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Abstract: This paper presents a unified approach to model the influence of fabric anisotropy and its evolution on both the elastic and plastic
responses of sand. A physically based fabric tensor is employed to characterize the anisotropic internal structure of sand. It is incorporated
into the nonlinear elastic stiffness tensor to describe anisotropic elasticity, and is further included explicitly in the yield function, the dilatancy
relation, and the flow rule to characterize the anisotropic plastic sand response. The physical change of fabric with loading is described by a
fabric evolution law driven by plastic strain, which influences both the elastic and the plastic sand behavior. The proposed model furnishes a
comprehensive consideration of both anisotropic elasticity and anisotropic plasticity, particularly the nonlinear change of elastic stiffness with
the evolution of fabric during the plastic deformation of sand. It offers a natural and rational way to capture the noncoaxial behavior in sand
caused by anisotropy. It also facilitates easy determination of the initial anisotropy in sand based on simple laboratory tests and avoids the
various arbitrary assumptions on its value made by many previous studies. The model predictions on sand behavior compare well with test
data. DOI: 10.1061/(ASCE)EM.1943-7889.0000962. © 2015 American Society of Civil Engineers.
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Introduction

Natural soil deposits commonly show a physical feature of cross
anisotropy due to natural deposition and/or compaction processes.
The physical structure in these soils, known to be soil fabric, ex-
hibits a largely isotropic behavior within the deposition plane and
an apparently different behavior along the normal direction to this
plane (this normal direction is called the axis of anisotropy) (Miura
and Toki 1982; Yoshimine et al. 1998). It has been well docu-
mented that the overall behavior of a soil, including its strength,
deformation, and failure, is greatly affected by the presence and
the change of the anisotropic fabric structure. The bearing capacity
of a strip footing composed of crossanisotropic sand, for example,
was found to differ by 25% as much when the load was applied
along the axis of anisotropy as compared to the case with load ap-
plied in parallel with the deposition plane (Oda et al. 1978; Azami
et al. 2010). Because all the other testing conditions were identical,
fabric anisotropy caused by sample preparation was considered the
major attributable reason for the observed difference (Oda et al.
1978; Azami et al. 2010). The vulnerability of sand to liquefaction
was also found closely related to fabric anisotropy in sand. Indeed,
both Uthayakumar and Vaid (1998) and Yoshimine et al. (1998)
reported that a sand sample under undrained shear may show a
dilative and strain hardening behavior in triaxial compression,
but may end up with static liquefaction in triaxial extension.
The apparent difference between the two cases is the loading di-
rection with respect to the fabric anisotropy in the sample.

The important influence of fabric anisotropy on overall soil
behavior has hence drawn increasing attention and has become
a focal subject of recent studies on constitutive modeling of sand

(see, e.g., Sekiguchi and Ohta 1977; Pestana and Whittle 1999;
Zhang et al. 2007; Li and Dafalias 2002, 2012; Dafalias et al.
2004; Gao et al. 2014, among others). Notably, all these studies
placed a predominant focus on the influence of anisotropy on
the plastic responses of sand; the effect of anisotropy has been con-
sidered either by the rotation of yield surface or by the incorpora-
tion of a fabric tensor in the plasticity part of the constitutive
relation. Meanwhile, the majority of these studies employed an
overly simplified assumption of isotropic elasticity in describing
the elastic behavior of sand. In the viewpoint of the authors, how-
ever, there are at least three outstanding issues related to the status
quo of sand anisotropy modeling.

First, there is compelling experimental evidence indicating that
the elastic response of sand is frequently anisotropic due to the
physical presence of cross-anisotropic fabric structure formed by
vertical compaction/deposition and/or preshearing of sand (or
so-called initial anisotropy) (see, e.g., Bellotti et al. 1996; Jiang
et al. 1997; Hoque and Tatsuoka 1998; Fioravante 2000; Kuwano
and Jardine 2002; Anhdan and Koseki 2005). While the sand
behavior is dominantly plastic, proper consideration of elastic stiff-
ness anisotropy under a small strain regime is crucial to the design
and evaluation of the operational performance for a wide range of
geotechnical structures in which the induced displacement and de-
formation is small to moderate (Addenbrooke et al. 1997; Ng et al.
2004; Schädlich and Schweiger 2013). The commonly assumed
isotropic elasticity is evidently inadequate to address these issues.

Second, when a sand goes beyond the purely elastic regime and
proceeds to the more dominant plastic deformation stage, signifi-
cant changes in the internal physical fabric structure will occur,
which helps the sand to develop optimal resistance to the applied
load. This is indeed supported by many recent micromechanical
investigations (Zhao and Guo 2013; Guo and Zhao 2013).
However, except in only a few recent studies (Li and Dafalias
2012; Gao et al. 2014; Wan and Guo 2001; Bauer et al. 2004),
the evolving nature of fabric has not been considered in constitutive
modeling of sand. The majority of fabric-based sand models have
considered a constant fabric during the loading course, which may
deviate from both physical and numerical observations. To capture
the realistic behavior of fabric anisotropy, a proper fabric evolution
law is necessary.
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Indeed pertinent to the above two points, the third issue is con-
cerned with how an evolving fabric affects the elastic response in the
plastic deformation stage of a sand. Though the fabric of a sand
sample can be initially isotropic, an isotropic nonlinear elasticity
assumption is valid to only a certain stage of deformation. When
the accumulation of plastic deformation gradually changes the soil
fabric, the elastic stiffness will become anisotropic (Ishihara et al.
1975; Kato et al. 2001; Kuwano and Jardine 2002; Gajo et al. 2004;
Gajo 2010). Proper characterization of such changes of the elastic
stiffness anisotropy during the plastic deformation stage is espe-
cially important for modeling the sand behavior in cyclic loading
(Lashkari 2010; Li 2002) and strain localization in sand (Bigoni
and Loret 1999; Gajo et al. 2004; Gao and Zhao 2013). There have
been several attempts to address the fabric effect on the elastic re-
sponse of sand (Bigoni and Loret 1999; Gajo et al. 2004; Hicher and
Chang 2006; Lashkari 2010; Schädlich and Schweiger 2013). For
example, Lashkari (2010) proposed a sand model by employing an
elastic stiffness tensor expressed in terms of a fabric tensor based on
the work by Cowin (1985), while Gajo et al. (2004) introduced an
elastic potential dependent on both the fabric tensor and the accu-
mulated plastic strain. However, without proper accounting for the
evolving nature of fabric, the effect of fabric anisotropy on the elas-
tic portion of the overall sand response during the plastic deforma-
tion regime cannot be fully characterized. A comprehensive and
consistent consideration of fabric anisotropy in characterizing both
the elastic and plastic behaviors of sand is highly desirable but
unavailable.

This study presents a unified elastoplastic sand model account-
ing for fabric anisotropy and its evolution. The model is based on
an anisotropic plasticity model recently proposed by the authors
(Gao et al. 2014). Developed within the framework of anisotropic
critical state theory (Li and Dafalias 2012), the model considered
the effect of fabric evolution on plastic sand behavior only. In this
study, an anisotropic elastic stiffness tensor expressed in terms of
the fabric tensor will be introduced in the model based on the work
by Cowin (1985). The same fabric tensor is integrated into the plas-
ticity portion of the model formulation in conjunction with a fabric
evolution law, which is driven by the plastic strain. The unified for-
mulation enables one to calibrate the initial degree of anisotropy
directly by test data based on the elastic stiffness tensor, and helps
to capture the continuous change of elastic stiffness anisotropy with
plastic deformation. The model will be verified by comparison of
model predictions with the torsional shear test results for Toyoura
sand reported in Yoshimine et al. (1998).

Model Formulation

Anisotropic Elasticity Tensor

Cowin (1985) proposed the following expression of stiffness tensor
Eijkl to describe anisotropic elasticity in a porous medium:

Eijkl ¼ a1δijδklþa2ðFijδklþ δijFklÞ
þa3ðδijFkmFmlþ δklFimFmjÞþb1FijFkl

þb2ðFijFkmFml þFimFmjFklÞþb3FimFmjFknFnl

þ c1ðδkiδljþ δliδkjÞþ c2ðFkiδljþFliδkj þ δkiFljþ δliFkjÞ

þ c3ðFirFrkδljþFkrFrjδliþFirFrlδkjþFlrFrjδikÞ ð1Þ

where Fij is a second-order fabric tensor representing the aniso-
tropic geometry of internal structure in a soil. The nine coefficients
a1, a2, a3, b1, b2, b3, c1, c2, and c3 are functions of void ratio e and
the invariants of Fij and δij (equal to 1 for i ¼ j; and 0 for i ≠ j) is

the Kronecker delta. As a special case of the more general aniso-
tropic elasticity, Eq. (1) can be used to characterize isotropic,
crossanisotropic, and orthotropic elasticity, as has been demon-
strated by Cowin (1985). The present study is based on Eq. (1)
to consider the anisotropic elasticity in sand. A second-order devia-
toric fabric tensor similar to the one used by Li and Dafalias (2012)
is employed to characterize the void-based fabric anisotropy in
sand (Li and Li 2009). For an initially cross-anisotropic sample
with the isotropic plane coinciding with the x2 − x3 plane and
the axis of anisotropy aligning with the x1-axis, Fij can be ex-
pressed as follows:

Fij ¼

0

B@

F11 0 0

0 F22 0

0 0 F33

1

CA ¼
ffiffiffi
2

3

r
0

B@

F0 0 0

0 −F0=2 0

0 0 −F0=2

1

CA ð2Þ

where F0 (≥0) is the initial degree of anisotropy. For a general case
in which the axes of anisotropy of a sample are not coincident with
the reference coordinate system, Fij can be obtained by orthogonal
transformation of the expression in Eq. (2). To facilitate the formu-
lation of constitutive equations, Fij is normalized such that its norm
F (=

ffiffiffiffiffiffiffiffiffiffiffiffi
FijFij

p
) is unity and the maximum at the critical state in this

study. Despite being general and accurate in describing elastic stiff-
ness anisotropy in sand, Eq. (1) is too cumbersome for practical use
and has received various simplifications in constitutive modeling
(e.g., Bigoni and Loret 1999; Gajo et al. 2004; Gajo 2010; Lashkari
2010). In this study, Eq. (1) is simplified by neglecting the second
and higher order terms of Fij, with further assumption of the fol-
lowing relationships for relevant coefficients:

a1 ¼ Kr − 2Gr=3 ð3Þ

a2 ¼ ðKr − 2Gr=3Þ=2 ð4Þ

c1 ¼ Gr ð5Þ

c2 ¼ Gr=2 ð6Þ

where Kr and Gr denote a reference elastic bulk modulus and a
reference elastic shear modulus, respectively, based on the follow-
ing expressions:

Gr ¼ G0

ð2.97 − eÞ2

1þ e
ffiffiffiffiffiffiffiffiffi
ppa

p ð7Þ

Kr ¼ Gr
2ð1þ νÞ
3ð1 − 2νÞ

ð8Þ

where G0 is a model parameter and pa (= 101 kPa) is the atmos-
pheric pressure; ν is the Poisson’s ratio; and p is the mean normal
stress. Consequently, the following simplified elastic stiffness ten-
sor of Eq. (1) is used in this study:

Eijkl¼ðKr−2Gr=3ÞδijδklþðKr−2Gr=3ÞðFijδklþδijFklÞ=2

þGrðδkiδljþδliδkjÞþGrðFkiδljþFliδkjþδkiFljþδliFkjÞ=2
ð9Þ

It is evident that Eq. (9) can be recovered to the isotropic elastic
stiffness tensor when the material fabric is isotropic (Fij ¼ 0). In
this case, Kr and Gr become the commonly referred elastic bulk
modulus and shear modulus, respectively.
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Yield Function

The same fabric-dependent explicit yield function f as assumed in
Gao et al. (2014) is employed here:

f ¼ R
gðθÞ

−He−khðA−1Þ2 ¼ 0 ð10Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2rijrij

p
with rij ¼ ðσij − pδijÞ=p ¼ sij=p being

the stress ratio tensor, in which σij is the stress tensor; p ¼
σii=3 is the mean normal stress; sij is the deviator stress tensor;
H is a hardening parameter related to the frictional property of
sand; kh is a positive model constant; and gðθÞ is an interpolation
function based on the Lode angle θ of rij as follows:

gðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þ2 þ 4cð1 − c2Þ sin 3θ

p
− ð1þ c2Þ

2ð1 − cÞ sin 3θ
ð11Þ

where c ¼ Me=Mc; the ratio between the critical state stress ratio in
triaxial extension is Me; and that in triaxial compression is Mc.

In proposing the yield function in Eq. (10), it is assumed that the
shear resistance of sand is jointly contributed by the isotropic Cou-
lomb friction and fabric anisotropy. The latter is considered in
Eq. (10) by the inclusion of an anisotropic variable A defined
by the following joint invariant of the deviatoric fabric tensor
Fij and the loading direction tensor nij (see also Li and Dafalias
2004; Gao et al. 2014):

A ¼ Fijnij ð12Þ

The deviatoric unit loading direction tensor nij in Eq. (12) is
defined as below following Li and Dafalias (2004) and Gao et al.
(2014):

nij ¼
Nij − Nmnδmnδij=3"""Nij − Nmnδmnδij=3

"""
with Nij ¼

∂ ~f
∂rij ð13Þ

where ~f ¼ R=gðθÞ.

Hardening Law and Fabric Evolution

The model employs the following hardening law for H and evolu-
tion law for Fij:

dH ¼ hLirh ¼ hLi
Grðch − eÞ

p

#
McgðθÞe−nζ

R
− 1

$
ð14Þ

dFij ¼ hLiΘij ¼ hLikfðnij − FijÞ ð15Þ

where hi are the Macauley brackets with hLi ¼ L for L > 0 and
hLi ¼ 0 for L ≤ 0; L is the loading index; ch, n, and kf are non-
negative model parameters; and ζ is the dilatancy state parameter
defined as follows (Li and Dafalias 2012):

ζ ¼ ψ − eAðA − 1Þ ð16Þ

where eA is a model parameter; and ψ ¼ e − ec is the state param-
eter defined by Been and Jefferies (1985), with ec being the critical
state void ratio corresponding to the current mean normal stress p.
In this model, the critical state line in the e − p plane is given by the
three-parameter (eΓ, λc, and ξ) formulation proposed by Li and
Wang (1998).

It is noteworthy that the fabric evolution Eq. (15) only affects the
plastic sand behavior in the original model developed by the au-
thors (Gao et al. 2014). In the present study, it will also have a
crucial influence on changing the elastic stiffness of sand during

the plastic loading process, which is self-evident from Eq. (9) in
conjunction with Eq. (15). As the plastic shear strain accumulates
and the material reaches critical state, the fabric tensor Fij will
eventually reach a constant critical value with its orientation being
coaxial with the loading direction nij [Eq. (15)]. This is indeed sup-
ported by the distinct-element simulations (Li and Li 2009; Zhao
and Guo 2013; Guo and Zhao 2013). At the critical state, the degree
of elasticity anisotropy will also reach a saturated value according
to Eq. (9), which is in agreement with laboratory observations
(e.g., Ishihara et al. 1975; Gajo et al. 2004; Lashkari 2010; Gajo
2010).

According to the consistency condition on the yield function
Eq. (10) in conjunction with the evolutions of H and Fij expressed
in Eqs. (14) and (15), the plastic modulus Kp can be obtained as
below:

Kp ¼ −
%∂f
∂H rh þ

∂f
∂A

∂A
∂Fij

Θij

&

¼ R
gðθÞ

'
Grðch − eÞ

H

#
McgðθÞe−nζ

R
− 1

$
þ 2khkfð1 − AÞ2

(

ð17Þ

Flow Rule and Dilatancy

An associated noncoaxial flow rule based on the yield function ex-
pressed in Eq. (10) is used in this model:

depij ¼ hLimij; with

mij ¼
∂f=∂rij − ð∂f=∂rmnÞδmnδij=3"""∂f=∂rij − ð∂f=∂rmnÞδmnδij=3

"""
ð18Þ

where depij is the plastic deviatoric strain increment. Since ∂f=∂rij
is a function of rij and Fij and the evolution of Fij is accounted for
in the model, the noncoaxial response of sand caused by fabric
anisotropy can be naturally described. The readers are referred
to Gao et al. (2014) for detailed discussion regarding the noncoax-
iality feature offered by the yield function in Eq. (10).

The following fabric-dependent dilatancy relation is used in the
model (Li and Dafalias 2000, 2012; Gao et al. 2014):

D ¼ dεpv
jdεpq j

¼ dεpiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2depijde

p
ij=3

q

¼ d1
McgðθÞ

#
1þ R

McgðθÞ

$
½McgðθÞemζ − R& ð19Þ

where d1 and m are two model constants; and dεpv and dεpq denote
the plastic volumetric and shear strain increments, respectively.

Determination of the Initial Degree of Anisotropy F 0

It remains difficult to measure the initial anisotropy in soil, espe-
cially in the field. There have been attempts to measure the sand
particle orientation or void space distribution inside a real sand
sample based on various techniques such as image analysis using
sliced section or the wave-based measuring of anisotropic shear
stiffness to obtain the initial degree of anisotropy (e.g., Oda and
Nakayama 1989; Yang et al. 2008). These methods are frequently
costly and time-consuming and require specially designed equip-
ment, and most often are fabric-definition specific. They may also
cause great disturbance to the tested sample and thus lead to inac-
curate measurement of the initial fabric anisotropy. In previous
fabric-based studies, F0 has commonly been assumed a value
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which appears to be rather arbitrary (e.g., Li and Dafalias 2002,
2012; Dafalias et al. 2004; Gao et al. 2014). Indeed, this difficulty
can be conveniently overcome by the present model with a com-
prehensive consideration of anisotropic elasticity and plasticity as
outlined in the previous sections. Based on the anisotropic elastic
stiffness tensor in Eq. (9), one can readily determine F0 for use in
the present model based on test data in conventional undrained tri-
axial compression/extension or isotropic compression tests on
sand. The calibration procedure is described as follows. For a sand
sample with initially cross-anisotropic fabric whose deposition
plane coincides with the x2 − x3 plane such that the fabric tensor
can be expressed by Eq. (2), the independent components of the
initial anisotropic elasticity tensor in Eq. (9) present the following
expressions:

E1111 ¼ ðKr þ 4Gr=3Þ þ
ffiffiffi
6

p
F0ðKr þ 4Gr=3Þ=3

E2222 ¼ E3333 ¼ ðKr þ 4Gr=3Þ −
ffiffiffi
6

p
F0ðKr þ 4Gr=3Þ=6

E1122 ¼ E1133 ¼ ðKr − 2Gr=3Þ þ
ffiffiffi
6

p
F0ðKr − 2Gr=3Þ=12

E1212 ¼ E1313 ¼ ð1þ
ffiffiffi
6

p
F0=12ÞGr

E2323 ¼ ð1 −
ffiffiffi
6

p
F0=6ÞGr ð20Þ

As all the five elastic constants on the left-hand side of Eq. (20)
can be measured using the small strain tests (see, e.g., Bellotti et al.
1996; Kuwano et al. 2000), one can solve for the three unknowns
Kr, Gr, and F0 (or equivalently G0, ν, and F0) based on the lest-
square method. Alternatively, F0 can be determined according to
the test results at the very beginning of conventional undrained tri-
axial compression/extension or isotropic consolidation tests on
sand where the fabric and stress are initially coaxial. The second
method is relatively easier to execute in practice and is recom-
mended in the present study.

When the stress state for the sand sample is initially isotropic
before shear (the initial values for both R and H are zero), the
model will give purely elastic response at the very beginning of
an undrained triaxial compression/extension test (CTC/CTE) as
Kp is initially infinite [Eq. (17)]. Under triaxial conditions, it is
easy to render the major principal stress perpendicular (CTC) or
parallel (CTE) to the deposition plane (x2 − x3 plane in this study).
Consequently, one obtains the following incremental stress-strain
relation according to Eqs. (20) and (29):

# dp
dq

$
¼

"
Kr ð

ffiffiffi
6

p
Kr=4þ

ffiffiffi
6

p
Gr=6ÞF0

ð
ffiffiffi
6

p
Kr=4þ

ffiffiffi
6

p
Gr=6ÞF0 ð3þ

ffiffiffi
6

p
F0=2ÞGr

#

·
# dεv
dεq

$
ð21Þ

where dp [¼ðdσa þ 2dσrÞ=3] is the mean effective stress incre-
ment and dq (¼dσa − dσr) is the shear stress increment with
dσa and dσr denoting the axial and radial stress increment, respec-
tively; dεv (¼dεa þ 2dεr) is the volumetric strain increment and
dεq [¼2ðdεa − dεrÞ=3] the shear strain increment with dεa and
dεr denoting the axial and radial strain increments, respectively.
Since dεv ¼ 0 in undrained loading, the following relation between
dq=dp and F0 can be obtained according to Eqs. (7), (8), and (21):

dq
dp

¼
ffiffiffi
6

p

2

2ν − 1

ν − 2

%
6

F0

þ
ffiffiffi
6

p &
ð22Þ

or

F0 ¼
3

ffiffiffi
6

p
ð2ν − 1Þ

3ð1 − 2νÞ þ ðdq=dpÞðν − 2Þ
ð23Þ

Since the Poisson’s ratio ν (0 < ν < 0.5) for sand is difficult to
obtain and may be dependent on multiple factors including the void
ratio, confining pressure, and stress ratio, it is common that a typ-
ical value ν ¼ 0.2 is assumed for most sand, as it is for the present
model (Bellotti et al. 1996; Kuwano and Jardine 2002). Thus, F0

can be directly obtained based on the value of dq=dp at the very
beginning of an undrained triaxial test and Eq. (23) as follows:

F0 ¼
ffiffiffi
6

p

ðdq=dpÞ − 1
ð24Þ

If the initial effective stress path is perpendicular to the p-axis
(see Path A in Fig. 1), Eq. (24) gives F0 ¼ 0 as dq=dp ¼ ∞, which
is consistent with isotropic elasticity. If the sand samples have been
prepared via vertical compaction in the laboratory, dq=dp > 1 is
typically observed in triaxial compression and extension tests
(e.g., Yoshimine et al. 1998; Finge et al. 2006), and one has F0 >
0 according to Eq. (24) (Path B in Fig. 1). Note that dq > 0 in
triaxial compression and dq < 0 in triaxial extension.

In an isotropic compression test performed in a triaxial cell on a
sand sample with the bedding plane being horizontal, the stress-
strain relation at the very beginning of loading can also be ex-
pressed by Eq. (21). Because dq ¼ 0 and the relation between
Kr and Gr is expressed by Eq. (8), the following relations can
be obtained according to Eq. (21):

dεv
dεq

¼ 3ðdεv=dεaÞ
3 − dεv=dεa

¼ −
ffiffiffi
6

p

2

%
6

F0

þ
ffiffiffi
6

p &
2ν − 1

ν − 2
ð25Þ

or

F0 ¼ −
ffiffiffi
6

p ð2ν − 1Þ½ðdεv=dεaÞ − 3&
3ð1 − 2νÞ þ ðdεv=dεaÞðν þ 1Þ

ð26Þ

If ν ¼ 0.2 is assumed, F0 can be obtained according to the ini-
tial dεv=dεa in an isotropic compression test as follows:

F0 ¼
ffiffiffi
6

p ðdεv=dεaÞ − 3

2ðdεv=dεaÞ þ 3
ð27Þ

It is evident that F0 ¼ 0 when dεv=dεa ¼ 3, which corresponds
to the initially isotropic fabric case. Because the sand samples
are typically prepared through vertical compaction or pluviation,
the elastic stiffness will be bigger in the vertical direction and
dεv=dεa > 3 (Hoque and Tatsuoka 1998; Lade and Abelev 2005;

Fig. 1. Stress paths at the very beginning of undrained triaxial tests

© ASCE 04015056-4 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
on

g 
K

on
g 

U
ni

ve
rs

ity
 o

f S
ci

 a
nd

 T
ec

h 
(H

K
U

ST
) o

n 
06

/0
2/

15
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Anhdan and Koseki 2005; Finge et al. 2006; Abelev et al. 2007),
and, therefore, one has F0 > 0 according to Eq. (27).

Model Verification and Discussion

In this section, the model will be first verified through a comparison
of the model simulations with torsional shear test data on dry-
deposited Toyoura sand (Yoshimine et al. 1998). The test setup
is shown in Fig. 2, in which α denotes the angle between the major
principal stress direction and the vertical axis. All the following
simulations are based on the calibrated model parameters summa-
rized in Table 1. The parameters are determined using the following
procedure:
1. Initial degree of anisotropy F0: F0 can be determined based on

the small strain tests, isotropic compression tests and triaxial
compression tests. Detailed procedure has been discussed in
the previous sections. In this paper, the value of F0 (=0.47)
is evaluated based on the value of dðσ1 − σ3Þ=dp (=6.25)
at the very beginning of the undrained triaxial compression
test (α ¼ 0° and b ¼ 0) using Eq. (24) [Fig. 3(c)]. In the fig-
ures, b [¼ðσ2 − σ3Þ=ðσ1 − σ3Þ] denotes the intermediate prin-
cipal stress variable, with σ1, σ2, and σ3 denoting the major,
intermediate, and minor principal stress, respectively.

2. Elastic parameters: The parameterG0 can be determined based
on the stress-strain relations at the very beginning of triaxial
tests. More detailed discussion on this can be found in Taiebat
and Dafalias (2008). It is assumed that ν ¼ 0.2 in this model.

3. Critical state parameters: The critical state parameters can be
obtained directly from the critical state stress ratio in triaxial

compression and extension (for Mc and c) and the location of
the critical state line in the e-p plane (for eΓ, λc, and ξ).

4. Parameters relevant to sand behavior subjected to shear: The
parameters ch, n, d1, and m can be determined by trial and
error to fit the monotonic triaxial compression tests. It is found
that n, d1, and m are closely related to the particle constitution
of sand such as gradation and maximum and minimum void
ratio (Gao et al. 2014). Note that ch varies in a small range and
only fine tune is needed for different sands to capture the effect
of void ratio on plastic hardening of sand in monotonic load-
ing. The parameter eA describes the effect of fabric anisotropy
and loading direction on dilatancy and plastic hardening of
sand in shear. It can thus be determined by fitting the test re-
sults in triaxial extension. It is also found that the variation of
eA is small for different sands (Gao et al. 2014).

5. Fabric evolution parameter: Because it is still not possible to
measure the fabric evolution in laboratory tests, kf cannot be
directly obtained. A feasible way for determining kf is to use
the data for noncoaxial sand behavior in simple shear tests
(Fig. 8). It is shown by Gao et al. (2014) that kf changes
in a small range for different sands.

Model Verification

Figs. 3 and 4 show the model simulations of the fabric effect on the
undrained behavior of sand for b ¼ 0 and b ¼ 1, respectively.
Clearly, the model predictions agree fairly well with the experimen-
tal curves in terms of both the stress-strain relation and the stress
path. As α increases, the sand response becomes more contractive
while the shear stiffness becomes smaller. Evidently, the present
model well captures the inclined stress paths (Path B illustrated
in Fig. 1) at the initial loading stage in both figures, which will
be further discussed subsequently. Fig. 5 further shows a compari-
son between the model simulations and the test data for the case of
an undrained simple shear test with an initially anisotropic stress
state. K0 denotes the initial value of σ3=σ1 in the figures. The
model clearly captures the experimentally observed sand behavior
under undrained simple shear tests. It should be mentioned that
there will be numerical problems when the mean effective stress
reaches absolute 0 (Fig. 5). In the implementation of the present
model, the allowable minimum effective mean stress is set to be
10−6 rather than exactly 0 to avoid such an issue.

Elasticity Anisotropy Only versus Plasticity
Anisotropy Only

It is interesting to first show how the proposed model facilitates
a more accurate description of the behavior observed in sand.
For demonstration purpose, the predictions by the elasticity
anisotropy only version of the proposed model by setting kf ¼
eA ¼ 0 (neglecting fabric effect on the plastic response) are com-
pared in Fig. 6 against those by the plasticity anisotropy only
version, in which isotropic elasticity is considered (e.g., the model
in Gao et al. 2014). Evidently, if isotropic elasticity is assumed
(by the plasticity anisotropy only model), the predicted effective
stress path at the initial loading stage of an undrained shear test is
always perpendicular to the p-aixs, exemplified by the four
cases in solid curves in Figs. 6(b and d). In contrast, if anisotropic
elasticity is employed according to Eq. (9), the predicted slope
of the stress path [see the cases in dashed curves in Figs. 6(b and d)
at the very beginning of loading], dðσ1 − σ3Þ=dp, is positive for
both testing cases (α ¼ 0° and 45°) at b ¼ 0 and negative for both
cases (α ¼ 60° and 90°) at b ¼ 1. Note that dðσ1 − σ3Þ=dp ¼
dq=dp when b ¼ 0 and dðσ1 − σ3Þ=dp ¼ −dq=dp when b ¼ 1.

Fig. 2. Torsional shear test setup and stress state for sand element
(reprinted from Yoshimine et al. 1998, with permission)

Table 1. Model Parameters for Toyoura Sand

Parameter Symbol Value

Elasticity G0 125
ν 0.2

Critical state Mc 1.25
c 0.75
eΓ 0.934
λc 0.02
ξ 0.7

Plastic modulus ch 1.4
n 2.2

Dilatancy d1 0.35
m 3.0
eA 0.095

Fabric evolution kf 4.8

Note: F0 ¼ 0.47.
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In comparison with the test data presented in Figs. 3 and 4, it is evi-
dent that the consideration of anisotropic elasticity helps to capture
the initial inclination of the effective stress paths considerably better
than the isotropic elasticity. The observation is indeed consistent
with that reported by Finge et al. (2006).

However, considering the effect of fabric on the elastic sand
response alone cannot adequately characterize the overall sand
behavior, especially when the shear deformation is large. As seen
from Fig. 6, the predictions by the anisotropic elasticity only
model apparently lead to pronounced deviations for the predicted

stress-strain relation and the effective stress paths from the exper-
imental observations at large shear strains (c.f. test results in
Figs. 3 and 4). Note that the effect of anisotropic plasticity is much
less significant at relatively small strain level, as can be seen from
Fig. 6(e), which shows the same results as Fig. 6(a) at small shear
strain level. Proper account of the fabric effect on the plastic sand
response is indeed mandatory for realistic modeling of sand
behavior at large strain. The present model brings this feature
by introducing the anisotropic variable A into the yield function,
the hardening law for H, as well as the dilatancy relation. Indeed,

(a) (b)

(c) (d)

Fig. 3. Test data and model simulations for influence of principal stress direction α on undrained behavior of Toyoura sand at b ¼ 0 (data from
Yoshimine et al. 1998)

0

(a) (b)

(c) (d)

Fig. 4. Test data and model simulations for influence of principal stress direction α on undrained behavior of Toyoura sand at b ¼ 1 (data from
Yoshimine et al. 1998)
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(a) (b)

(c) (d)

Fig. 5. Comparison between model simulations and undrained simple shear test data on Toyoura sand with initially anisotropic stress state (data from
Yoshimine et al. 1998)

(a) (b)

(c) (d)

(e)

Fig. 6. Effect of anisotropic elasticity on model responses in undrained torsional shear tests: (a) and (b) b ¼ 0; (c), (d), and (e) b ¼ 1
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as is shown in Figs. 3 and 4, the simulations by the present com-
prehensive anisotropic model exhibit much better agreement with
the test data, both at the initial loading stage and at large shear
strains.

Unified Description of Fabric Effect on Elastic and
Plastic Sand Behavior

An important feature of the present model, as compared to all past
anisotropic sand models including the recent one by the authors
(Gao et al. 2014), is its universal consideration of fabric anisotropy
and fabric evolution for both elastic and plastic responses of sand
behavior. Specifically, the elastic stiffness tensor in the present
model changes with plastic strain, due to its dependence via Eq. (9)
on the fabric tensor, which evolves with plastic deformation. Be-
cause this is readily observed from Fig. 6, it is demonstrated with
additional model simulations of undrained triaxial compression
with small unloading-reloading cycles at different shear strain lev-
els as shown in Fig. 7. In the simulations the initial sand fabric is
assumed to be isotropic (F0 ¼ 0). While the stress-strain relations
in Fig. 7(a) do not display appreciable differences (Note that the
unloading-reloading lines are indeed not vertical in Fig. 7(a). They
are seemingly vertical due to the very large strain scale used in plot-
ting the figure to show the entire curve to large strain), the effective
stress paths in unloading-reloading after the phase transformation
state predicted by the proposed new model [Fig. 7(b)] are distinctly
different from those based on isotropic elasticity and anisotropic
plasticity (e.g., by Gao et al. 2014). Prior to the phase transforma-
tion state, the shear strain is generally small (ε1 − ε3 < 3%) and
the fabric evolution insignificant [Fig. 7(c)]. Because the consid-
ered sample is initially isotropic, the degrees in both the fabric
anisotropy and elastic stiffness anisotropy remain small to this
stage [Fig. 7(c)]. It is hence not surprising that the predicted un-
loading-reloading effective stress path is nearly perpendicular to
the mean stress axis for both cases [c.f., the plasticity-anisotropy-
only case in Figs. 6(b and d)]. After the phase transformation state,
the predicted unloading-reloading effective stress paths by the

model with isotropic elasticity remain nearly vertical, while the
present model based on anisotropic elasticity predicts inclined
effective stress paths for the unloading-reloading cycles that are
consistent with experimental observations (Ishihara et al. 1975;
Verdugo and Ishihara 1996; Gajo 2010; Lashkari 2010). Notably,
the inclination angle θ between the two cases [shown in Fig. 7(b)]
increases with the maximum shear strain and ultimately reaches a
saturated value at very large shear strain [Fig. 7(b)]. This is also in
agreement with the observations reported by Ishihara et al. (1975)
and Gajo (2010). The increase of θ with shear strain is indeed re-
lated to the increased degree of elastic stiffness anisotropy, e.g., the
ratio of E1111=E3333 shown in Fig. 7(c), which denotes the ratio
of the constraint modulus in the vertical and horizontal directions
for the present study. The observed trend in the evolution of θ in-
dicates that during the monotonic shear, the evolving fabric leads to
steadily increased degrees in both the fabric and elastic stiffness
anisotropy [Fig. 7(c)]. When the sand sample reaches the critical
state at large deformation, the fabric eventually becomes coaxial
with the loading direction and reaches a constant magnitude.
Consequently, the degree of elastic stiffness anisotropy will cease
to evolve further and reaches a saturated value, which is embodied
by both θ and E1111=E3333 [Figs. 7(b and c)]. Fig. 7 highlights the
important new features associated with the present model that have
not been demonstrated by any existing models.

Note that in Fig. 7 the sample has been sheared to a high shear
strain level in an attempt to attain critical state (e.g., constant stress,
void ratio, and fabric). Indeed, distinct element studies, such as the
recent one presented by Fu and Dafalias (2011) and Zhao and Guo
(2015), indicate the sand fabric and void ratio inside the shear band
can only reach the critical state when the average shear strain in the
shear band is well above 200%. The present model has been for-
mulated to offer pure elastic responses during the unloading and
reloading process, so it is not capable of capturing the sand behav-
ior in cyclic loading typically with a small elastic domain/nucleus.
To this end, the bounding surface concept may be further intro-
duced to generalize this model to describe the sand behavior in
cyclic loading, which will be pursued in the future.

0 200 400 600 800 1000 1200
0

400

800

1200

1600

 

Undrained triaxial compression
p

c
 = 200 kPa, e

0
 = 0.83

F
0
  = 0

1−
3 

(k
P

a)

p (kPa)

 Anisotropic elasticity
 Isotropic elasticity

θ

(a) (b)

(c)

Fig. 7. Effect of elasticity anisotropy evolution on sand response in undrained triaxial compression: (a) shear stress-strain relation; (b) effective stress
path; (c) evolution of ratio E1111=E3333 with shear strain
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Prediction of Noncoaxial Sand Behavior in Undrained
Simple Shear Tests

Another feature of the present model is its remarkable capability in
predicting noncoaxial behavior in sand. Experimental observations
indicate that initial sand response is typically noncoaxial (the major
principal axes of the stress and strain increment do not coincide)
if the sand fabric and loading direction are not coaxial at the begin-
ning of loading, and the degree of noncoaxiality decreases gradu-
ally with shear strain and vanishes at large deformation (Roscoe
1970; Yoshimine et al. 1998; Thornton and Zhang 2006). There
have been various attempts toward modeling such unique sand
behavior, e.g., by assuming that the plastic strain increment is de-
pendent on both the current stress state and the stress increment
direction (e.g., Gutierrez et al. 1993; Yu and Yuan 2006). Most
often, the physical significance behind these approaches in treating
noncoaxiality is unclear. The present model can describe such sand
response in a rather natural and physically plausible manner. In the
plasticity part, as entailed in Gao et al. (2014) and also discussed in
Zhao and Guo (2013), the employment of an associated noncoaxial
flow rule [Eq. (18)] based on a fabric-dependent yield function
[Eq. (10)] leads to a natural fraction of contribution of noncoaxial
fabric to the total plastic strain, which facilitates the modeling of
noncoaxiality.

As an illustrative example, Fig. 8 shows themodel simulations on
the noncoaxial response in undrained simple shear tests on sandwith
initially isotropic [Figs. 8(a and c)] and anisotropic [Figs. 8(b and c)]
stress states, where β (≡45° in simple shear tests) denotes the ori-
entation of the major principal strain increment direction relative to
the vertical axis andα is the angle between the major principal stress
direction and the vertical axis [Fig. 8(c)]. In the case with an initially
isotropic stress state [Fig. 8(a)], the model well captures the evolu-
tion of α. When the initial stress state is anisotropic, the model pre-
diction deviatesmoderately from the test data but can still reasonably
describe the continuous increase trend ofα toward β. For both cases,
α will finally reach an identical value of β at the critical state when
the fabric and loading direction are totally coaxial and the noncoax-
ial strain increment vanishes.

Prediction of Effect of Sample Preparation Method on
Sand Behavior

Numerous experimental investigations indicate sand response is
strongly affected by the sample preparation method (e.g., Miura
and Toki 1982; Vaid et al. 1999; Ishihara 1993; Papadimitriou et al.
2005; Yang et al. 2008; Lee et al. 1999; Sze and Yang 2014).
Because the sand samples are typically prepared through vertical
compaction or pluviation, the sand fabrics created by the various
preparation methods are commonly cross-anisotropic but with
varied degrees of initial anisotropy. The present model is able to
capture the influence of sample preparation method on the sand
response, which is showcased in Fig. 9 with examples in drained
and undrained triaxial tests. Note that σa − σr ≥ 0 in triaxial com-
pression and σa − σr ≤ 0 in triaxial extension. An initially isotropic
fabric case (F0 ¼ 0) is compared to an anisotropic fabric case
(F0 ¼ 0.47). Compared to the isotropic sample, the prediction
on the initially anisotropic sample shows a higher shear resistance
and a more dilative response in triaxial compression and displays a
lower shear resistance and more contractive response in triaxial ex-
tension. The predicted responses are consistent with experimental
observations, e.g., by Sze and Yang (2014), in which the dry-
deposited samples behave like the initially anisotropic case and the
moist-tamped ones behave like the initially isotropic case. Indeed,
it is found that the dry-deposited samples have a higher initial
degree of anisotropy (Yang et al. 2008). The phenomenon can
be easily explained with the present model too. The initial aniso-
tropic parameter A for the initially anisotropic sand sample is re-
spectively bigger and smaller in triaxial compression and extension
than the isotropic case. Noting that both the relative orientation be-
tween fabric and loading direction and the initial degree of fabric
anisotropy contribute to A, it is the different initial A that causes the
different responses in Fig. 9. Also notably, the differences between
initially anisotropic and isotropic fabric cases decrease with loading
progress and totally vanish as the fabric in both cases evolve toward
the same critical state value [Fig. 9(g)]. To further demonstrate
this, the evolution of Kp and D for cases with F0 ¼ 0 and
0.47 in drained triaxial compression is shown in Figs. 9(e and f).

°

(a) (b)

(c)

Fig. 8. (a) and (b) Comparison between tested and simulated noncoaxial sand response in undrained simple shear tests (data from Yoshimine et al.
1998); (c) illustration of relation between α and β
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As A approaches the critical state value 1 for both cases, the
differences between Kp and D for the two become smaller
[Figs. 9(e and f)]. At the critical state (e.g., ε1 − ε3 ¼ 200%),
the values of Kp and D for both cases become 0 (A ¼ 1 for both
cases). For more discussion of the influence of A on sand response,
please refer to Gao et al. (2014).

Conclusions

A unified approach has been proposed to model the fabric effect on
both elastic and plastic behavior of sand. The proposed model has
the following main features:
1. The employment of a fabric-dependent anisotropic elastic

stiffness tensor helps to realistically reproduce both the initial

anisotropic sand response and the steady change of elastic be-
havior with plastic deformation through the evolution of fabric
with plastic shear strain. At the critical state, the fabric tensor is
coaxial with the loading direction and reaches unity in mag-
nitude, which leads to a saturated degree of elastic stiffness
anisotropy.

2. The effect of fabric and its evolution on plastic sand behavior
is considered through explicit inclusion of the fabric tensor
in the yield function, the dilatancy relation, and the flow rule.
In particular, the flow rule can naturally account for the non-
coaxial behavior of sand under monotonic loading.

3. The unified consideration of anisotropic elasticity and aniso-
tropic plasticity not only offers integrated and seamless mod-
eling of sand behavior from small to large strain, but also
facilitates the calibration of initial anisotropy based on simply

0.4

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 9.Model simulation for effect of sample preparation method on sand behavior in (a) and (b) drained triaxial tests; (c) and (d) undrained triaxial
test; (e)–(g) evolution of Kp, D, and A for cases with F0 ¼ 1 and 0.47 in drained triaxial compression
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designed laboratory tests. This helps to avoid arbitrariness in
assuming the initial fabric commonly existing in most pre-
vious studies.

The model simulations have been compared with undrained tor-
sional shear test results on Toyoura sand (Yoshimine et al. 1998),
with good agreements observed. The model can capture the in-
clined effective stress path at the very beginning of conventional
undrained triaxial tests (when the fabric and stress are initially co-
axial) typically observed in laboratory tests (Yoshimine et al. 1998)
as well as the evolution of anisotropic elasticity with loading his-
tory. Specifically, the study illustrates that the degree of anisotropy
in the elastic stiffness increases with the plastic shear strain and
reaches a saturated value at very large strain, which is mainly
due to the fabric evolution with plastic deformation. At the critical
state, the fabric is codirectional with the loading direction and
reaches a constant magnitude, resulting in a constant degree of
anisotropy in elastic stiffness, which depends on the fabric tensor.
In addition, the consideration of fabric and fabric evolution in the
plasticity part of a model is shown to be essential for realistic mod-
eling of the anisotropic sand response at large strain. With further
illustrative examples, the model has been shown to capture the non-
coaxial behavior in sand and the effect of sample preparation
method on sand behavior with reasonable agreement with experi-
mental observations. While the present model has been developed
for the monotonic loading case, it remains exploratory to improve it
to furnish modeling of cyclic behavior of sand.

Appendix. Constitutive Equations

The condition of consistency for the yield function can be
expressed as

df ¼ ∂f
∂σij

dσij þ
∂f
∂H dH þ ∂f

∂Fij
dFij ¼

∂f
∂σij

dσij − hLiKp ¼ 0

ð28Þ

where Kp is shown in Eq. (17) and

dσij ¼ Eijkldεekl ð29Þ

where dεeij is the elastic strain increment and Eijkl is expressed by
Eq. (9). According to Eqs. (18) and (9), the plastic strain increment
dεpij can be calculated as below:

dεpij ¼ depij þ dεpvδij=3 ¼ hLimij þ hLiD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3mklmkl

p
δij=3

¼ hLiðmij þ
ffiffiffi
6

p
=9DδijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xij

ð30Þ

Based on the additive decomposition of the total strain
increment

dεij ¼ dεeij þ dεpij ð31Þ

and Eqs. (28)–(31), one can get

df ¼ ∂f
∂σij

Eijklðdεkl − hLixklÞ − hLiKp ¼ 0 ð32Þ

and thus

L ¼
ð∂f=∂σijÞEijkl

Kp þ ð∂f=∂σijÞEijklxkl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Πkl

dεkl ð33Þ

Combining Eqs. (29), (31), and (33), the constitutive equation
can be obtained as below:

dσij ¼ Λijkldεkl ð34Þ

where

Λijkl ¼ Eijkl − hðdLÞðEijmnxmnÞΠkl ð35Þ

where hðdLÞ is the Heaviside step function, with hðdL > 0Þ ¼ 1
and hðdL ≤ 0Þ ¼ 0.

The expressions for ∂f=∂H, ∂f=∂Fij, nij (or Nij), and mij (or
∂f=∂rij) are shown in Gao et al. (2014) and

∂f
∂σij

¼ ∂f
∂rij

%
δkiδlj
p

− σkl

3p2
δij

&
ð36Þ
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