereas the difference is not so 
significant. It is also observed that the elastic inhomogeneity affects the yielding in the soil significantly. The 
elastic limit reduces at small values of μ with k being increased. A reverse trend is found for large values of μ.  
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Figure 5. Stresses at the surface of the half space under rolling and sliding contact (μ = 0.5 and υ = 0.25). 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6

7

8

9

Roller friction coefficient μ

N
or

m
al

is
ed

 lo
ad

 fa
ct

or
 λ

p 0/c

Internal friction angle 
φ = 15o

k = 0.0
k = 0.2

1.0
0.8

k = 0.5

0.5

k = 0.8

  0.2

k = 1.0

k = 0.0

Elastic limit

Shakedown limit

 
 

Figure 6. Shakedown and elastic limits for the non-homogeneous half space ( ).  15φ =
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4 Conclusions 
In this paper, the stress distribution and shakedown of a non-homogeneous half space under surface rolling and 
sliding contact are thoroughly investigated. Mohr-Coulomb criterion is employed for describing the cohesive-
frictional behaviour of yielding in the soil. It is found that the power model of elastic inhomogeneity leads to a 
rather different horizontal stress distribution comparing to the homogeneous case. As a conclusion, the 
considered form of soil inhomogeneity results in a greater shakedown limit than observed for homogeneous soil. 
The increase is most significant for the case when the roller frictional coefficient is small and thus subsurface 
failures dominate.   
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