
Received: 25 May 2018 Revised: 26 October 2018 Accepted: 20 December 2018

DOI: 10.1002/nag.2921

RE S EARCH ART I C L E

Multiscale modeling of large deformation in geomechanics

Weijian Liang Jidong Zhao

Department of Civil and Environmental
Engineering, Hong Kong University of
Science and Technology, Hong Kong

Correspondence
Jidong Zhao, Department of Civil and
Environmental Engineering, Hong Kong
University of Science and Technology,
Hong Kong.
Email: jzhao@ust.hk

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 51679207;
Research Grants Council of Hong Kong,
Grant/Award Number: T22-603/15-N;
General Research Fund, Grant/Award
Number: 16210017

Summary
Large deformation soil behavior underpins the operation and performance for
a wide range of key geotechnical structures and needs to be properly consid-
ered in their modeling, analysis, and design. The material point method (MPM)
has gained increasing popularity recently over conventional numerical methods
such as finite element method (FEM) in tackling large deformation problems.
In this study, we present a novel hierarchical coupling scheme to integrateMPM
with discrete element method (DEM) for multiscale modeling of large defor-
mation in geomechanics. The MPM is employed to treat a typical boundary
value problem that may experience large deformation, and the DEM is used to
derive the nonlinear material response from small strain to finite strain required
by MPM for each of its material points. The proposed coupling framework not
only inherits the advantages of MPM in tackling large deformation engineering
problems over the use of FEM (eg, no need for remeshing to avoid mesh distor-
tion in FEM), but also helps avoid the need for complicated, phenomenological
assumptions on constitutive material models for soil exhibiting high nonlin-
earity at finite strain. The proposed framework lends great convenience for us
to relate rich grain-scale information and key micromechanical mechanisms
to macroscopic observations of granular soils over all deformation levels, from
initial small-strain stage en route to large deformation regime before failure. Sev-
eral classic geomechanics examples are used to demonstrate the key features the
newMPM/DEM framework can offer on large deformation simulations, includ-
ing biaxial compression test, rigid footing, soil-pipe interaction, and soil column
collapse.
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1 INTRODUCTION

Large deformation in soils may significantly affect the operation and serviceability for a wide range of geotechnical struc-
tures and applications, including footing foundation on soft soils, slope creep and failure, pile penetration, and sea-bed
pipeline installation and maintenance. Safe design and analysis of these structures need to properly consider soil behav-
ior at large deformation. Numerical modeling of large deformation in soils has long been known challenging, mainly
because of two major difficulties commonly encountered. (a) Large deformation may likely induce changes in boundary
conditions and how soil interacts with the surrounding structures, and (b) the behavior of soil is highly nonlinear and is
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loading history and state-dependent, especially at large deformation. To tackle both geometric nonlinearity and material
nonlinearity has become the major concerns on large deformation modeling of soils.
Being one of the most successful numerical methods for the past half century, finite element method (FEM) has been

widely used in all areas in geotechnical engineering. Conventional FEM based on updated Lagrangian formulation, how-
ever, cannot be readily applied for large deformation problems as it may suffer issues such as severe mesh distortion,
inaccurate and inefficient computation, and possible nonconvergent solutions. Remedy measures such as remeshing
or adaptive mesh1-7 may help partially alleviate these issues, but cannot always guarantee convergence and may often
cause considerable increase in computational cost.8 The new millennium has witnessed the burgeoning of a variety
of mesh-free methods with great potential to effectively address the large deformation problems. Representative ones
include particle finite element methods (PFEM),9 smooth particle hydrodynamics (SPH),10,11 reproducing kernel particle
method (RKPM),12,13 and material point method (MPM).14-16 These methods share a common feature to discretize a con-
tinuum domain by a set of points instead of elements. In doing so, the mesh distortion problem suffered by mesh-based
methods such as FEM can be avoided. Among them, the MPM proposed 20 years ago14-16 has enjoyed a particular popu-
larity recently in geomechanics. Similar to general mesh-free methods, MPM discretizes a continuum body with a set of
Lagrangian material points (or particles). Carrying essential information of the state parameters, these points are tracked
throughout the computation of MPM. It departs from other mesh-free methods in that the MPM particles do not inter-
act with one another directly, and the momentum equations are not solved on particles either. Rather, the momentum
equations are resolved on a fixed Eulerian background mesh wherein the material particles are placed. As such, MPM
presents a robust combination of Lagrangian (particles) and Eulerian (background mesh) descriptions, making it an
ideal tool for modeling large deformation problems with complex boundaries. Moreover, MPM expedites the tracking
of contacts in contact problems by allowing multiple velocity fields at mesh nodes. This is an amiable feature for mod-
eling practical problems where contacts are important. MPM has been successfully applied in simulating a wide range
of geotechnical problems, including foundation settlement,17 pile installation,18,19 column collapse,17,20,21 silo discharge,22
and landslide or landslide-induced flow.21,23,24 More recently, MPMhas also been extended to considering pore water pres-
sure to simulate hydro-mechanical coupling problems. Examples reported in the literature include levee25-27 and slope
failures28 (see a recent review on MPM by Soga et al27).
Same as any continuumapproaches,MPMneeds constitutivemodels to describe themechanical response at itsmaterial

particles. Granular soils are typical frictional materials showing high nonlinearity and history/loading path dependency.
Continuum constitutive descriptions for the small-strain behavior of granular soils already prove to be laborious and
complex, routinely requiring quite a few phenomenological model parameters that do not bear clear physical meanings.
When more complicated material features such as strain localization,29 anisotropy,30-32 cyclic behavior, liquefaction, and
critical state33-35 have to be accounted for in a model, both the needed model parameters and the necessary model com-
plexity quickly increase to such an extent that the model can hardly be comprehended by nonspecialists, let along to be
used by practising engineers. As mentioned before, the situation may be further grievingly exacerbated in case of large
deformation. Simple models applicable to small strain regimes may no longer be serviceable for large deformation condi-
tions or regimes. Typically, a practical boundary value problem may involve a majority of its domain experiencing small
strains, while only a small portion exhibiting large deformation (such as the footing problem to be treated in this paper).
The discrete element method (DEM)36 provides a paradigm-shifting weapon for constitutive modelers to investigate soil
behaviors through all deformation regimes and under variable loading conditions, without having to resort to complex
phenomenological assumptions. On the basis of relatively simple granular physics for an assembly of particles, DEM can
faithfully reproduce the complex mechanical behavior of granular materials observed in laboratory tests. It may also offer
rich microscopic information, such as the evolution of fabric anisotropy and force chain network.37 The particle-scale
information derived from DEM is widely conceived inspirational and insightful for constitutive modelers to understand
perplexing macroscopic phenomena in granular materials, which otherwise are hard to attain through phenomenologi-
cal models. Notwithstanding the benefit it may bring forth, DEM in its current stage remains unrealistic to provide any
meaningful predictions for an engineering-scale problem. Its predictive capabilities are largely limited by the total number
of particles it can model and the needed computational cost, the extent how natural sand grain morphology and surface
characteristics are approximated and how reliable the grain-scale parameters are determined. As a view well shared by
many, DEM remains at themoment a small-scale simulation tool (or “virtual sand box”), with a potential to replacemany
routine element tests in soil lab.37-41
A recent campaign, initiated by bothDEMusers and constitutivemodelers, has been to push amarriage between contin-

uum approaches with discrete methods to establish a hierarchically or concurrently coupled framework for geotechnical
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modeling. Among many attempts, the hierarchical multiscale approach based on coupled FEM/DEM42-44 has drawn par-
ticular attentions. This approach takes advantage of the predictive power of FEM in handling complex boundary value
problems and the capacity of DEM in reproducing nonlinear material response of granular soils. It embeds a representa-
tive volume element (RVE) consisting of an assembly of discrete particles at each of the FEM Gauss integration points,
passes the macro deformation information to the RVE as boundary conditions, and exploits the DEM to derive a solution
for homogenized material responses (ie, stress and stiffness) to feed the macro FEM computation. The strategic marriage
creates a win-win situation for both FEM and DEM. FEM no longer needs the assumption of complex phenomenological
constitutive models, while DEM may now be connected to solving engineering-scale problems without being bothered
by the excessive particle number and associated computational cost. Hierarchical FEM/DEM coupling has gained certain
success in geomechanics applications, including the prediction of strain localizations in various boundary conditions,45-50
geotechnical failures in footing and retaining walls,50 and more recently, the compaction bands in sandstone.51 However,
the coupled FEM/DEM approach is not without pitfalls. Though it may somehow handle problems with relatively large
rotation with consideration of the DEM part (see discussion in a study by Guo43), FEM cannot escape its doom on mesh
distortion when the coupled approach is used to tackle large deformation problems. With all its merits, MPM stands out
to be a good candidate to replace FEM in tackling such challenges.
Weherein propose a newmultiscalemodeling approach based onhierarchical coupling ofMPMandDEM, conceptually

following a similar methodology outlined by Guo and Zhao,43,48 to address large deformation in geomechanics. While
tentative attempts have been made52-54 along this line of research, the present one furnishes a first complete study on
hierarchical coupling of MPMwith DEM, providing detailed, innovative formulation, benchmarking, and demonstrative
examples.Wewill demonstrate that theMPMandDEMare a perfectmatch towork together to capture both geometric and
material nonlinearities arising in large deformation problems in a geotechnical setting. This approach has the potential to
push a big step forward our cross-scale understanding of large deformation behavior pertaining to geotechnical failures.
This paper is organized as follows: Section 2 presentsminimal essential formulations ofMPM andDEM,with a detailed

description onhierarchical coupling between themand the solution procedure. Benchmarking and demonstrative geome-
chanics examples, including biaxial shear tests, footing, pipe settling in sea-bed soil and soil column collapse, are given
in Section 3, with detailed cross-scale analyses and discussion. We then conclude the paper with somemajor conclusions
and future outlooks.

2 HIERARCHICAL COUPLING OF MPM AND DEM: FORMULATION AND
METHODOLOGY

2.1 Material point method (MPM)
MPM was originally proposed by Sulsky and co-workers,14,15 and was further generalized by Bardenhagen and Kober.16
Similar to many other mesh-free methods, the continuum domain is discretized in MPM by a set of material points,
each associated with essential state variables such as mass, velocity, strain, and stress. These material points move in a
Lagrangian frame, and their movement represents the motion and deformation of the continuum body. Diverging from
other mesh-free methods, MPM uses a background mesh to provide a Eulerian frame for calculation of spatial gradients
and solving the discretizedmomentumequation.At each time step, the state variables are firstlymapped from thematerial
points to the background grid nodes to establish the momentum equations. After the momentum equation is solved at
the backgroundmesh, the nodal solutions are mapped back to material points to update their velocities and positions. As
the background mesh is fixed and does not move with the material points, MPM can avoid the issue of mesh distortion
or entanglement and therefore handle large deformation effectively.

2.1.1 Governing equations and domain discretization
In MPM, the continuum body is represented by a set of material points with lumped mass. As the mass carried by each
material point is assumed unchanged throughout the computation, the conservation of mass is implicitly satisfied. The
motion and deformation are assumed to be governed by the momentum equations, and its weak form can be written
as16,17:

∫
Ω

!a · "vdx + ∫
Ω

! ∶ ∇"vdx = ∫
Ω

!b · "vdx + ∫
#Ω

" · "vdS, (1)



LIANG AND ZHAO 1083

where “·” denotes first-order vector contraction, “∶” represents second-order tensor contraction, “∇” denotes the gradient
operator, ! is current mass density, a is the acceleration, "v is an admissible velocity field, ! is the Cauchy stress, b is the
body force, " is the boundary traction, andΩ and #Ω represent the entire current domain of continuum and its boundary,
respectively.
The continuum domain is first discretized into a set of material points defined by the characteristic function $p(x). This

function represents the volume fraction of material point p at position x of the macro scale domain and it satisfies the
partition of unity in the initial configuration,16 ie,

∑
p
$ ip(x) = 1 ∀x, (2)

where the superscript i indicates the initial state. With the characteristic functions $p(x), each material point can
be assigned its relevant state properties, including initial volume Vi

p, mass mi
p, momentum pip, and Cauchy stress !ip

according to:
Vi
p = ∫

Ωi

$ ip(x)dx, (3)

mi
p = ∫

Ωi

!i(x)$ ip(x)dx, (4)

pip = ∫
Ωi

!i(x)vi(x)$ ip(x)dx, (5)

!ip = ∫
Ωi

!i(x)
Vi
p
$ ip(x)dx, (6)

where Ωi is the initial domain of the continuum to be discretized, !i(x) denotes initial mass density of the continuum,
and vi(x) and !i(x) are the initial velocity field and stress field, respectively.
After the initial discretization, any property f(x) of the continuum body can be expanded on a material point basis:

% (x) =
∑
p
%p$p(x), (7)

where fp represents a material point property. Substituting Equation 7 into 1, the weak formulation of momentum
conservation can be rewritten in the form of summation over material points:

∑
p ∫

Ωp∩Ω

.pp
Vp
$p · "vdx +

∑
p ∫

Ωp∩Ω

!p$p ∶ ∇"vdx =
∑
p ∫

Ωp∩Ω

mp

Vp
$pb · "vdx + ∫

#Ω

" · "vdS, (8)

where Ωp is current support of the characteristic function $p, and
.pp is the material time derivative of the material point

momentum.
Because of the presence of the background mesh, the admissible velocity field "v can be expanded in terms of the

grid-based shape function by
"v =

∑
I
"vINI(x), (9)

where "vI is the value of admissible velocity taken at the node I and NI(x) is the standard finite element shape function.
Substituting Equation 9 into 8 and considering the arbitrariness of the admissible velocity field, the discrete momentum
conservation is revised as:

.pI = f intI + f extI , (10)
where:

.pI =
∑
p

.ppSIp, (11)

f intI = −
∑
p
!p · ∇SIpVp, (12)

f extI =
∑
p
mpbSIp + ∫

#Ω

NI"dS, (13)
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and, SIp is the weighting function, whereas ∇SIp is the gradient weighting function:

SIp = 1
Vp ∫

Ωp∩Ω

$p(x)NI(x)dx, (14)

∇SIp = 1
Vp ∫

Ωp∩Ω

$p(x)∇NI(x)dx. (15)

As can be seen in Equations 10 to 15, the momentum equation is solved on the background mesh, which serves as a
scratch pad for computing. Once the total force acting on the nodes of background mesh is computed, the momentum
increment at each node can be obtained explicitly and further used to update the properties of material points, such as
position and velocity. The update scheme and the complete computational procedure will be detailed in Section 2.1.2 and
2.3, respectively.

2.1.2 Velocity update schemes: FLIP versus PIC
At the end of each calculation step, the updated nodal information is transferred back to the material points to update
their positions and velocities. The material point positions xp are updated using the nodal velocity so that the numerical
diffusion can be reduced55

xn+1p = xnp + Δt
∑
I
vn+1I SIp, (16)

where vn+1I is the updated velocity at node I,Δt is the time step, and SIp is theweighting functionmentioned inEquation 14.
Pertaining to velocity update, there are two conventional update schemes, ie,Particle InCell (PIC)56 andFLuid Implicit

Particle (FLIP),57 with the following expressions, respectively:
vn+1p,PIC =

∑
I
vn+1I SIp, (17)

vn+1p,FLIP = vnp + Δt
∑
I
an+1I SIp, (18)

where vn+1p,PIC and v
n+1
p,FLIP are the updated particle velocities based on PIC and FLIP, respectively. vnp represents the mate-

rial point velocity at the previous step and an+1I is the acceleration at node I. PIC directly uses the velocity extrapolated
from nodes to overwrite current velocity. It can filter the velocities and helps the global computation to be more stable.58
However, it may also suffer the issue of excessive energy dissipation, which is unacceptable for modelling dynamic prob-
lems (such as column collapse to be discussed later). In contrast, FLIP updates the material point velocity by a velocity
increment computed from nodal acceleration. The issue of excessive energy dissipation can be avoided in FLIP at a cost
of introducing some noise and reduced stability.58
For quasi-static problems, a proper combination of these two velocity update schemes may significantly improve the

performance of MPM simulations,59,60 such as a linear combination:
vn+1p = &PICvn+1p,PIC + (1 − &PIC)vn+1p,FLIP, (19)

where vn+1p denotes the updated particle velocity based on a linear combination of PIC and FLIP, &PIC is the PIC fraction in
the particle velocity update: &PIC = 1 represents the purely PIC velocity update, whilst &PIC = 0 implies the FLIP velocity
update. This fraction can be also interpreted as a kind of artificial damping to damp out any nonphysical or numerical
oscillations.59 In this study, a linear combination of PIC and FLIP with &PIC = 0.1 is adopted for the velocity update in all
the following numerical examples unless otherwise stated. This adopted PIC fraction value is consistentwith that inNairn
and Stomakhin et al,59,60 which show a great improvement in simulations with this value. More advanced velocity update
schemes, such XPIC58 and APIC,61 can also be applied in proposed multiscale approach to achieve better performance.
For simplicity, they are not considered in the present study.

2.2 Discrete element method (DEM)
2.2.1 Contact model
In a standard DEM, it is essential to determine the resultant acting on each particle via a contact model. Once a contact
between two particles is established, the contact forces (normal contact force f cn and tangential contact force f ct ) can be
calculated according to:
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f cn = −kcn"n (20)

f ct = − min(kct ut, |f cn tan'|)t, (21)

where n is the unit normal vector of the contact (see Figure 1), t is the unit tangential vector, " is the overlap between
two particles in contact, ut is the relative tangential displacement, ' is the interparticle friction angle controlling the
maximum magnitude of tangential contact force, and kcn and kct are the normal contact stiffness and tangential (shear)
contact stiffness, respectively. Two contactmodels, linear force-displacement contactmodel and nonlinearHertz-Mindlin
contact model,62 are commonly used to determine the contact stiffnesses. The former considers contact stiffnesses (kcn
and kct ) as constants, whereas the nonlinear Hertz-Mindlin model assumes these two parameters vary with the contact
overlap. In the paper, the linear force-displacement contact model is adopted:

kcn =
2(Eiri)(E(r()
Eiri + E(r(

, (22)

kct =
2(Eiri)i)(E(r()()
Eiri)i + E(r()(

, (23)

where i and j denote the two particles in contact; E, r, and ) denote, respectively, the Young's modulus, the radius, and
the Poisson's ratio of the contacting particle i or j.
Particle shape may be a pivotal feature for realistically reproducing the behavior of granular materials. Using ideal-

ized spheres/circular disks (3D/2D) in DEM simulation may potentially lead to the following discrepancies between the
prediction and reality: (a) the macroscopic friction angle of a DEM packing may be found smaller than experimental
result, (b) the energy loss because of rolling resistance is neglected in simulations, resulting in underestimated energy
dissipation,63 and (c) particle interlocking broadly existed in nature cannot be properly replicated by DEM simulations.
Though reproducing realistic particle shapes in DEM simulations may help to mitigate the above issues,64 it is

tremendously challenging to find a perfect solution for both rigorous morphological characterization and affordable
computational efficiency. We hereby elect to choose a relatively simple and efficient alternative, by introducing rolling
resistances between two contacting spheres/disks to partially remedy aforementioned issues. Similar to the tangential
force, the resistant rolling moment,Mc

r , can be determined via:

Mc
r = − min(|kcr#r|, |f cnrmin*|)#r∕|#r|, (24)

where #r is the accumulated relative rotation angle between two contacting particles, rmin = min(ri, r() is the radius of
the smaller particle, * is a dimensionless parameter defining the upper-bond limit of the resistant rolling moment, and kcr
is the rolling stiffness which is related to the tangential contact stiffness kct , though a dimensionless coefficient + for the
contacting particle :

kcr = kct rir(
2+i+(
+i + +(

. (25)

In case that two contacting particles aremade of the samematerial (and thus have the sameE, ), +, and *), Equations 22,
23, and 25 can be simplified in terms of the harmonic mean of radii of the contacting particles, r∗ = 2rirj∕(ri + rj):

kcn = Er∗, (26)

FIGURE 1 Schematic of interparticle contact and contact model used in the discrete element method (DEM). A linear contact model with
Coulomb's friction for normal and tangential contact directions in conjunction with a rolling resistance mod89el on the contact moment is
considered [Colour figure can be viewed at wileyonlinelibrary.com]
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kct = E)r∗, (27)

kcr = kct rir(+. (28)

To dissipate undesired unbalance force funbal and achieve quasi-static state in DEM, a numerical damping force fdamp is
applied to each particle :

f damp = −&|f unbal|vp∕|vp|, (29)

where & is the damping ratio, and vp is the velocity of the considered particle.

2.2.2 Homogenization of material responses
Stress tensor !, mean, and deviatoric stresses p and q
A typical RVE in DEM is prepared by generating several number of disks (2D) or several thousand spheres (3D) in a cell
with a periodic boundary, and is then consolidated to a desired initial state with specified pressure and void ratio.46,48 It
is then attached to each material point in the continuumMPM domain with prescribed deformation received fromMPM
solver as boundary conditions. Upon loading and reaching a quasi-static state in the DEM computation, a homogenized
Cauchy stress ! can be extracted using the Love-Weber formula65,66 and then passed to the MPM solver:

! = 1
V

∑
N
d⊗ f c, (30)

where “⊗” denotes the dyadic product between two vectors, V is volume of the RVE, N is the total number of all contacts
inside the RVE, d is the branch vector joining the centers of contacting particles, and f c is the contact force.
On the basis of the average Cauchy stress, it is convenient to calculate two quantities commonly used in geomechanics,

ie, the mean effective stress p and the deviatoric stress q (for 2D):

p = 1
2tr(!), (31)

s = ! − pI, (32)

q =
√

1
2s ∶ s, (33)

where “tr” indicates the trace of a tensor, s is the deviatoric stress tensor, and I is an identity tensor.
In addition, it is also instructive to derive the volumetric strain -v and deviatoric strain -q, the rotation angle .,*

and fabric anisotropy Fa for a RVE. These quantities could help to better understand the macroscopic behavior of the
continuum.

Volumetric and deviatoric strains $v and $q
The volumetric and deviatoric strains, -v and -q, can be respectively computed according to:

-v = tr(-), (34)

-q =
√
2e ∶ e, (35)

where $ is the strain tensor, and e = $ − tr($)I is the deviatoric strain tensor.

*The rotation angle here refers to the cumulative rotation, which can be obtained via twomeans: one by directly calculating the cumulative rigid rotation
of a MPMmaterial point from the macro domain, and the other by extracting the average particle rotation of the RVE attached to the material point, as
used in Guo and Zhao43 and Wu et al51 based on .avg = 1

Np

∑Np
p=1 .p (where Np is the number of particles in a RVE and .p is the accumulated rotation

angle of each particle). Our numerical experience indicates both rotation quantities offer similar trends and can be used as indicative variables for local
analysis. For convenience, the first definition is adopted in the study in the following discussion.
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Rotation angle .
We consider the following decomposition of the deformation gradient F:

F = R ·U , (36)

whereU denotes the right stretch tensor, which is symmetric and positive definite; andR is the orthogonal rotation tensor,
which can be related to the rotation angle . according to:

R =
[
cos . − sin .
sin . cos .

]
. (37)

Considering the following relationship:

FT · F = (R ·U)T · (R ·U) = UT · RT · R ·U = UT ·U = U ·U (38)

we can firstly determine U and R by the following equations, and then use Equation 37 to obtain the rotation angle ..

U = (FT · F)1∕2 (39)

R = F ·U−1 (40)

Fabric anisotropy Fa
Fabric anisotropy has been widely used to characterize the microstructure within an assembly of DEM particles during
the loading process. In this study, we follow the contact-normal definition of fabric tensor proposed by Satake67 and Oda68
and determine the anisotropy intensity (for 2D):

% = 1
N

∑
N
n⊗ n (41)

Fa = 4
(
% − 1

2 I
)
, (42)

Fa =
√

1
2Fa ∶ Fa, (43)

where% is the fabric tensor, Fa is the deviatoric fabric tensor, and Fa is a scalar value used tomeasure anisotropy intensity.
n denotes the unit contact normal vector as shown in Figure 1.

2.3 Hierarchical multiscale coupling betweenMPM and DEM
Figure 2 presents the flowchart of hierarchical multiscale coupling between MPM and DEM. A sequential interactive
coupling scheme is followed. The macroscopic continuum domain is first discretized by MPM by a set of material points.
Assemblies of granular particles with prescribed initial void ratio and confining pressure are generated and are assigned
to the MPM material points as RVEs. Depending on the specific problem, identical or variable RVE assemblies can be
assigned to thematerial points, leading to a homogeneous or inhomogeneous continuumdomain. A typical coupling cycle
comprises the following steps: (a) MPM is first employed to derive the motion and deformation for each material point
under the prescribed boundary conditions. (b) The deformation information (typically the incremental displacement
gradient dH, consisting of the incremental strainΔ$, and incremental rotationΔ&) at eachmaterial point is transferred to
its corresponding RVE, serving as boundary conditions. (c) DEM is invoked to solve the RVE at the prescribed boundary
conditions. (d) An updated Cauchy stress is homogenized over the deformed RVE configuration and is transferred back
to its attached MPMmaterial point for subsequent computation. Note that after each loading step, the deformed packing
of each RVE is recorded as the initial state for the subsequent loading step. As such, the multiscale modeling may keep a
memory of its past loading history over the whole domain. It is also noticed that the DEM computation for each RVE of
the domain is independent, therefore it is straightforward to implement parallel computing to improve the computational
efficiency of the multiscale modeling scheme.
Two open-source codes — NairnMPM69 (MPM solver) and YADE70 (DEM solver) have been rigorously coupled for

implementation of the MPM/DEMmultiscale approach. The following summarizes a complete solution procedure of the
proposed scheme:
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FIGURE 2 Illustration of the hierarchical multiscale coupling scheme of material point method (MPM) and discrete element method
(DEM) [Colour figure can be viewed at wileyonlinelibrary.com]

There are four noteworthy aspects about the coupled MPM/DEMmultiscale approach:
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• TheMPM employs an explicit time integration scheme. The strain and stress at each material point are updated before
the total nodal force is calculated, as this update strain first (USF) scheme has been argued to yield better energy
conservation over the update strain last (USL) scheme.71

• Conventional continuummodeling of large deformation (and large rotation) needs the consideration of objective stress
rate (eg, Jaumann stress rate) in constitutive formulations to ensure the objectiveness of the mechanical response. In
the proposed MPM/DEM multiscale approach (see Step 2), an RVE receives the incremental displacement gradient
dH instead of pure strain increment Δ$ from the MPM, and thus the rotation is reflected in the RVE configuration.
Moreover, the (total) updated stress ! is homogenized from the deformed RVE packing which may experience large
rotation (as will be shown by examples in the next section), and hence, has implicitly incorporated the effect of rigid
rotation. As such, the objectiveness of the local material response extracted from the RVE is retained in each step.

• In the current MPM/DEM coupling scheme, the only information that needs to be derived from a RVE is the
Cauchy stress ! (not the stress increment), while in previous FEM/DEM approaches, the tangent operator is also
needed in addition to stress.43 Nevertheless, in possible future extension of the proposed MPM/DEM approach to
hydro-mechanical coupling, more updated information may need to be extracted and passed on to the macro MPM
computation, such as void ratio, fabric anisotropy, permeability (cf, Guo & Zhao72).

• Although a variety of remeshing or adaptive meshing techniques1,2,4-8,73,74 have been proposed to enhance the capabil-
ity of conventional FEM for tackling large deformation problems or strong discontinuity, they rarely work within the
multiscale modeling framework for two reasons. The first and foremost important one is when applying these remesh-
ing technique to multiscale modeling, we not only need to interpolate states variables (eg, stress, strain, and void ratio)
from the old distorted mesh to the new one, but also have to map back the history of the microstructures (RVE his-
tory), and such attempt would ruin the physical basis for the multiscale framework. Secondly, a considerable number
of specific RVE (whose stress states have to be compatible with local stress field) have to be generated and attached to
additional Gauss interpolation points after each mesh refinement, this process is time-consuming and also substan-
tially increases total elapse time for DEM solver (as more RVEs have to be solved). In contrast to FEM, the background
mesh ofMPMonly serves as a “scratch pad" for solving themomentum equation, whichwill not distort during the com-
putation, therefore there is no need for refinement or remapping, and the microstructures (RVE history) at a material
point can be memorized throughout the simulation.

3 MULTISCALE MODELING OF GEOMECHANICS PROBLEMS

In this section, the proposed hierarchical multiscale modeling approach based on coupled MPM and DEM is first bench-
marked against single element test. It is then applied to predicting several classic geomechanics problems to showcase its
predictive capability. The examples chosen here include strain localization in sand subjected to biaxial shear, failure of
rigid footing foundation, soil-pipe interaction, and collapse of soil column. The biaxial shear example is also used to exam-
ine the sensitivity of multiscale predictions of strain localization to various model properties (eg, mesh sensitivity). Both
the footing and the soil-pipe interaction problems feature multiscale predictions of quasi-static large deformation. The
soil column collapse problem involves dynamic flow of soil to large deformation. Note that two-dimensional simulations
are considered for all examples in this study for demonstration purposes, though the formulations (and implementation)
have been developed based on full three-dimensional consideration.

3.1 Single element test
Single element test has been widely used for numerical model validations.43,49 It is used here to benchmark the multiscale
modeling approach. The single element is set up with prescribed boundary conditions as shown in Figure 3. A constant
confining pressure (/xx = 100 kPa) is applied to the right side of the element, and a vertical displacement is applied
on the top surface. The left and bottom surfaces of the element are constrained by their horizontal and vertical degrees
of freedom, respectively. An RVE with properties listed in Table 1 is generated and is isotropically consolidated to an
initial mean stress p0 = 100 kPa and an initial void ratio e0 = 0.177 (which can be regarded as a dense packing). The
single element domain is discretized by four material points in the MPM. An identical RVE is attached to each of the
four points. Gravity is ignored in this simulation. As single element test is expected to generate homogeneous mechanical
responses across the element, the global response measured from the element should match the local responses extracted
from the pure DEM simulations under the same boundary conditions. Figure 4 depicts the global stress-strain relation
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FIGURE 3 Model setup for single element test [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameters for RVEs used in single element test
Particle Number r (mm) ! (kg/m3) E (MPa) ) ' (◦) & e0
400 3-7 2650 600 0.8 28.6 0.1 0.177

(B)(A)

FIGURE 4 Comparison of global stress-strain relation between material point method/discrete element method (MPM/DEM) multiscale
predictions and pure DEM simulations on the same representative volume element (RVE) in a single element test: A, stress-strain relation,
B, dilatancy curve [Colour figure can be viewed at wileyonlinelibrary.com]

and dilatancy curve from multiscale modeling and pure DEM modeling, showing that the multiscale predictions can
accurately reproduce the complex, nonlinear response of granular materials up to large strain.

3.2 Biaxial compression test
The proposed multiscale approach is further employed to simulate biaxial compression tests on a dense sand. Particular
emphases are placed on the occurrence and evolution of the strain localization pertaining to the underpinning grain-scale
material response. The sample also serves to explore the sensitivity ofmultiscalemodeling to the choice ofmultiplemodel
parameters, including mesh density and number of particle per cell. The model setup for the biaxial compression test is
depicted in Figure 5, where we consider a sand sample with dimensions of 1 m by 2 m. Both lateral boundaries of the
sample are subjected to a constant confining pressure /xx = 100 kPa, while the bottom is totally fixed. A rough plate
(with constrainedmovement in x and y direction) is attached to the top boundary of the sample andmovesmonotonically
downwardwith a constant vertical velocity v = 0.02m/sec (the loading rate is equal to 1%/sec). The loading velocity of the
rough plate is increased linearly from zero to the prescribed magnitude at the beginning to reduce the stress oscillation.



LIANG AND ZHAO 1091

FIGURE 5 Model setup for biaxial compression test.In each name of the five different cases, the capital letter denotes the mesh density:
Coarse (16 × 8 elements),Medium (20 × 10 elements), and Fine (30 × 15 elements), whereas the second number denotes particles per cell
(PPC). Pt. A, B, & C marked by red cross are locations chosen for the following meso-scale analysis [Colour figure can be viewed at
wileyonlinelibrary.com]

To study the sensitivity of mesh density and particle per cell (PPC)69,75† of MPM on the global responses, we consider the
following five comparison cases: C4,M1,M4,M9, and F4 (the capital letter denotes the mesh density: Coarse = (16 × 8
elements), Medium = (20 × 10 elements), and Fine = (30 × 15 elements); the number after each letter denotes the
number of particles per cell used). The same RVE used in the single element test has been employed for the following
biaxial compression tests. Gravity is ignored in the simulation.

3.2.1 Global responses
The global stress-strain relations for all five cases are presented together with the pure DEM simulation on the RVE in
Figure 6. The vertical stress /yy and the shear stress /yx are obtained by normalizing the vertical and horizontal reaction
forces acting on the loading platewith the plate area.We take the case ofM4 as an example on discussion,while leaving the
comparison with other cases on the sensitivity study in subsequent subsection. For CaseM4 (blue curves), it is apparent
that the global responses of the sample comparewellwith the pureDEMsimulation (denoted by empty circles in Figure 6).
Indeed, the pre-peak responses of /yy from the multiscale modeling are almost identical with the pure DEM simulation,
both showing a peak of about 280 kPa. CaseM4 reaches a peak at around -yy = 1.6%, slightly earlier than that of the DEM
(-yy = 1.7%). The post-peak response bymultiscalemodeling is relatively smooth, while that from pure DEM shows some
fluctuations, primarily because of the limited number of particles (400) used. A steady state of /yy ≈ 220 kPa at -yy = 8%
is predicted byM4. The sample again offers compelling evidence that the multiscale modeling is feasible in producing
realistic sand responses. The horizontal (shear) stress /yx acting on the plate is highly fluctuating over the loading process,
albeit its magnitude is much smaller compared with the vertical stress. Nevertheless, the fluctuations shown by /yx are
found bearing high relevance to the formation and development of shear bands in the sample, as will be discussed in the
sequel.

3.2.2 Mesh and particle per cell (PPC) dependency
The multiscale MPM/DEM approach cannot escape a similar curse of mesh dependency as suffered by most mesh-based
methods such as FEM. To explore how sensitive themultiscale predictions are to themesh size and PPC number, Figure 6
presents the global responses for all five cases in comparison with the pure DEM simulations. Evidently, samples with
different mesh size or PPC show almost identical pre-peak responses that are consistent with the DEM simulations. The
predicted peak /yy values are close in all cases too. However, their post-peak responses show certain significant diver-

†Note that PPC stands as Particles Per Cell and is a historical name used in MPM, but indeed refers to the number of material points (RVEs) per grid
element here to avoid confusion with the particles in a RVE.
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FIGURE 6 Global stress-strain responses of sand sample subjected to biaxial compression predicted by the multiscale modeling approach
for cases with different mesh density and particle per cell (PPC), in comparison with the pure DEM simulation on the representative volume
element (RVE) under identical boundary conditions (denoted as empty circles). The vertical and horizontal stresses are calculated by diving
the reaction forces acting on the loading plate with the plate area [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Contour of deviatoric strain -q for samples with different meshes and/or particle per cell (PPC) at the final state -yy = 15%
under biaxial compression [Colour figure can be viewed at wileyonlinelibrary.com]

gence. For the three cases with identical PPC but different meshes (M4,C4, and F4), the finer mesh case generally leads
to more softening post-peak responses with smaller steady state stress. For the three cases with mediummesh but differ-
ent PPC (M1,M4, andM9), the case with a larger PPC number appears to render relatively less softening responses than
those with a smaller PPC number. The responses in all three cases are between those of C4 and F4, indicating that the
influence of PPC on the global responses is less significant than that of the mesh density. As pointed out by Steffen et al,75
adopting a larger PPC is beneficial as it helps reduce the upper bound of the error and increase the computational stabil-
ity. However, a larger PPC may also result in a substantial increase in computational cost. Therefore, both effectiveness
and accuracy should be taken into consideration in selecting a proper value for PPC. Figure 7 further compares the final
strain localization patterns observed in all five cases at a final state -yy = 15%. In all cases, the strain is found localized in
symmetric cross-shape shear bands in the sample. The band width appears to be dependent on the mesh size, with nar-
rower bands in cases of finer mesh. However, PPC does not show an obvious influence on the band width. A possible way
to resolve the mesh dependency issue for the coupled MPM/DEM approach may follow similar techniques having been
used in continuum modeling approaches, eg, by invoking nonlocal formulations49 or introducing certain regularization
schemes.76 This is however beyond the scope of the present study andwill not be discussed here. The observed differences
in the five cases, nevertheless, are considered insignificant. For the rest of this subsection, CaseM4 is chosen for detailed
analysis and discussion.

3.2.3 Shear band evolution
Strain localization has been well reproduced in our multiscale simulation of biaxial compression. To analyse the onset
and development of strain localization, we identify four representative quantities of the material responses at the three
study points (Pt. A, B, & C), namely, the deviatoric strain -q, void ratio e, the rotation angle ., and the displacement field u,
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FIGURE 8 Global stress-strain relation for CaseM4 (Mediummesh, four particle per cell [PPC]) in biaxial compression test [Colour figure
can be viewed at wileyonlinelibrary.com]

and examine their evolutions at four stages of deformation (axial strain -yy = 1.5%, 2.0%, 3.0%, and 15%). The results are
plotted in Figure 9. The global stress-strain relations of CaseM4 has also been replotted in Figure 8, for better explanation
of the evolution of shear band in the sample.
As can be seen from Figure 9, the overall occurrence and development of the cross-shape shear bands in the sam-

ple resemble largely those observed from the case with random bedding plane and rough boundary in Zhao and Guo.47
A dominant rightwards-tilting shear band, with an angle about 60◦ to the horizontal, is observed to develop prior to the
peak normal stress at -yy = 1.5% and the resisting shear stress because of the constraint by the rough top plate points to
the left (negative in value) (Figure 8). The shear deformation and anti-clockwise rotations in the rightward-tilting band
are apparently larger than the rest of the sample. When the peak normal stress state is reached, the shear stress exerted
by the plate dramatically changes from negative (pointing to the left) to a positive (pointing to the right) peak at around
-yy = 2.0%, which further enhances the development of the first band and brings the second shear band (leftward-tilting)
to be more intensive. After -yy = 2.0%, both normal and shear stresses gradually drop, while both shear bands continue
to develop until the final state. Notably, the leftward-tilting band develops clockwise rotations which gradually cancel
out the positive rotations by the rightward-tilting band at the center of the sample, leading to the final rotation negligibly
small at the sample center. However, both the shear strain and dilatant volumetric strain are greatly enhanced at the cen-
ter due to development of both bands. The observations are consistent with the FEM/DEM simulations in the study of
Zhao and Guo.47 When the loading approaches the final state at -yy = 15%, the cross-shape shear bands develop in their
full. The displacement field of the sample can be divided into four distinctive portions by the cross-shape shear bands: the
two side triangle parts moving down and laterally, the upper pentagon part moving downwards, and the lower pentagon
part with only negligible movements. The contour of void ratio clearly showed the dilative deformation ofmaterial within
shear band (note that the initial void ratio is 0.177). The final rotation inside the shear bands can reach as large as 58◦.
Under this circumstance, severe mesh distortion would have been inevitable for conventional FEM, and thus accuracy
and effectiveness cannot be guaranteed.

3.2.4 Meso-scale analysis
The proposed multiscale modeling approach enables us to probe the underlying microstructural mechanisms for macro-
scopic observations, through the RVEs employed as a meso-scale structure bridging the micro and macro scales of a
problem. Herein, we chose three points inside the sample to conduct a meso-scale analysis (their positions are shown in
Figures 5 and 9), whereby Point A is located at the bottom part of the sample and is far away from the shear bands, Point
B is located at the center of the sample and also the interception of the two shear bands and, Point C is at the upper part
of the sample and is inside the rightward-tilting shear band (see also the left figure in Figure 9D). The local responses for
these three points and their microstructures at final state are shown in Figures 10 and 11, respectively.
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FIGURE 9 Shear band evolution for CaseM4 in biaxial compression test [Colour figure can be viewed at wileyonlinelibrary.com]

Point A
Point A is outside the shear bands at the bottom part of the sample. Apparently, it only develops a small peak deviatoric
stress at (-q ≈ 1%) before undergoing unloading. Rather low fabric anisotropy (Fa ≈ 0.075) has been induced at this
point. The effective stress path in Figure 10B clearly confirms that Point A undergoes a perfect loading and unloading
process. Being outside the shear bands, this point experiences marginally small rotation (. = −0.1◦) and relatively small
volume change. The above observation is further confirmed by the contact force chain network shown in Figure 11A,
which shows the deformation of RVE at Point A is almost negligible and its initial isotropic structure is well preserved.

Point B
Point B is located at the lower center of the cross-shape shear bands. Its behavior is significantly influenced by the evolu-
tion of both bands. Point B first shows a monotonic increase in stress before strain localization occurs at a global vertical
strain of -yy = 1.5% (peak normal stress state), from which its deviatoric stress, q, drops rapidly because of the develop-
ment of the first dominant shear band, which induces strain softening. The stress drop is reversed when the second shear
band starts to develop before the global shear stress reaches its peak at -yy ≈ 2.0%. Later, the sample domain is restored
to an approximately symmetric field in terms of shear deformation. The symmetry in deformation pattern, together with
the rough boundary, apparently help the center point sustain a large stress state (ppeak ≈ 420 kPa, qpeak ≈ 150 kPa) until
this symmetry breaks at -yy ≈ 8.5%. After the breakage of symmetry, both p and q gradually decrease, and Point B rotates



LIANG AND ZHAO 1095

(B)(A) (C)

(E)(D) (F)

(H)(G) (I)

FIGURE 10 Local responses for selected material points in biaxial compression test: (A-C) Point A, (D-F) Point B, and (G-I) Point C
[Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 11 Force chain for selected material points in biaxial compression test: (A) Point A, B Point B, (C) Point C. The dashed line
indicates their undeformed shape [Colour figure can be viewed at wileyonlinelibrary.com]

clockwise by a mild rotation angle (. = 10◦). The Fa, exhibits an increase to a double-peak evolution with much fluc-
tuations, but its range of fluctuation remains between 0.2 to 0.3. As can be seen in Figure 10F, the initial contraction at
elastic stage, dilation because of occurrence of shear bands, and second contraction/dilation before/after the breakage of
symmetry are well recorded, reflecting complex loading Point B has undergone. The strong force chain and apparently
deformed RVE with a mild rotation shown in Figure 11B is consistent with the observation from Figure 10D-F.
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FIGURE 12 Estimation of the macroscopic friction angle for each case of representative volume element (RVE) used in the footing
problem: A, Dense, B, Medium Dense, and C, Soft soils [Colour figure can be viewed at wileyonlinelibrary.com]

Point C
Point C is located inside the rightward tilting shear band in the upper right part of the sample. The stresses at Point C
shows a rapid increase to a peak and then drops (with fluctuations) with the continuous development of the shear band.
The evolution of Fa at Point C is similar to that of Point B, reaching a peak first then dropping with fluctuations. The final
force chain network of the RVE at Point C (Figure 11) indicates considerable shear deformation occurs at this point. Point
C begins to experience a steady rotation right after the peak stress state until the final state, amounting to final rotation
of 38◦. The large rotation it undergoes is further confirmed by the observation of force chain network in Figure 11C.

3.3 Rigid footing
We further consider a classic geotechnical problem—a strip rigid footing penetrating into a weightless soil foundation.
Modeling of rigid footing problem is widely considered challenging as it may involve large deformation of soil when
the penetration is deep. It is difficult for conventional updated Lagrangian FEM to handle as the soil elements at the
bottom edge of the footing, commonly regarded as a singular plasticity point,77 may be severely distorted during the
FEM calculation which frequently gives rise to convergence issue (readers can refer to Figure 13 in Nazem & Sheng78
for deformed mesh in footing problem). It will demonstrate in the following that the proposed MPM/DEM approach can
readily handle this situation. Moreover, we demonstrate that multiple failure modes observed in rigid footing, namely,
general shear failure, local shear failure and punching failure modes, can be captured by the MPM/DEM simulations.

3.3.1 Packing preparation and model setup
To model the three failure modes, three RVEs, dense, medium dense, and soft packing,‡ are generated based on the
parameters listed in Table 2. The dense and medium dense packing differ only in their initial void ratios, e0, to represent
dense and medium dense foundation soils, respectively. In order to model a soft soil foundation, where punching failure
may occur, the soft packing uses reduced Young's modulus E, interparticle friction angle ', and dimensionless parameter
* compared with the dense packing case to have a reduced contact stiffness. It is noteworthy that the rolling resistance
mentioned in Section 2.2.1 is taken into account to generate RVEs with more realistic strengths.

‡In DEM, it is difficult to generate extremely loose, stable packings without special techniques such as those used in Wu et al.51 Alternatively, we elect
to prepare a packing with lower overall stiffness and strength to represent soft soils in this study. This soft packing is complementary to the dense and
medium dense packings to generate a comprehensive spectrum of failure modes observed in footing foundation.
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TABLE 2 Model parameters for three different representative volume elements (RVEs) used in multiscale
modeling of rigid footing problem on dense, medium dense, and soft soil foundations
Name Particle Num. r(mm) !(kg/m3) E (MPa) ) '(◦) + * & e0
Dense 400 3-7 2650 800 0.5 23 1.0 0.05 0.1 0.1874
Medium Dense 400 3-7 2650 800 0.5 23 1.0 0.05 0.1 0.2314
Soft 400 3-7 2650 80 0.5 20 1.0 0.02 0.1 0.2299

FIGURE 13 Model setup for the footing problem where the footing has a rough surface and the right-side wall is rigid and smooth to allow
only vertical movements of soil in contact [Colour figure can be viewed at wileyonlinelibrary.com]

Macroscopic effective friction angles of the generated RVEs are needed for computing the analytical bearing capacity,
in order for comparison with the multiscale modeling. To this end, biaxial compression tests are carried out on each
RVE under five confining pressures, 10 kPa, 15 kPa, 20 kPa, 25 kPa, and 30 kPa. From the corresponding stress-strain
responses (insets of Figure 12), the Mohr circles of the peak stress states are plotted in Figure 12. The corresponding
macroscopic effective friction angles for dense, medium dense, and soft packing are then estimated as 28.1◦, 20.8◦, and
18.2◦, respectively. The three RVEs are assigned to thematerial points in three identicalMPMdomains shown in Figure 13
for the following simulations and modeling.
The geometry, boundary conditions, and loading scheme for the rigid footing problem are shown in Figure 13. The soil

domain is 12 m wide and 8 m deep, while the rigid footing foundation has a dimension (width × height) of 1 m × 2 m.
The whole soil domain is discretized into 108 × 72 = 7776 elements with an element size of 0.11 m. In order to improve
the mesh resolution without significantly increasing the computational cost, an initial value of PPC of 1 is adopted. Note
that the whole domain includes a total of 7776 RVEs, and each of them contains 400 particles, which amounts to a total of
3 110 400 particles to be handled in each loading step. A smoothwall is placed at the right boundary of the soil to constrain
its horizontal movement. The left boundary is a symmetric plane, while the bottom is totally fixed. The surface of the
rigid footing is rough. A constant, uniform surcharge q = 20 kPa is applied to the ground surface, except the resting area
of the footing. The settlement of the footing is modeled by prescribing a constant downward velocity 0.1 m/sec on it. A
simulation is terminated when a maximum settlement d∕B = 1.5 is reached. Gravity is neglected here.

3.3.2 Failure patterns
Three distinctive failure patterns are observed in our multiscale modeling of the soil foundations under rigid footing
penetration. They resemble the modes of general shear failure, local shear failure, and punching failure, respectively.
The contours of deviatoric strain -q, displacement u, void ratio e, and cumulative rotation . at the final failure state for
all three cases, are plotted in Figures 14 and 15. In analyzing the failure patterns, we wish to highlight the competition
between two array of curvilinear slip line caused by the footing penetration in the soil. The first array (hereafter referred
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FIGURE 14 Contour of deviatoric strain -q and displacement field u for cases using different representative volume element (RVEs) at
final state d∕B = 1.5 in footing problem [Colour figure can be viewed at wileyonlinelibrary.com]

to as Array A) of slip lines emanate from the outer edge and bottom corner of the footing, pointing right-downwards.
The second array of slip lines (Array B) originate from the tip and surface of the triangle wedge underneath the footing,
pointing right and upwards. The curvilinear slip lines in the two arrays are orthogonal, as can be clearly seen from the
shear strain contours in Figure 14.

General shear failure
Our multiscale simulation on the footing with the dense packing shows a general shear failure mode, as shown in
Figures 14A and 14B and Figures 15A and 15B. The failure pattern can be defined by four primary slip lines clearly iden-
tifiable from Figure 14A. Three of them, emanating from the outer edge of the footing and pointing downwards to the
left, vertical, and right, respectively, belong to Array A. The downward left-tilting slip line and the footing bottom form
an approximate rigid triangular wedge (or active Rankine zone as termed by Terzaghi79). The fourth major slip line origi-
nates from the tip of this wedge and extends curvilinearly right and upwards, belonging to Array B. Apparently, this Array
B slip line is the most dominant one, intercepting all previous three in Array A and defines the failure mode. It partners
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FIGURE 15 Contour of void ratio e and rotation . for cases using different RVEs at final stage d∕B = 1.5 in footing problem.White
represents corresponding initial void ratio in void ratio contour (A,C,E), and denotes zero rotation angle in rotation contour (B,D,F) [Colour
figure can be viewed at wileyonlinelibrary.com]

with the wedge-edge shear band and the downward right-tilting one in Array A form a radial shear zone, the bottom of
which presents approximately a log-spiral curve. Immediate next to the right, the extended long part of this dominant
Array B slip line and the right Array A slip line form a major failure zone of the largest volume extending to the ground
surface. This last failure zone is commonly termed as the Rankine passive zone in the literature.79 The overall failure
configuration is indeed consistent with the Terzaghi's description on the failure mode. The middle Array A slip line does
not appear to play a major role in the zonation, but simply subdividing the radial shear zone into two portions. From the
contour of displacement vector in Figure 14B, one can clearly observe that the soil immediately under the footing foun-
dation is pushed downward, acting as if it were a part the foundation while the surrounding soil is dispelled alongside.
The dense packing of the soil renders the deformation and mobilization of soil far reaching, forming an apparent heave
as wide as around 2.5 times of the footing width at the ground surface.
Indeed, rather consistent characteristic of failure modes is also captured by the contour of void ratio e and rotation

angle . shown in Figure 15. The void ratio of soil within all slip lines shows an apparent increase because of shear dilation
(note that in Figure 15A, 15C, and 15E, white represents initial void ratio e0, whereas red and blue represent dilation
and contraction, respectively). Moreover, the particles inside the dominant Array B shear band show clockwise rotations,
while those within three Array A slip line rotate anticlockwise (note that in Figure 15B, 15D, and 15F, white represents
no rotation, whereas red and blue represent rotating anticlockwise and clockwise accordingly). These observations are
consistent with those from experiments80 and other numerical simulations.50
According to Prandtl's solution, the lower boundary between the triangular wedge and the radial shear zone inclines at

0
4 +

'′

2 = 59.05◦ to the horizontal plane. As shown in Figure 14A, the corresponding angle obtained from our simulation is
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54.8◦, which is slightly smaller than the analytical prediction. This discrepancy is probably because of the friction between
the rough footing and soil, which prevents the soil within the triangular wedge spreading horizontally.79 Notably, Prandtl's
solution assumes the footing bottom is smooth.
Also, in general shear failure, the log-spiral slip line can be described by following equation:

r = r0e1 tan'
′ , (44)

where r is length of line connecting the center of log-spiral curve which is the bottom corner of the footing with the
points on the curve, r0 is the length of lower boundary of the triangular wedge, 1 measures the direction from r0 to r.
The log-spiral slip surface with an effective friction angle '′ = 28.1◦, which is obtained in Section 3.3.1, is also plotted in
Figure 15B. As can be seen, the simulation result agrees perfectly well with the analytical prediction.

Local shear failure
The footing case with medium dense packing gives rise to a local shear failure mode. The local shear failure also exhibit a
smaller triangular rigid wedge formed immediately under the footing foundation, a curved shear failure zone and small
heaved ground surface. The major failure zone is the radial shear zone which is confined not far from the footing, which
is considered “locally.” Unlike the general shear failure, only one major Array A slip line is formed along the wedge
surface, with two other under-developed Array A bands appearing next to it on the right. Nomature Array B slip lines are
found, but orthogonal curvilinear slip lines from both arrays are apparent in the soil foundation. The slip lines in Array
B are mostly intercepted and confined by the three Array A slip lines, thus no apparent failure surface is extended to the
ground surface. The intensities of both shear strain and rotations are smaller than in the general shear failure case, and
the heaving height is smaller too. Dilatant zones are scattered in the mobilized soil but do not form apparent dilatant
shear bands. The rotation zone is much less concentrated than the general shear failure case.

Punching failure
Punching failure is found in the footing case using the soft packing. In contrast to aforementioned two failure modes,
no Array B slip lines are developed at all. All major slip lines observed belong to Array A, which extend downward
far-reaching deeper to the soil than the previous two cases. The influence zone by the footing is largely confined within a
relative small region under the footing foundation. The soil immediately under the footing experiences pure compression
(note that contraction of soil is shown in blue in Figure 15E), while the soil close to the wedge and footing edge exhibit
large shear deformation. The slip lines that can potentially develop into Array B are all intercepted by Array A slip lines.
The displacement field in Figures 14F clearly depicts the locally occurred failure. The ground surface hardly feels the fail-
ure except slight settling adjacent to the footing. Only slight anticlockwise rotations along the wedge surface and footing
edge are recorded in Figure 15F.

3.3.3 Analytical bearing capacity
The bearing capacity is a key design index for foundations. Prandtl81,82 proposed the following analytical solution to cal-
culate the ultimate bearing capacity pu for a shallow footing seated on a weightless cohesionless soil in the case of general
shear failure:

pu = qsNq, (45)
whereNq is the bearing capacity coefficient because of surcharge, and can be determined from the effective friction angle
'′:

Nq = tan2
(
0
4 + '′

2

)
e0 tan'′ (46)

Although there is no available analytical solution for local shear failure and punching failure, Terzaghi79 suggested
using the same equation but with a reduced friction angle '′

r to find the approximated bearing capacity coefficient N′
q:

'′
r = arctan

(2
3 tan'

′
)

(47)

Figure 16 shows the variation of normalized settlement with normalized ultimate loads for three cases, in comparison
with the corresponding analytical solutions. The general shear failure mode shows a clear peak, followed by soften-
ing load-settlement curve, while general hardening curves are observed in the other two failure modes. As indicated in



LIANG AND ZHAO 1101

FIGURE 16 Comparison of the bearing capacity between multiscale prediction and analytical solution on a rigid footing problem. The
bearing capacity of multiscale study is computed at their ultimated load point, a point where the slope of the load-settlement curve first
reaches 0 or steady and minimum value.82 The analytical prediction is computed from the macroscopic friction angles mentioned at Section
3.3.1 [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 17 Local response for material points chosen from different cases in footing problem [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 16, the analytical bearing capacity coefficients, based onmacroscopic friction angles estimated from Figure 12, are
14.8, 3.7, and 3.1 for general shear failure, local shear failure, and punching failure, respectively. The predicted values by
our MPM/DEMmultiscale approach are 14.4, 4.8, and 3.7, respectively, for the three cases. The analytical and numerical
predictions are close, except in the case of local shear failure. The local shear failuremode observed in this studymay actu-
ally be a transitional failure mode between the general shear failure model and true local shear failure mode, resulting in
a relatively larger value for the predicted bearing capacity than the analytical one.

3.3.4 Meso-scale analysis
To analyse the local behavior for the above three cases, a reference point from the same location is chosen for all three
case (the location of the chosen point is marked as a cross in Figures 13 and 14). The evolutions of the deviatoric strain -q,
fabric anisotropy Fa, void ratio e, and rotation angle . against the normalized settlement d∕B are presented in Figure 17.
In all three cases, the deviatoric strain -q increases monotonically with the footing penetration, where the general shear
failure mode shows a power law increase before it reaches a final value of 1.6 at the end of the penetration, indicating an
uncontrollable speeding shear failure of the foundation. In both the local and punching shear failure modes, the increase
of -q with footing settlement is almost linear, leading to much smaller final deviatoric strains of 0.4 and 0.22, respectively,
than the general shear failure mode. The evolutions of both void ratio e and rotation . are consistent with the observation
on -q for the three cases. The above observation is consistent with the fact that the chosen material point lies in the main
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(A) (B) (C)

FIGURE 18 Force chain for material points chosen from difference cases in footing problem: A, General shear failure, B, Local shear
failure, and C, Punching failure. The dashed line indicates their undeformed shape [Colour figure can be viewed at wileyonlinelibrary.com]

slip surface for the general shear failure case, whereas it is located close to a partially developed failure surface for the
local shear failure case and outside the failure zone at all for the punching failure mode. Indeed, for the punching failure
mode, the representativematerial point lies outside the punching shear wedge and undergoes contraction only, evidenced
by the smaller deviatoric strain and decreased void ratio during the penetration of the footing in Figure 17. The fabric
anisotropy at the chosen points experience an initial increase to peak followed by a softening to relatively steady state for
both general and local shear failure modes, whereas it remains a rather small value for the punching failure.
Figure 18 further compares the force chain networks of the selected material points at the final state in the three cases.

Evidently, a combined shear-compression deformation is found for the point in the general shear failure case, resulting
strong loading bearing structure approximately along the horizontal direction and large clockwise rotations. Both shear
deformation and rotations shown by the contact force network are much less in the local shear failure mode. As for the
punching failure case, the material point experience negligibly small deformation and rotation, resulting in an almost
isotropic contact force network, which confirms early observation of low fabric anisotropy for this case. Overall, the obser-
vations from the contact force network are consistent with those from Figure 17 as well as the global behavior of the
footing problem.

3.4 Pipe-soil interaction
This subsection presents a more complex example, where large deformation analysis is essential. The installation and
maintenance of pipelines are of significant engineering importance for offshore energy extraction and transport and
seabed communication fiber cables.83 Under variousworking loads (eg, gravity, wave, and earthquake), an offshore seabed
pipeline may experience significant vertical and lateral displacement during and after its installation, causing compli-
cated soil-pipe interactions involving large deformation. For safe design and reliable maintenance, it is critical to assess
the large deformation behavior of the supporting soil interacting with the pipeline.
The soil-pipe interaction problem to be considered in this study is shown in Figure 19. We consider a soil domain

of 9 m wide and 2.5 m deep. The bottom of the soil domain is fixed in both directions while the side edges are only
constrainedhorizontally. A roughpipe of a diameter of 1m is released to settle fromabove the center line of the soil domain
and penetrate into the soil vertically for 0.8 m (measured by bottom of the pipe) first, and is then moved horizontally
to the left for 0.7 m. The loading scheme is depicted by the velocity profile and coordinate change of the pipe bottom
(inset) in Figure 20. The loading scheme has considered a balance of accuracy and efficiency: the velocity is chosen small
enough to ensure the quasi-static condition can be loosely satisfied, while it is chosen as large as possible to shorten the
computational time. A smaller horizontal velocity is adopted to ensure there is sufficient time for the soil behind the pipe
to rearrange. Adding the accelerating/decelerating ramps in the loading scheme helps to alleviate the stress oscillations
during the computations. The entire soil domain is discretizedwith 9800 elements, with one particle (one PPC) considered
in each element. In this problem, we adopt the same dense packing used in footing problem (Section 3.3) to serve as the
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FIGURE 19 Model setup for the soil-pipe interaction problem. Selected particles for meso-scale analysis is marked as red cross [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 20 Prescribed velocity for the pipe in soil-pipe interaction problem [Colour figure can be viewed at wileyonlinelibrary.com]

RVE. Before applying any pipe-induced deformation, the soil is considered to be loaded by gravity and the RVEs to be
assigned are isotropically compacted in the DEM solver to their corresponding geostatic pressure: p = !gh, where g is
gravity and h is the depth of each material point.

3.4.1 Global responses
The reaction force of soil acting on the pipe is plotted in Figure 21. To facilitate explanation, the whole loading process is
divided into two parts to discuss: the (vertical) penetration stage and the lateral movement stage. In the penetration stage,
the horizontal reaction remains low, while the vertical reaction force gradually increases to a peak of 250 kN towards
the end of the penetration stage. Moderate fluctuations are observed in the curve, possibly because of the stress wave
reflection. The depth of soil domain adopted here is 2.5 times of the pipe diameter, which is relatively shallow. The stress
wave induced by penetration may not be fully dissipated in such short propagation distance. Special treatments, such as
using an absorbed boundary at the bottom78 or averaging the results over certain period,17 could help to obtain a smoother
reaction-time curve. At the end of the vertical penetration, the pipe experiences a sudden drop in vertical reaction force
from its peak. When the pipe starts to move horizontally, the vertical reaction gradually drops and stays at a steady value
of 25 kN, while the horizontal reaction force rapidly increases to 50 kN and maintains a slight increase thereafter. This
mild increase is largely attributed to the growth of soil berm accumulated ahead of the pipe. Our simulation results agree
qualitatively with that reported in Zhang et al.9
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FIGURE 21 Reaction force acting on the pipe in soil-pipe interaction problem [Colour figure can be viewed at wileyonlinelibrary.com]

Apart from the reaction force, we have also examined the deformation pattern of the soil. Figure 22 shows the soil
responses with the pipe movement in the soil, in terms of deviatoric strain and displacement. When the pipe penetrates
to a depth of 0.4 m (Figures 22C and 22D), two clear shear bands originated from the bottom of the pipe extend lat-
erally to both sides and propagate towards the ground surfaces, forming two branches of shear zones. The soil within
these shear zones is mobilized and pushed aside of the pathway of the pipe. It is interesting to observe that the two
branches of shear bands are not symmetrical, although the loading and boundary conditions are totally symmetrical.
Possible factors accounting for the phenomenon may include the intrinsic non-coaxiality of the RVE43 and the sponta-
neous occurrence of strain localization as a bifurcation problem. As the pipe continues to move downward, the soil is
pushed laterally and upward along the shear bands, leading to the formation of heaves at the ground surface (Figure 22F).
Notably, from Figure 22C and 22E, the shear band pairs around the pipe are interlayered by relatively less deformed
pair zones during the vertical penetration. The heave surface on the ground surface also show changed curvatures
because of the interlayer structure. It is worth noting that the shear bands on the left of pipe is lower in intensity
but larger in amount. The displacement field exhibits a roughly symmetric butterfly shape pattern during the vertical
penetration process.
Once the pipe begins to move left, the relatively symmetric displacement field is broken (Figure 22H). The laterally

moving pipe pushes the soil in front and further intensifies the already formed shear bands in the penetration stage,
leading to wider, more concentrated shear zones on the left of the pipe. The existing shear bands are also further widened
while the interlayered elastic zones are greatly reduced, forming a higher soil berm pushed up by the pipe. Meanwhile,
the soil on the right side of the pipe exhibits reversed displacement. This cause unloading and reverse loading for soils
immediately on the right of the pipe, causing the decay of partial disappearing of themiddle shear band. The ground heave
formed during the first stage is gradually reduced. Meanwhile, the top shear band is developed deeper to occupy part of
the original middle shear band, while the bottom shear band remains largely the same during the horizontal movement
of the pipe.

3.4.2 Meso-scale analysis
We again chose three points (labeled D, E, and F) to examine the local responses, where Point D/F is located inside
the left/right dominant shear band and Point E is underneath the pipe (Figure 22E). Their initial position, evolution of
displacement together with trajectories are depicted in 23, while their local responses are plotted in Figure 24.

Vertical penetration stage
In the vertical penetration stage, Point D and Point F show a similar response. Both points are pushed laterally upward
by a comparable magnitude (≈ 0.08

√
2 m). Since both points are inside a shear band, they exhibit an increase in both -q

and rigid rotation |.|. In particular, Point D rotates anticlockwise while Point F rotates clockwise. However, both -q and
|.| for Point D are smaller than Point F as the intensity for the left shear band is relatively lower (note that the pentagram



LIANG AND ZHAO 1105

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

FIGURE 22 Contour of deviatoric strain -q and displacement field u in soil-pipe interaction problem [Colour figure can be viewed at
wileyonlinelibrary.com]

in Figure 24 indicates the onset of lateral movement of pipe. At this time instance, -q = 0.5, |.| = 10◦ for Point D and
-q = 1.2, |.| = 30◦ for Point F), which is consistent with Figure 22E. The stress responses at both points show a softening
stress drop, notwithstanding certain fluctuations.
Different from Points D and F which are largely of shearing characteristics, Point E exhibits typical compression

responses (note that the slope of the stress path of penetration state, colored in blue in Figure 24E, is smaller than 1).
Note that Point E is not perfectly located at the bottom of the pipe, it is pushed downward with slight deviation to the
right (Figure 23). The continuous compression by the pipe pushes up the mean stress p, up to an order higher magni-
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(A) (B) (C)

(D)

FIGURE 23 Displacement evolution of Point D, E, and F (A-C) and their trajectory (D) in soil-pipe interaction problem [Colour figure can
be viewed at wileyonlinelibrary.com]

tude of 700 kPa than that of Point D and F, before dropping. The deviatoric strain -q for Point E rises rapidly to a large
value, which can be mainly attributed to the increasing difference between -xx and -yy induced by compression.The rota-
tion . at Point E remains nearly zero despite some fluctuations, indicating no apparent shearing is pertinent to this
point.

Lateral movement stage
When the pipe begins to displace laterally, Point D and Point F show rather different responses. Since the shear band
on the left where Point D is located in is enhanced by the lateral movement of the pipe, both deviatoric strain -q and
rotation . at Point D increase significantly (from 0.5 to 2.6 for -q and from 15◦ to 58◦ for .). The trajectory of Point D
shows a continuous laterally upward trend following the vertical penetration stage (Figure 23). The stress path of Point
D in Figure 24B shows strong fluctuations, apparently complicated by the fact of the rough surface of the pipe and the
possible change of principal stress directions in the passive zone pushed by the pipe as well as the shear band evolution.
In contrast to Point D, the stress responses shown by Point F during the lateral movement of pipe is rather different.
Located on the right of the pipe, Point F is in the active zone when the pipe moves left. As the pipe moves to the left,
the soil behind the pile close to the middle shear band formed in the penetration stage (see Figure 22G) slips down to
fill the gap, but the main shear band at the bottom, in where Point F is located, is not significantly affected. Therefore,
the position, the deviatoric strain -q, and rotation . for Point F do not experience marked changes (eg, -q only increases
from 1.3 to 1.4). Although its movement and deformation do not show apparent change, Point F does show apparent
changes in the stress state. When the soil slides down along the shear bands, the confining pressure at Point F is low and
therefore, leading to a reversed stress path heading toward the origin. When the soil becomes steady again, the confining
pressure is gradually recovered and thus, both p and q rebound back to low but non-zero values (p ≈ 15 kPa, q ≈ 4 kPa).
Unlike in the penetration stage, Point E suffered significant shearing rather than compression during the lateral pipe
movement. Its stress path during lateral movement state, which is plotted in red in Figure 24H, shows strong fluctuations
and possesses a slope larger than 1. Themean stress p for Point E generally maintains at a relatively low value throughout
the lateral pipe movement because most of soil originally above the Point E is pushed to the left, mobilizing Point E
to the left together with a anticlockwise rolling. This processing lead to a continue increase in deviatoric strain -q and
rotation ..
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 24 Local response of selected material points in soil-pipe interaction problem. (A-C) Point D, (D-F) Point E, and (G-I) Point F
[Colour figure can be viewed at wileyonlinelibrary.com]

3.5 Column collapse
The final example chosen for demonstration is coupled MPM/DEM modeling of a dynamic problem. We consider
the collapse of a soil column onto level ground, a classical dynamic problem having received extensive experimental
investigations.84-87
The geometry and the boundary conditions of the soil column are shown in Figure 25. The soil column is 1 m in both

width and height. A smooth gate is placed at its right side to control the collapse. The base is also modeled using a rigid
material to provide bottom frictions for the soil during collapse. The friction coefficient between the base and the soil
adopts a value of 0.4. This value plays a minor role for the entire collapse process since the main body of soil indeed flows
over a thin layer adhering to the base.20,86 A symmetry boundary is assumed for the left side of the soil column. The whole
soil column was divided by 16 × 16 elements with four material points per cell (four PPC). The RVEs are prepared using
the parameters listed in Table 3. One thousand particles have been used in each RVE. Again, each RVE is isotropically
consolidated in the DEM solver to its corresponding geostatic pressure before assigning to the material point in MPM. To
speed up the simulation, rolling resistance has not been considered.Meanwhile, a relatively small value of PIC, 5.0 × 10−4,
has been adopted to provide necessary stability without altering the energy conservation.61
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FIGURE 25 Model setup for the column collapse problem. Selected particles for meso-scale analysis is marked as red cross [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 3 Discrete element method (DEM) parameters for representative volume
elements (RVEs) used in column collapse problem
Particle Num. r(mm) !(kg/m3) E (MPa) ) '(◦) & e0
1000 3-7 2650 600 0.8 28.6 0.1 0.197-0.226

3.5.1 Flow patterns
The collapsing process of the soil column is demonstrated in Figure 26.We choose the deviatoric strain -q and the velocity
profile v to demonstrate the collapse and settling process. The two quantities offer a complementary picture in charac-
terizing the collapsing process, -q describes the cumulative deformation during the collapse, while v provides a transient
characterization of the kinematic field of the soil. The collapse is initiated instantly with the removal of the smooth gate.
Notably, the initial failure occurs at the bottom right corner of the soil column and further propagates vertically towards
the top surface and inward to the column along an approximate circular surface (better seen from the velocity profile).
The circular interface (shown as a white dash line) marks the boundary between mobilized collapsing zone and the tem-
poral static zone. During T = 0.2-0.7 s, the collapsing soil touches the frictional base and is gradually slowed down, while
the top left portion of the soil column is mobilized to collapse and flow down over a thin stationary layer close to the base.
The inset in Figure 26F magnifies the composition of the middle part of the main flow consisting of: (a) an upper steady
fast flowing layer, (b) middle layer with a large velocity gradient, and (c) a lower layer lying adjacent to the static zone over
which the flow velocity descends gradually to 0. The other inset in Figure 26F shows the significant effect of shearing at
the flow front imposed by the stationary soil or based immediate in contact. During T = 0.7-1.3 s, the frontal part ceases
to move at about 3 m from the origin, while the stationary layer in contact with the base continues to build up, resulting
in a rising mobilized-static interface. Only a shallow portion of the surface soil located in the middle still remains with
certain velocity. This stage is termed as avalanching stage by some researchers.20,86 At the final stage (T = 1.6 s), when all
soil settles down and become immobilized, the observed deposition profile is consistent with experimental result reported
in Lube et al.86 The perpetual dead zone of the soil column that has never been mobilized throughout the whole collapse
process forms a triangular wedge (marked as blue in Figure 26I), with an angle to the ground surface of 39◦.
The normalized run out distance can be calculated using:

d∗ = (d% − d0)∕d0, (48)

where df is the distance between the farthest point and the origin (after removing the scatter points, which is not in
contact with the main deposit) and d0 is the initial width of the column. In the present study, the normalized runout
distance is calculated as d∗ = 1.8, which is slightly larger than the experimental observations of 1.6.86 This discrepancy
may be because of two reasons: (1) The DEM employs cylinder rods to simulate the granular particles, leading to a plane
strain approximation. This may underestimate the interparticle frictions out of the plane direction and hence less energy
dissipation. (2) In reality, a considerable part of soil fell down with intensive rolling and sliding (resistance) which cause
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FIGURE 26 Contour of deviatoric strain -q and velocity field v in column collapse problem. The white dashed line indicates the interface
between current static and mobilizing zone [Colour figure can be viewed at wileyonlinelibrary.com]

intensive energy dissipation, while the present study considers free-rolling DEMmodel (the reader can refer to Kermani
et al63 for the effect of rolling resistance on column collapse).

3.5.2 Energy evolution and local responses
The evolution of energy during the collapse of column is further explored. The energies normalized by the initial potential
energy are plotted in Figure 27, where the initial potential energy E0p, the potential energy Etp, the kinematic energy Etk,
and the dissipated energy Etd are respectively calculated according to: E

0
p =

∑
pmpgz0p, Etp =

∑
pmpgztp, Etk =

∑
p
1
2mp

(
vtp
)2,

and Etd = E0p − Etp − Etk. As can be seen, since the onset of the collapse, the potential energy of the soil column steadily
drops, fueling energy that is transformed into kinematic energy and dissipated energy before becoming steady when all
soils settle down. The kinematic energy of the soil column increases to reach a peak (Etd∕E

0
p = 0.1) at around 0.4 s before

gradually decreasing to 0. The normalized total energy dissipated during the collapse increases steadily and reaches a
final steady value of 0.55, which is smaller than the semi-empirical prediction Etd∕E

0
p = 1 − 0.74∕2a = 0.63 according to

Lajeunesse et al.84 The attributable reasons to the difference have been discussed in last subsection.
To compare the difference in local material response, several material points are chosen (see Figure 25 for their posi-

tions) for monitoring throughout the collapse process. Figure 28 shows the evolution of displacement and the flow path
of each monitored point. Apparently, the horizontal and vertical displacements at different locations evolve in a different
manner. For horizontal displacement, the two points at the right surface (I & K) evolve faster, followed by Point J on the
top surface and Point H in the column center. For vertical displacement, the top right corner Point K evolves the fastest.
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FIGURE 27 Energy evolution during the column collapse [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

(C)

FIGURE 28 Evolution of displacement A, and B, and flow trajectory C, for the five selected material points during the column collapse
[Colour figure can be viewed at wileyonlinelibrary.com]

Point I shows an initial faster vertical displacement than Point J, but later, the former is overtaken by Point J at around
0.75 s. The bottom Point G is totally immobilized at all. In terms of flow trajectory, the four upper points (J, K, H, I) travel
similarly along a concave path.
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4 CONCLUSIONS

A coupled MPM/DEM approach has been presented for multiscale modeling of large deformation problems in geome-
chanics. A hierarchical coupling scheme is employed to model a boundary value problem by MPM and to derive the
necessary constitutive response from the DEM solution for the RVE embedded in each material point of the MPM.
The two-way information passing scheme between MPM and DEM enables highly nonlinear, state- and load-dependent
material responses of granular materials to be rigorously captured, which is critical for large deformation geomechan-
ics problems, and meanwhile conveniently avoids the necessity of phenomenological constitutive assumptions that are
essential in conventional MPM approaches. The multiscale method retains the predictive capability of MPM in tack-
ling large deformation problems and further furnishes advantageous features of direct relating macro observations to
underlying microstructural origins and physical mechanisms. The proposed multiscale approach has been validated by a
single element test and has further been employed tomodel four typical geomechanics problems involving large deforma-
tion, including biaxial compression, rigid footing, soil-pipe interaction, and soil column collapse. The detailed coupling
procedure and some key findings from the numerical examples are summarized as follows:

1. In hierarchical coupling of MPM and DEM, the incremental displacement gradient at each material point in MPM
is passed to its corresponding RVE as boundary conditions to solve the RVE using the DEM solver. A Cauchy stress
homogenized over the deformed DEM assembly is extracted and transfered back to the MPM for the subsequent com-
putation. In such a sequential coupling scheme, conventional phenomenological constitutive models are no longer
needed.

2. Simulation of biaxial compression test and the observation of cross-shape shear bands in the sample demonstrates that
the proposed approach is able to faithfully reproduce complexmechanical behavior of granularmaterials such as strain
localization. Examination of the influence of mesh density and PPC number indicates that the MPM/DEMmultiscale
approach remains mesh-dependent and the influence of mesh density is more apparent than that of the PPC number.

3. The robustness and flexibility of the multiscale modeling approach in dealing with various granular materials are
manifested in the simulation of the footing problem. Three RVEs are generated to represent different soils: dense,
medium dense, and soft soil. Three typical foundation failure modes are observed, including general shear failure for
dense soil, local shear failure for medium dense soil, and punching failure for the soft soil. In the general shear failure,
a continuous slip surface is fully developed and extends to the ground surface with an apparent ground heave. This slip
surface does not extend to ground surface for the local failure. For punching failure, the influence zone is constrained
closely under the footing and no log-spiral slip surface is formed.

4. Modeling of the soil-pipe interaction problem further highlights the true advantages MPM/DEMmultiscale approach
can offer in dealing with large deformation. In the simulation, the pipe first penetrates into the soil vertically and then
moves laterally with a large amplitude of displacement. During the penetration stage, the soil is pushed aside and
multiple unsymmetric, interlayered shear bands emerge progressively. When the lateral movement commences, the
soil ahead of the pipe is gradually pushed, which intensifies the previously formed shear bands and forms higher heave,
while the soil behind the pipe experiences certain stress reversals. Further local analysis of the material response at
chosen points confirm the macro observations.

5. The proposed approach has also been applied to modeling of a dynamic problem: the collapse of soil column. The
simulated collapsing and flow behaviors are found consistent with experimental observations.86 Because of ignoring
of 3D effect of interparticle frictions and rolling resistance, our multiscale modeling overestimates the runout distance
than empirical predictions.

Some modeling details and challenges are noteworthy. Because of excessive large deformation, it is entirely possible in
certain extreme cases of multiscale simulations that the attached RVE may deform severely to end up with a rather thin
DEM configuration (ie, the depth of packing along the thinnest direction is only 3-4 times of the particle size). Under
this circumstance, whether the accuracy of the extracted Cauchy stress is preserved or not needs further study. Since
the overall MPM computation follows explicit schemes, care should be taken to choose sufficiently small loading steps
to ensure the accuracy of the simulation results. Further studies are needed to find more efficient solutions schemes, ie,
adaptive multiscale homogenization,88 to mitigate the computational cost of the multiscale modeling. It is also desired
to enrich the functionalities of current multiscale approach by considering grain morphology,64,89-91 particle breakage,39,92
or hydro-mechanical coupling.26,93 Although all cases discussed in this paper have been based on 2D simulations, it is
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straightforward to further implement the code in 3D as the multiscale framework is proposed in generalized form and,
both the adopted MPM solver (NairnMPM) and DEM solver (YADE) have built-in 3D capabilities.
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