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Abstract

This paper presents a constitutive formulation for materials with strain gradient effects by internal-variable approach
with normality structure. Specific micro-structural rearrangements are assumed to account for the inelasticity deformations
for this class of materials, and enter the constitutive formulations in form of internal variables. It is further assumed that
the kinetic evolution of any specific micro-structural rearrangement may be fully determined by the thermodynamic forces
associated with that micro-structural rearrangement, by normality relations via a flow potential. Macroscopic gradient-
enhanced inelastic behaviours may then be predicted in terms of the microscopic internal variables and their conjugate
forces, and thus a micro–macro bridging formulation is available for strain-gradient-characterised materials. The obtained
formulations are first applied to crystallographic materials, and a crystal gradient plasticity model is developed to account
for the influence of microscopic slip rearrangements on the macroscopic gradient-dependent mechanical behaviour for this
class of materials. Micro-cracked geomaterials are also treated with these formulations and a gradient-enhanced damage
constitutive model is developed to address the impacts of the evolutions of micro-cracks on the macroscopic inelastic
deformations with strain gradient effects for these materials. The available formulations are further compared with other
thermodynamic approaches of constitutive developing.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain gradient plasticity has aroused increasing interest in the community of both solid mechanics and
material science since the pioneering work of Aifantis (1984, 1987). A variety of gradient plasticity models have
been developed with some success during the past decades to address a large range of problems unresolved by
classic continuum theories for materials, such as localised failure, size effects in micro-level, mesh-dependency
of finite element modelling, and shear band width determination (see, e.g., Fleck and Hutchinson, 1993, 1997;
Aifantis, 2001; Fleck and Hutchinson, 2001, and references therein). The gradient effects have been related with
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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underlying micro-scale mechanisms in the material such as crystal dislocation, particle rearrangement, and
development of defects and imperfections including pre-existing micro-cracks and microvoids. These micro-
mechanisms have been shown both theoretically and experimentally important to account for the irreversible
deformation for a wide range of materials.

However, as may be found, most of these gradient models are constructed through phenomenological
approaches. As a result, the micro-structural influence on the macroscopic behaviour is only expressed by
incorporating one or more internal length scales into the constitutive relations. The assumption that the inter-
nal length scale(s) is related to the basic dimension of the micro-structures remains unverified against exper-
iment results. Additionally, gradient constitutive relations have been developed in various ways (e.g., the
principle of virtual power). So far, a fully systematic development of these theories within the framework
of thermodynamics and which, at the same time, establishes of a direct link between the macroscopic mechan-
ical behaviour and the underlying micro-scale mechanisms, are scarce in the literature. Hence, the attention
here is focused on developing a thermodynamically consistent strain gradient plasticity theory with direct links
to the micro-scale mechanisms, and applying it to crystallographic solids and micro-cracked geomaterials.

It is clear that thermodynamics and continuum mechanics are inseparable for most of the mechanical pro-
cesses in materials, and in the vast majority of these cases, deformation of a continuum is an irreversible pro-
cess. To address the irreversible processes, developing continuum constitutive relations by means of
thermodynamics has long been adopted by scholars. The irreversible process for deformation of a continuum
solid was first addressed by Onsager (1931), with his reciprocity relations for the symmetric tensors connecting
velocities and forces. However, these functions are restricted to linear processes only, which is thus incapable
of addressing the status of a physical law and many other non-linear processes in continuum mechanics. Later
on, Ziegler (1958) proposed an orthogonality principle for irreversible processes, which included Onsager�s
theory as a special case. This orthogonality principle was later proved to be equivalent to the principle of max-
imal dissipation rate and the principle of maximal entropy production rate (Ziegler and Wehrli, 1987a). The
orthogonality principle allows one to establish constitutive relations from a single pair of scalar functions
characterizing the free energy and the dissipation rate function of a material, and a thermomechanical
approach was developed based on this principle. A variety of developments and applications of this approach
have been made through the past decades (see, e.g., Ziegler, 1983; Ziegler and Wehrli, 1987b; Houlsby, 1981;
Germain et al., 1983; Collins and Houlsby, 1997; Houlsby and Puzrin, 2000; Puzrin and Houlsby, 2001). In
addition, using thermodynamic concepts, Valanis (1971) proposed an endochronic theory of plasticity to deal
with the plastic response of materials by means of memory integrals in terms of memory kernels. Non-linear
visco-elasticity and visco-elasto-plasticity were later developed by using this theory (see, e.g., Valanis, 1980).

An internal-variable approach based on the normality structure, proposed by Rice (1971, 1975), will be
introduced here with particular interest, as this approach provides an appealing constitutive framework for
solids undergoing irreversible thermodynamic processes. Using a set of internal variables to characterise
the state of internal changes, Rice (1971) originally developed such a normality structure to relate structural
rearrangements of material elements on the micro-scale, by slip or diffusion, to corresponding increments of
macroscopic plastic strain. The normality structure shares a similarity of the �essential structure� proposed by
Hill (1968). The central idea of normality structure is that, the rate of progression of any local micro-structural
rearrangement within the material is dependent on the current stress state only through the thermodynamic
force conjugate to the extent of that rearrangement. When the kinetics of the structural rearrangements is
so characterised, Rice (1971) showed that there exists a scalar potential function of the macroscopic stress-
state at each instant in the history of deformation, such that the inelastic part of the strain rate may be given
by the derivatives of the function on corresponding stress components. When the behaviour may be ade-
quately idealised as rate-independent, the theory reduces to a normality requirement of inelastic strain-incre-
ment with respect to a yield surface in stress space. This normality structure provides a good thermodynamic
framework for linking the micro-structural changes in gradient theories with the macroscopic description,
which will be adopted in this paper to develop strain gradient models in account for micro-structural influence
for crystal solids and geomaterials. Inhomogeneous plastic deformations in crystal solids have been shown to
be related closely to the micro-slip dislocations in these materials (Nye, 1953; Ashby, 1970), while geomaterials
are usually weakened by micro-cracks or microvoids. These special features associated with the two classes of
materials make them suitable for being described using the internal variables to describe their micro-structural
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evolution and rearrangement. By using the internal-variable approach with normality structure, it is easy to
accommodate a direct link of the macroscopic, especially the gradient response, with their micro-scale mech-
anisms. This feature attracts the attention of the authors to use the approach to develop strain gradient models
with micro-structural damage mechanism for micro-cracked geomaterials, and for crystallographic solids
characterised by micro-dislocations, respectively.

This paper is organised in the following structure. In Section 2, a framework for strain gradient theory is
constructed by the internal-variable approach with normality structure. The basic strain gradient concept fol-
lows the second-order gradient framework developed by Fleck and Hutchinson (1993, 1997), which may be
further traced to earlier work by Mindlin (1965) and Germain (1973). Incremental constitutive relations are
presented in both compound stress space and compound strain space. A specific free energy function and a
flow function defined from the normality structure complete the base of the preceding formulations. Kinetic
rate laws for the internal variables and their conjugate thermodynamic forces are discussed. In Section 3, the
internal variable approach for gradient theories outlined in Section 2 are applied to the constitutive developing
for crystallographic solids characterised by microscopic dislocation systems and geomaterials weakened by
micro-cracks, respectively. Strain gradient-enhanced models with micro-structural mechanisms are obtained
for the two classes of materials. Following Section 3 are the discussing and concluding remarks of this paper.
Some comparisons between the currently obtained internal-variable approach with other thermodynamic
methods of constitutive developing are made.

It is also noted that Einstein�s summation convention is defaulted for repeated indexes unless stated other-
wise. Dots, double dots and triple dots between tensors denote tensor operations having equivalents in indicial
notation with Einstein�s summation convention, illustrated by the following typical examples:
A � a ¼ Aijaj; A � B ¼ AijBjk; A : B ¼ AijBji; A..
.
B ¼ AijkBkji
2. Internal-variable approach with normality structure for strain gradient models

A material sample with volume V in an unloaded reference state is considered. When it is subjected to
boundary loadings, the resulting macroscopic deformation is assumed to be homogeneous. The mechanical
response of the material is assumed to be governed by gradient-type descriptions as addressed by Fleck
and Hutchinson (1993, 1997) after Mindlin (1965) and Germain (1973). The strain and strain gradient are
denoted by a second-order symmetric strain tensor e and symmetric third-order strain gradient tensor g,
respectively. In a Cartesian coordinates system, they may be related to displacement u as follows:
eij ¼ ðui;j þ uj;iÞ=2

gijk ¼ ðuk;ij þ uk;jiÞ=2

(
ð1Þ
It is further assumed the work conjugates to e and g are denoted by the Cauchy stresses r and the higher-
order stresses (or couple stresses) s (which is a third-order symmetric tensor), respectively. That is, r:de and
s..
.
dg constitute the work per unit volume of the adopted reference state in any virtual deformation de and

deformation gradient dg.
As a central assumption of Rice�s internal-variable approach with normality structure, the macroscopic

inelastic behaviour of the material is considered as a consequence of internal rearrangement of constitutive
parts of the material sample. A discrete set of explicit internal variables n1,n2, . . . ,nn (collectively n) is assumed
to characterise the state of internal rearrangement within the material sample V. The following specific free
energy / and its Legendre transform w with respect to strain and strain gradient are introduced:
/ ¼ /ðe; g; h; nÞ ¼ U � hs; wðr; s; h; nÞ ¼ e :
o/
oe
þ g..

. o/
og
� /ðe; g; h; nÞ ð2Þ
where U, h and s denote the internal energy, temperature and entropy of the material sample, respectively. The
current pattern of micro-structural rearrangement of material elements is expressed by n, and at fixed n, vari-
ations of r, s and h result necessarily in a purely elastic response. Constrained equilibrium states introduced
by Rice (1971) are assumed here. That is, the internal variables could be held at any definite set of values by
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imposition of appropriate constraints, with the material sample attaining an equilibrium state corresponding
to a prescribed stress r (or strain e), couple stress s (or strain gradient g), and temperature h. The variables, r

(or strain e), s (or strain gradient g) and h, together with n, are therefore thermodynamic state variables. Let de

and dg be the difference in strain and strain gradient, respectively, between neighbouring constrained equilib-
rium states, differing by dr, ds, dh, dn. Then the first law of thermodynamics states
r : deþ s..
.
dg� 1

V

Xn

i¼1

fi dni þ hds ¼ dU ð3Þ
Eq. (3) also defines the thermodynamic forces f1, f2, . . ., fn (collectively f) conjugate to internal variables. It
leads to the usual thermoelastic constitutive structure when the internal variables are supposed as fixed
r ¼ o/ðe; g; h; nÞ
oe

; s ¼ o/ðe; g; h; nÞ
og

ð4Þ
Eq. (3) may be recast as the following form if in term of the complementary energy w:
e : drþ g..
.
dsþ 1

V

Xn

i¼1

fidni þ sdh ¼ dw ð5Þ
Eq. (5) leads to the following conjugate relationships:
e ¼ owðr; s; h; nÞ
or

; g ¼ owðr; s; h; nÞ
os

ð6Þ
In addition, from Eqs. (3) and (5), the forces associated with the internal variables may be derived as
fa ¼ V
owðr; s; h; nÞ

ona
¼ �V

o/ðe; g; h; nÞ
ona

ð7Þ
In view of (6), applying the generalised Maxwell relation to (7) leads to the following equations:
oeðr; s; h; nÞ
ona

¼ 1

V
ofaðr; s; h; nÞ

or
;

ogðr; s; h; nÞ
ona

¼ 1

V
ofaðr; s; h; nÞ

os
ð8Þ
Eq. (8) relates variations in the internal variables to corresponding variations in the macroscopic strain and
strain gradients, and provides a starting point for the developing of the inelastic constitutive gradient theory.

The inelastic portion of the strain difference (de)p, and strain gradient difference (dg)p, is defined as that part
which would result from the change in internal variables if stresses and higher-order stresses and temperature
were held fixed. Accordingly, the elastic (or thermoelastic) portion of strain difference (de)e and strain gradient
difference (dg)e is defined as that which would result from the change in stress, couple stress and temperature, if
the internal variables were held fixed. And the inelastic portion and elastic part constitute the total strain and
strain gradient (cf., e.g., Fleck and Hutchinson, 1997)
de ¼ ðdeÞe þ ðdeÞp; dg ¼ ðdgÞe þ ðdgÞp ð9Þ

with the following formulations defining the elastic and inelastic portions of strain and strain gradient differ-
ences, respectively:
ðdeÞe ¼ o
2w

oror
: drþ o

2w
oros

..

.
dsþ o

2w
oroh

dh

ðdgÞe ¼ o
2w

osor
: drþ o

2w
osos

..

.
dsþ o

2w
osoh

dh

8>><
>>: ð10Þ

ðdeÞp ¼ oeðr; s; h; nÞ
ona

dna ¼
1

V
ofaðr; s; h; nÞ

or
dna

ðdgÞp ¼ ogðr; s; h; nÞ
ona

dna ¼
1

V
ofaðr; s; h; nÞ

os
dna

8>><
>>: ð11Þ
Note that here in this paper, effects of local inertia terms, temperature gradients, etc, within the material sam-
ple are not considered. If the classical theory of irreversible processes applies, all the preceding relations may
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be rewritten by replacing the difference between neighbouring constrained equilibrium states with rate form
terms with respect to time. For example, (de)e, (dg)e, (de)p and (dg)p by ð_eÞe; ð _gÞe, ð_eÞp and ð _gÞp, respectively,
accordingly, in term of _r, _s and _h. Or alternatively, all of the these variables may be just denoted by their
respective incremental forms: d(Æ). Two neighbouring patterns of micro-structural rearrangement, n and
n + dn, are considered, with dna(a = 1,2, . . . ,n) (or alternatively _na) being the specific local rearrangements.
It should also be noted that, due to the increment taking at constrained constant stress and couple stress,
the physical dimensional change of the material sample, corresponding to the inelastic strain increment
(de)p and inelastic strain gradient increment (dg)p, are not independent of the particular strain measure repre-
sented by the symbol e and g, respectively. The changes in forces applied to the boundary of the material sam-
ple so as to keep r and s constant will, of course, depend on the stress measure, and this will bear different
relations to the boundary forces according to the adopted strain and strain gradient measures.

The key foundation of the Rice�s internal-variable approach is an assumption termed �unifying normality
structure�. This normality structure assumes that the kinetic rate laws of the internal variables are fully deter-
mined by the thermodynamic force associated with the internal micro-structural rearrangements within the
material sample
_na ¼ _naðfa; h; nÞ; ða ¼ 1; 2; . . . ; nÞ ð12Þ
Eq. (12) may be recast to be
_nb ¼
o

ofb

Z f

0

_naðfa; h; nÞdfa ð13Þ
where at fixed values of h and n the integral is carried out, and defines a point function of f since each term in
the integrand is an exact differential. A flow potential Q may then be related to the kinetic rate laws
Q ¼ Qðr; s; h; nÞ ¼ 1

V

Z fðr;s;h;nÞ

0

_naðf; h; nÞdfa ð14Þ
Then (13) may be further recast as
_nb ¼ V
oQ
ofb

ð15Þ
where the integral is carried out at fixed values of h and n, and defines a point function of f since each term in
the integrand is an exact differential. The thermodynamic forces are viewed as functions of the macroscopic
stresses r, s, h and n. Consequently, the following normality structure holds:
ð_eÞp ¼ oQðr; s; h; nÞ
or

; ð _gÞp ¼ oQðr; s; h; nÞ
os

ð16Þ
In view of (14), the above equations may be recast as
ð_eÞp ¼ oQ
or
¼ 1

V
_naðf; h; nÞ

ofaðr; s; h; nÞ
or

ð _gÞp ¼ oQ
os
¼ 1

V
_naðf; h; nÞ

ofaðr; s; h; nÞ
os

8>><
>>: ð17Þ
If a complex (15-dimensional) stress space is defined by stresses and higher-order stresses, the preceding
normality structure implies the inelastic portion of the strain-rate and strain gradient vector geometrically
lie normal to surfaces of constant flow potential in this complex space. The complete constitutive formulation
may be presented in terms of the complementary energy as
_e ¼ o
2w

oror
: _rþ o

2w
oros

..

.
_sþ o

2w
oroh

_hþ oQ
or

_g ¼ o2w
osor

: _rþ o2w
osos

..

.
_sþ o2w

osoh
_hþ oQ

os

8>><
>>: ð18Þ
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where w and Q are function of r, s, h and n. The inverted form of the constitutive rate law is readily shown
to be
_r ¼ o2/
oeoe

: _eþ o2/
oeog

..

.
_gþ o2/

oeoh
_h� oQ

oe

_g ¼ o2/
ogoe

: _eþ o2/
ogos

..

.
_gþ o2/

ogoh
_hþ oQ

og

8>>><
>>>:

ð19Þ
here the free energy / and flow potential Q are viewed as functions of e, g, h, n.
In addition, the following relation for the neighbouring patterns may be identified:
dpw ¼ �dp/ ¼ 1

V
fa dna ð20Þ
where dpw = w(r,s,h,n + dn) � w(r,s,h,n), dp/ = /(r,s,h,n + dn) � /(r,s,h,n). And also, the entropy pro-
duction rate # should be always non-negative according to the second law of thermodynamics
# ¼ 1

hV
fa

_na P 0 ð21Þ
This restriction of the kinetic rate laws for normality structure actually corresponds to the requirement of
the non-linear Onsager reciprocal relations (De Groot and Marur, 1962), as remarked by Rice (1971).

It should be noted that the aforementioned formulations are presented in case that n is one set of explicit
state variables, and each variable describes a specific structural rearrangement occurring at a local site within
the material sample. Otherwise, if there is no explicit set of internal variables available to characterise the
internal rearrangement, one may need only to assume that any change in the pattern of internal rearrangement
can be uniquely characterised. These possible rearrangements may be included by keeping within the simplic-
ity of the present discrete variable description, by assuming that at any given pattern of internal rearrangement
of the material sample, a set of discrete scalar infinitesimals characterises all possible infinitesimal variations in
internal arrangement. It is not necessary to assume that any variable exists such that a change of the variable
may be obtained, although the treatment may include this as a special case.

In addition, averaging variables that bear no relation to the size of the material size may be used to replace
the size-dependent specific structural variables aforementioned. This may be easily done by introducing one set
of much reduced internal variables f to be average measurements of n
f ¼ ff1; f2; . . . ; fmg; fl ¼ flðn1; n2; . . . ; nn; V Þ; ðl ¼ 1; 2; . . . ;m� nÞ ð22Þ
When both n and V are sufficiently large, Eq. (22) expresses a volume average of microscopic rearrangements
whose value may be assumed to be independent of n and V. Compared with n, the number of averaging vari-
ables, m, will be refined to quite small for the necessity of an accurate description. A set of generalised ther-
modynamic force g1, . . .,gm (collectively g) conjugate to the averaging variables may then be defined in analogy
to (3)
r : deþ s..
.
dg� gldfl þ hds ¼ dU ð23Þ
In parallel to the proceeding formulations for the specific structural variables, the following relations may
be obtained:
e ¼ owðr; s; h; fÞ
or

; g ¼ owðr; s; h; fÞ
os

ga ¼
owðr; s; h; fÞ

ofa

ðdeÞp ¼ oeðr; s; h; fÞ
ofa

dfa ¼
ogaðr; s; h; fÞ

or
dfa

ðdgÞp ¼ ogðr; s; h; fÞ
ofa

dfa ¼
ofaðr; s; h; fÞ

os
dfa

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ
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At the level of a description in terms of averaging variables, it may be also assumed that _f is derivable from

a potential of g at fixed h and n, for an exact differential of _na dfa. Thus Eq. (14) may be rewritten as
Q ¼ Qðr; s; h; g; fÞ ¼ 1

V

Z fðr;s;h;g;fÞ

0

_naðf; h; nÞdfa ð25Þ
then there is
_fb ¼
oQðr; s; h; g; fÞ

ogb

ð26Þ
Note that the kinetic equation (15) or (26) for the internal variables has also been the starting point of many
other thermomechanical theories (e.g., Ziegler, 1958; Lubliner, 1972; Collins and Houlsby, 1997).

Combination of (24) and (26) leads to
ð_eÞp ¼ oQ
or
¼ _fa

ogaðr; s; h; nÞ
or

ð _gÞp ¼ oQ
os
¼ _fa

ofaðr; s; h; nÞ
os

8>><
>>: ð27Þ
which implies _f lies in the outward normal direction of the yield surface in g-space at a smooth point, and
within the limiting normal directions at a vertex.

In addition, the entropy production rate # in Eq. (21) turns to be
# ¼ 1

h
ga

_fa P 0 ð28Þ
which then restricts kinetic equations for the averaging variables.
The preceding formulated framework of an internal-variable approach with normality structure is sufficient

for ascertaining certain broad structural features of macroscopic constitutive laws from only the most essen-
tial features of a broad class of micro-scale relations for the kinetics of process of micro-structural rearrange-
ment. As one of its advantages, models following this approach may reflect at least approximately some of the
real, complex features of gradient elasto-plasticity response when general state of combined stresses and non-
proportional stress paths are examined in the compound stress space of stress and higher-order stress. It
should be noted that, whenever those terms connecting with strain gradients and higher-order stresses are
dropped out, the initial version of this approach by Rice (1971, 1975) for classic continuum mechanics will
immediately be recovered.

3. Applications

3.1. Crystal materials with micro-scale dislocations

Plasticity analysis of metallic materials on a physically rigorous connection to its microscopic origins in the
mechanics of defects has long been regarded to be difficult. The primary source of complexity arise in achiev-
ing an adequate theory that can describe the crystal dislocation distributions and evolutions on the micro-
scale, and at the same time, can account for the interaction of the stress fields of these micro-defects as well
as macroscopic applied loads. Dislocation theory was developed to address the plastic deformation mecha-
nism of crystallographic slip in metals from early last century (Orowan, 1934; Nye, 1953; Ashby, 1970). When-
ever a material is deformed, dislocations are always generated, slipped and stored. Stored dislocations are
resulted either by inter-crystal trapping, named statistically stored dislocations (SSD), or by the requirement
of compatible deformation of various parts of the material, named geometrically necessary dislocations
(GND). Plastic strain gradients occur due to either the geometry of loading or inhomogeneous deformation
in the material, and thus are closely related with dislocations, particularly with GND. A variety of strain gra-
dient theories have thus been developed in account for experimental results of the size dependence of material
mechanical properties on the higher-order strain gradients inherent in highly non-uniform zones of deforma-
tion at small length scales (see, e.g., Aifantis, 1984; Fleck and Hutchinson, 1993, 1997; Fleck et al., 1994; Nix
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and Gao, 1998; Gao et al., 1999; and references therein). One or more internal length scale was introduced into
the formulations to scale the gradient terms in the strain gradient plasticity, and is thought of as an intrinsic
material length related to the storage of GND.

Rice (1971) has previously applied his internal-variable approach with normality structure to developing a
slip-model of metal plasticity, in which the plastic behaviour of metals arising as a consequence of slip rear-
rangements of crystallographic planes through dislocation motion and the stress dependence of slip is assumed
to be characterised by Schmid law. Specifically, the micro-shear strain, c(a), over each single crystal is regarded
to be the micro-structural rearrangement and is assumed to be able to fully describe the necessary pattern of
internal rearrangement of the material. A set of thermodynamic shear stresses s(a) are defined for each such
operative slip system conjugate with the shear strain c(a), and the shear strain rate is dependent on s(a) only.

However, major assumptions for the forgoing formulations are that the volume of the crystal and the rel-
ative orientation of crystallographic directions are assumed to be unaltered. As for many crystal experiments
on small scales, such as micro-bending, twisting and micro-indentation tests, the case will be different and the
crystallographic directions will generally be changed. To achieve a compatible configuration, GND is required
and thus strain gradients are necessary to be included. Accordingly, the micro-structural rearrangement can
no longer be represented only by the micro-shear strain as in Rice (1971), gradients of the shear strain should
also be counted in. Thus in the following part of this section, the preceding strain gradient constitutive for-
mulations by means of internal-variable approach is used to develop a micro–macro-scale interrelated strain
gradient model for dislocation-characterised crystallographic materials.

Consider a sample volume of V for a continuous polycrystalline material. Each sub-element of the material
is assumed to have a single-crystal slip structure indexed by a. The sample is subjected to boundary conditions
and is deformed macroscopically homogeneous. r, s, e and g are the macroscopic stress, higher-order stress,
strain and strain gradients, respectively. Isothermal process is assumed such that thermal related terms may be
dropped from the formulations. The slip systems a is characterised by orthogonal unit vectors (s(a), t(a),m(a))
forming a right-handed set of orthogonal system and refer to the slip direction, the transverse direction
and the normal direction to the slip plane, respectively (as shown in Fig. 1). Suppose the crystal is subject
to a micro-shear of c(a), with slip strain gradients ðcðaÞS ; cðaÞT ; cðaÞM Þ in the three directions (s(a), t(a),m(a)) respec-
tively. As a comprehensive measurement of the micro-structural rearrangement to include the micro-shear
as well as its gradients, an effective shear strain according to Shu and Fleck (1999) is adopted here
_cðaÞe ¼ _cðaÞ
�� ��q þ l _cðaÞS

��� ���q þ l _cðaÞT

��� ���q� �1=q

ð29Þ
where _cðaÞ is the microscopic shear strain rate. _cðaÞS is the slip gradient in the slip direction and generates hard-

ening via geometrically necessary edge dislocation and, _cðaÞT is the slip gradient in the transverse direction and
gives rise to hardening by geometrically necessary screw dislocations. Contribution of the normal direction
to the geometrical necessary dislocations is assumed to be zero and thus _cðaÞM is excluded from the expression.
l is an internal length scale and is introduced for dimensional consistency. q is a parameter describing the
Fig. 1. A sketch of the local configuration of the slip system on the microscale.
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interaction between slip rate and slip rate gradient, and in a loose sense it defines the interaction between
SSD and GND.

Accordingly, an effective Schmid stress sðaÞe may be defined to be the thermodynamic conjugate stress to the
effective strain cðaÞe . In this paper, we employ an expression from the Taylor hardening law to be the effective
Schmid stress over a local slip system a
sðaÞe ¼ alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðaÞS þ qðaÞG

q
ð30Þ
where qðaÞS and qðaÞG denote the density of SSD and GND, respectively. l is the shear modulus and a is an
empirical constant. b denotes the Burgers vector length. The following expressions are adopted for
qðaÞS and qðaÞG , respectively (Ashby, 1970; Fleck et al., 1994):
qðaÞS ¼ ccðaÞLðaÞ=b

qðaÞG ¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðaÞS

� �2

þ cðaÞT

� �2
r

8><
>: ð31Þ
where L(a) is the mean free path of dislocation on slip system a. c is a coefficient.
To seek a relation between the kinetic law of cðaÞe and the effective shear stress sðaÞe , as required by the nor-

mality structure, e.g., _cðaÞe ¼ _cðaÞe ðsðaÞe ; h; ceÞ, where, ce refers to a dependence on the current dislocated state over
the material sampled, it is convenient to employ the following simple power law function in relation with slip
resistance g(a) (>0) from classical crystal plasticity theory (cf., e.g., Hutchinson, 1976; Peirce et al., 1983; Shu
and Fleck, 1999)
_cðaÞe = _c0 ¼ sðaÞe =gðaÞ
� �1=m ð32Þ
where _c0 is a material parameter representing the reference plastic strain rate. m is the rate-sensitivity index
which is generally between 0 (the rate-independent limit) and 1. The slip resistance increases from an initial
value gðaÞ0 for a crystallographic system according to (Fleck et al., 1994; Shu and Fleck, 1999):
_gðaÞ ¼
X

b

hab _cðbÞe

�� �� ð33Þ
where _cðbÞe is the effective slip rate defined by (29). hab is the so-called hardening matrix, and the second term in
the summation denotes an effective slip rate accounting for the gradients. The hardening modulus is given by
hab ¼ hdab þ qhð1� dabÞ ð34Þ

where q denotes a latent hardening index and dab is the Kronecker delta symbol. h is the self-hardening mod-
ulus and is related to the effective slip accumulation over the whole loading history.

So far the internal variables _cðaÞe with relation to their conjugate forces sðaÞe have been defined for the crystal
materials. Thus Eq. (3) may be rewritten as
r : deþ s..
.
dg� 1

V

Z
V

X
a

sðaÞe ðr; s; h; ceÞdcðaÞe dV þ hds ¼ dU ð35Þ
As for each operative slip-system at each sub-element of the sample we have assumed _cðaÞe to be a function in
form of Eq. (32), the following flow potential thus may be reasonably defined over the chosen volume V:
Q ¼ 1

V

Z
V

X
a

Z sðaÞe

0

_cðaÞe dsðaÞe

( )
dV ð36Þ
A free energy function is further required to furnish the constitutive relation development. Here we assume
the following (cf., e.g., Shu and Fleck, 1999):
w ¼ 1

2
Dijkleijekl þ

1

2

1

l2
Dijpqgijkgpqk ð37Þ
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where Dijkl denote the elastic stiffness matrix and l the same internal length scale as in (29). In view of equa-
tions from (29) to (37), the rate form constitutive relations for gradient crystal materials may be readily de-
rived in analogy to (19). Detailed formulations are not repeated here.

Note that, in case of GND are not appreciable, gradient terms will disappear from the formulations above.
Only SSD in term of micro-shear c(a) and Schmid stress s(a) may again be used for the internal variable and its
conjugate force, and the formulations may fall into the category as outlined by Rice (1971). However, for a
large range of metallic crystal materials, experimental results at small scale repeatedly prove the requirement
of introducing GND and thus gradient terms into the constitutive description. In these cases, the constitutive
relations as presented in this sub-section may demonstrate a convenient way to relate the microscopic dislo-
cation mechanism with the macroscopic inelastic and gradient-enhanced behaviour. Note that there are also
other models being developed in literature to address this problem, by means of either multi-scale framework
or homogenisation approach (see, e.g., Gao et al., 1999; Shu and Fleck, 1999).
3.2. Micro-cracked geomaterials

It will be shown in this section, the internal-variable approach with normality structure for gradient char-
acterised materials presented in Section 2 will be applied to the development of a gradient-enhanced aniso-
tropic damage model for micro-cracked geomaterials, and this model is further compared with those
presented by the authors previously (Zhou et al., 2002; Zhao et al., 2005). Note that in the following formu-
lation, isothermal processes are assumed so that temperature and entropy can thus all be dropped from the
formulations.

If rock-concrete-like geomaterials may be idealised as micro-cracked solids with distribution of Griffith
cracks, and if the extension and healing of these micro-cracks may be regarded as the mechanism of inelastic
deformation in this kind of materials, an internal variable description is thus possible. Consequently, the
essential properties of normality structure will be suitable for formulating the constitutive relations for mate-
rials of this kind. Rice (1975, 1978) stated that the refined normality structure directly leads to the restriction
on quasi-static extension of healing of Griffith cracks. Yang et al. (1999) further investigate the anisotropic
damage revolution law within the normality structure by assuming kinking micro-cracks in solids. Here given
the above-mentioned geomaterials are assumed to be micro-cracked solids, we try to apply the normality
structure in preceding sections for gradient solids to derive constitutive relations covering the anisotropic case
of gradient-enhanced damage model proposed by Zhou et al. (2002) and Zhao et al. (2005). It will be illus-
trated that, a general anisotropic damage tensor may be constructed from microscopic considerations within
the normality structure, and thus serves as a bridge between microscopic and macroscopic mechanical descrip-
tions of micro-cracked materials.

It is a good starting point by borrowing the anisotropic damage evolution laws of Yang et al. (1999) for
micro-cracked solids. As the essential formulations of Yang et al. (1999) are constructed within the first-order
theory of the normality structure approach, it will be convenient to introduce their results directly here.
Nevertheless, this paper would rather derive micro-crack-damaged gradient constitutive relations than pure
evolution laws for the damage tensor. A material sample of size V, which is weakened by n micro-cracks,
is considered. The following set of internal variables may be used to characterise the micro-cracks in the
material:
n ¼ fn1; n2; . . . ; nng; where na ¼ fna rag; ða ¼ 1; 2; . . . ; nÞ ð38Þ
where na and ra are the normal vector and radius of ath micro-crack, respectively. Location of the micro-crack
is neglected, hence the above expression by n is merely an approximation. Note in the following formulations,
no summation for a is assumed unless specified. From (7), the thermodynamic conjugate force of each internal
variable takes thus the following form:
fa ¼ V
ow ¼ fðaÞn f ðaÞr

� 	
¼ V

ow
a

ow

 �

¼ �V
o/

a

o/

 �

ð39Þ

ona on ora on ora
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If the following second-order tensor is introduced:
X ¼
Xn

a¼1

XðaÞ ¼
Xn

a¼1

r3
anana ð40Þ
which characterises the overall influence of cracks in the sample and is usually termed as �damage tensor�
(Kawamoto et al., 1988), it is readily shown that
fa ¼ fðaÞn f ðaÞr

� 	
¼ V

ow
ona

ow
ora


 �
¼ V

ow
oX

:
oX
ona

ow
oX

:
oX
ora


 �
¼ Y : r3

aðIna þ naIÞ3r2
anana

� 	
ð41Þ
where I denotes the second-order identity tensor dij. Y denotes the generalised thermodynamic force conjugate
to the damage tensor X
Y ¼ ow
oX
¼ � o/

oX
ð42Þ
Eq. (12) now presents the following form:
_na ¼ _ka ðI� nnÞ � fðaÞn

ra

2

� �2

f ðaÞr


 �
ð43Þ
where _ka denotes a flow multiplier and may be obtained as
_ka ¼
4_ra

frr2
a

ð44Þ
In view of Eqs. (13), (41), (43) and (44), the following potential function may thus be obtained
Q ¼ 1

2V

Xn

a¼1

_ka fðaÞn � ðI� nnÞ � fðaÞn þ
1

2
f ðaÞr r

� 
2
 !

ð45Þ
Thus far, if an extra free energy function w or / is defined, the entire constitutive structure may then be
readily derived. Without loss of generality, the Holmholtz free energy function presented in Zhou et al.
(2002) is used here (with omitting the terms with internal variables)
/ ¼ 1

2
e : D : eþ 1

2
g..
.
K..

.
g ð46Þ
where D and K characterise the elasto-damage stiffness tensor higher-order elasto-damage stiffness tensor of
the material, respectively. They present forms with damage tensor in the expressions as follows:
Dijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ � ½kXijdkl þ lðXikdjl þ XildjkÞ� þ ðkþ 2lÞXijXkl ð47Þ
Kijklmn ¼ l2Dijlmdkn ð48Þ
where k and b are Lame constants of materials. dij denotes the second-order Kronecker delta, and l represents
a material length scale linking the micro-structures with the macroscopic mechanical response. The inclusion
of damage tensor in the expressions makes it possible to account for the degradation due to accumulation of
damage, and at the same time, addressing the influence of the micro-structures. As a result of (47) and (48), the
following derivatives for the damage tensor X may be obtained
oDijkl

oXmn
¼ � De

rjkldimdnr þ De
ijkrdrmdnl

� �
þ De

rjksXirdsmdnl þ De
rjksXsldimdnr ð49Þ

oKijklab

oXmn
¼ l2 oDijla

oXmn
dkb ð50Þ
where De
ijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ is the initial elasticity tensor.



J. Zhao, D. Sheng / International Journal of Solids and Structures 43 (2006) 5836–5850 5847
The following intermediate relations for the tensor operations may be convenient for use in deriving the
final constitutive relations:
o/
oe
¼ D : e;

o/
og
¼ K..

.
g;

o/
oX
¼ 1

2
e :

oD

oX
: eþ 1

2
g..
. oK
oX

..

.
g ð51aÞ

Y ¼ � o/
oX
¼ � 1

2
e :

oD

oX
: e� 1

2
g..
. oK
oX

..

.
g;

oY

oe
¼ � oD

oX
: e;

oY

og
¼ � oK

oX
..
.
g ð51bÞ

o
2/

oeoe
¼ D;

o
2/

ogog
¼ K;

o
2/

oeog
¼ 0;

o
2/

ogoe
¼ 0 ð51cÞ

oQ
oe
¼ oQ

oY
:
oY

oe
;
oQ
og
¼ oQ

oY
:
oY

og
ð51dÞ

ofðaÞn

oY
¼ r3

aðIna þ naIÞ; of ðaÞr

oY
¼ 3r2

anana ð51eÞ

oQ
oY
¼ 1

2V

Xn

a¼1

_ka
ofðaÞn

oY
� ðI� nnÞ � fðaÞn þ fðaÞn � ðI� nnÞ � ofðaÞn

oY

 !
þ f ðaÞr r

of ðaÞr

oY

 !

¼ 1

2V

Xn

a¼1

_kaðððnaI� nnnÞ � fðaÞn þ fðaÞn � ðIna � nnnÞÞ þ 3f ðaÞr nnÞ ð51fÞ
Generalisation from (38) to (51) with consideration of (17), the following incremental form constitutive
relations for gradient-enhanced damage micro-cracked geomaterials may be obtained:
_r ¼ D : _eþ
Pn
a¼1

_kaS

_s ¼ K..
.
_gþ

Pn
a¼1

_kaT

8>>><
>>>:

ð52Þ
where
S ¼ 1

2V

Xn

a¼1

r3
aðððnaI� nnnÞ � fðaÞn þ fðaÞn � ðIna � nnnÞÞ þ 3f ðaÞr nnÞ :

oD

oX
: e

� �
ð53Þ

T ¼ 1

2V

Xn

a¼1

r3
a ðnaI� nnnÞ � fðaÞn þ fðaÞn � Ina � nnnð Þ
� �

þ 3f ðaÞr nn
� �

:
oK
oX

..

.
g

� �
ð54Þ
Thus from (52) we can see, the second terms
Pn

a¼1
_kaS and and

Pn
a¼1

_kaT may be deemed as the inelastic
portions for stresses and higher-order stresses induced by the micro-cracks and their evolutions and are sec-
ond-order and third-order tensor, respectively. Obviously, S and _r, T and _s are co-axial, respectively. S and T
may be respectively called the accompanying stresses and higher-order accompanying stresses for ath micro-
crack, as they both characterise the impacts of the previous micro-structural rearrangements of ath micro-
crack, together with overall strain and strain gradient state and history, on the mechanical response of current
loading step. _ka thus becomes a proportion coefficient of the ath accompanying stresses and higher-order
accompanying stresses in contribution to the overall stress increments, in term of the radius growth of ath
micro-crack. Also note that in both equations of (52), the involvement of damage tensor X in both D and
K in the first term also makes it possible to reflect the stiffness degradation due to accumulation of damage
upon loading within the material.

It is interest to make a comparison of the obtained model with the anisotropic case obtained in Zhou et al.
(2002). Even though the anisotropic gradient damage model obtained by Zhou et al. introduces an involve-
ment of micro-cracks by means of macroscopic damage tensor, it is essentially a phenomenological model.
This is due to that the damage flow law is still controlled by macroscopically generalised variables which,
by no means reflect the micro-structural rearrangements of the materials, as the model we just constructed
by internal variable approach will do.
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It also will be interest to make a comparison with another model developed by Zhao et al. (2005), which
was a more generalised model of Zhou et al. (2002) with extra boundary conditions introduced. Recalling
the obtained incremental constitutive relations in Zhao et al. (2005) (Eq. (39) therein)
_rij ¼ Dijkl �
1

A
Dijab

og
orab

of
orcd

Dcdkl

� 

_ekl �

1

A
Dijpq

og
orpq

of
osrst

l2Drsuvdtw _guvw

_sijk ¼ Dijlmdkn �
1

A
l2Dijabdkc

og
osabc

of
osxyp

Dxylmdpm

� 

l2 _glmn �

1

A
l2Dijqrdks

og
osqrs

of
oruv

Duvwt _ewt

8>>><
>>>:

ð55Þ
In view of (52), it is readily to find that, relations in (52) are more appropriate to be called a decoupled
model, while those in (55) a coupled one. Since we can see, in (55), increments of strain gradients contribute
to the Cauchy stress, while increments of strain also emerge in the relations for the higher-order stress; whereas
these coupling terms are not observed in (52). However, this is not to say the model obtained in this paper is
absolutely decoupled for strains and strain gradients. Actually, the previous equilibrium state is built up by the
combined rebalance of stress and higher-order stress, which then jointly influence the kinetic evolution of
micro-cracks and damage tensor. Consequently, no real sense of decoupling for (52) exists. In fact, if other
damage term is defined, for example: X = X(e,g,n), then the interchanged derivatives of free energy function
will no longer be zero
o
2/

oeog
6¼ 0;

o
2/

ogoe
6¼ 0
Then coupled terms will emerge in (52).
The gradient-enhanced anisotropic damage model may be completed by the following governing equations

and extra boundary conditions induced by the introduction of gradient terms into the constitutive relations:
rij;i � sijk;ik þ fj ¼ 0 ð56Þ
_tk ¼ nið _rik � oj _sijkÞ � Djðni _sijkÞ þ ninjðDlnlÞ _sijk ð57Þ
_rk ¼ ninj _sijk ð58Þ
where fi denotes body forces. ni is the norm of the boundary surface. _tk and _rk denote the traction and double
force vector on the surface respectively. Detailed deduction of (56)–(58) for strain gradient theories may be
referred to Zhao et al. (2005).

4. Discussion and conclusions

Rice�s (1971, 1975) internal-variable approach with normality structure is used to developed strain gradient
constitutive relations that are capable of accounting for the micro–macro interrelation. The obtained formu-
lations are applied to crystal materials deformed by micro-scale dislocations and micro-cracked geomaterials
degraded by damage accumulation. It is demonstrated strain gradient plasticity for materials characterised by
micro-structures may be developed by this approach without difficulty. Kinetic rate laws for the internal vari-
ables are defined and related to the inelastic portions in the strain gradient constitutive relations. For the crys-
tallographic materials, effective measures for shear strains and their gradients are used to comprehensively
interpret the micro-structural rearrangements, and an effective shear stress defined by Taylor hardening law
is used as the thermodynamic force to account for the non-Schmid effects in polycrystallines under complex
experimental conditions on small scale. The application of developing the gradient-enhanced anisotropic dam-
age model for micro-cracked geomaterials well demonstrated the advantages of the internal-variable
approach. The obtained damage model relates the size, orientation and evolution of the micro-cracks with
a material sample with the macroscopic mechanical behaviour reasonably. Decoupled formulations of incre-
mental constitutive relations for stress and higher-order stress are found. Contribution from the micro-cracks
accounts for the inelastic portions of the stress response. The damage-coupled stiffness tensors in the consti-
tutive relations enable the characterisation of stiffness degradation due to damage accumulation typically
observed in micro-cracked geomaterials.
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Note that the current formulations are different from the gradient theory of internal variables proposed by
Valanis (1996) (later extended by Walsh and Tordesillas (2004) to micro-polar model for granular materials) in
that the latter assumes the internal variables are non-local and thus gradients terms are accounted for, while
the current approach assumes the existence of macroscopic strain gradients. Though in name of micro-struc-
ture, the gradient theory developed by Germain (1973) treats the strain gradients as a macroscopic represen-
tation with micromorphic origin, which makes it essentially a phenomenological one and thus differ
distinctively from the current work. However, it should be noted that the work of Germain (1973) may recover
that of Mindlin (1965) with its second gradient theory, which was used in the beginning of this paper. Other
works of gradient thermodynamics type include the strain gradient crystal plasticity formulations by Forest
et al. (2002) in term of thermomechanical approach, and the gradient elastoplasticity model of Shizawa
and Zbib (1999) by using dislocation density tensor. The distinctive difference of these works with the current
work is their incapability of developing direct linkage of micro–macroscopic interaction even with gradients
considered, while the current work can achieve this good.

In particular, it is worthy of noting that, the approach as formulated in this paper shares many similarities
with the thermomechanical approach (Ziegler, 1983; Ziegler and Wehrli, 1987a,b; Collins and Houlsby, 1997;
Houlsby and Puzrin, 2000). Differing from the general routine for conventional constitutive development
approaches of proposing constitutive relations first and then imposing the laws of thermodynamics to these
relations, both the current approach and the thermomechanical approach develop constitutive models by
guaranteeing the fulfillment of the thermodynamic laws firstly. Additional internal variables other than the
general state variables, either microscopic or macroscopic variables, will then be used to characterise the mate-
rial. It is suggested the total constitutive relations may be merely determined by two thermodynamic functions
in both approaches: a specific free energy function and one other function (a flow potential function in the
current approach and a dissipation function in the thermomechanical approach). In addition, the underling
orthogonality condition for the thermomechanical approach exhibits similar form as the normality structure
in Eq. (15). Both the orthogonality condition and the normality structure may recover the Onsager�s reciproc-
ity relations for linear case as well as non-linear cases. However, the equivalence of the normality structure
with the orthogonality condition and other extremum principles, such as the principle of maximal dissipa-
tion rate and the principle of maximal entropy production rate, merits further investigations. Moreover,
as suggested in Collins and Houlsby (1997) and Collins (2005), the thermomechanical approach is capable
of addressing non-associated flow cases typically shown by geomaterials, by using a normal flow law in dis-
sipative stress space instead of true stress space. Therefore, it will be a future interest on relaxing of the
normality conditions for the internal-variable approach to address such non-associated cases for frictional
geomaterials.
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