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ABSTRACT: This paper presents an elastoplastic analysis for cavity expansion in a soil cylinder. Emphasis
here is laid on the influence of microstructures in the soil on the macroscopic behaviour of the cavity expansion.
In doing so, a strain gradient plasticity model is employed to model the soil behaviour in the cylinder. A
numerical shooting method is developed to solve the resulting fourth-order ordinary differential equation with
two-point boundary conditions for the gradient-dependent problem. Fully elastic-plastic solutions to the cavity
expansion are obtained and they are compared with the corresponding conventional results. It is demonstrated
that, in consideration of microstructural effects, the deformation and stress distributions in the cylinder are
highly inhomogeneous during both the initial loading and the subsequent elastic and plastic expansion stages.
The overall elastic-plastic behaviour of the gradient-dependent cylinder depends on the material parameters as
well as the cylinder thickness. Interesting scale effects are observed and interpreted by the gradient-dependent
model whereas this would be impossible by the corresponding conventional modeling. The results in this paper
can be useful for benchmarking further numerical investigations of the cavity expansion problem.

1 INTRODUCTION

The expansion of spherical or cylindrical cavities in
finite or infinite media has attracted much attention
from both mechanics and material science commu-
nities. Owing to the simplicity of their geometry
associated with cavity expansion problems, a num-
ber of closed-form solutions have been developed for
various applications, such as metal indentation tests
(Hill 1950), and practical geotechnical problems as
pile installation, cone penetration tests (CPT) and
pressuremeter tests (PMT) (e.g., Collins et al. 1992;
Salgado et al. 1997, Yu 2000).

One important feature of geomaterials that has been
largely neglected in previous cavity expansion stud-
ies is the effect of microstructure. Microstructures
in soils and rocks in the form of fundamental mate-
rial grains, microvoids, and microcracks influence the
overall macroscopic behaviour of the material signif-
icantly during the deformation of the material body.
The neglect of initial microstructure may, therefore,
lead to remarkable discrepancies between observed
material behaviour and theoretical predictions from
constitutive models. Indeed, conventional continuum
theory, on which most existing cavity expansion anal-
yses have been based, does not attempt to address key
geomaterial phenomena such as scale effects, strain
localisation and catastrophic failures. To resolve these

issues, it is now generally accepted that extra terms in
the constitutive descriptions are needed to account for
microstructural effects, via, for instance, various high-
order constitutive relations (e.g., Cosserat & Cosserat
1909; Toupin 1962; Mindlin 1964, 1965).

We hereby employ the Toupin-Mindlin strain gradi-
ent plasticity model to re-examine the cavity expansion
problem in a soil cylinder, and to investigate the
effect of microstructure on the deformation-stress and
pressure-expansion relations. In consideration of extra
gradient terms, the resultant differential governing
equation becomes a fourth-order ordinary differential
equation (ODE) with complex boundary conditions,
which needs to be solved numerically as elegant ana-
lytical solutions are no longer obtainable. In this
paper, we employ a numerical shooting approach,
together with Broyden’s iteration procedure, to solve
this ODE for the elastic regime in the expanding cylin-
der. As for the gradient-dependent plastic expansion,
the initial yielding position in the cylinder can not be
known in advance. We first use the purely elastic case
to find the point of initial yielding in the cylinder.
Assumptions for the subsequent elastic-plastic cav-
ity expansion behaviour are then made and examined
a posterior using the numerical algorithms devel-
oped for the plastic solution. Extensive comparisons
are made between the gradient-dependent results with
those by the corresponding conventional theory.
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(a) (b)

Figure 1. Schematic diagram of the cavity expansion in a
gradient-dependent soil cylinder. (a) A purely elastic state;
(b) A partly plastic state.

2 CAVITY EXPANSION IN A GRADIENT-
DEPENDENT SOIL CYLINDER

2.1 Problem description

A cylindrical polar coordinate system is adopted, as
shown in Fig.1. The soil cylinder is assumed to be
initially free of stress. From this initial state, the hydro-
static pressure is slowly increased from zero to p0
throughout the body, then the inner surface pressure
is gradually increased from p0 to p. This loading pro-
cess is sufficiently slow so that it may be assumed to
be quasi-static. Small strain deformation is assumed
here for the sake of simplicity.

2.2 Strain gradient plasticity model

The soil is assumed to be homogeneous, isotropic and
weightless, with its mechanical behaviour being char-
acterised by a gradient-dependent elastic perfectly-
plastic constitutive model as generalized from the lin-
ear elasticity strain gradient theory of Toupin (1962)
and Mindlin (1965). In addition to the conventional
Eulerian strains and Cauchy stresses, the strain gradi-
ents and their work-conjugate higher-order stresses are
also assumed to be present in the material. The strains
and strain gradients are respectively defined by:

Generalised plane strain conditions are assumed such
that all the components of the strains and strain gradi-
ents associated with the out-of-plane coordinate (z)
are zero. Due to the axi-symmetry of the problem,
the displacement at a point A of the cylinder can be
reasonably assumed to be a function of r only. Con-
sequently, all the non-zero components of strains and
strain gradients are related to r by:

A generalised form of Hooke’s law first proposed by
Mindlin (1965) (see also, Zhao et al. 2007) is used
to describe the isotropic linear elastic behavior of
the gradient-dependent soil (the notation of tension
positive is adopted):

where λ and µ are the conventional Lamé constants.
In these equations, l denotes an internal length scale
resulting from the introduction of strain gradients and
is related to the dimension of the microstructure in
the material. The quantity c denotes a single gradient-
dependent elastic parameter.

By neglecting body forces and considering the
generalised plane strain condition, the following equi-
librium equation for the radial direction of the cavity
is found:

where

If the three generalised stresses defined above satisfy
the inequalities σ∗

min ≤ σ∗
int ≤ σ∗

max, the following gen-
eralised Tresca criterion is assumed to govern the yield
behaviour of the material in the cylinder:

where κ denotes a cohesion parameter of the material.
The relative magnitudes of σ∗

θθ , σ∗
rr and σ∗

zz will be
checked in the computations to determine which one
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corresponds to the maximum or minimum generalised
principle stress.

3 SOLUTION TO ELASTIC EXPANSION

3.1 Mathematic formulation and solution procedure

Substitution of Eqs (3) and (4) into (6) and then into
(5) results in the following fourth-order ODE for u for
the elastic expansion of the cavity:

with the following boundary conditions:

In solving the problem constituted by (8) and (9), we
employ a numerical shooting method together with
Broyden’s iteration procedure. A fourth-order explicit
Runge-Kutta is used for solving the initial value prob-
lem for each iterating step (details may be referred to
Zhao et al. 2006). The following parameters are used
for the elastic analysis:

where %ps denotes the increment size of pressure at
the inner cavity surface. The proposed numerical pro-
cedure has been proved to be consistent, efficient and
stable for the present problem.

3.2 Numerical results

Fig. 2 depicts the Cauchy stresses and generalised
principal stresses in the cylinder for the gradient-
dependent case as compared to the conventional case.
As is clearly shown, the conventional results for both
σrr and σθθ are homogeneous throughout the cylinder
for this initial state, whereas the gradient theory values
show a mildly inhomogeneous distribution.

It is interesting to investigate the sensitivity of the
model response to some of the key parameters. We
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Figure 2. Distribution of normalized stresses in gradient-
dependent solid cylinder under a homogeneous hydrostatic
pressure p0.
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Figure 3. Sensitivity of normalized Cauchy stresses and
higher stresses to c/µ at p/p0 = 1.25.

choose an elastic expansion pressure of p/p0 = 1.25.
Fig. 3 presents the sensitivity of σrr (Fig. 3a) and
τrrr (Fig. 3b) to the variance of c/µ. As can be seen,
greater values of c/µ lead to the gradient-dependent
stress distribution σrr being above the conventional
one. The influence of c/µ on the stresses τrrr is more
pronounced. As expected, when c/µ = 0, the gradient
effects vanish and the gradient-dependent curve for
σrr is identical to the conventional one, and τrrr tends
to zero across the cylinder radius. Note that similar
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Figure 4. Variation of normalised Cauchy stresses, gener-
alised stresses and high-order stresses across the cylinder for
p/p0 = 2.

observations for the influence of the internal length
scale on the mechanical response can be found but
omitted here for brief.

The distributions of normalised Cauchy stresses,
generalised stresses and higher-order stresses at pres-
sure level p/p0 = 2 are presented in Fig. 4. As is
shown in Fig. 4a, the magnitudes of the gradient-
dependent σzz and σθθ are slightly smaller than those
from conventional theory at this pressure. As for σrr ,
the gradient-dependent results are smaller than the cor-
responding conventional ones over the inner half of the
radius, but become smaller in the outer half.This figure
also shows the generalised stress σ∗

θθ is quite close to
the gradient-dependent stress σθθ , but smaller than the
conventional one. Fig. 4b shows the variation of high-
order stresses in the cylinder. τrrr vanishes at both the
inner and outer radii due to the high-order boundary
conditions imposed by Eq. (9).

It is of particular interest to see from Fig. 4a that,
under the current cavity pressure, σ∗

zz is the interme-
diate generalised principal stress, with σ∗

θθ and σ∗
rr

being, respectively, the maximum and minimum ones.
During the computations at other pressure levels in
the elastic range, it was also found that the maximum
value for K = (σ∗

max − σ∗
min) always occur at the inner

cavity wall. Therefore, the initial yielding will occur

first at this surface. This finding will be used for the
subsequent plastic expansion analysis.

4 SOLUTION TO PLASTIC EXPANSION

4.1 Initial yielding

Using the condition that initial yielding occurs at
the inner cavity surface, we can accurately compute the
initial yielding pressure pci. Upon initial yielding, the
cylinder is still in an elastic state except at the inner
cavity surface. Hence we have:

We then use these two new boundary conditions to
replace the first two in Eq. (9), and carry out the numer-
ical shooting method again to solve the displacement
and stress field in the cylinder. On determining the
stress field, the initial yielding pressure can also be
obtained by the traction condition at r = a:

In analogue to the conventional case it is assumed that,
upon further loading, yielding will develop from the
inner wall and spread outwards to the exterior wall in
a progressive manner. At any intermediate state of this
process, the solid cylinder is said to be partly plastic.
Fig. 1b depicts a cylinder experiencing partly plastic
deformation.

4.2 Partly plastic state

In conventional mechanics, the assumptions of small
strain and aTresca yield criterion render the stress field
in the cylinder statically determinate, and it is possi-
ble to derive the Cauchy stresses merely by knowing
ρ and the cavity pressure p without needing to calculate
the deformation in the plastic region (e.g., Hill 1950).
For the gradient-dependent model treated here, the
problem is too complicated to be analytically solvable.
The key difficulty is that the stress field in the plastic
region is not statically determinate because of the num-
ber of unknown state variables and the nature of the
boundary conditions. In dealing with these problems,
we fully employ the aforementioned elastic-plastic
boundary assumption for the partly plastic case, and
develop a systematic numerical procedure for solv-
ing the stress distribution and cavity pressure-outer
wall displacement curve (see Zhao et al. 2006 for
details). However, we do not intend to determine the
displacements in the plastic regimes as additional com-
plex assumptions regarding the plastic flow rule are
required which will make the problem too complicated
to solve.
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Figure 5. Variations of the normalized stresses σ∗
rr and σ∗

θθ as
a function of the plastic radius. (‘G’ denotes gradient theory;
‘C’ denotes conventional theory).

4.3 Fully plastic state

When the plastic zone reaches the outer boundary and
the cylinder is in a fully plastic state, and the corre-
sponding pressure is assumed to be pcr . At this critical
state, we assume that, for any point on the outer sur-
face of the cylinder, the elastic relations still apply
and the stresses must satisfy the yield condition. This
fully plastic problem can then be treated as a special
case of the partly plastic expansion, using the adapted
numerical shooting procedure proposed in Section 4.2.

4.4 Numerical results

We use the same parameters as presented in Eq. (10)
for the plastic expansion analysis. Semi-analytical
solution to the plastic expansion is obtained. Fig. 5
illustrates the variation in the normalised stresses σ∗

rr
and σ∗

θθ across the cylinder wall as a function of the
plastic radius ρ. It is shown shows in Fig. 5a that
the elastic and plastic curves for σ∗

rr are smoothly
continuous at the plastic regime boundary ρ and,
before the fully plastic stage is reached, are smaller
than the corresponding conventional stress σrr at any
point of the cylinder. At the onset of fully plastic
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Figure 7. Pressure-expansion relations for gradient-
dependent solid cylinders of varying thickness.

deformation, however, σ∗
rr is slightly larger than σrr .

Fig. 5b shows that the stress σ∗
θθ in the elastic and plas-

tic regimes is still continuous at the plastic radius ρ but
non-smooth. This mirrors the behaviour from conven-
tional theory for σθθ . It is also evident that, prior to the
onset of any plastic deformation, the generalised stress
σ∗

θθ is always smaller than its conventional counterpart
σθθ . At the onset of fully plastic deformation, however,
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σ∗
θθ and the conventional stress σθθ are quite similar,

with σ∗
θθ being slightly greater than σθθ .

It is confirmed that during all stages of plastic
expansion σ∗

zz remains the intermediate stress of the
three, while σ∗

θθ is the maximum. It is also found
that the difference σ∗

θθ − σ∗
rr , for the elastic regime

in the cylinder, is always a maximum value at the
elastic-plastic interface, which implies that, whenever
further plastic yielding occurs, it always happens at
this interface so that the plastic regime will develop in
a progressive manner from the inner cavity radius to
the outer cavity radius. This matches the assumptions
made a priori in the analysis.

Fig. 6 shows the influence of c/µ and l/a on the
plastic pressure-displacement relation in terms of the
cavity pressure and the displacement at the outer sur-
face several. Compared with the conventional curve,
the gradient-dependent p − u responses are generally
stiffer but have a slightly lower ultimate pressure at the
fully plastic state for both cases. Since smaller value
of c/µ imply that the effects of the gradient terms
are less significant and small value of l/a implies
the microstructures are negligible, these results are as
expected.

We further present in Fig. 7 the pressure-expansion
responses for cylinders with various thicknesses but
with similar shape. As expected, the thicker cylinders
have the highest ultimate cavity pressures.As the cylin-
der thickness increases, the elastic stiffening effect
caused by the gradient-dependent terms becomes less
pronounced. This is to say, in a thick cylinder, the
stiffening effects from the elastic region decay more
quickly than in a thin cylinder. For example, for the
case of b/a = 10, the weakening effects in the plastic
region outweigh the stiffening effects from the elas-
tic region when 1/7 of the cylinder is still elastic. In
contrast, for the case of b/a = 2, this transition occurs
when only a small elastic area is left in the cylinder
(ρ ≈ b/30). This phenomenon can be interpreted as a
size effect for the cylindrical expansion problem, and
is only discernable by the use of gradient theory.

5 CONCLUSIONS AND DISCUSSIONS

This paper has investigated cylindrical cavity expan-
sion in an elastoplastic gradient-dependent media. The
strain gradient plasticity model assumes small strains
and is used in combination with a generalised form of
Tresca’s yield criterion. A numerical shooting method
and Broyden’s iteration procedure are used to solve
the governing fourth-order ODE equation system with
two-point boundary conditions. The elastic and plas-
tic solutions obtained have been compared extensively
against those derived from conventional analysis. It is
shown that the stress distribution in the cylinder for
the gradient-dependent case is highly inhomogeneous,
even under a uniform hydrostatic pressure at the initial

state. The influence of microstructure on the stress and
deformation during the cavity expansion process can
be modelled by adjusting the gradient-dependent elas-
tic modulus and the internal length scale. When these
quantities are large, the cavity expansion solutions
exhibit pronounced differences from those obtained by
conventional theory. The effect of the cylinder thick-
ness on the obtained the pressure-expansion relations
is also clearly depicted by this analysis.

It is worth noting that the proposed numerical
procedure for solving the gradient-dependent cavity
expansion problem cannot be used to simulate the case
of cavity expanding from a zero radius via a similarity
solution. This is because all the length variables in the
present analysis have been normalised with respect
to the inner cavity radius. In this case, the cylinder
thickness could be used as a reference for the normal-
isation. Moreover, the current solution to the plastic
expansion case is not a closed form one, as the defor-
mation in the plastic regime has not been obtained.
Where possible, it is preferable for theoretical stud-
ies to be benchmarked against experimental data. This
is not done in the present work because, in contrast
to various conventional theories, gradient-enhanced
theories have so far received relatively little calibra-
tion against real data due to their recent development.
Indeed, many of their parameters are still an open ques-
tion. Nevertheless, we suggest that the semi-analytical
solutions for cavity expansion in a higher order con-
tinuum presented here can be used for benchmarking
of any similar studies in the future.
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