Computers and Geotechnics 47 (2013) 1-15

journal homepage: www.elsevier.com/locate/compgeo

Contents lists available at SciVerse ScienceDirect

Computers and Geotechnics

The signature of shear-induced anisotropy in granular media

Ning Guo, Jidong Zhao™*

Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong

ARTICLE INFO

ABSTRACT

Article history:

Received 7 March 2012

Received in revised form 3 July 2012
Accepted 4 July 2012

Keywords:

Granular material
Anisotropy

Phase transformation
Liquefaction

Critical state

Fabric evolution

This paper presents a micro-mechanical study on the characteristics of shear-induced anisotropy in gran-
ular media. Based on three-dimensional Discrete Element Method (DEM) simulations, the distinct fea-
tures associated with the evolution of internal granular structure and different anisotropy sources
during drained/undrained shearing of granular samples are carefully examined. The study finds that static
liquefaction occurs when the geometrical anisotropy in a sample dominates the mechanical anisotropy in
the overall shear strength, and the weak force network features an exceptionally high proportion of slid-
ing contacts and develops certain degree of anisotropy. Phase transformation corresponds to a transitional,
unstable state associated with a dramatic change in both coordination number and the proportion of slid-
ing contacts in all contacts. The critical state in a granular material is always associated with a highly
anisotropic fabric structure wherein both the critical void ratio and critical fabric anisotropy are uniquely
related to the mean effective stress. The relations provide a more comprehensive definition for the critical
state in granular media with proper reference to the critical fabric anisotropy.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Granular media are important to our everyday life. Granular
sand plays a key role in many infrastructures pertaining to the
quality and safety of our daily life, including water dams, residen-
tial buildings, bridges, motorways, engineered slopes, embank-
ments and foundations. The behaviour of granular media,
however, remains far from well understood for researchers in
many disciplines. Of particular interest in recent granular mechan-
ics research is the anisotropic behaviour of a granular medium
when subjected to shearing. Anisotropy reflects not only the soil
fabric composition in connection to the spatial arrangement of soil
particles, voids and interparticle contacts but also the changes of
these microstructures induced by applied loads [35,8,32]. Both
experimental and theoretical studies have suggested that fabric
anisotropy and its evolution during granular soil shearing contrib-
ute to key aspects of the macroscopic sand responses, including
dilatancy, non-coaxiality and shear strength [44,20,11]. One of
the focused areas of current granular material research has been
identifying the role of fabric anisotropy and including its influence
in constitutive modelling [29,25,16,26,14,15]. As Radjai et al. [41]
and Radjai [40] indicate, a complex macroscopic behaviour like
anisotropy involves nontrivial details of the underlying micro-
structures. Without effective tools to identify the microstructural
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origin of fabric anisotropy and its evolution, it is difficult for
phenomenological models to provide faithful reflections of and
reasonable explanations for the microstructural changes associ-
ated with various important macroscopic phenomena.

Micromechanics-based approaches, particularly those based on
the Discrete Element Method (DEM), have proven useful
[44,50,42,24,48,52,2,51,27,28]. In this paper, we employ a three-
dimensional DEM to explore the characteristics of shear-induced
anisotropy and its evolution during typical granular media shear-
ing processes. We focus on three characteristic states that are
important in soil mechanics: liquefaction, phase transformation
and the critical state. They represent typical deformation stages
in a granular material and have both theoretical significance and
practical importance. Interestingly, all three states correspond to
zero-dilatancy in granular materials, but they point to entirely dif-
ferent underlying mechanisms which are considered closely re-
lated to anisotropy [26,58]. This paper is devoted to exploring
important properties of anisotropy identifiable for each character-
istic state to provide useful references for future constitutive mod-
eling on granular soils.

The paper is organised as follows. Section 2 describes the meth-
odology and quantity definitions used in later sections. Section 3
presents the main results on macroscopic responses, the evolution
of internal structures and anisotropy, and observations and discus-
sion on the chosen three characteristic states. The last section pro-
vides the major conclusions of the study and some further
discussion.
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2. Approach and formulation

A three-dimensional Discrete Element Method code, ESyS-Parti-
cle, has been modified for the present study [1,54,19]. A linear
force-displacement contact law for spherical particles is employed
where two elastic moduli must be specified to describe the contact
behaviour between contacted particles, normal stiffness k, and
tangential stiffness k;. Goldenberg and Goldhirsch [18] have sug-
gested that the value of k/k, for realistic granular materials should
be around 2/3 < ks/k, < 1, which correlates well with the Cattaneo-
Mindlin model [23] for elastic sphere contact. We assume k,[r = ks/
r =100 MPa, where r is the particle radius. The interparticle sliding
is assumed to be governed by Coulomb’s friction law, which adopts
a sliding frictional coefficient i = 0.5. Following a common particle
rotation assumption (e.g., Itasca PFC3D), each particle in a granular
system is considered freely rotatable: a particle rolling is a direct
consequence of inter-particle friction, and the angular velocity of
the particle is updated by the moments calculated from the fric-
tional forces applied to the particle surface. Considering non-
spherical particles and/or interparticle rolling resistance may help
produce more realistic granular particle behaviours, but will not be
pursued here to avoid excessive complication.

2.1. Sample packing and solution procedures

A cubic packing of polydisperse spherical particles is consid-
ered. Inside a cubic box confined by six rigid frictionless walls,
31,769 total particles with radii ranging from 0.2 mm to 0.6 mm
are randomly generated. In real, natural granular materials like
sand, a log-normal distribution may be more realistic to describe
the size distribution. Using overly fine particles mixed with coarse
ones in a DEM simulation, however, could potentially cause prob-
lems, such as segregation during loading or numerical difficulties.
A power law is thus employed as a good approximation of the
log-normal distribution by truncating the range of excessively
small particles. Fig. 1 shows the actual distribution with an expo-
nent D = 3.63 in the power law, where D is called the fractal dimen-
sion [30].

After the desired number of particles is generated in the cubic
box, the packing is then isotropically consolidated, and the consol-
idation is accomplished in two stages. In the first stage, the confin-
ing pressure is gradually increased to 90% of the desired stress
level. To generate packings with different initial void ratios, differ-
ent frictional coefficients y are employed. Upon finishing the first
stage, u is fixed at 0.5. The consolidation process is then continued
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Fig. 1. The size distribution of particles used for cubic packing. N; is the number of
particles with a radius of r;, and N, denotes the total number of particles with a
maximum radius ryey in the packing.

Table 1
Sample packings to be sheared under drained and undrained conditions.

Series Sample [ Description

Series | UL 0.644 Undrained shear on loose sample
UM 0.634 Undrained shear on medium dense sample
uD 0.612 Undrained shear on dense sample

Series 11 DL 0.645 Drained shear on loose sample
DM 0.621 Drained shear on medium dense sample
DD 0.539 Drained shear on dense sample

by increasing the confining pressure to the final value,
P ~ 190 kPa. After the two-staged isotropic consolidation, the pac-
kings obtained with different void ratios are ready for shear.

The shearing on each sample is performed in two different load-
ing conditions commonly encountered in soil mechanics: un-
drained and drained. As our DEM only involves dry particles, the
undrained condition is only simulated approximately, e.g., by
imposing a constant volume constraint on the sheared sample
(see also [56,6]). During shearing, the horizontal strain is continu-
ously adjusted with the vertical compression to maintain a con-
stant value for the total assembly volume. For the drained shear
tests, conversely, the horizontal pressure is kept constant during
the entire compression. Table 1 summarises relevant information
about six packings used for 2 shear test series. Series I involves un-
drained tests on three packings, UL, UM and UD, which differ from
one another in initial void ratio and typically can be used to repre-
sent sand in very loose, medium-dense and dense states, respec-
tively. Likewise, three packings are prepared for drained tests in
series II. In Table 1, eq is the initial void ratio of a sample before
shear.

2.2. Macroscopic variable definitions

We first define several quantities, including stress, strain and
anisotropy, based on a discrete description of DEM.

2.2.1. Stress tensor and strain tensor
We follow the stress tensor definition proposed by Christoffer-
sen et al. [10]:

1
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where V is the total volume of the assembly, N is the total number
of contacts, fC is the contact force at a contact and d¢ is the branch
vector joining the centres of two contacting particles. Using Eq. (1),
we can derive the mean effective and deviatoric stresses commonly
used in soil mechanics:
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where o7; is the deviatoric part of the stress tensor oy

A strain tensor should ideally also be derived from the available
microscopic information [5]. In this study, however, the strain is
only used as a rough indicator of the shear deformation level for
a sample and thus does not require an accurate definition here. A
specific definition of strain tensor for a cubic sample under triaxial
compression is assumed, according to the displacement gradient at
the boundary walls, e.g., €; = du;/0x; (the expression is automati-
cally symmetric under triaxial conditions). The axial strain €; and
volumetric strain €, at a certain deformation stage, which are rel-
evant quantities for our study, can be defined thus:

elzlnﬂ, 6,,:61—1—624-63:11]%, (3)
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where Hy and Vj are, respectively, the initial height and volume of
the assembly before shearing and H and V are their current values
at the instant of calculation. Compression is taken as positive in this
paper.

2.2.2. Geometrical and mechanical anisotropy

In quantifying anisotropy in a granular assembly, two anisot-
ropy sources are distinguished: geometrical anisotropy and mechan-
ical anisotropy [8)]. Geometrical anisotropy is defined as the local
orientation of a contact plane that gives rise to the global aniso-
tropic phenomenon. Mechanical anisotropy is mainly caused by
external forces and depends on the induced contact forces in rela-
tion to contact plane orientations. For an assembly of polydisperse
spherical particles, geometrical anisotropy can be expressed using
the distribution of contact normals and branch vectors. The defini-
tion of fabric tensor proposed by Satake [46] and Oda [36] is used
here to quantify the contact normal orientation.

1
¢y = /@ E(©)nnyd0 = -3 nm;, )

€ ceN¢

where i is the unit vector along the normal direction of the contact
plane, ® characterises the orientation of 7i relative to the global
coordination system and E(®) is the distribution probability func-
tion. In most cases, it suffices to employ a second-order Fourier
expansion of E(®) to characterise the contact normals [39,47]:

1
E(0) = 1 [1 n agjninj] , (5)
where the second-order anisotropy tensor a; is deviatoric and sym-
metric and characterises the fabric anisotropy. After substituting Eq.
(5) into Eq. (4) and performing the integration, one has

a; =15/2 ¢}, (6)

where ¢} is the deviatoric part of ¢;.

Branch vectors may also constitute an important part of geomet-
rical anisotropy, especially when the granular assembly comprises
polydisperse or non-spherical particles. In essence, the branch vec-
tor distribution can be expressed similarly to the contact normals
in Egs. (4) and (5) [37]

dj = 41—n /@ d(0)nn,de = NLCCEM% (7a)
d(©) =d° [1 + agninj] : (7b)
where

ag- = 12—5 g—g

is the geometrical anisotropy relevant to the branch vectors. ag- has
the same property as aj;. d° = d; is the average branch vector length
calculated over different ® and may differ from d, which is aver-
aged over all contacts. In the polydisperse spherical assemblies con-
sidered in this paper, branch vectors have only normal components.

The mechanical anisotropy can be split into normal force
anisotropy (caused by normal contact forces) and tangential force
anisotropy (induced by tangential contact forces), which are
respectively defined as follows [47]:
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Similar to the previous cases, fO = y? is the average normal force
calculated over different ® and may differ from the average normal
force f over all contacts.

The various definitions outlined above show that each of the
four anisotropy tensors, ag, ag, aj and aj, can be conveniently used
to characterise the anisotropic behaviour originating from a dis-
tinct source. Because all four tensors are deviatoric in nature, it is
convenient to use their deviatoric invariants to quantify the degree
of anisotropy in each case.

. 3
a. = sign(S,)\ /5 gjaj, (10

where the sub/super-script = stands for c, d, n or t, corresponding to
one of the four cases of anisotropy mentioned above, respectively. S,
is a normalised quantity of the double contraction of a; and o}; de-
fined below:
* ol
5 _ a;0; (11)
V azla;l V O-;nno-i/*nn

The sign (S;) in Eq. (10) signifies the relative orientation of the prin-
cipal direction of a; with respect to that of the stress tensor. A po-
sitive sign of a, thus indicates that the major principal direction of
aj; is closer (e.g., within arccos(v/3/3) for an axisymmetric case, as
shown in Fig. 2), to the major principal direction of the stress tensor,

Fig. 2. Illustration of sign (S,) with the relative stress and fabric tensor orientations.
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Fig. 3. Mechanical responses of samples subjected to undrained shear in Test Series
I. PTS: phase transformation state; LS: liquefaction state; CS: critical state.

and a negative sign for a, otherwise. S, itself can be used to indicate
the coaxiality between the stress tensor and a specific anisotropic
tensor, e.g., S,=1 denotes the coaxiality of the two. Ouadfel and
Rothenburg [39] have employed a similar definition.

3. Results and analyses

In this section, we (a) examine the macroscopic stress-strain
and volumetric responses of different packings under shearing;
(b) visualise and analyse the change of internal structures during

350 T T T T

300

250

0 . . . "
0 10 20 30 40 50

e1 (%)
(a) Deviatoric stress vs. axial strain

—0.07 T T T T

—0.06 |

—0.05 |

—0.04 |

—0.03 |
=
]
—0.02 |

—0.01 |

0.00 =

0.01 | i

0.02 - - - -
0 10 20 30 40 50

€1 (%/)
(b) Volumetric strain vs. axial strain

Fig. 4. Material responses for samples under drained shear in Series II.

different deformation stages via a contact force network; (c) quan-
tify the anisotropy and its evolution during shearing; and (d) inves-
tigate the signatures associated with the three characteristic states.

3.1. Macroscopic responses for different packings under shearing

To explore anisotropic behaviour at a critical state, all samples
are sheared to a relatively large deformation (e.g., around 50% of
axial strain) unless prevented by liquefaction. At 50% of axial
strain, we find that all characteristic critical state conditions de-
fined in classic critical state theory are approximately satisfied,
i.e,, a sample is typically observed to experience continuous flow
with constant volume (or constant pore pressure) with a stagnated
stress ratio. No shear banding localisation has been observed in our
simulations, most likely because the study uses rigid boundary
walls. Fig. 3 shows the mechanical responses of different samples
for Series I, and Fig. 4 shows those for Series II. In the undrained
case, the total confining pressure a3 is assumed to be constant such
that the pseudo excess pore water pressure Au for a dry packing
can be calculated by the difference between g3 and the mean effec-
tive stress p’ defined in Eq. (2). Au is employed here to help identify
the various characteristic states for the undrained tests.

Fig. 3 shows the simulated results for the three samples in Ser-
ies I. Under undrained shearing, a dense sample (UD) appears to be
predominantly dilative after an initial instantaneous contraction,
which is reflected in the development of pseudo excess pore pres-
sure presented in Fig. 3c. For the medium dense sample (UM), the
initial contractive trend is so intense that a significant amount of
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(a) At Point A (f = 0.09N)

(b) At Point B (f = 0.05N)

(c) At Point C (f = 0.08N)

1.5 force (N)

(d) At Point D (f = 0.15N)

Fig. 5. Evolution of force chain network and typical internal structure during UM shearing. (a) At Point A (Fig. 3b) (€, = 0.0%); (b) At Point B (PTS) (¢, = 7.25%); (c) At Point C

(€1 =16.75%); (d) At the critical state Point D (€; = 43.75%).

excess pore pressure is generated, which considerably reduces the
effective stress and shear strength. It later manages to re-mobilise
its friction to pull the sample response back to dilation. Conse-
quently, an obvious turning point is observed in the loading path
in Fig. 3a, which marks the ‘Phase Transformation State’ (PTS) for
the sample. Conversely, the loose sample (UL) demonstrates a stea-
dy contraction response such that the excess pore pressure contin-
ues to build up until, at an axial strain of 7%, it totally cancels out
the total stress and causes a vanishingly small effective stress. At
this point, the static liquefaction state is reached. These observa-
tions compare qualitatively favourably with typical experimental
results, including those reported by Yoshimine et al. [57] and sum-
marised by Mitchell and Soga [32].

Fig. 4 shows the simulated results for Series II. Similar trends
are observed in which dense samples tend to be more dilative
while loose samples are more contractive. No liquefaction occurs
for the loose case due to the drainage conditions. The medium
dense sample also displays an appreciable initial contraction fol-
lowed by dilation. This series of tests has also captured the transi-
tion point of volumetric change, or PTS, and the critical state at
around 50% of axial strain.

Summary 1. The chosen packings and tests in Series I and II
reproduce the representative soil responses observed in the

laboratory. The characteristics states we wish to investigate are
identifiable in these tests.

3.2. Internal structure evolution at different loading stages

It is interesting to visualise the change in microstructural heter-
ogeneity of a granular sample during the shearing process. The
observation may help us analyse the physical mechanisms at dif-
ferent deformation stages for a material. A granular system is
known to transmit forces through an interparticle contact force
network [31]. The network reflects both the interparticle fabric
connection and how the fabric transmits the external load within
the granular system. Radjai et al. [42] and others have identified
an interesting bimodal character of force transmission in the con-
tact force network, which is indeed an important characteristic of a
network under deviatoric shear. The contact force network is ideal
for us to study the internal structure characteristics. Consider the
UM case as an example. Fig. 5 shows the contact force network
changes at four strain levels of UM, A, B, C and D, as marked in
Fig. 3b. Each colourful column in the figures connects the centroids
of two contacted particles, and its thickness (or colour) denotes the
magnitude of the contact normal force. The following features are
observed from the networks at the four states.
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Point A: As shown in Fig. 5a, though the sample has not received
any shearing at Point A, the distinction between the strong (thick
green! columns) and weak (thin blue lines) force networks is ob-
servable. Because all force chains are randomly oriented, however,
the whole network is isotropic to an overall view. The average con-
tact force f in the network is around 0.09 N.

Point B: With the increase in shear, the initially randomly ori-
ented strong force chains gradually change their preferential direc-
tion to align to the vertical direction. Fig. 5b shows the network
developed at Point B when a 7.25% axial strain has been developed.
The point corresponds to the phase transformation state for UM.
The weak force network at Point B remains largely isotropic, while
the strong network finds a preferred vertical (shearing direction)
orientation. Compared to Point A, the entire network at Point B ap-
pears to be weakened considerably, with an average contact force
of f = 0.05 N. The steady contraction of the relative loose UM sam-
ple between Points A and B may contribute to the drop of its over-
all strength.

Point C: With a higher strain level (16.75% axial strain) at Point
C, the force network, as in Fig. 5c, demonstrates a much clearer
anisotropic nature. While the weak force network stays roughly
isotropic, the vertically oriented strong force chains become much
thicker than those in Fig. 5b, and the average contact force also in-
creases to f = 0.08 N. The greatest contact force at Point C is twice
that at Point B.

Point D: The UM packing reaches the critical state at this point.
The entire network is dominated by the thick, vertically penetrat-
ing strong force chains, as in Fig. 5d. The greatest contact force at
Point D is approximately two times that at Point C. The average
contact force at D is around 0.15 N, the highest of all four states.
The weak force network remains isotropic at the critical state.

Summary 2. The internal structure in a granular system evolves
continuously in its contact force network as shear deformation
develops. A weak network always shows an isotropic feature at
all strain levels, while the strong contact force network dominates
the nature of the whole network. A strongly anisotropic strong net-
work always leads to an anisotropic internal structure for the en-
tire sample. This observation confirms the bimodal theory by
Radjai et al. [42]. The critical state in granular sand indicates a
clearly anisotropic fabric structure.

Remark 1. Contact force chains, particularly strong ones, depict an
appreciable spatial correlation, as observed in Fig. 5. Experiments
on dense photoelastic disk assembly by Majmudar and Behringer
[31] indicate a persisting spatial correlation in the force chain
direction of approximately 15 particle diameters. The weak force
network has only a couple of particle diameters of correlation.
Their observation was based on monosized granular systems. How
the grain size distribution, initial density and/or loading paths
affect the spatial correlation are interesting topics for future study.

3.3. Correlation between anisotropy and shear strength

The observations on UM in Figs. 5 and 3b indicate a propor-
tional relation between the anisotropy and shear strength in one
sample. UM at Point D has a much stronger anisotropic network
and higher shear strength. Rothenburg et al. [43] and Rothenburg
and Bathurst [44] have established an analytical correlation be-
tween the anisotropy and shear strength, the stress—force—fabric
relationship, for 2D cases. Chantawarungal [9] has further general-
ised the relationship for 3D cases in the following form:

! For interpretation of color in Figs. 1-15, the reader is referred to the web version
of this article.
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where §;; is the Kronecker delta. Eq. (12) is based on the static force
equilibrium of the entire granular body. In his original equation,
Chantawarungal [9] has neglected the contribution of the branch
vector. As mentioned above, in an assembly containing highly poly-
disperse particles or particles with nonspherical shapes, the contri-
bution of the branch vector can no long be neglected. Considering
ag4, Eq. (12) may be further modified to the following stress-force-
fabric relationship using g/p’ and the invariants of anisotropy ten-
sors (neglecting the cross products between two anisotropy
tensors):

g=%<ac+ad+an+%at> (13)
For a 2D granular system, Voivret et al. [53] have given an expres-
sion q/p’ = (ac + aq + a, + a;)/2. As Ouadfel and Rothenburg [39] have
noted, not all anisotropy sources contribute positively to the shear
strength. Considering the non-spherical particle shape leads a4 to
negatively contribute to the overall shear strength.

The DEM simulation results in Series I and II have been em-
ployed to validate the relationship in Eq. (13), and Fig. 6 presents
the correlations. The analytical relationship in Eq. (13) correlates
well with the DEM simulations for all tests. Different anisotropy

q/p, a

0.0
0 10 20 30 40 50

g1 (%)
(a) Undrained condition (Series I)

q/p, a

0.0
0 10 20 30 40 50

e (%)
(b) Drained condition (Series II)
Fig. 6. Verification of the stress-force-fabric relationship in Eq. (13) (q/p’) against

the DEM simulation of anisotropy (a = 2 (ac + aq + a, +3a;)) for tests in Series I and
1L
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Fig. 7. Contributing weights of different anisotropy sources to the shear strength of samples in Series I and II (including the coefficients in Eq. (13) for each term).

sources may contribute different roles to share the applied shear. It
is thus interesting to examine the fraction of the contributions of
each anisotropy to the overall shear strength. Fig. 7 presents the
relative weights of a., a,, a; as well as ay for different tests. Except
for UL, the normal contact force anisotropy a,, dominates the over-
all shear strength by contributing more than 50%, while the contact
normal anisotropy a. plays an important role and contributes
approximately 30%. The tangential force anisotropy a, contributes
approximately 18%. In our tests, ay contributes a negligibly small
fraction (only around 2%), obviously due to our use of sphere
particles.

Summary 3. The analytical correlation between anisotropy and
the shear strength of a granular soil is verified using DEM simula-
tions for both drained and undrained tests. A granular material
must develop a certain degree of anisotropy to sustain shearing.
Mechanical anisotropy (a, plus a;) plays a dominant role in provid-
ing shear resistance in medium to dense samples.

3.4. Quantifying anisotropy evolution

Using DEM, it is convenient to quantify the important charac-
teristics of anisotropy and its evolution during the loading process.
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We present here the evolution of different anisotropy sources, the
coordination number and the proportion of contacts of various
natures.

34.1. a, a, and a;

Three anisotropy invariants, a., a, and a,, are monitored; ay is
neglected here due to its least important role in the sphere particle
case. Figs. 8-10 present the results, comparing the contributions
from the weak force network (denoted I'yeq), the strong network
(denoted I'song) and the entire network (denoted I'iq). The

figures provide the following observations for all samples except
UL (which is individually discussed in the liquefaction section).
a.: Fig. 8 presents the following observations, (i) In the weak
force network I'year, ac remains negligibly small during the entire
loading course. It depicts a quick initial (negative) minimum, in-
creases to a very small value and then remains constant. This indi-
cates that the fabric contacts in the weak force network are
statistically isotropic. However, the instantaneous contraction of
a sample upon shearing does cause a small degree of anisotropy
in the weak network to align perpendicular to the deviatoric stress
direction, which implies that a. is negative. (ii) In the strong force
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Fig. 9. Evolution of a, (the insets compare the evolution of a, with a. in I',q at early stage of deformation.)

network, a. generally increases with strain and reaches a steady
critical state value that is at least 7-10 times larger than that in
I' year- A mild peak is found in UM, UD and DM, while the peak is
rather obvious in DD. (iii) In the entire network, a. follows exactly
the same trend as that in I'sqong, With a smaller magnitude due to
averaging over all contacts. This again confirms the dominant role
played by the strong force network in producing anisotropy.

a,: The evolution of a, in Fig. 9 follows a trend largely similar to
a., though with observable differences. (i) a, in I'yeqe Stays at a
small positive value during the loading process, which implies that
it aligns more in the deviatoric direction. (ii) In I'stong, an is 3 to 4

times greater than that in I'y.q. It evolves to a peak and decreases
to the critical state. (iii) In the entire network, the total a, remains
dominated by the strong force subnetwork.? An obvious difference
between the evolutions of a,, and a. can be observed from the slope
of their curves at the initial deformation stage (see insets in Fig. 9). A
relatively large deformation (beyond 5% of axial strain) is required to
fully mobilise a., while a, can be mobilised immediately upon the

2 The total a, is not a simple weighted value of a, in Fstrong and I'yeqi. As such, its
value is greater than a, in either the strong or weak subnetwork, as in Fig. 9, unlike a..



10

0.16 T T T T T T

Cstrong
0.02 = Dyear |[J
0

Ctotal

0.00 . . . . .
0 1 2 3 4 5 6

-~

0

0.10 1
0.05 ]
0.00 ‘ ‘ ‘ ‘
0 10 20 R 30 40 5
&1 (%)
(c)UD
0.30 ‘ ‘ ‘ :

0.10 d
0.05 i
0.00 - - - -
0 10 20 30 40 5
e1 (%)
(e) DM

N. Guo, J. Zhao/Computers and Geotechnics 47 (2013) 1-15

0.05 1

0.00 ‘ ‘ ‘ ‘
0 10 50

0.20

0.15

Qat

0.05 1

Fig. 10. Evolution of a,.

imposed shearing and develops to a large value within 0.5% of axial
strain.

a,: As Fig. 10 shows, the tangential force anisotropy a; is much
smaller than a. and a,, even in the strong force subnetwork. Upon
shearing, the same instantaneous mobilisation is observed for a; as
for a,. The change is even more dramatic than in a,. It reaches a
peak at a very small strain level (e.g., 1.5%) and steadily decreases
with the shearing strain. While it exhibits the same trend in all
three networks, a; in I'sgong and @' are close to each other.
Greater fluctuations in the evolving a, curves are observed than

those for a,, and a.. They may reflect the microscopic ‘slip and stick’
mode for frictional contact in our DEM simulations [23].

3.4.2. Coordination number and average contact normal force

Fig. 11 shows the evolutions of the average contact normal force
f and coordination number Z = 2N,/N,, (N, is the particle number in
contact and N, is total contact number). Z in all cases but UL devel-
ops either a peak or valley at a small strain level and evolves to a
steady value. The critical state coordination numbers differ be-

tween different samples. f, however, neither shows an obvious
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Fig. 11. Evolution of average contact normal force and coordination number of samples in Series I and II.

trend nor correlates well with Z. Though not presented here, the
evolution of the average tangential contact force follows a similar
trend as f.

3.4.3. Proportions of weak contacts and sliding contacts

It is also interesting to examine the evolution of the proportion
of weak force and sliding contacts in the whole contact network for
all examples. Figs. 12 and 13 show the results. Again, except UL, all
samples follow a similar trend for both quantities. The weak con-
tacts comprise most of the contact network. Its proportion starts
from an initial 60% to reach a peak at 63.5-64% and decreases

slightly and stays around 63% at the critical state. In all examples
except UL, the sliding contact proportion quickly increases to
around 15% and stays there for the entire loading course (UM dis-
plays a mild peak before dropping to this value). Alonso-Marroquin
et al. [2] have analysed the anisotropic property of the sliding con-
tacts and associated it with soil plasticity.

Summary 4. (1) All three anisotropy sources evolve similarly to
shear strain. In each case, the strong force network dominates the
overall anisotropy evolution. a. in the weak network may depict an
initial small negative value upon shearing. Mobilising the mechan-
ical anisotropy a, and a, is much quicker than mobilising a.. (2) The
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Fig. 13. Proportion of sliding contacts in all contacts for samples in Series I and II

coordination number quickly reaches a local extremum before
evolving to a steady critical state value that is not unique. (3) Weak
force contacts contribute a dominant proportion to the entire con-
tact network. Sliding contacts comprise around 1/6 of all contacts
during shearing.

Remark 2. A fabric change in a material mainly accommodates the
irreversible deformation, which explains why fabric anisotropy a.
is not fully mobilised until a relatively large deformation is
developed. In continuum modelling, only plastic deformation
drives fabric anisotropy evolution, e.g., d. « f dasz. Upon shearing,
establishing fabric contacts quickly renders the fabric tensor
coaxial to the deviatoric stress direction (though the fabric
magnitude may still be small). Our DEM results for the S, defined
in Eq. (11) confirm this. S, evolves to unity soon after applying
shearing. In a general case (i.e., the presence of initial anisotropy),
the evolution law of this S, may have to be carefully considered, as
fabric evolution is path-dependent. Li and Dafalias [26] and Gao et al.
[15] provide some specific discussions on this topic.

3.5. Signature of anisotropy at characteristic states

The three characteristic states studied here have both theoreti-
cal significance and practical importance. Defining the critical state
has been the cornerstone of critical state soil mechanics. The phase
transformation and liquefaction states have been closely discussed
with regard to various engineering failures [22]. This section dis-
cusses the characteristics signifying the three important states.

3.5.1. Phase transformation

The phase transformation state (PTS) marks a granular soil
deformation changing from contractive behaviour to a dilative re-
sponse. Under drained conditions, the PTS corresponds to se? = 0
in the loading course [21], whereas it manifests itself as ép’ = 0 in
the effective stress path under undrained conditions. The PTS is
considered intrinsic [22]. To understand the micro-structural
mechanism underpinning PTS occurrences, the evolution of the
coordination number Z may offer helpful information. From
Fig. 11 in conjunction with Figs. 3 and 4, we found that the PTS al-
ways marks a local extremum (either a peak or valley, marked by
star symbols in Fig. 11) in the evolution of Z (see also [55]). Specif-
ically, the PTS corresponds to a valley under undrained condition
and a local peak under drained shear. The difference in the two
drainage conditions is due to the constraint on volumetric change
during the loading process. Though not particularly obvious, Fig. 13
also shows that the fraction of sliding contacts in all contacts ap-
proaches a peak when a PTS occurs.

3.5.2. Liquefaction

Liquefaction refers to the dramatic reduction of effective stress
and shear strength in sand due to the fast buildup of excessive pore
water pressure under undrained or partially drained loading condi-
tions. Liquefaction has long been attributed to many engineering
disasters, including debris flow and landslides. We first examine
the internal structure when liquefaction occurs. Fig. 14 presents
the contact force network in sample UL at the liquefaction state.
Compared to those in Fig. 5, the entire force network in UL at liq-
uefaction is extremely weak, with an average contact force of
f =0.003 N, less than 10% of that at the phase transformation state
for UM. The bimodal feature in this network also becomes less dis-
tinctive where no appreciable penetrating strong force chains are
identifiable (the thickness of all chains in Fig. 14 have been scaled
15 times greater than in Fig. 5 for better visualisation, indicated in
the different legends in these figures). The entire sample becomes
so loose that no sufficient contacts can be established to sustain
any shearing. Meanwhile, a certain proportion of contacts in the
weak force subnetwork has been mobilised to orient slightly more
in the vertical direction to share a small deviatoric force. This has
also been verified by the anisotropy evolution in UL shown in
Fig. 8a. Compared to other samples, a notable difference in UL is
that a. in I'yeqr, instead of staying approximately near zero, evolves
steadily from a negative value to a positive value and reaches
a.=0.39 at liquefaction. This indicates that in an extremely loose
assembly, the weak contacts must share the deviatoric load with

force (N)
0.03

Fig. 14. Force chain network at liquefaction for sample UL (f = 0.003N).
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the strong contacts due to insufficient contacts. Fig. 11a indicates
that both the coordination number and average contact force drop
drastically during shearing before liquefaction. The reduction in
contact number also greatly sacrifices the ability of the weak force
network to act as the lateral prop for the strong contact force
chains. The vertical strong force columns thus become fragile and
are prone to buckling, which causes catastrophic failure modes
such as liquefaction.

Fig. 7a also shows that the weight of a. in the overall shear
strength for UL increases rapidly and surpasses that of a,, at approx-
imately 6% axial strain when liquefaction is impending. This implies
that geometrical anisotropy at liquefaction dominates mechanical
anisotropy, which is a unique characteristic for liquefaction. Consid-
ering the normal dominance of mechanical anisotropy in all the
other cases, mechanical anisotropy losing dominance to geometrical
anisotropy can be considered the signature of anisotropy at liquefaction.

The proportion of sliding contacts could serve as another indi-
cator for liquefaction. Fig. 13 shows that the sliding contacts at
the liquefaction state comprise over 40% of the total contacts in
the assembly, while it comprises only approximately 15% in other
cases. These sliding contacts are exclusively mobilised in the weak
force network [42]. In conjunction with Fig. 12, the proportion of
sliding contacts in the weak force network is roughly 0.4/
0.62 = 65% in UL at liquefaction, while the proportion is only about
0.15/0.63 = 24% at the critical state in cases where liquefaction
does not occur. A high fraction of sliding contacts in the weak force
network (e.g., greater than 0.5) likely suggests a high risk of
liquefaction.

3.5.3. Critical state

Critical state refers to a continuous flow state with constant
mean effective stress, deviatoric stress and volume (void ratio) in
a granular soil. Our DEM simulations indicate that all samples ex-
cept UL reach a critical state at approximately 50% axial strain.
These can be observed in Figs. 3 and 4 as well as Fig. 6, where a crit-
ical stress ratio q/p’=0.72 is shown independent of the initial
states or loading paths. While critical state is evidently anisotropic,
as visualised in Fig. 5d, extra constraints pertaining to anisotropy
must be added to the conventional critical state conditions to com-
plete it. To gain further confidence, over 10 extra DEM tests have
been performed on packings with different confining pressures
and initial states and following drained/undrained loading paths.
The obtained results are summarised below.

3.5.3.1. Critical void ratio. With the added data points from the ex-
tra tests, Fig. 15a plots the correlation between the mean effective
stress and critical void ratio. A linear p’-dependent critical state
void ratio is observed>:

e. =0.66 — 0.008 (E—),
a

where p, is the atmospheric pressure. The linear relation is consis-
tent with experimental data on Erksak sand [7] and Toyoura sand
[22], as well as the DEM results [34] using bidisperse ellipsoidal
particles. Indeed, the observed linear relation obviously belongs to
a bigger class of sand with the following power law form:

ec:el"*/le<5*>sv (14)
a

3 The relation is linear in a normal e — p’ plot, but it is presented here in a semi-log
plot to compare it to the following critical fabric anisotropy and follow the custom in
soil mechanics in presenting the critical e-p’ relation in a semi-log plot.
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Fig. 15. Critical state lines of samples (p,=1atm). Numerical data points are
denoted by triangles and diamonds.

where e denotes the critical void ratio at p' =0 and A, and ¢ are
material constants. Been et al. [7] have adopted a specific form
e.=0.9325 — 0.019(p'[p,)°” to fit the critical void ratio with pres-
sure for Toyoura sand well.

3.5.3.2. Critical fabric anisotropy. A similar striking correlation be-
tween the critical fabric anisotropy a& and mean pressure has also
been found, as in Fig. 15b, where a linear relationship exists be-
tween a<" and Inp’

a’ =0.89-0.07Inp’

Analogous to the critical void ratio, the above expression can be fur-
ther extended to a more general form:

p/
al =ar —AqIn <—>, (15)
Da
where ar denotes the critical fabric anisotropy at p’ = p, and /, is a
material parameter (both a; and /4, may vary with loading path, e.g.,
showing a dependence on the Lode angle, which requires further
verification). Eq. (15) suggests that a linear dependence of the fabric
change rate a. on the pr./p’ should be included in a fabric evolution
law. p,s denotes a reference pressure used only for normalising,
which can adopt either the atmospheric pressure or some initial
confining pressure.

The unique relationship between the critical fabric anisotropy
and pressure provides an important critical state condition using
fabric anisotropy. Including this condition, the classic critical state
theory may offer a more complete description of critical state
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behaviour. The results obtained here also provide a practical way
for future constitutive granular media studies to consider fabric
anisotropy. Realistic constitutive models for sand should include
proper fabric anisotropy evolution laws that respect the relation
in Eq. (15) as a reference ultimate state.

Summary 5. The phase transformation state corresponds to a
local extremum in coordination number and a peak in the slid-
ing contact proportion in the entire network. Liquefaction repre-
sents a state in which geometrical anisotropy dominates
mechanical anisotropy with a high fraction of sliding contacts
in the weak force network. The critical state should be defined
using both the unique critical void ratio and unique critical fab-
ric anisotropy.

4. Conclusions and discussion

A micromechanical study has been presented to investigate the
signature features of anisotropy in granular material under shear.
Based on DEM results from drained/undrained triaxial compres-
sion tests, the characteristics of anisotropy and its evolution as
well as three characteristic states important to soil mechanics
are carefully examined. Novel findings from the study are summa-
rised below:

e The internal structure in a granular system evolves continu-
ously during shearing and depicts a bimodal character in the
contact force network. The weak network always shows an iso-
tropic feature, while the nature of the whole network is domi-
nated by that of the strong contact force network. A strongly
anisotropic strong network always leads to an anisotropic inter-
nal structure for the entire sample.

Our DEM results have verified an analytical stress-force-fabric
relationship for both drained and undrained tests. The shear
strength that a granular material may have is proportional to
the degree of anisotropy it can develop. The mechanical anisot-
ropy plays a dominant role in providing shear resistance in
medium to dense samples.

For medium to dense sands, mechanical and geometrical aniso-
tropies evolve with shear strain similarly. The strong force net-
work dominates the overall anisotropy evolution. Mobilising
the mechanical anisotropy a, and a, is much quicker than
mobilising a.. Weak force contacts comprise a dominant pro-
portion of the entire contact network, and sliding contacts con-
stitute around 1/6 of all contacts during shearing. The
coordination number evolution features an early local extre-
mum before evolving to a steady critical state value, which is
not unique.

The phase transformation state corresponds to a local extre-
mum in the coordination number and a peak in the sliding con-
tact proportional throughout the entire network.

Liquefaction represents a state in which geometrical anisotropy
dominates mechanical anisotropy with a high fraction of sliding
contacts in the weak force network.

Critical state corresponds to a continuously flowing anisotropic
fabric structure. In addition to a linear relation between critical
void ratio e. and p’, a unique linear dependence of critical fabric
anisotropy a¢ on Inp’ is found. The p’-dependent relations of
both e, and a¢ offer a more complete reference for the critical
state than the classic critical state theory.

The above findings may help improve our understanding on the
behaviour of granular materials at the particle level and offer use-
ful information on developing suitable constitutive relations for
granular materials. The current study constitutes a first step to-
wards developing statistical mechanics-based plasticity models

for granular materials, which bears some similarities to the con-
cept of multiscale modelling or macro-micro bridging [52,27,3].
The signature behaviour of various characteristic states captured
in the study may be used as controlling factors for developing
physical-based evolutionary laws for anisotropy. Meanwhile, it is
helpful to discuss the limitations of the current study and possible
future improvements.

(a) All simulations and analyses in this paper have been based
on triaxial compression simulations. To validate whether
the above observations are general enough, further studies
are required to explore the granular response to more com-
plex loading paths, e.g., rotational shear and/or cyclic load-
ing. Garcid and Medina [17] have reported switching
between strong-weak network anisotropy for a granular
assembly subjected to uniaxial cyclic loads. Under rotational
shear, the principal stress directions change continuously.
The fabric adjusts itself to be compatible with the stress in
both magnitude and direction. As the adjustment cannot
be fulfilled instantaneously, a non-coaxial property is
expected, which results in a more contractive and softer
behaviour of the material [28]. A similar behaviour is
observed when both the stress ratio and principal stress
directions change [49].

(b) This study has used spherical particles. All observations have
been made on samples considering free particle rolling. Con-
sidering rolling resistance and/or using non-spherical parti-
cles may help account for more realistic particle kinematics.
Considering rolling resistance has been shown to help
increase material shear strength [12]. Ng [34] has employed
bidisperse ellipsoidal particles and found a linear relation-
ship between critical void ratio and mean effect stress simi-
lar to the present paper. While particle shape does not
appear to significantly affect the critical void ratio, non-
spherical particles may facilitate forming a strongly aniso-
tropic force network and may likely influence anisotropy
behaviour considerably. Indeed, 2D studies on particle shape
[4] have shown that geometrical anisotropy may decrease
while the mechanical anisotropy is greatly enhanced when
using pentagons instead of circular disks. With particle
shape influencing geometrical anisotropy, it remains to be
explored if a linear relation between critical a. and Inp’ holds
if nonspherical particles are used. Other than particle shape
and rolling resistance, other factors may affect the behaviour
of granular response in DEM simulations. Thornton [48] and
Rothenburg and Kruyt [45] have shown that increasing
interparticle friction can lead to an increased critical void
ratio but to decreases in the percentage of sliding contact
and coordination numbers at a critical state. Mollon and
Zhao [33] have recently developed a new method of gener-
ating sand particles with realistic shape which may be used
in the future to verify the conclusions made above.

(c) All samples used in the study have been sheared from an ini-
tially isotropic state. As such, the study is essentially limited
to the case of induced anisotropy, as termed by some
researchers [38,44]. A more appealing initial state for geo-
technical engineers is one that has been anisotropically con-
solidated or one with inherent anisotropy. This may be
verified in the future. However, given prolonged deforma-
tion, the shearing process may essentially demolish the ini-
tial fabric structure, which makes the critical state lose all
memory of this initial fabric structure such that the above
conclusions regarding critical state may remain valid.
Because anisotropy evolution is path-dependent, inherent
anisotropy may influence the phase transformation and/or
liquefaction behaviour, as the deformation level that the
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material reaches at the two states is not high enough. Thor-
ough investigations in this regard are needed in the future.
Using non-spherical particles would also help achieve pac-
kings that exhibit initial anisotropy (see, e.g., [13]).
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