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This paper presents a unified theory for both cylindrical and spherical cavity expansion problems in cohe-
sive-frictional micromorphic media. A phenomenological strain-gradient plasticity model in conjunction
with a generalized Mohr–Coulomb criterion is employed to characterize the elasto-plastic behavior of the
material. To solve the resultant two-point boundary-value problem (BVP) of fourth-order homogeneous
ordinary differential equation (ODE) for the governing equations which is not well-conditioned in certain
cases, several numerical methods are developed and are compared in terms of robustness, efficiency and
accuracy. Using one of the finite difference methods that shows overall better performance, both cylin-
drical and spherical cavity expansion problems in micromorphic media are solved. The influences of
microstructural properties on the expansion response are clearly demonstrated. Size effect during the
cavity expansion is captured. The proposed theory is also applied to a revisit of the classic problem of
stress concentration around a cavity in a micromorphic medium subjected to isotropic tension at infinity,
for which some conclusions made in early studies are revised. The proposed theory can be useful for the
interpretation of indentation tests at small scales.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of spherical/cylindrical cavity expansion in finite or
infinite media has been proved useful for a wide range of engineer-
ing applications. Bishop et al. (1945) and Hill (1950) were among
the first who applied the theory to the prediction of indentation
hardness of metals. In civil and geotechnical engineering, it has
been commonly used in the interpretation of in situ tests, such as
cone penetration tests (CPTs) and pressuremeter tests (PMTs)
(Yu, 2000). In a typical theory of cavity expansion, it is assumed
that the complex material behavior in either the indentation tests
or the CPTs or PMTs can be simplified as a one-dimensionally
expanded (or contracted) cavity. Closed-form solutions can be de-
rived for the displacement and stress field around the cavity which
can be used as convenient references for various engineering
purposes.

Recent advances in instrument technologies make it possible
now to apply indenter forces ranging from kilo-Newtons to pico-
Newtons, and the measurable local displacements induced by
indenter can reach the scale of microns or even nanometers. At
such small scales, hardness tests have been found to show a strong
Indentation Size Effect (ISE) when the dominant indentation defor-
mation is comparable to the critical material characteristic length
scale, e.g., at the order of tens of microns or even smaller (Fleck
et al., 1994; Tabor, 1996; Nix and Gao, 1998; Gao et al., 1999;
ll rights reserved.
Gouldsone et al., 2007; Abu Al-Rub, 2007, and among others).
Based on micro-indentation results, Nix and Gao (1998) have ob-
served that the hardnesses of both single crystal copper and cold
worked polycrystalline copper exhibit a similar nonlinear relation
with the indentation depth which can be characterized by a re-
verse quadratic law. Huang et al. (2006) have observed that
nano-indentation hardness data demonstrate an even stronger size
effect which has to be explained by new hardness laws.
Microstructural arrangements, such as Geometrically Necessary
Dislocations (GNDs), have been found attributable to the observed
ISE at small scales. The phenomenon of ISE cannot be properly
explained by conventional theory of cavity expansion, since the
existing theory has been developed within the framework of clas-
sic plasticity based on phenomenological continuum assumptions.
There are no intrinsic material length scales in the theory that rep-
resent the typical size of important microstructures underpinning
the material behavior at small scales such as in micro- or nano-
indentations. To overcome the difficulty, appropriate modifications
need to be made on conventional cavity expansion theory to in-
clude suitable terms that are reflective of the microstructural
arrangements in the materials during indentation.

In this paper, we present a study to generalize the conventional
theory of cavity expansion to account for the effect of microstruc-
ture. For this purpose, a special class of strain-gradient theory orig-
inally proposed by Mindlin (1964), later by Germain (1973) and
more recently generalized by Fleck and Hutchinson (1997, 2001)
and Chambon et al. (1998, 2001), is employed, wherein both the
strains and strain gradients as well as their respective
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work-conjugates are considered in formulating the constitutive
relations. Along with introduction of gradient terms, one or more
length scales are introduced which represents the typical dimen-
sion of the underlying microstructure in a continuum material. A
material with deformable microstructures which can be so charac-
terized is termed as ‘‘medium with microstructure’’ by Mindlin
(1964) or ‘‘micromorphic medium’’ by Germain (1973) and Eringen
(1999) (see also Georgiadis et al., 2000). To describe the yielding
behavior for a wide range of materials, we further employ an ex-
tended form of Mohr–Coulomb criterion which involves both Cau-
chy stress and couple stress terms. As a result, the yield behavior of
both frictional and cohesive materials can be characterized by the
proposed theory.

Note that there have been a number of early studies on similar
problems using non-conventional models, e.g., Eshel and Rosenfeld
(1970), Cook and Weitsman (1966), Bleustein (1966). The attention
in these studies, however, has predominantly been devoted to the
investigation of the elastic stress/strain concentration at the sur-
face of a cylindrical or spherical cavity in an unbounded medium.
Some analytical studies have also been reported recently. For
example, Gao (2003) has investigated the behavior of spherically
expended shell using a gradient plasticity theory originally devel-
oped by Mühlhaus and Aifantis (1991) wherein higher-order spa-
tial gradients of the effective plastic strain is considered in the
yield condition. The more recent work by Gao et al. (2009) and
Collin et al. (2009) have been limited to elasticity only. Zhao
et al. (2007a) have conducted an elasto-plastic analysis on cylindri-
cally expanded cavity using a Tresca-type criterion to describe the
yield behavior. The present study is a generalization of this previ-
ous work.
2. Problem description

The cylindrical/spherical cavity is assumed to be expanded in a
micromorphic medium. A strain-gradient theory based on that
proposed by Mindlin (1964, 1965) and later extended by Germain
(1973) is employed for the constitutive description (see also, Zhao
et al., 2005, 2006, 2007a,b). Chambon et al. (1998, 2001) have em-
ployed a second-order strain-gradient model based on Germain
(1973) to treat one-dimensional localization problems which bears
certain similarity with the present cavity expansion problem.

The hollow cylinder/sphere is assumed to be initially subjected
to a hydrostatic pressure p0 both at the cavity surface and at the
exterior surface, as shown in Fig. 1, and p0 is sufficiently small so
as not to cause any plastic deformation in the material. For the
cylindrical case, a cylindrical polar coordinate system (r,h,z) is
adopted, whereas a spherical coordinate system (r,h,u) is used
a
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Fig. 1. Schematic of cylindrical/spherical cavity expansion in a cohesive-frictional
medium.
for the spherical case. Tension is taken as positive in this paper.
From this initial state, the inner surface pressure is gradually in-
creased from p0 to p, which leads to an intermediate state as illus-
trated in Fig. 1. Upon loading, the hollow cylinder/sphere first
experiences isotropic elastic deformation and then plastic yielding
when the yield condition is met at any point in the hollow cylin-
der/sphere. Initial yielding is said to occur when any point in the
cylinder/sphere first reaches the plastic state. The corresponding
cavity pressure at this stage is called the initial yielding pressure
and is denoted by pci. In Zhao et al. (2007a) it is found that initial
yielding always occurs first at the inner wall surface for the cylin-
drical case. After this initial yielding stage, the cylinder is supposed
to enter a partly plastic state which develops progressively with
the increase of cavity pressure until the entire cylinder body be-
comes plastic. The pressure at which the entire body first enters
the fully plastic state is called the critical yield pressure, and is de-
noted by pcf. The spherical cavity expansion follows essentially the
same process of initial yielding, plastic expansion and fully plastic
yielding as the cylindrical case, as has been confirmed by the
numerical calculation in the subsequent sections. We shall restrict
our analysis up to the point of a fully plastic state. We assume the
deformation remains infinitesimal. Indeed, as suggested by Hill
(1950), for cylinders with the ratio of external and internal radii
n = b/a not too large (n less than 4 or 5, say) the strains and the dis-
placement of the inner surface are relatively small so long as the
fully plastic state has not reached. Prior to that state, the variation
in a can be neglected when the stresses are computed.

2.1. Kinematics and constitutive description

In this subsection, we generalize the results in Zhao et al.
(2007a) and Zhao and Pedroso (2008) and formulate the constitu-
tive relations for both cylindrical and spherical cavity expansions
in a unified manner. For the cylindrical case, a generalized plane
strain condition as used in Zhao et al. (2007a) is assumed such that
all the components for both strains and strain gradients associated
with the z-coordinate vanish. The geometric axi-symmetry of the
problem renders the displacement u at a material point A of the
cylinder (see, Fig. 1) a function of r only. In consequence, the fol-
lowing non-zero components of strains and strain gradients can
be expressed in terms of u (see also, Eq. (2) of Zhao et al., 2007a)1:

�rr ¼ u;r; �hh ¼ u
r ;

grrr ¼ u;rr ; ghhr ¼ 1
r2 ðru;r � uÞ;

grhh ¼ ghrh ¼ 1
r u;r � u

2r

� �

9>=
>; ðCylindrical CavityÞ: ð1Þ

As for the spherical cavity expansion case, due to the geometric cen-
tro-symmetry of the problem, the displacement u at a material
point A of the hollow sphere (see, Fig. 1) is also a function of r only.
Following Zhao and Pedroso (2008), the non-zero components of
strains and strain gradients, in this case, are �rr, �hh, �uu, grrr, ghhr,
guur = ghhr, ghrh = grhh, guru = gruu, and can be expressed in terms
of u according to:

�rr ¼ u;r; �hh ¼ �uu ¼ u
r ;

grrr ¼ u;rr ; ghhr ¼ guur ¼ 1
r2 ðru;r � uÞ;

ghrh ¼ grhh ¼ 1
r2 ru;r � u

2

� �
;

guru ¼ gruu ¼ 1
r2 ru;r � u

2

� �

9>>>>=
>>>>;

ðSpherical CavityÞ:

ð2Þ
1 Even though the strain gradients are defined in a general tensorial form as
gijk = uk, ij, a direct partial differentiation with respect to the sub index can only be
carried out in Cartesian coordinates, e.g., g122 = u2,12. In case of cylindrical or spherica
coordinates, it will work differently. For instance, gr,hh – uh,rh. In the curren
symmetric cylindrical cavity case, this results in that grhh = ghrh – ghhr. See Zhao and
Pedroso (2008) for detailed derivations.
l
t



2 Note that Eq. (15) in Page 4346 of Zhao et al. (2007a) was inadvertently
isprinted where the correct expression for Tr at r = a should be the first one in Eq.
0) here.
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A generalized form of Hooke’s law proposed in Mindlin (1964,
1965) is used here to describe the isotropic linear elastic behavior
of the gradient-dependent solid (see also, Zhao et al., 2007a,b)

rij ¼ k�kkdij þ 2l�ij;

sijk ¼ c1‘
2ðgippdjk þ gjppdikÞ þ c2‘

2ðgppidjk þ 2gkppdij þ gppjdikÞ
þc3‘

2gppkdij þ c4‘
2gijk þ c5‘

2ðgkji þ gkijÞ

9>=
>;:

ð3Þ

where rij and sijk are the Cauchy stress and higher-order stress ten-
sors, conjugate to the strain tensor and strain gradient tensor,
respectively. k and l are the Lamé constants. ci (i = 1,5) are elastic
constants associated with gradient terms in a material. ‘ denotes
an internal length scale resulted from the introduction of strain gra-
dients, and is related closely to the dimension of microstructure in
the material. For example, for single-/poly-crystal metallic materi-
als ‘ has been related to the storage of Geometrically Necessary Dis-
locations. Its value can be estimated by fitting the predicted results
of the constitutive prediction with measurable microstructural
physical quantities from various micro-scale experiments such as
micro-bending or micro-torsion tests. For example, ‘ has been iden-
tified by Nix and Gao (1998) in strain gradient plasticity as ‘ = (l/
ry)2b, where ry is a yield stress and b is the Burgers vector. For typ-
ical metallic materials ‘ is on the order of microns. It was empha-
sized by Fleck and Hutchinson (2001) that at least two distinct
material length parameters need to be incorporated in any phenom-
enological gradient plasticity theory, with one relevant to problems
where stretch gradients are dominant and the other applicable to
cases where rotation gradients are important. For the cavity expan-
sion problem being treated here, the rotation gradients vanish such
that only one length scale ‘ is introduced which accounts for the ef-
fect of stretch gradients.

In consideration of Eqs. (1) and (2) and the general procedures
provided by Zhao and Pedroso (2008) for deriving strain gradient
relations in orthogonal curvilinear coordinates, we may readily ob-
tain the following formulation of constitutive relations for the
cylindrical cavity case in terms of the radial displacement:

rrr ¼ ðkþ 2lÞu;r þ k
r u;

rhh ¼ ku;r þ kþ2l
r u;

rzz ¼ k u;r þ u
r

� �
;

srrr ¼ c‘2 5u;rr þ 4
r u;r � 13

4r2 u
� �

;

srhh ¼ shrh ¼ c‘2 3
4 u;rr þ 11

4r u;r � 7
4r2 u

� �
;

srzz ¼ szrz ¼ c‘2 3
4 u;rr þ 3

4r u;r � 1
2r2 u

� �
;

shhr ¼ c‘2 3
2 u;rr þ 7

2r u;r � 11
4r2 u

� �
;

szzr ¼ c‘2 3
2 u;rr þ 3

2r u;r � 5
4r2 u

� �

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðCylindrical CavityÞ

ð4Þ

and the following form for the spherical cavity case:

rrr ¼ ðkþ 2lÞu;r þ 2k
r u;

rhh ¼ ruu ¼ ku;r þ kþ2l
r u;

srrr ¼ c‘2 5u;rr þ 6
r u;r � 9

2r2 u
� �

;

srhh ¼ shrh ¼ c‘2 3
4 u;rr þ 7

2r u;r � 9
4r2 u

� �
;

sruu ¼ suru ¼ c‘2 3
4 u;rr þ 7

2r u;r � 9
4r2 u

� �
;

shhr ¼ suur ¼ c‘2 3
2 u;rr þ 5

r u;r � 4
r2 u

� �

9>>>>>>>>>>=
>>>>>>>>>>;

ðSpherical CavityÞ:

ð5Þ

Note that in both Eqs. (4) and (5) we have employed a single gradi-
ent-dependent elastic parameter c to replace the five ci (i = 1,5) in
Eq. (3) by setting c = 2c1 = 4c2 = c3 = c4 = 2c5. In doing so, it is as-
sumed that each individual strain gradient terms contributes
equally to sijk (see also, (Mindlin, 1965; Zhao et al., 2007a) for more
information). c may be physically interpreted as a material param-
eter dependent on the hardness/shear resistance of important
microstructures in a material. For example, for an inclusion prob-
lem, c may be taken to denote the bulk modulus of a soft or hard
inclusion in the matrix. c/l may be regarded as the stiffness ratio
between the inclusion and the matrix in a material. Admittedly, fur-
ther experimental evidence is required to justify this explanation. It
is also interesting to note that Gao and Ma (2010a,b) have devel-
oped a first gradient elasticity theory of Helmholtz type, in which
the gradient-dependent elastic parameters have been directly re-
placed by the conventional Lamé constants k and l. This is indeed
similar to a special case of the current formulation that c/l = 1.

In the absence of body forces, the equilibrium equation for the
radial direction of the cavity can be expressed in the following uni-
fied form for both cases:

dr�rr

dr
þ k

r
ðr�rr � r�hhÞ ¼ 0; ð6Þ

where k = 1 for the cylindrical case, and k = 2 for the spherical case.
Clearly, the above unified form of equilibrium equation shows a
similarity with the corresponding one in the conventional theory.
As will be shown, based on Eq. (6), a unified numerical treatment
for the cavity expansion problem in a hollow cylinder or a hollow
sphere is possible. The generalized principal stresses in Eq. (6), r�rr

and r�hh, respectively, take the following expressions:

r�rr ¼ rrr � dsrrr
dr þ k

r ðsrrr � shhr � srhhÞ
� �

;

r�hh ¼ rhh � dshrh
dr þ 1

r ðkþ 1Þsrhh þ shhrð Þ
� �

9=
;: ð7Þ

Note that the following symmetric properties hold for the higher-
order stresses: srhh = shrh for the cylindrical case, and srhh = shrh =
sruu = suru for the spherical case.

As has been demonstrated in Zhao et al. (2007a), for the cylin-
drical case, the two generalized stresses, together with a third one:

r�zz ¼ rzz ð8Þ

are the only three non-zero stress components and have been trea-
ted as the generalized principal stresses. Similarly, for the spherical
cavity case, it is readily verified, e.g., according to Zhao and Pedroso
(2008), that the two generalized stress defined in Eq. (7) together
with a third non-zero one r�uu which is identical with r�hh:

r�uu ¼ r�hh; ð9Þ

constitute the three non-zero generalized principal stresses.
The boundary conditions at the inner surface (r = a) and the out-

er surfaces (r = b) of the cylinder/sphere take the following form,
respectively2:

TrðaÞ ¼ � r�rr þ k
r srhh

� ���
r¼a
¼ p;

RrðaÞ ¼ srrrjr¼a ¼ 0;
TrðbÞ ¼ r�rr þ k

r srhh

� ���
r¼b ¼ �p0;

RrðbÞ ¼ srrrjr¼b ¼ 0

9>>>=
>>>;
; ð10Þ

where Tr and Rr are the surface traction and higher-order surface
traction, respectively. Note that the boundary conditions in Eq.
(10) have been chosen here to be consistent with the conventional
cavity problem. In the presence of strain gradients and couple stres-
ses, however, higher order surface tractions at both r = a and r = b
may be important. They are neglected here merely for convenience.
We also note that in the gradient plasticity approach following
Mühlhaus and Aifantis (1991), such as in Gao (2003), one does
not have to deal with non-conventional boundary conditions such
m
(1
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as the higher-order surface tractions mentioned here. In this con-
nection, it has an obvious advantage over the strain gradient theory
used in the current paper.

2.2. A generalized yield criterion for cohesive-frictional materials

We assume the material is elasto-perfectly plastic. While Tresca
criterion has been widely used for metals, alternative yield criteria
such as Mohr–Coulomb have long been used to describe the pres-
sure-dependent yield behavior of cohesive-frictional materials. For
the cavity expansion problem, as has been shown in Zhao et al.
(2007a), when the cavity pressure is enough large, r�hhð¼ r�zzÞ and
r�rr in the cylindrical cavity become, respectively, the major and
minor generalized stresses, whilst r�zz remains the intermediate
one. In the spherical cavity case, numerical computations have
indicated that r�hh ¼ r�uu are the major generalized stresses, and
r�rr the minor stress (note that tension is taken positive here), when
the cavity pressure is high enough. We hereby propose the follow-
ing generalized Mohr–Coulomb criterion to describe the yielding
behavior in these materials (c.f., Chadwick, 1959; Carter et al.,
1986):

f ¼ Nr�hh � r�rr � j
ffiffiffiffi
N
p
¼ 0; ð11Þ

where

N ¼ 1þ sin /
1� sin /

and / is the frictional angle for a frictional material; j/2 has a mag-
nitude of cohesion of the material. The use of generalized stresses
not only offers a compact form in expressing the Mohr–Coulomb
yield criterion, but also renders it convenient for later numerical
manipulation. Meanwhile, this approach can be adapted with ease
to other yield criteria, such as the Drucker–Prager criterion which
has long been used as a rounded approximation of the Mohr–
Coulomb criterion (see, e.g. Papanastasiou and Durban, 1997; Zhao
et al., 2007b). The same idea is applicable to a more general case
when there are other non-zero components for the generalized
stress tensor (see, e.g., Zhao and Pedroso, 2008, for expressions of
generalized stresses in more general cases). If suitable hardening
is further considered, e.g., by modifying the coefficients involved
in the expression, Eq. (11) can be further used as a yield function
in more advanced hardening/softening constitutive models. We
emphasize that, however, there is no direct experimental evident
yet at the stage that can be used to justify this specific form of yield
criterion for a material, due partially to the difficulty in determining
the material length scale in the first place. However, we believe that
Eq. (11) can be verified if adequate experimental data are available
in the future.

Furthermore, by assuming the frictional angle / = 0 such that
N = 1, the expression in Eq. (11) can be easily simplified to the Tres-
ca criterion which has been used in Zhao et al. (2007a)

f ¼ r�hh � r�rr � j ¼ 0: ð12Þ

On the other hand, when the cohesion is set to zero (j = 0), Eq.
(11) can also been reduced to the following form suitable for the
description of purely frictional materials:

f ¼ Nr�hh � r�rr ¼ 0: ð13Þ
3. Solution procedures for the cavity expansion problem

3.1. Mathematical reformulation for elastic expansion

Using Eq. (7) in the equilibrium equation of (6) leads to:
drrr

dr
þ k

r
ðrrr � rhhÞ �

d2srrr

dr2 þ
k
r

dðshhr þ 2srhh � 2srrrÞ
dr

þ k
r2 2ksrhh þ kshhr � ðk� 1Þsrrrð Þ ¼ 0: ð14Þ

At the stage of purely elastic expansion of the hollow cylinder/
sphere, there is no material point yielding (the stresses satisfy that
f < 0 in Eq. (11)), so that one can substitute the elastic relations in
Eqs. (4) or (5) into Eq. (14) and arrive at the following general form
of fourth-order ordinary differential equation in terms of the radial
displacement u:

dy1
dr

dy2
dr

dy3
dr

dy4
dr

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

0 1 0 0
0 0 1 0
0 0 0 1
A1 A2 A3 A4

2
6664

3
7775

y1

y2

y3

y4

8>>><
>>>:

9>>>=
>>>;
; ð15Þ

where y1 = u, y2 = u0, y3 = u00 and y4 = u000. The coefficients Ai(i = 1,4)
have the following expressions for the cylindrical and spherical
cases, respectively:

A1 ¼ 51
20r4 � kþ2l

5cr2‘2

A2 ¼ kþ2l
5cr‘2 � 51

20r3

A3 ¼ kþ2l
5c‘2 þ 61

20r2

A4 ¼ � 11
5r

9>>>>>=
>>>>>;
ðCylindrical caseÞ; ð16Þ
A1 ¼ � 2ðkþ2lÞ
5cr2‘2

A2 ¼ 7
5r3 þ 2ðkþ2lÞ

5cr‘2

A3 ¼ kþ2l
5c‘2 þ 37

10r2

A4 ¼ � 4
r

9>>>>>=
>>>>>;
ðSpherical caseÞ: ð17Þ

During any stage of the elastic expansion, the boundary condi-
tions at the cavity surface and the outer surface, as expressed in Eq.
(10), present the following form in terms of yi(i = 1,4):

TrðaÞ ¼ ðw1y4 þw2y3 þw3y2 þw4y1Þjr¼a ¼ p;

RrðaÞ ¼ ðh1y3 þ h2y2 þ h3y1Þjr¼a ¼ 0

�
; ð18Þ
TrðbÞ ¼ ðq1y4 þ q2y3 þ q3y2 þ q4y1Þjr¼b ¼ �p0;

RrðbÞ ¼ ðh1y3 þ h2y2 þ h3y1Þjr¼b ¼ 0

�
; ð19Þ

where the coefficients have the following expressions for the two
cases:

w1 ¼ 5; w2 ¼ 6
a

w3 ¼ � kþ2l
c‘2 þ 49

4a2

� �
; w4 ¼ 19

2a3 � k
ac‘2

q1 ¼ �5; q2 ¼ �6
b

q3 ¼ kþ2l
c‘2 þ 49

4b2 ; q4 ¼ k
bc‘2 � 19

2b3

h1 ¼ 5; h2 ¼ 4
r ; h3 ¼ � 13

4r2

9>>>>>>>>=
>>>>>>>>;
ðCylindrical caseÞ; ð20Þ
w1 ¼ 5; w2 ¼ 10
a

w3 ¼ � kþ2l
c‘2 þ 45

2a2

� �
; w4 ¼ 17

a3 � 2k
ac‘2

q1 ¼ �5; q2 ¼ �10
b

q3 ¼ kþ2l
c‘2 þ 49

4b2 ; q4 ¼ 2k
bc‘2 � 17

b3

h1 ¼ 5; h2 ¼ 6
r ; h3 ¼ � 9

2r2

9>>>>>>>>=
>>>>>>>>;
ðSpherical caseÞ: ð21Þ

Note that in the above equations, hi(i = 1,3) applies to both r = a and
r = b.



Fig. 2. Sensitivity of the solution of y4(= u000) to ‘/a in elastic expansion. Six sets of ‘/
a were chosen: ‘/a = 0.1, 0.125, 0.15, 0.2, 0.3, 0.5. Other material parameters used
are: a = 1.0, b/a = 4.0, k/l = 2.0, p0/l = 0.1, c/l = 1.0, j/p0 = 3.0, / = 30�, tol = 10�5.
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3.2. Conditioning of the boundary value problem

For purely elastic expansion, the governing equation in Eq. (15)
together with the boundary conditions in (18) and (19) constitutes
a homogeneous ordinary differential equation (ODE) system of
two-point boundary value problem (BVP). While the exact analytical
solution for such a complex problem is difficult to find, it can be
solved numerically. A simple shooting method (SSM) in conjunc-
tion with an explicit Runge–Kutta (RK) method (4/5-th order with
the Dormand–Prince pair) and the Broyden’s iteration algorithm
has been developed in Zhao et al. (2007a) to solve the cylindrical
expansion problem. In solving the cylindrical expansion problem,
the simple shooting method has shown a general stability and con-
sistency. However, its solution with the gradient-dependent
expansion problem is not without pitfalls. It has been found that,
if very stringent tolerance is used for the solution of a thick-walled
hollow cylinder or sphere, the numerical computation may
encounter difficulty in achieving convergence. Note that the thick
cylinder/sphere case can be of particular importance for many sit-
uations, e.g., a cavity expanded in unbounded media as an extreme
case. This numerical issue is further aggregated when small values
for the internal length scale (‘/a) and (/or) gradient-dependent
modulus (c/l) are used. A further investigation found that both
the numerical scheme and the property of the ODE itself are attrib-
utable for the numerical breakdown. In order to understand the
origin of the problem, it is helpful to look into the behavior of
the ODE in (15).

First of all, it is well-known that the stability of a numerical ap-
proach for a boundary value problem depends crucially on the
well-conditioning of the BVP. A ‘‘well-conditioned’’ boundary value
problem implies that a small change in the coefficients of the ODE
(e.g. Eqs. (16) and (17) here) or boundary conditions (e.g., Eq. (18)
and/or Eq. (19) here) should produce only a small change in the
solution. A stable and accurate numerical algorithm, if applied to
solve such a BVP, should thus be able to produce accurate results
as well. According to the theory of ordinary differential equation,
e.g., Ascher et al. (1995), a conditioning constant (or stability con-
stant in some other literature) can be used to measure the condi-
tioning of a BVP. If the conditioning constant of a given problem
is of moderate size, the problem is generally considered to be
well-conditioned. In defining the conditions under which the con-
ditioning constants can be bounded (by constants of moderated
size), the concept of dichotomy has been developed based on a gen-
eralization of the IVP uniform stability notion. It has been proved
that dichotomy, if it can be found, is not only sufficient but neces-
sary for a BVP to be well-conditioned. To derive the conditioning
constant and dichotomy, the first important step is to derive a
Green’s function which is related to the inverse of a differential
operator to express the solution to a linear BVP. Construction of
the Green’s function for a BVP involves a linear mixed-order sys-
tem of ODEs with corresponding linear boundary conditions. It is
only possible when a complete set of solutions to the homoge-
neous problem is known which, however, is not always readily
available in practice. It is therefore difficult to construct a Green’s
function for the analysis of its well-conditioning. The current prob-
lem falls precisely to this latter category. While we do not exclude
the possibility that a Green’s function and the dichotomy can be
found for the current problem, further exploration on this topic
is beyond the scope of this paper.

Nevertheless, a direct inspection of the ODE with its BCs can
still yield useful information on the conditioning of the BVP which
helps us seek possible improvements on the solution procedures.
Firstly, a careful inspection of the solution by using the simple
shooting method has found that, either in the case of very small
values of c‘2, or the integration interval being very large, the sys-
tem of linear equations in Eq. (15), with coefficients Ai(i = 1,4)
defined in Eqs. (16) and (17), becomes extremely ill-conditioned.
As is readily found, there is a term involving c‘2 in the denominator
of all the expressions except A4. When either c or ‘ or both is very
small, this term become dominant in Ai(i = 1,3). This could cause
numerical problems in the computation, in particular for y4. In-
deed, using the simple shooting method we have investigated
the elastic expansion of a cylindrical cavity with a thickness of
n = b/a = 4.0. A set of different values for ‘/a have been chosen for
the investigation. It has been found that the overall behavior of
yi(i = 1,3) is not particularly sensitive to the change of ‘/a. In all
cases the variation of yi(i = 1,3) with respect to r in the cylinder
shows a monotonic curve with no dramatic change of curvature
observed. In contrast, a quite different scenario has been observed
for that of y4. As is shown in Fig. 2, when a relatively large ‘/a is
used, i.e., ‘/a = 0.5, 0.3 or 0.2 here, the overall curve follows a sim-
ilar monotonic trend as that of yi(i = 1,3). However, when ‘/a be-
comes smaller, i.e., ‘/a = 0.15, 0.125 or 0.1, an obvious turning
point in curvature is found at around r/a = 1.15 and the curvature
becomes even sharper with a further smaller value of ‘/a. We have
also found that if a value of ‘/a smaller than 0.1 is used with all the
other conditions the same, the numerical shooting method fails to
converge at all. The same observation has been found with regard
to the gradient-dependent stiffness parameter c and the integra-
tion interval (b � a) or n = b/a. Since in the simple shooting method
we have to evaluate the derivatives of the solution, either by differ-
ential quotient or difference quotient, and therefore an inversion of
an auxiliary matrix, a warning was reported that the matrix is close
to singular or badly scaled with an estimate of condition number
(RCON) close to 5.5 � 10�36. Numerical experience tells us there
might be two solutions of the ODE that decay very fast (i.e., expo-
nentially) as r increases which cannot be distinguished numerically
by their values at r = b. The linear system for their coefficients in
the linear combination that forms the solution of the BVP is
numerically singular. There may be also a third solution which de-
cays very fast (i.e., exponentially again) as r increases, leading to an
ill-conditioned linear system if b or n is large and the boundary
condition involves the value of this solution at r = a. The situation
will become hopelessly bad if we wish to deal with the case of infi-
nite media where b ? +1.

Another factor attributable to the numerical breakdown of the
simple shooting method in solving the thick-wall cavity expansion
problems is the inaccurate initial guess at the starting end (e.g.,
r = a) and the resultant error accumulated and magnified over
the long span of the shooting interval. As mentioned earlier, we
need to make an initial guess for some unknowns at one end
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(i.e., y3 and y4 at r = a) upon which the stability of simple shooting
method depends crucially. Sometimes even a slight deviation in-
volved in the initial guess with respect to the exact values could re-
sult in greatly magnified errors at the other end, which prevents
the solution to converge. The greater the integration range (i.e.,
(b � a) or n = b/a here) is, the worse the situation will become. If
large range of integration is combined with small value of length
scale ‘ or c, the simple shooting quickly fails to work. Meanwhile,
as is known, one-step methods such as high-order Runge–Kutta
methods are sensitive to the step size. The use of very small step
size could also lead to excessive roundoff errors and cause possible
divergence of the solution, which could contribute to the failure of
the simple shooting method in solving problems with large inter-
vals as well.

3.3. Robust solution procedures

We have hereby developed three new approaches in attempting
to solve the cavity expansion problems effectively. The first of such
is a multiple shooting method (MSM). In view of the fact that the
simple shooting method has worked perfectly when the integration
interval is tight (i.e., thin wall case), we may divide the entire inte-
gration span into a number of small subintervals, and apply the
simple shooting method over each subinterval. Constraints of con-
tinuation are imposed at the boundary of two neighboring subinter-
vals. In this way we wish to reduce the possible cumulative errors
caused by inaccurate initial guess. Meanwhile, suitable refinement
of subdivision can be purposely chosen in the neighborhood of
points where dramatic curvature changes are expected to occur in
the solution, i.e., r = 1.15a for y4 as shown in Fig. 2. In this way, it
is expected that the well-conditionedness of the BVP at each local
subinterval can be improved over the original single-interval case,
as is the overall stability of the numerical solution. The multiple
shooting algorithm developed here closely follows that proposed
in Kelly (1968) and outlined in Ascher et al. (1995) and Stoer and
Bulirsch (2000). Detailed formulations and algorithm of the multi-
ple shooting method will not be presented here.3

In addition, we have also developed two finite difference meth-
ods for the present problem. The finite difference methods are
based on a C1 piecewise cubic polynomial and an implicit Runge–
Kutta formula with a continuous extension. The first of the two
is based on those developed in Kierzenka and Shampine (2001).
For a mesh similar like that used in the multiple shooting method,
a = x0 < x1 < � � � < xm = b, the method can be considered as a colloca-
tion with a piecewise function S(x) for the function to be inte-
grated, i.e., the right-hand side of Eq. (15). S(x) satisfies the
boundary conditions and for each subinterval [xi,xi+1] of the mesh
it is a cubic polynomial that collocates at the ends of the subinter-
val and the midpoint. It is continuous at the endpoints of each sub-
interval and has a C1 continuity within this subinterval. The
collocation method can be regarded equivalent to the 3-stage Lob-
atto IIIa implicit Runge–Kutta formula which was termed in
Kierzenka and Shampine (2001) as the Simpson method. In tackling
the practical difficulty with finite difference and collocation meth-
ods in finding a mesh for which the asymptotic arguments that jus-
tify error estimation and mesh selection are valid, a formulation
based on control of the residual through analytical condensation
of the implicit Runge–Kutta formula originally proposed in Enright
and Muir (1993) was implemented. The residual is zero at both
ends. At the midpoint, its value is used to measure the extent the
algebraic equations define the method. In computing the finite dif-
ference approximation to the Jacobians matrix, the algorithms
3 Interested readers may contact the author to request a copy of the MATLAB
source code.

4 It is equivalent that force control is applied to the elastic expansion stage bu
displacement control is used for the plastic expansion.
developed by Shampine and Reichelt (1997) is employed. To en-
hance the global convergence of the simplified Newton iteration
when guesses for a mesh and solution are poor, a weak line search
is used for an affine-invariant convergence test. However, if the
Newton iterations converge slowly, a more efficient way is to stop
iterating at all and redistribute the mesh. Instead of following the
popular way of mesh selection by redistributing mesh points with
a global strategy based on inverse interpolation which has been
proved unsatisfactory when the mesh is crude and the function
to be integrated is only piecewise smooth, a local strategy is fol-
lowed by adding equally spaced mesh points to a subinterval for
which the residual is greater than the tolerance. This method has
been implemented into the recent release of MATLAB, termed as
BVP4C, and has been examined in solving our problem.

The second finite difference method is based on a newer pack-
age called BVP6C recently developed by Hale and Moore (2008)
based on the residual control framework of BVP4C. In the new
package, a sixth-order solver, MIRK4, is adopted instead of the
fourth-order one used in the original BVP4C for the interpolant.
The norm of the residual on each subinterval is computed by the
7-point Lobatto quadrature method. In Hale and Moore (2008) it
has been demonstrated that BVP6C is more accurate and efficient
than the original BVP4C. Its performance in solving our cavity
expansion problem will be examined in this paper in close compar-
ison with other methods mentioned above.

The performance of the four methods has been compared, in
terms of their consistency, stability and efficiency in solving the
cavity expansion problem. Overall, both BVP4C and BVP6C demon-
strate better robustness and consistency than the two shooting
methods. This is especially true when the tolerance is tightened
to a much stringent level of tol = 10�15. It is also found that BVP4C
and BVP6C have also shown greater efficiency in terms of CPU time
than the shooting methods in solving the present problem. In solv-
ing thick-walled problems with a small length scale, when greater
thickness ratio n = b/a is used, both SSM and MSM fail to converge.
In contrast, the two finite difference methods, BVP4C and BVP6C,
are particularly robust and can work well when b/a is increased
as large as 500. BVP4C and BVP6C also outperform the two shoot-
ing methods when the sensitivity to the range of ‘/a is examined.

3.4. Load stepping and elasto-plastic expansion

Numerical calculations confirm that, during both cylindrical
and spherical cavity expansion, when the cavity pressure is high
enough, r�hh and r�rr , respectively, become the maximum and min-
imum generalized stresses. Moreover, the initial yielding is always
found to occur at the cavity surface, with the yielding governed by
Eq. (11). Further loading will cause the plastic zone in the hollow
cylinder or sphere to develop progressively from the inner cavity
surface towards the exterior surface. Accordingly, the numerical
load stepping procedure outlined in Zhao et al. (2007a) for both
elastic and elasto-plastic expansion stages can be followed, and
any of the four methods in last subsection can be used in the pro-
cedure. Specifically, from the initial state to the initial yielding, we
gradually increase the internal cavity pressure and calculate the
resultant stress and displacement field in the sphere/cylinder,
and check if the initial yielding condition is satisfied. Once the cyl-
inder/sphere enters initial yielding, the numerical calculation will
be switched from a purely elastic expansion to a plastic expansion
stage. At the plastic expansion state, we shall cease to use the
internal pressure as the driving variable, but employ the plastic ra-
dius q (see Fig. 1) as a known condition for each sub-increment.4
t
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With q being increased from the inner surface a to the external
surface b under suitably chosen small step size, the numerical
computation advances until the fully plastic stage is reached
(q = b). At the end of each sub-increment of q, the internal pressure
and outer wall displacement will be computed.

The displacement and the stress fields can be accurately deter-
mined for the entire elastic expansion stage up to the initial yielding
(inclusive). Once initial yielding occurs and the hollow cylinder/
sphere enters partly/fully plastic expansion stage, plastic flow rule
has to be introduced in order for the deformation/stress field to be
completely determined. As we only wish to determine the stress
field and thereby the pressure-expansion curve, the excessive com-
plication caused by using the flow rule can be avoided by developing
iterative numerical approximation for the plastic expansion. A sim-
ilar procedure for partly plastic expansion to that developed in Zhao
et al. (2007a) is followed in this paper. The basic idea is to solve the
elastic regime using any of the methods discussed in Section 3.3, al-
beit with different boundary conditions at the elastic–plastic bound-
ary r = q. The new boundary conditions at r = q satisfy the governing
equation and the elastic Hooke’s law (and therefore Eq. (15)), and at
the same time satisfy the yield condition Eq. (11). As discussed in
Zhao et al. (2007a), there will be one more unknown in this case such
that iterative procedures have to be developed to reach a converged
solution. Once the elastic regime solution is obtained, the cavity
pressure is estimated through the traction boundary condition at
the inner cavity wall, e.g., via Eq. (30) of Zhao et al. (2007a). An illus-
trative flow chart for the load stepping of elasto-plastic expansion is
presented in Fig. 3.

In solving the plastic expansion problem with extreme param-
eter combinations, while both BVP4C and BVP6C excel the two
shooting methods in almost all cases, we have also identified some
special cases that differentiate BVP6C from BVP4C too. In some ex-
treme cases, BVP4C may encounter issues of singular Jacobian
when solving the collocation equations, whilst BVP6C works with-
out difficulty. In consideration of the overall performance, BVP6C
will be used in all calculations subsequently.
Fig. 3. Flow chart for the load stepping of elastoplastic cavity expansion.
4. Applications

4.1. Stress concentration at a cavity in an isotropic tension field

The stress concentration of a cavity in an isotropic tension field
is a classical problem. In conventional theory, the stress concentra-
tion factor (SCF in brief in the sequel), in terms of the ratio between
the hoop stress at the cavity surface and the far-field tension pres-
sure, has been known to be 1.5 for the spherical case and 2.0 for the
cylindrical case, respectively. The same problem has also been
investigated in the past by non-classical theories. Eshel and
Rosenfeld (1970), for example, have employed Mindlin’s first-order
strain-gradient theory (Mindlin, 1964) to investigate the stress
concentration factor at the surface of a cylindrical hole under uni-
axial tension. Cook and Weitsman (1966) have studied the elastic
stress field due to a spherical inclusion or cavity in an infinite do-
main subjected to spherically symmetric tension at infinity. Using
a strain-gradient theory, they demonstrated that the effect of stress
concentration around the surface is much more remarkable than
that observed by conventional theories. In a similar analysis using
Mindlin’s first-order strain-gradient theory, Bleustein (1966) found
the stress concentration factor is larger than the value of 3/2 as
predicted by classical elasticity. It was also found that a critical ra-
tio between the cavity radius and the internal length scale, a/‘, ex-
ists, at which the stress concentration factor reaches a maximum.
Note also that these early studies have also been limited to the
linear elastic regime of the deformation.

A revisit of this classical problem is made here for two reasons.
Firstly, these early studies often involve too many gradient-depen-
dent material parameters which prevents the effect of strain gradi-
ents on the stress concentration from being clearly demonstrated
and interpreted. In this paper we shall only use two gradient-
dependent parameters, c and ‘, for that purpose. In addition, we
found that in all these early studies, the stress concentration has
been computed in terms of the conventional hoop stress (rhh) only.
However, the stress concentration reflects the overall mechanical
response of the material at the cavity surface, and should be ex-
pressed by a comprehensive stress term that involves both conven-
tional and higher-order stresses. In this connection, it is convenient
to demonstrate the overall stress concentration effect using the
generalized stress r�hh as defined in Eq. (7).

The formulation and the numerical solution procedure outlined
in the previous sections have been employed to treat the problem
again. It is assumed that the boundary at infinity is subjected to an
isotropic tension pressure p0. To approximate an infinite domain, a
value of 100 for n = b/a has been adopted. The values of other mod-
el parameters used in the computation are: a = 1.0, k/l = 2.0,
tol = 10�10. ‘/a has been chosen to be in a range between 10�3 to
1.0, along with five values for c/l: 0.1, 0.5, 1.0, 2.0 and 5.0. Since
only purely elastic computation is needed, there is no need to spec-
ify the parameters related to the yield criterion. By using the bet-
ter-performed finite difference method, BVP6C, the stress
concentration factor at the surface of a cavity in unbounded mirco-
morphic media has been calculated for both the spherical and
cylindrical cases. The results are presented in Fig. 4 where both
rhh/p0 and r�hh=p0 are comparatively shown. Note that in the figure,
the horizontal axis is drawn in logarithmic scale.

It can be observed from Fig. 4 that the stress concentration fac-
tors vary markedly with the length scale ‘ and the gradient-depen-
dent stiffness parameter c. For the spherical cavity case, r�hh=p0 is
larger than the conventional value 1.5 in all cases. Generally, a
small value of ‘/a with a bigger c/l will lead to an observable dif-
ference between the predictions by the conventional theory and
the micromorphic theory. However,when both c/l and ‘/a become
small, the gradient effect diminishes quickly and the predicted
gradient-dependent curves approach the conventional horizontal



Fig. 4. Variation of the stress concentration factors (SCFs) in terms of normalized hoop stress (rhh/p0) and generalized hoop stress ðr�hh=p0Þ with c/l and a/‘ at a cavity in an
infinite field subject to isotropic tension. (a) Spherical case; (b) cylindrical case. Other parameters used: a = 1.0, k/l = 2.0, tol = 10�10. n = b/a = 100 has been used to
approximate the unbounded medium.

Fig. 5. Variation of normalized initial yield pressure (pci/p0) with c/l and a/‘ for an internally pressured cavity. (a) Spherical case (conventional theory: pci/p0 = 2.994 shown as
the horizontal dash-dotted line); (b) cylindrical case (conventional theory: pci/p0 = 2.477 shown as the horizontal dash-dotted line).
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dotted line asymptotically. In the current parameter selection, it is
also observed that the stress concentration factor in terms of rhh/p0

will not alway be greater than 1.5. Its variation with c/l and ‘/a
exhibits an interesting sinusoid-like trend with part of the curve
below the horizontal dotted line of the classic theory. It is notewor-
thy that some past studies, i.e., Bleustein (1966), have claimed that
the gradient-dependent SCF using rhh/p0 is always greater than the
classic one. The validity of this conclusion for a more general case,
however, is questionable. As is shown here, the strain gradients
might not necessarily always cause a stronger response. This is
more evident in the cylindrical cavity case as shown in Fig. 4(b).
In this figure, the horizontal broken line denotes results for the
classic case where SCF = 2.0. As is shown, when ‘/a is small (say
smaller than 0.1), all gradient-dependent SCFs are greater than
2.0 and asymptotically approach the classical value when ‘/a be-
comes vanishingly small. When ‘/a becomes large, i.e., greater than
0.4 in the case of c/l = 5.0, both r�hh=p0 and rhh/p0 demonstrate a
smaller value than 2.0. The difference between the gradient case
and the classic one can be as large as 25%.

Meanwhile, for the spherical cavity case, Bleustein (1966) men-
tioned that there is a critical ratio between a and ‘, at which the
SCF attains a maximum. We would, however, draw a different con-
clusion after an inspection of Fig. 4(a), from which we can see that
the SCF could be even bigger with a steady decreasing in value of
a/‘ less than 1. There is only a local maximum for SCF existing
when a/‘ is between 1 and 20. However, for the cylindrical case,
it is possible to have a critical ratio of a/‘ for SCF to attain a global
maximum, which is observable from Fig. 4(b).

4.2. Expansion of an internally pressured hollow sphere

The cavity expansion of an internally pressured hollow cylin-
der/sphere has also been investigated using the cavity expansion
theory outlined in the preceding sections.



Fig. 6. Variation of normalized critical pressure at fully plastic yielding (pcf/p0) with c/l and a/‘ for an internally pressured cavity. (a) Spherical case (conventional theory pcf/
p0 = 13.477 shown as the horizontal dash-dotted line); (b) cylindrical case (conventional theory: pcf/p0 = 7.238 shown as the horizontal dash-dotted line).

Fig. 7. Distribution of normalized circumferential stresses along the shell wall of an internally pressured spherical cavity at various plastic radii (q/a) for frictional-cohesive
materials with different frictional angle. Conventional theory: rhh/l (curves in red and in green); gradient theory: r�hh=l (curves in black and in blue). (a) / = 0; (b) / = 15�;
(c)/ = 30�; (d)/ = 45�. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2.1. Initial yielding and fully plastic yielding
The plastic yielding of an internally pressured tube/shell has

also been investigated. Figs. 5 and 6 display the variation of nor-
malized initial yield pressure and the critical pressure at full plastic
state, respectively, of an internally pressured tube/shell with dif-
ferent c and ‘. For both figures, the following parameters have been
used: a = 1.0, k/l = 2.0, / = 0, tol = 10�10, n = b/a = 8.0, m = 1000,
and a value of 200 for Nq is adopted to ensure the convergence
for calculation of dy4/dr at the elastic plastic boundary r = q. As is
shown in Fig. 5, for both the cylindrical and spherical cases, with
the increase of ‘ from 0 to a, the curve of pci first attains a minimum
slightly smaller than the conventional value (broken line) before
rising above and becomes much higher at ‘ = a. The trend is partic-
ularly obvious in case of large c. For the spherical cavity case, it is
noticed that for c/l = 0.1 and ‘ = a, the initial yield pressure is
around 6% higher than the conventional value. If large c is used,
i.e. c/l = 5.0, the increase in pci, as compared to the conventional
value, can reach as much as 46%. Similar observations can be found
for the cylindrical case. While it is obvious that the increase in
microstructural length and gradient-dependent stiffness in general
Fig. 8. Distribution of normalized radial stresses along the shell wall of an internally pre
with different frictional angle. Conventional theory: rrr/l (curves in red and in green); g
(d) / = 45�. (For interpretation of the references to colour in this figure legend, the read
helps us to achieve a higher initial yield pressure, it is different for
the critical pressure at full plastic stage. As is seen from Fig. 6, cer-
tain selections of ‘ and c may help pcf achieve a small peak above
the (broken) line of conventional value (the increase is not signif-
icant and is normally less than 3%). Further increase of c, however,
could result in a significant decrease in pcf. In the case of c/l = 5.0
and ‘ = a, the decrease in pcf as compared to the conventional value
is around 27% for the spherical case and 11.6%. Note that these
observations are consistent with our findings in a previous paper
(Zhao et al., 2007a).

4.2.2. Stress distribution during plastic expansion and the effect of
friction

It is also interesting to see the stress distribution during the
plastic expansion of the cavity. To avoid excessive repeat, we only
present the results for the spherical cavity case as the cylindrical
case is quite similar. The following parameters have been used in
the calculation: a = 1.0, n = b/a = 5, k/l = 2.5, ‘/a = 0.2, c/l = 5.0,
p0/l = 0.05, j/p0 = 3.0, tol = 10�10, Nq = 200. Four different frictional
angles, / = 0, 15�, 30� and 45�, have been used to investigate the
ssured spherical cavity at various plastic radii (q/a) for frictional-cohesive materials
radient theory: r�rr=l (curves in black and in blue). (a) / = 0; (b) / = 15�; (c) / = 30�;
er is referred to the web version of this article.)
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effect of friction. Figs. 7 and 8 depict the distribution of generalized
major and minor principal stresses in the hollow sphere during the
expansion of the cavity at different values of plastic radius q.

From Fig. 7 one can see that the frictional angle has an apprecia-
ble influence on the stress distribution in the sphere wall. It ap-
pears that when the frictional angle / is at 15� and 30�, the
gradient-dependent generalized stress r�hh is slightly more inhomo-
geneous than the rest cases, which is a consistent trend with the
conventional stress. Compared to the conventional theory, it is ob-
served that in the plastic regime, the gradient-dependent general-
ized stress r�hh is always above the conventional stress. The trend
continues in the elastic regime only in a very small region close
to the plastic radius. The gradient-dependent stress becomes smal-
ler than the conventional one at locations close to the external sur-
face of the hollow sphere. We also see that the gradient theory can
achieve a higher peak stress than the conventional theory at the
boundary of elastic and plastic regimes. This peak value will in-
crease steadily as the plastic radius moves towards the exterior
sphere wall. As for the minor generalized stress r�rr , we observe
from Fig. 8 that the increase in frictional angle generally makes
the radial stresses more compressive. The gradient-dependent
stress curves, in all cases, lie above the conventional ones. Appre-
ciable difference between the predictions by the two theories can
Fig. 9. Variation of the pressure-expansion response of the hollow sphere (a) with frictio
be observed at the cavity surface. However, it diminishes at the
external sphere surface.

4.2.3. Pressure-expansion response
The pressure-expansion curve is important to many engineer-

ing applications, such as indentation tests. For the spherical cavity
expansion case, the pressure-expansion curves were obtained in
terms of cavity pressure and the displacement at the external
sphere wall, as shown in Fig. 9. The same set of parameters as in
Section 4.2.2 have been used. Fig. 9(a) shows the pressure-expan-
sion curve for both gradient theory and conventional theory at dif-
ferent frictional angles. The increase in frictional angle leads
generally to a stronger expansion response, and the gradient-
dependent response is largely stronger than that of the conven-
tional theory, except when the plastic radius is approaching the
external sphere wall in the case of large frictional angles. We have
also investigated the effect of the internal length scale on the
expansion response. Fig. 9(b) presents the results for the case of
/ = 30�, from which appreciable size effect has been observed.
The use of larger values of internal length scale (relative to the cav-
ity radius) generally produces a stronger pressure-expansion
curve. However, the ultimate pressures at the fully plastic yielding
stage appear to be roughly the same for all cases of ‘. In addition,
nal angle /; (b) with the length scale ‘; and (c) with the wall thickness ratio n = b/a.



J. Zhao / International Journal of Solids and Structures 48 (2011) 1370–1381 1381
the effect of the thickness ratio of the cavity wall on the pressure
expansion response is significant, as is shown in Fig. 9(c). For the
chosen case / = 30� and ‘/a = 0.2, five values of thickness ratio as
shown in the figure have been used for the investigation. The thick-
er hollow spheres are found to show stronger response than the
thin ones. Meanwhile, the gradient-dependent theory in general
predicts stronger responses than the conventional theory for most
part of the plastic expansion. The trend is reversed when the
sphere enters the fully plastic stage.
5. Conclusion

A unified theory for both cylindrical and spherical cavity expan-
sion problems has been reformulated to account for a special class
of cohesive-frictional micromorphic media. By employing a strain-
gradient theory, the governing equation and boundary conditions
for one-dimensional cylindrical/spherical cavity expansion prob-
lem have been expressed in terms of generalized principal stresses.
The Mohr–Coulomb criterion has been extended to address the
cohesive-frictional behavior in the micromorphic media. In search
for the elastic–plastic solution to the cavity expansion problem, ro-
bust numerical methods have been developed to solve the result-
ing two-point boundary value problem involving higher-order
ODE which is slightly ill-conditioned in case of special parameter
combination. The consistency and stability of these numerical
methods are investigated and compared, and the one showing best
performance has been chosen for the calculations. Using the theory
and numerical procedure developed, the stress concentration at a
cavity in an unbounded micromorphic medium subject to isotropic
tension has been investigated. It is emphasized that, in quantifying
the stress concentration, the generalized stress should serve as a
more comprehensive measure rather than the conventional hoop
stress alone. Meanwhile, the present study has found that the
stress concentration is not necessarily always stronger than that
predicted by the conventional theory, which is different from
observations in some previous studies. It has also been demon-
strated that, if the micromorphic properties of the material are
considered, the cavity expansion of a hollow sphere/cylinder
shows appreciable size effect. The frictional property also affects
the elastic–plastic behavior considerably during the expansion of
a cavity in a micromorphic material.

While the study has been motivated by the phenomenon of
indentation size effect, emphasis in this paper has been placed
on the aspects of theoretical formulation and numerical algo-
rithms. Applications of the theory to the prediction ISE for various
materials and other problems will be pursued in a future study.
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