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a b s t r a c t

This paper presents a numerical upper bound limit analysis using radial point interpolation method

(RPIM) and a direct iterative method with nonlinear programming. By expressing the internal plastic

dissipation power with a kinematically admissible velocity field obtained through RPIM interpolation,

the upper bound problem is formulated mathematically as a nonlinear programming subjected to

single equality constraint which is solved by a direct iterative method. To evaluate the integration of

internal power dissipation rate without any background integral cell, a new meshless integration

technique based on Cartesian Transformation Method (CTM) is employed to transform the domain

integration first as boundary integration and then one-dimensional integration. The effectiveness and

accuracy of the proposed approach are demonstrated by two classical limit analysis problems. Further

discussion is devoted to optimal selection of relevant parameters for the computation.

& 2013 Published by Elsevier Ltd.
1. Introduction

As a proved direct and efficient approach to estimate the
ultimate bearing capacity for structures, limit analysis has long
been used in the design of a wide range of applications in civil and
geotechnical engineering, such as shells, plates, foundations, retain-
ing walls and slopes. Relying frequently on hand calculation in early
days, limit analysis has now been dominated by numerical solutions
with the aid of modern computers. Almost all engineering struc-
tures, no matter how complex their shapes and/or loading condi-
tions might be, can now be conveniently discretized by numerical
methods, such as Finite Element Method (FEM). Both the lower
bound and the upper bound theorem can be reformulated as
numerical optimization problems, and be applied to the discretized
physical domain in sought for limit loads.

Finite elements and linear programming have commonly been
used for numerical limit analysis for long (see, e.g.,
[51,1,20,6,17,63,64,71,62]). With the recent progress in the theory
of nonlinear programming (hereafter shortened as NLP), a wide
variety of advanced numerical techniques have been developed in
limit analysis and more rigorous solutions can be sought. Typical
examples include the constrained nonlinear optimization formula-
tion based on mixed finite elements developed by Zouain et al. [75]
for cohesive materials, and its recent generalization to frictional-
Elsevier Ltd.
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cohesive materials by [49,50]. Recently, more advanced nonlinear
programming techniques such as those based on the primal-dual
interior point method [32,58–61] and those based on the second-
order cone programming (SOCP) [52–55,56,34,19,37,38] have also
been successfully applied to the limit analysis involving different
materials.

Upper bound limit analysis has traditionally been based on
finite element method for both purely cohesive materials and
cohesive-frictional materials. The plastic incompressible condi-
tion in the analysis can be typically treated by such techniques as
discontinuous velocity field [62,49,50], penalty function method
[47,43], mixed formulations [18,2,9] and variational principle
[68]. High-order elements [71,53] and cell-based smoothing finite
element method [45,37] have also been developed to overcome
the issue of volumetric locking when the penalty function method
is used. In treating non-differential plastic dissipation function in
numerical upper bound limit analysis, a wide range approaches
including viscous plastic regularization [30,10], smoothed method
([2,3,23,69,29], etc.) and direct iterative method based on distin-
guished rigid and plastic regions [72,73,47,8,40–43] have been
employed.

More recently, meshless methods have received much atten-
tion in applications relevant to numerical limit analysis. For
example, Chen et al. [13] and Le et al. [36] have developed a
lower bound approach using element-free Galerkin (EFG)
approach with moving least squares (MLS) method to construct
the self-equilibrium stress basis vectors and the static admissible
stress field. Le et al. [35] have also developed an upper bound
limit analysis approach based on EFG method, in which the MLS
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approximation is employed to construct the kinematically admis-
sible velocity field. The upper bound limit analysis is then formu-
lated as a SOCP problem and solved by a primal-dual interior point
method originally proposed by Andersen et al. [3]. Moreover, as an
extension of limit analysis, shakedown analysis of structures and
solids with repeated loads can also be performed based on EFG [14]
and meshless local Petrov-Galerkin (MLPG) method [15]. Without
requiring the discretization of physical domain into meshes, mesh-
less methods have been proved to offer improved computational
efficiency over FEM with reasonable accuracy.

There are two key issues deciding whether or not an element-
free Galerkin method can be successfully applied to this upper
bound limit analysis. The first is pertinent to how the essential
boundary conditions can be effectively reinforced, and the second is
related to accurate numerical integration of the plastic dissipation
power. First, it is well-known that in EFG method the shape function
Fi(xj) lacks the property of Kronecker delta function, i.e. Fi(xj)adij,
where dij is the Kronecker delta function. It is hence difficult to
ensure that the approximation of nodal displacement uh(xi) is
exactly equal to the fictious nodal values ûi at node xi, i.e.,
uh(xi)¼

P
Fi(xj)ûiaûi. Consequently, the displacement boundary

conditions cannot be directly enforced, i.e., ûba %u, where ûb is the
fictious nodal value at boundary node xb and %u is the prescribed
displacement. We notice that Le et al. [35] have adopted a colloca-
tion method proposed by Zhu and Atluri [74] to treat the boundary
conditions. This method, however, may lead to increasing con-
straints for the NLP problem. Second, numerical integration of
dissipation function has traditionally been performed by using
either nodal integration method (see, e.g. [4]), or the Gauss quad-
rature based on an integral background cell (see, [16]). Chen et al.
[12,11] have also developed a stabilized conforming nodal integra-
tion (SCNI) which proves to be robust but needs a voronoi cell.
Various issues regarding accuracy and efficiency still need to be
tackled with the various methods.

This paper presents a study using EFG method for limit
analysis, in an attempt to improve its performance in the above
two aspects. A novel numerical procedure will be proposed for
upper bound limit analysis. We shall employ a radial point
interpolation method (RPIM) originally proposed by Wang and
Liu [67] to construct the kinematically admissible velocity field.
With the built-in property of Kronecker delta function in the
shape function of RPIM, it is expected to resolve the first issue
concerning the enforcement of boundary conditions. Meanwhile,
we shall employ a novel meshless integration technique based on
the Cartesian Transformation Method (CTM) developed by Khos-
ravifard and Hematiyan [31]. By using this technique, a domain
integration can be sequentially first transformed into a boundary
integration and then a one-dimensional (1D) integration, such
that no integral background cells are required. A direct iterative
method will be used to solve the NLP upper bound problem.
2. Numerical formulation of upper bound approach based on
RPIM

2.1. Mathematical description of the upper bound theorem

Under the assumption of small deformation, consider a rigid-
perfectly plastic solid V with a boundary S subjected to body forces g
and tractions t at part of the surface, Ss. The remaining part of the
surface is supposed to be Su, and Ss[Su¼S, Ss\Su¼|. The upper
bound theorem states that the solid will collapse if there exists a
kinematically admissible velocity field _uAU, such that the rate of
external forces work equals to the rate of internal power dissipation.
Mathematically, the collapse load multiplier l can be determined by
the following optimization problem:

l¼min
uAU

Z
V

Dð _eÞdV

s:t: Wextð _uÞ ¼

Z
V

gT _udVþ

Z
Ss

tT _u dS¼ 1 ð1Þ

where _e ¼r _u is the plastic admissible strain rate with r being the
linear differential operator. U is a set of kinematically admissible
velocity field defined below:

U ¼ f _u ¼ _u0 on Su, Wextð _uÞ40g ð2Þ

In addition, associated flow rule is assumed such that the
plastic admissible strain rates can be expressed as follows:

_e ¼ _m @f

@r
ð3Þ

where _m denotes a non-negative plastic multiplier. In Eq. (1), Dð _eÞ
denotes the plastic dissipation function which may be defined as
follows:

Dð _eÞ ¼max
rAK
fr: _eg � re: _e ð4Þ

where r is the admissible stresses constrained by the convex
yield surface, and re is the stresses on the yield surface associated
with any strain rates e through the associated flow rule. K denotes
a set of plastic admissible stresses which can be expressed as
follows [53]:

K ¼ fr: f frgr0g ð5Þ

Evidently, the mathematical optimization problem in (1) is
solvable only if a yield function is appropriately specified. The
dissipation function in Eq. (4) can be reformulated as follows [7]:

D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_eTH _e

p
ð6Þ

For a plane strain problem, the stress matrix H can be expressed as

H¼
s2

s �s2
s 0

�s2
s s2

s 0

0 0 0

2
64

3
75 ð7Þ

whilst for plane stress problem, it can be expressed as

H¼
1

3

4s2
s �2s2

s 0

�2s2
s 4s2

s 0

0 0 s2
s

2
64

3
75 ð8Þ

In both Eqs. (7) and (8) ss is the yield stress. Consequently, limit
analysis by the upper bound theorem can be recast into the
following generalized nonlinear optimization problem:

l¼min
uAU

Z
V
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_eTH _e

p
�dV

s:t:

Z
V

fT _udVþ

Z
Ss

gT _udS¼ 1 ð9Þ

For a practical problem with finite domain, the above math-
ematical optimization problem may be solved by discretization
techniques with such numerical methods as finite element
method or mesh-free method. In the following subsection, a
NLP scheme in conjunction with mesh-free method will be
developed for this purpose.

2.2. Nonlinear programming based on radial point interpolation

method

2.2.1. Radial point interpolation method

A radial point interpolation method (RPIM) originally proposed
by Wang and Liu [67] will be employed to construct a displace-
ment field for the mesh-free method. RPIM is based on local
supporting nodes and includes polynomial reproduction in the
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Table 1
Two typical radial basis functions used in EFG method.

Item Name Expression Parameters

1 Multiquadric (MQ) RiðxÞ ¼ ðr
2
i þðacdcÞ

2
Þ
q ac, q

2 Gaussian (EXP) Ri(x)¼exp(�ac(ri/dc)
2) ac
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Fig. 2. Variation of the shape of MQ radial basis function with q and ac: (a) fixing

ac¼4 and varing q from 0 to 2.0; (b) fixing q¼0.5 and varying ac from 0 to 10.
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radial basis function to restore the consistency of RPIM shape
function and to ensure the reproduction of the linear field.
Consider a rectangular supporting domain with a set of arbitrary
scattered points xi (i¼1, 2, y, n) where n is the number of
supporting nodes in the domain (Fig. 1), the approximation of
trial function u(x) at any interpolation point x within the local
supporting domain can be expressed as

uðxÞ � uhðxÞ ¼
Xn

i ¼ 1

RiðxÞaiþ
Xm
j ¼ 1

pjðxÞbj ¼ RT
ðxÞaþpT ðxÞb ð10Þ

where ai is the coefficient for the radial basis Ri(x), bj is the
coefficient for polynomial basis pj(x).

There are two typical radial basis functions we can choose
shape parameters for the construction of RPIM shape function
(Table 1). One presents a general form of the original multiquadric
(MQ) function proposed by Hardy [26]. This general form of MQ-
radial basis function (hereafter denoted as MQ-RBF) has two
parameters ac and q. The other is called the Gaussian radial
function, or EXP, which has only one shape parameter ac. In both
cases, the extra parameter dc denotes a characteristic length
which is related to the nodal spacing in the local supporting
domain. It can be determined by the following expression [46]:

dc ¼

ffiffiffiffiffi
As

p
ffiffiffiffiffiffiffi
nAs

p
�1

ð11Þ

where As is the area of the supporting domain; nAs
is the number of

nodes contained in the supporting domain. Take the case of MQ-RBF
as an example. The two shape parameters ac and q in MQ-RBF
control the shape of the radial basis function. Fig. 2 shows how the
two parameters ac and q affect the shape of one-dimensional MQ-
RBF at a point wherein the parameters ac and q vary within the
range of acA[0,10] and qA[0,20]. In this study, the performance of
both RBFs for upper bound limit analysis will be investigated.

The polynomial basis function in Eq. (10) for a two-
dimensional problem can be expressed as follows:

pT ðxÞ ¼ 1 x y xy x2 y2 � � �
h i

ð12Þ

The coefficient ai and bj in Eq. (10) can be determined by
imposing the interpolation passes through all n field nodes within
the local supporting domain of the interpolation point x. This
condition leads to n linear equations. In these n linear equations,
however, there are a total of (nþm) variables including n

coefficients ai (i¼1,n) and m coefficients bj (j¼1,m). To determine
ai and bj, another unique approximation constraint needs to be
satisfied for the polynomial term [25], which eventually results in
the following (nþm) linear equations [46]:

RQ Pm

PT
m 0

" #
a

b

� �
¼

Us

0

� �
ð13Þ

where Us ¼ u1 u2 � � � un
� �T

is the vector of function values at
all n field nodes within the local supporting domain. RQ is the
moment matrix of RBF given by

RQ ¼

R1ðx1Þ R2ðx1Þ � � � Rnðx1Þ

R1ðx2Þ R2ðx2Þ � � � Rnðx2Þ

^ ^ & ^

R1ðxnÞ R2ðxnÞ � � � RnðxnÞ

2
66664

3
77775 ð14Þ

and Pm is the moment matrix of polynomial basis function
defined by

Pm ¼

p1ðx1Þ p2ðx1Þ � � � pmðx1Þ

p1ðx2Þ p2ðx2Þ � � � pmðx2Þ

^ ^ & ^

p1ðxnÞ p2ðxnÞ � � � pmðxnÞ

2
66664

3
77775 ð15Þ
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Solving Eq. (13), we have

a¼ SaUs; b¼ SbUs ð16Þ

where

Sa ¼R�1
Q �R�1

Q PmSb; Sb ¼ ½P
T
mR�1

Q Pm�
�1PT

mR�1
Q ð17Þ

The interpolation Eq. (10) can then be expressed as

uhðxÞ ¼ ½RT
ðxÞSaþpT ðxÞSb�Us ¼uðxÞUs ð18Þ

where u(x) is the RPIM shape functions corresponding to the n

field nodes which is given by

uðxÞ ¼ f1ðxÞ f2ðxÞ � � � fnðxÞ
h i

ð19Þ

wherein

fkðxÞ ¼
Xn

i ¼ 1

RiðxÞS
a
ikþ

Xm
j ¼ 1

pjðxÞS
b
jk ð20Þ

where Sa
ik denotes the (i, k) element of matrix Sa, Sb

jk denotes the
(j, k)-th element of matrix Sb. RQ is symmetric, so is the trans-
formed moment matrix PT

mR�1
Q Pm. If the columns in Pm are

independent (with a rank of m), the transformed moment matrix
PT

mR�1
Q Pm is invertible by simply invoking the full rank property of

RQ. To ensure the columns in Pm are independent, the number of
supporting nodes must be equal or greater than that of the
columns in Pm, i.e., nZm. To this end, the T2L-scheme demon-
strated by Liu [46] is adopted in this paper to select local
supporting nodes. The basic idea of this scheme is to select
supporting node based on triangulation cell. As shown in Fig. 3,
the first layer of nodes (in circle) refers the three nodes of the
home cell (shaded triangle), and the second layer contains those
nodes (in square) which are directly connected to the three nodes
of the first layer.

In addition, because of using T2L-scheme, the polynomial basis
functions are linearly independent. And because the transformed
moment matrix is symmetric, invertible and full rank, the RPIM
shape functions are also linearly independent. Therefore, the
n-dimensional vector should be uniquely produced by linear
combination of these n shape functions. Letting

Us ¼ 0 0 � � � ui � � � 0 0
� �T

and substituting the above equation into Eq. (18), we have at x¼xj

uhðxjÞ ¼uðxjÞUs ¼fiðxjÞui

when i¼ j, we obtain

ui ¼fiðxiÞui
which leads to

fiðxiÞ ¼ 1

when ia j, we have

uj ¼ 0¼fiðxjÞui

which requires

fiðxjÞ ¼ 0

Therefore, we obtain the following property of the shape func-
tions:

fiðxjÞ ¼
1, i¼ j

0, ia j

(

This proves that the RPIM shape functions possess the Kronecker
delta function property.
2.2.2. Discrete nonlinear programming problem based on RPIM

The RPIM has been used with mesh-free method to solve a
wide range of practical problems. There have been very few
studies, however, in applying RPIM and EFG to limit analysis.
Indeed, the kinematically admissible velocity field in a typical
upper bound limit analysis can be conveniently constructed by
the interpolation using RPIM shape function. We shall employ
RPIM in conjunction with EFG in this paper for the upper bound
limit analysis. For a two-dimensional domain discretized into a
set of nodes xI (I¼1,y,n), suppose the unknown nodal displace-
ment velocity is

_uI ¼
_uIx _uIy

h iT
ð21Þ

According to Eq. (18), the approximation _uh
ðxÞ ¼ ½ _uh

x , _uh
y �

T of

velocity field _uðxÞ ¼ ½ _ux, _uy�
T at the interpolation point x¼[x,y]T

can be formulated as follows:

_uðxÞ � _uh
ðxÞ ¼UðxÞ _uI ð22Þ

where

uI ¼ ½u1x,u1y,u2x,u2y, � � �unx,uny�
T ; U¼

f1 0 f2 0 � � � fn 0

0 f1 0 f2 � � � 0 fn

" #

Here, fI(x) is the so-called shape function at the I-th node in
Eq. (20). Substituting the strain–displacement equation into
Eq. (22), the strain rate field _e can be formulated as follows:

_e ¼DU _uI ð23Þ
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where the strain matrix is

D¼

f1,x 0 f2,x 0 � � � fn,x 0

0 f1,y 0 f2,y � � � 0 fn,y

f1,y f1,x f2,y f2,x � � � fn,y fn,x

2
64

3
75 ð24Þ

and fk,i is the derivative of shape function, it can be calculated by
using the following equations:

@fk

@x ¼
Xn

i ¼ 1

@Ri

@x
Sa

ikþ
Xm

j ¼ 1

@pj

@x

Sb
jk
@fk

@y ¼
Xn

i ¼ 1

@Ri

@y
Sa

ikþ
Xm

j ¼ 1

@pj

@y
Sb

jk

8>>>>><
>>>>>:

ð25Þ

Using Eq. (23) in Eq. (9) leads to the following expression of the
optimization problem:

l¼min

Z
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_uT

I DTHD _uI

q
dV s:t:

Z
V

gTUU _uIdVþ

Z
Ss

tTUU _uIdS¼ 1

_u ¼ 0 on Su ð26Þ

Since the integrand functions of the objective function in
Eq. (26) are numerically expressed based on the discretized field
nodes, the integrations can be evaluated numerically based on
these nodes. We shall employ the Cartesian Transformation
Method (CTM) recently proposed Khosravifard and Hematiyan
[31] to perform the numerical integration.

2.2.3. Cartesian transformation method for meshless integration

The main advantage of Cartesian Transformation Method (CTM)
is that the domain integration can be exactly evaluated without any
background integral cell. The CTM is based on the Green’s theorem,
which states that a domain integration I¼

R
Of(x,y) dO defined over a

domain O can be transformed first into a boundary integration along
the boundary GR of the auxiliary domain OR, and then a 1D
integration defined over the domain OR [31], i.e.,

I¼

Z
O

f ðx,yÞdO¼
Z
OR

gðx,yÞdO¼
Z
GR

ð

Z x

c
gðx,yÞdxÞdO ð27Þ

where g(x,y) is the auxiliary function which is defined as follows:

gðx,yÞ ¼
f ðx,yÞ, ðx,yÞAO
0, ðx,yÞ=2O

(

If a rectangular auxiliary domain is adopted, the formulation
can be much simplified. Take the case of Fig. 4 for example. As for
the shown original integration domain O and the corresponding
rectangular auxiliary domain OR, the boundary GR of OR consists
of four line segments:

GR ¼G1 [ G2 [G3 [ G4 ð28Þ

where

G1: y¼ y1; G2: x¼ b; G3: y¼ y2; G4: x¼ a

The integration in Eq. (27) can hence be expressed as follows:

I¼

Z y2

y1

Z b

a
gðx,yÞdx

 !
dy ð29Þ

The two level 1D-integrations in Eq. (29) can be evaluated numeri-
cally using Gaussian quadrature method. To evaluate the outer
boundary integration along the boundary G2, G2 is first divided into
ny intervals (the i-th interval [yi, yiþ1] is shown in Fig. 4 as an
example). my-point Gaussian quadrature is then applied to each
interval. As a result, the outer boundary integration can be
expressed as follows:

I¼

Z y2

y1

hðyÞdy¼
Xny

l ¼ 1

Xmy

i ¼ 1

Jy
ilw

y
i hðyðZiÞÞ ð30Þ
where

hðyðZiÞÞ ¼

Z b

a
gðx,yðZiÞÞdx ð31Þ

and Jy
il is the Jacobian of the transformation from the l-th interval [yi,

yiþ1] to [�1, 1]; Zi and wy
i are the Gaussian points and weights,

respectively. We need to evaluate h(y) first in order to compute the
integration in Eq. (30). Notice that h(y) is also a 1D-integration
which can also be evaluated by the Gaussian quadrature method. In
Eq. (30), the function y¼y(Zi) denotes a horizontal line, which is
called integration ray (Fig. 4). Suppose that an integration ray
intersects with the boundary of a closed domain at an even number
of times, i.e., t¼2l times, where t is the number of intersection
points, and l is a positive integer. The intersections split the ray into
t�1 segments. Accordingly, the integration in Eq. (31) can be
expressed as

hðyðZiÞÞ ¼
Xl

k ¼ 1

Z x2k

x2k�1

f ðx,yðZiÞÞdx ð32Þ

The Gaussian quadrature can then be applied to the evaluation of Eq.
(32) which has nx interval and mx integration points in each interval
for a integration ray, i.e.,Z x2k

x2k�1

f ðx,yðZiÞÞdx¼
Xnx

r ¼ 1

Xmx

s ¼ 1

Jx
srw

x
s f ðxðxsÞ,yiÞ ð33Þ

where Jx
sr is the Jacobian of the transformation from the r-th interval

[xi, xiþ1] to [-1, 1]; xs and wx
s are the Gaussian points and weights,

respectively.
In considering Eqs. (30) and (33), it is readily seen that the

integration can be calculated in terms of the following formula-
tion:

I¼W2D
UF¼

XnG

i ¼ 1

W2D
ðxiÞUf ðxiÞ ð34Þ

where

F¼ f 1ðxiÞ f 2ðxiÞ � � � f nG
ðxiÞ

h iT
ð35Þ

W2D
¼ W2D

ðx1Þ W2D
ðx2Þ � � � W2D

ðxnG
Þ

h iT
ð36Þ

W2D
ðxiÞ ¼ Jx

i UJy
i Uwx

i Uwy
i ð37Þ

where xi¼[xi,yi] are the Gaussian points, i¼1,y,nG, and nG is the
number of the Gaussian points in the solution domain. For the
case in Fig. 4, nG¼nx U mx U ny U my. Jx

i and Jy
i are the corresponding

Jacobian, respectively, for the intervals along x- and y-direction.
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wx
i and wy

i are weights associated with the integration points of
the intervals.

According to the CTM integration formulation (34), the objec-
tive function in Eq. (26) can be expressed asZ
Op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT KiU

q
dO¼

XnG

i ¼ 1

W2D
ðxiÞU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT KiU

q
ð38Þ

where U¼ u1 u2 � � � uN
� �T

, N is the number of nodes,
Ki ¼ CT

e DTHDCe, Ce is the transformation matrix from the nodal
velocity vector uI to the global nodal velocity vector U, i.e.

uI ¼ CeUU ð39Þ

On the other hand, the integration appearing in the constraints of
Eq. (26) can be calculated by using 1-D Gaussian quadrature
method, and the nodal traction force vector T can be expressed as
follows (the gravity is omitted here):

TT
¼
Xnct

l

XnGt

i ¼ 1

JilwðxiÞUtðxiÞ
TUUCe ð40Þ

where nct is the number of integral interval on the traction
boundary; Jil is the Jacobian of the l-th integral interval; w(xi) is
the Gauss weight for the i-th Gaussian point. Consequently, the
finally numerical formulation of upper bound approach based on
RPIM and CTM can be recast as

l¼min
XnG

i ¼ 1

W2D
ðxiÞU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT KiU

q

s:t: TT
UU¼ 1

u¼ 0 on Su ð41Þ

Notably, however, the plastically incompressible condition has
not been enforced in the above numerical formulation which may
result in a non-optimal load factor to be found for a plain strain
problem. The incompressible condition needs therefore to be
carefully considered.

2.2.4. Plastically incompressible condition

Nagtegaal et al. [57] are among the first who recognized the
important effect of plastic incompressibility condition on the
overall solution procedure. In order for a limit load to exist for
the discretized model of an elastic–plastic problem, it is necessary
that the volumetric strain rate _ev ¼ _ekk ¼ 0 pointwise throughout
the entire plastic zones. Otherwise, no limit load can be found. In
limit analysis, the penalty function method is commonly used to
enforce the incompressibility conditions [47]:

1

2
a
Z

v

_e2
vdV ¼

1

2
a
Z

v

_eTK _edV ð42Þ

By discretizing the domain into a set of suitable field nodes,
the integration in Eq. (42) can be calculated in terms of CTM, i.e.,

1

2
a
Z

v

_e2
vdV ¼

1

2
a
Z

v

_uT
I DTKD _uIdV ¼

1

2
a
XnG

i ¼ 1

W2D
ðxiÞU _u

T
I DTKD _uI

ð43Þ

By considering the transformation matrix Ce, the penalty function
item can reformulated as

1

2
a
Z

v

_e2
vdV ¼

1

2
a
XnG

i ¼ 1

W2D
ðxiÞUUT CT

e DTKDCeU

¼
1

2
a
XnG

i ¼ 1

W2D
ðxiÞUUT

ðKvÞiU ð44Þ

where

ðKvÞi ¼ CT
e DTKDCe

As a result, Eq. (26) can be finally expressed as follows:
l¼min
XnG

i ¼ 1

W2D
ðxiÞU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT KiU

q

s:t: TT
UU¼ 1

UT Kvð ÞiU¼ 0 i¼ 1,. . .,nG

u¼ 0 onSu ð45Þ

In Eq. (45), the second constrained equation denotes the penalty
term for the impressibility condition, and the third constrained
equation denotes the displacement velocity boundary condition
which is equivalent to the essential boundary condition of linear
elastic analysis. In consideration of the property of Kronecker
delta function in the shape function of RPIM, the third constrained
equation will be enforced in a direct way similarly as in FEM
instead of invoking special treatments. In essence, the original
matrix Ki and (Kv)i for the i-th component of the prescribed
velocity can be modified as below:

Kiðor ðKvÞiÞ ¼

K11 � � � K1ði�1Þ 0 K1ðiþ1Þ � � � K1ð2NÞ

^ ^ ^ ^ ^ ^ ^

K ði�1Þ1 � � � K ði�1Þði�1Þ 0 K ði�1Þðiþ1Þ � � � K ði�1Þð2NÞ

0 ^ ^ 0 0 ^ 0

K ðiþ1Þ1 � � � K ðiþ1Þði�1Þ 0 Kðiþ1Þðiþ1Þ � � � K ðiþ1Þð2NÞ

^ ^ ^ ^ ^ ^ ^

K ð2NÞ1 � � � K ð2NÞði�1Þ 0 Kð2NÞðiþ1Þ � � � K ð2NÞð2NÞ

2
666666666664

3
777777777775

ð46Þ

Consequently, Eq. (45) can be expressed as a discretized NLP
problem subjected to two equality constrains, and will be solved
by the direct iterative method discussed subsequently.
3. Direct iterative method

It is noticed that there is a term of square root in the
constrained optimization problem (45) which could render the
objective function unsmooth and non-differentiable when the
term UTKiU at some Gaussian integration points is equal to zero.
This may cause numerical difficulties in solving the NLP problem.
To resolve this issue, we employ here the direct iterative method
widely used in recent studies (see, [72,47]; [7]; [42,43]). This
method solves the optimization problem iteratively. In each
iteration step, the rigid regions in the domain are distinguished
from the plastic regions and the objective and constraint equa-
tions are revised accordingly. Since the objective function is non-
differentiable because the plastic strain rate is vanishing within
the rigid region, it is treated as a constraint and is taken into
accounted in the optimization problem based on penalty method.
Eq. (45) can then be transformed a differentiable optimization
problem which may be solved by Lagrangian multiplier and
penalty function method. An iterative control parameter o is
defined below to judge which Gaussian integration point is in the
plastic or rigid region:

o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT KiU

q
ð47Þ

If o¼0 at a Gaussian integration point, this point is regarded in
the rigid region; Otherwise, it is located in the plastic region.
Accordingly, the NLP problem (45) can be reformulated as

l¼min
XnG

i ¼ 1

W2D
ðxiÞU

UT KiU

o

s:t: TT
UU¼ 1

UT
ðKvÞiU¼ 0, iAS ð48Þ

Prior to an iteration, an initial velocity field needs to be specified.
However, according to Liu et al. [47] and Li and Yu [42,43], the
initial trial solution will not affect the convergence of iteration.



Table 2
Comparison of the size of Ki and Kvi for different discretizing methods.

Matrixes RPIM FEM

Linear triangular element

(three nodes)

Quadratic triangular

element (six nodes)

Ki 2N�2N 6m�6m 12m�12m

Kvi 2N�2N 6m�6m 12m�12m
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For simplicity, we start iteration by setting o¼1 in this paper. The
initial velocity field U0 is computed by solving the following
Lagrangian optimization problem:

LðU,mÞ ¼
XnG

i ¼ 1

W2D
ðxiÞUUT KiUþa

XnG

i ¼ 1

UT
ðKvÞiUþ2mð1�TT

UUÞ ð49Þ

where m is the Lagrangian multiplier. Using the minimum
optimization conditions, @L=@U¼ 0, @L=@m¼ 0, the following
system of linear equations can be obtained:

XnG

i ¼ 1

W2D
ðxiÞUKiU0þ

XnG

i ¼ 1

a0ðKvÞiU0 ¼ m0T

TT U0 ¼ 1

8>><
>>: ð50Þ

where m0 is the initial Lagrangian multiplier and a0 is the initial
penalty factor. The initial nodal displacement velocity U0 can then
be determined, by which the initial load multiplier l0 can be
calculated:

l0 ¼
XnG

i ¼ 1

W2D
ðxiÞU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT

0KiU0

q
ð51Þ

Based on the initial load multiplier l0 and the initial nodal
displacement velocity U0, the non-differentiable areas can be
distinguished, and the objective function can then be evaluated
iteratively.

Based on the results at Step k (k¼0, 1, 2,y), the value of o
needs to be calculated at each Gaussian integration point. The
Gaussian integration point set, S, will then be subdivided into two
subsets: a subset Skþ1

r where the object function is not differenti-
able, and the other subset Skþ1

p where the object function is, i.e.

Skþ1
r ¼ fiAS, o¼ 0g; Skþ1

p ¼ fiAS, oa0g ð52Þ

The purpose of distinguishing the two subsets Skþ1
r and Skþ1

p is
to remove those in the rigid region from all the integration points
so as to ensure that the next iterative step can be carried out
smoothly. For o¼0, the constraint condition is imposed on the
rigid region Gaussian points as follows:

UT
kþ1KiUkþ1 ¼ 0 ðiASkþ1

r Þ ð53Þ

At points in Skþ1
r , the plastically incompressible condition can

be satisfied naturally, while at points in Skþ1
p , the following

constraint needs to be imposed to satisfy the incompressible
condition:

UT
kþ1ðKvÞiUkþ1 ¼ 0 ðiASkþ1

p Þ ð54Þ

Therefore, at Step kþ1, the original optimization problem can
be transformed as follows:

min
U

XnG

iA Skþ 1
p

W2D
ðxiÞU

UT
kþ1KiUkþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UT
k KiUk

q
s:t: TT Ukþ1 ¼ 1

UT
kþ1ðKvÞiUkþ1 ¼ 0 ðiASkþ1

p Þ

UT
kþ1KiUkþ1 ¼ 0 ðiASkþ1

r Þ ð55Þ

To determine the velocity field and the limit load multiplier at
Step kþ1, the revised optimization problem (55) can also be
solved by using Lagrangian multiplier method and penalty func-
tion method for the following system of linear equations:P

iASkþ 1
p

W2D
ðxiÞU

KiUkþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
UT

k KiUk

p þ
P

iA Skþ 1
r

bkþ1KiUkþ1þ
P

iASkþ 1
p

akþ1ðKvÞiUkþ1 ¼ mkþ1T

TT Ukþ1 ¼ 1

8><
>:

ð56Þ

where akþ1 and bkþ1 are the penalty factors at the (kþ1)-th step,
and mkþ1 is the Lagrangian multiplier at the (kþ1)-th step.
Consequently, the nodal velocity Ukþ1 and the limit load multi-
plier at this step can be obtained:

lkþ1 ¼
XnG

i ¼ 1

W2D
ðxiÞU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT

kþ1KiUkþ1

q
ð57Þ

The above iterative process is repeated until the following
convergence criteria are satisfied:

9lkþ1�lk9
lkþ1

rZ1 and
99Ukþ1�Uk99

Ukþ1
rZ2 ð58Þ

where Z1 and Z2 are prescribed error tolerances. According to our
numerical experience, it generally works well for both to be
chosen in the range Z1,Z2A[10�3, 10�4]. It is noteworthy that the
convergence of this direct iterative algorithm for von Mises yield
criterion has been proved by Zhang et al. [72], with some further
applications with finite element (see, [73,47,43]).

At each iterative step, the current limit load multiplier and
velocity field can be found by solving a system of linear equations.
The computational costs of these direct iterative methods are thus
proportional to the sizes of matrix Ki and Kvi in the system of
linear Eq. (56), while the size of both matrices is related to the
number of nodes N for mesh-free methods or the number of
elements m for finite element method, which is shown in Table 2.

To compare the different size of matrix for Ki and Kvi using
RPIM and FEM, we assumed that the solution domain is discre-
tized by a given numbers of nodes for RPIM, and the mesh of
triangulation for FEM is then generated based on these nodes. As
a result, there is a topological relationship between the number of
nodes N in RPIM and that of elements m in FEM. And this
relationship can be described by Euler’s formula, i.e.,

N�NeþNf ¼ 2 ð59Þ

where N denotes the number of nodes in triangulation mesh;
Ne¼(3mþNk)/2 denotes the total number of edges; and Nf

denotes the number of faces of triangulation. Based on the
Eq. (59), we can derive the following relationship between the
number of elements and nodes:

m¼ 2N�2�Nk ð60Þ

where Nk is the number of nodes that lie on the boundary of the
mesh. For large scale problems with NbNk, Eq. (60) can be
simplified as

m� 2N ð61Þ

Evidently, from Eq. (61) and Table 2, the size of matrix Ki (or
Kvi) in FEM is six times (for linear triangular element) or twelve
times (for quadratic triangular element) of the size of matrix in
RPIM. Though not exactly proportional, for a fixed memory of
CPU, it is generally true that solving a larger size matrix will cost
more computational effort. Nevertheless, it indicates that the
computational cost using the direct iterative method can be
reduced by using RPIM mesh-free method.
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4. Examples

In this section, the performance of the present numerical
procedure of upper bound limit analysis will be illustrated with
two classical problems. All implementation was performed on a
personal computer with an Intel (R) Core (TM) 2 Quad CPU
2.83 GHz processor.

4.1. Thick-walled cylinder subjected to internal pressure

Structural components in engineering such as pipelines or
pressure vessels can generally be simplified as a plain strain
problem of thick-walled cylinder subjected to internal pressure.
To determine the carrying capacity of these structural compo-
nents, we wish to find the limit internal pressure the thick-walled
cylinder can sustain. If the cylinder material can be assumed to
perfect plastic materials following von Mises yield criterion, an
exact limit solution of the problem is available given by the
following expression (see, e.g., [28]):

llim ¼
ps

ss
¼

2ffiffiffi
3
p lnr ð62Þ

where r¼R2/R1 is the ratio between the internal radius and the
external radius, ss denotes the yield stress. ps is the limit pressure
load and llim is the limit load multiplier. We shall try to solve the
same problem using the proposed method described in the
foregoing sections. Specifically, the upper bound optimization
R2

R1

p 

Fig. 5. Illustration of a quadrant of thick-walled cylinder subjected to a uniform inter

integration points.
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Fig. 6. Convergence of limit load multiplier by the pres
problem in Eq. (45) is evaluated to find the limit load multiplier
llim of this problem.

To solve the optimization problem (45), the domain is first
discretized by a set of field nodes. Due to symmetry, only the
quadrant of the cylinder shown in Fig. 5a is considered. The field
nodes can be generated randomly within the considered quad-
rant, while the Gaussian integration points need to be generated
by satisfying the demand of CTM integral method (Fig. 5b). No
background cell is needed any more for the numerical integration.
After the generation of field nodes and Gaussian integration
points, the kinematically admissible velocity at each integration
point can be interpolated by using RPIM shape function. In
choosing the radial basis function, both types of radial basis
functions in Table 1 will be used here to construct the RPIM
shape function for the purpose of comparison. For the MQ
function we adopt a value of 4 for ac and 0.5 for q; and for the
EXP function, ac is set to be 4. The limit load multipliers are then
calculated according the proposed methods.

We first compare the efficiency using the two radial basis
functions mentioned in Section 2. Presented in Fig. 6 are the
convergence sequence of computation of the limit load by using
MQ and EXP functions for two cases of r (a) r¼2 and (b) r¼4. It is
worth noting that there is no rigid region in the whole cylinder
when the internal pressure reaches the limit load. Consequently,
in our method, no rigid regions can be distinguished from the
plastic regions during the iteration process. The convergence
criteria (58) should in theory be satisfied easily. Due to numerical
Integral points
Field nodes

nal pressure: (a) the geometrical model; (b) a typical discretization of nodes and
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Table 3
Summary of limit loads of the extension pressure for the thick-walled cylinder

using different methods.

r¼R2/R1 Lower bound solution

by Chen et al. [13,14]

Analytical

solution

Present upper

bound

solution

Relative

errora (%)

2 0.798 0.800 0.8002 0.03

3 1.265 1.269 1.270 0.08

4 1.596 1.601 1.602 0.06

a The present upper bound solution relative to the analytical solution.
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errors in practical calculations, however, it still requires several
iteration steps to satisfy the conditions of (58). Indeed, our
computations indicate that the iteration will normally converge
within 3 steps if only the first condition of (58) is considered.
However, if both convergence conditions of (58) are considered,
significantly more iterations (normally around 20) are needed to
achieve convergence. Note that for the two cases of cylinder, the
exact solutions of limit load multiplier, according to Eq. (62), are
0.8 for case (a) and 1.601 for case (b), respectively. We find for
both types of radial basis function, using more nodes will
generally lead to improved upper bounds (the influence of
integration point number will be discussed later). Meanwhile,
with same number of nodes and integration points, the limit load
multiplier obtained by MQ-RBF appears to be generally smaller
than that by the EXP-RBF and thus closer to the exact solution.
Use of MQ-RBF is likely to offer higher accuracy than EXP-RBF in
our method.

It is evident form Fig. 6 that the number of field nodes and
integration points has a significant effect on the numerical
solutions. A further study on this effect is made and the results
are presented in Fig. 7. As is shown, with the increase of node
number, the numerical limit solution consistently converges to a
value close to the true one. However, this depends crucially on a
properly chosen number of integration points. At certain number
of nodes, it is not always true that the more integration points are
used, the better solution is obtained. There is an optimal ratio
between the number of nodes and that of the integration points
which leads to more accurate solutions. For the present problem,
our numerical experience indicates that this ratio should be
around 1.2�1.3, i.e., a¼n/ng¼1.2�1.3.

However, it is observable from Figs. 6 and 7 the numerical
solutions are still different considerably from the exact solutions.
Further improvement on the accuracy can be achieved by fine-
tuning the shape parameters. Take MQ-RBF as an example. By
adjusting the value of ac and q in pair within the range of [0, 10]
and [0.1, 2.1] respectively, we have generated a contour of
relative error for the limit load multiplier compared to the exact
solution for the case of r¼2. The results are presented in Fig. 8. As
can be seen from Fig. 8, when ac¼8 and q¼0.7, the numerical
upper bound reaches a relative error of 0.03% with the exact
solution. We hereby choose this pair of values for ac and q as
optimal ones for the case of r¼2. We have also investigated two
other cases of r. It is found minor adjustment ones ac and q

around their optimal values may lead to satisfactory solutions.
Summarized in Table 3 are the limit load multipliers calculated by
the proposed methods for r¼2,3,4. Comparison has also been
made to the analytical solutions as well as the lower bound
solutions obtained by Chen [16]. From the relative error of the
present upper bound solution with respect to the analytical
solution, the proposed upper bound has approach appears to
offer relatively good accuracy.

4.2. Thin square plates subjected to uniaxial tension

Using the proposed method, we have also investigated the
limit load of thin square plate with a square or circular hole
subjected to uniaxial tension (see Fig. 9). The plate is simplified to
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Fig. 9. A plate with a hole subject to uniaxial tension: (a) a square hole; (b) a circular hole.

Fig. 10. Considered domain and prescribed boundary conditions for the plate (a) with square hole; (b) with circular hole.
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be a plane-stress problem and the material is assumed to follow
von Mises yield condition. Due to symmetry, only the bottom
right quadrant part of the plate is considered. See Fig. 10 for the
considered domain and the prescribed boundary conditions.
Fig. 11 depicts the discritization of nodes and integration points
in the considered domain for the two cases.

For the circular hole case of plate subjected to tension stress as
shown in Fig. 9(b), there is an analytical solution available for the
limit load if the material is assumed to be von Mises type [24]. For
a ratio of D/L ranged from 0 to 0.2, the exact solution can be
calculated by

llim ¼
ps

ss
¼ 1�

D

L

� �

Readily we see the exact limit load multiplier is 0.8 when
D/L¼0.2. while for the square hole case, we compare our results
with the upper bound solution obtained by Zhang et al. [72] for a
case of D/L¼0.25.

When the present upper bound method is applied to the plate
problem, we still need to select optimal MQ-RBF parameters and
the optimal number ratio between nodes and integration points.
For case (a) with a square hole and (D/L¼0.25), we found ac¼17
and q¼2.5 appear to offer good accuracy and convergence of our
computation, and for case (b) with a circular hole (D/L¼0.2), the
optimal parameters are ac¼8 and q¼2.7. Refer to the contour of
relative error in Fig. 12, where the relative error for the square
hole case has been calculated relative to the solution by Zhang
et al. [72], and the circular case relative to the solution by Gaydon
and McCrum [24]. Note that q¼1, 2 and 3 happen to lead to
singular solutions for the RPIM and should therefore avoided to
be chosen for q [44]. As for the ratio of nodes/integration points,
we found from Fig. 13 that for both cases of plate, the optimal
ratio is around 1.2.

We summarize in Table 4 the limit load calculated by the present
method for the circular hole plate cases when D/L¼0.2 and further
compare it to results obtained by other numerical/analytical
approach including lower bound limit analysis. The present upper
bound approach appears to be accurate enough to lead to a limit
load very close to the analytical solution among the various results.
It should also be mentioned that all our computations for the upper
bound limit can be completed within 3 min on a general personal
computer, which shows that it is fairly efficient as well.
5. Conclusions

We have presented an upper bound limit analysis based on the
meshless method. By using RPIM to construct the kinematically
admissible velocity field, the key issue on the enforcement of
essential boundary conditions in meshless method is resolved.
Meanwhile, to avoid the use of any background cell for integration,
a new integration method based on Cartesian transformation
method (CTM) has been employed to compute the internal dissipa-
tion power. The numerical optimization problem of finding the
upper bound limit load is then solved by an efficient direct iterative
method with nonlinear programming. The proposed method has
been applied to the analysis of two classical upper bound problems.
A number of conclusions can be drawn from the study:
(1)
 The RPIM method can be used to construct the kinematically
admissible velocity field to achieve relatively high accuracy,
and the essential boundary conditions can be directly
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Fig. 11. Discretization in the considered domain of the plate: (a) the square hole case; (b) the circular hole case.
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Fig. 12. Contour of relative error for limit load multiplier with different MQ-RBF parameters ac and q: (a) the square hole case; (b) the circular hole case.
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Fig. 13. Convergence of limit load multipliers and determination of optimal ratio between node number and integration point number for (a) the square hole case; (b) the

circular hole case.
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enforced similarly as that in finite element method. Mean-
while, the computational cost can be also reduced by using
the RPIM method.
(2)
 Employment of Cartesian transformation method (CTM) in the
meshless method for upper bound limit analysis can conveni-
ently transform the domain integration into boundary integra-
tion and 1D integration, and facilitate the computation of
integration. However, the number of integration points is not
independent of the number of field nodes. An optimal ratio
between the number of nodes and that of the integration points
exist which may potentially lead to improved solutions.
(3)
 On the selection of radial basis function, the MQ method
appears to provide higher accuracy than the EXP method. On
choosing the shape parameter(s), using contour of relative
error may be a feasible way.
While the present paper has assumed a small deformation
analysis, upper bound limit analysis may likely lead to plastic



Table 4
Limit loads obtained by different methods for the circular-holed plate (D/L¼0.2).

Methods Specific approach llim

Upper bound approach Present upper bound method 0.801

Yan et al. [69] 0.802

Vicente da Silva and Ant~ao [66] 0.807

Le et al. [37] 0.801

Lower bound approach Belytschko and Hodge (1970) 0.793

Tin-Loi and Ngo [65] 0.803

Liu et al. [48] 0.795

Chen et al. [16] 0.798

Analytical solution Gaydon and McCrum [24] 0.800
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collapse problems where large deformation is important. Accord-
ingly, the inherent problem of particle dislocation in a meshfree
approach needs to be carefully addressed. To deal with large
deformation problems associated with meshfree methods, an
updating process named ‘‘Sequential Limit Analysis’’ can be
employed to form a sequence leading to the solution of a large
deformation problem (see e.g. [70,21,39]). This will be pursued in
a future work.
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