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Abstract

Based on the localization mechanism of jointed rock masses, damage localization in jointed rock masses can be

treated in terms of discontinuous bifurcation. The discontinuous bifurcation model for jointed rock masses in the

framework of multi-potential theory is presented in this paper. A numerical method is used to obtain the solution of the

eigenvalue problem resulting from the bifurcation model. Consideration of elements embedded with discontinuous

deformation mode is made and corresponding codes are incorporated into standard FEM programs thus enabling the

applicability of the programs for localization problems. With the aid of the enhanced FEM program, localization

bands, i.e., dominant cracking bands, in specimens under tension or compression are simulated numerically by using the

proposed model. Numerical results show different localization bands in distinct load cases. To demonstrate the po-

tential application of this program, analysis of Xiluodu arch dam which is one of the largest arch dams in southwest

China, serves as an example of engineering cases. The results of Xiluodu arch dam from numerical analysis and physical

modeling test are compared and coincided very well with each other.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Under compression or shearing tests, damage localization is the onset of the failure process in jointed

rock masses. The nature of localization phenomena in materials can be characterized as the abrupt change

of the deformations within the materials. The localization in elasto-plastic materials usually develops into a

narrow band, i.e., localization band. The abrupt change of the deformations actually may appear across
interfaces between the localization band and the elastic unloading regions. The interface here usually is

known as a singular surface. According to Rudnicki and Rice [15] and Hill and Hutchinson [4], jump of

deformation across the singular surface can be considered as a discontinuous bifurcation problem. It is

worth noting that the abrupt changes across the singular surface include not only the rate of deformation
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gradient but also the rate of deformation. On the basis of analyzing the characteristic tangent stiffness
modulus tensor, Ottosen and Runesson [13] obtained the explicit analytical solutions for critical bifurcation

directions and corresponding hardening modulus according to spectral analysis of the eigenvalue problem

of tensors. Ortiz [11] presented an analytical method for the localization analysis of materials such as

concrete and a numerical method to compute characteristic directions of localization bands.

Because of widely distributed microcracks or other microstructures, the failure of jointed rock masses

will largely depend on the propagation and distribution of these cracks or microstructures. Under different

loading, fractures emerge in different cracking surfaces in the rock mass, and the ultimate failure is usually

presented with localization bands. The localizing process of rock masses can approximately be divided into
four steps: linear elastic, nonlinear elastic hardening, stress dropping and strain softening, which corre-

spond to the micromechanisms of elastic deformation, stable propagation, unstable propagation and nu-

cleation of microcracks respectively. In large structures built on rock foundations, the deformation,

propagation and coalescence of microcracks can usually lead to onset of the dominant cracking band and

finally result in the failure of structures.

The volumetric strain of geo-materials, such as rocks and soils, can be caused not only by three-

dimensional compression, but also by shearing. In the same way, the shear strain can be caused not only by

shearing, but also by hydrostatic pressure. To describe the complex deformation characters of soils, double
yield surface theory was presented firstly by Prevost and Hoeg [14], Lade [7] and Seiki Ohmaki [16] and so

on. Later, the concepts of partial yield surface and multiple yield surface were introduced by Shen Zhujiang

[17] and Yin Zongze [21]. Yang Guanghua [20] presented a generalized potential theory or multi-potential

theory for soils with the direct coordinate transformation method in terms of mathematics.

In order to find the deformation mode in regions with highly localized strains, finite elements with

embedded discontinuities was originally presented by Ortiz et al. [12]. Following their pioneering work,

elements with embedded discontinuities were proposed by large numbers of researchers, such as Belytschko

et al. [1], Fish and Belytschko [3], Dvorkin et al. [2], Klisinski et al. [6], Simo et al. [19], Larsson and
Runesson [8], Simo and Oliver [18], Oliver [10], Larsson and Runesson [9] and so on. Jir�aasek [5] gave a

comparative study on finite elements with embedded discontinuities.

In this paper, based on micromechanisms of localization phenomena of jointed rock masses, damage

localization in jointed rock masses is treated as discontinuous bifurcation. Bifurcation model for jointed

rock masses based on multi-potential theory is presented. In order to obtain the solution of the eigenvalue

problem resulting from this model, the nonlinear programming method is used in FEM to obtain the

numerical results. In order to cope with localization, elements embedded with discontinuous deformations

are incorporated into standard FEM program. Localizations of corresponding specimens are simulated
with this enhanced FEM programs. Xiluodu arch dam serves as an example to simulate the failure be-

haviors of structures with the proposed model.
2. Multi-potential theory for jointed rock masses

2.1. Multi-potential theory

Jointed rock masses exhibit distinct mechanical behaviors because of widely distributed microcracks,

microdefects or voids in them. To describe the mechanical behaviors taking into account of the influence

caused by the microstructure, namely microcracks, microdefects or voids, multi-potential theory is suggested

to simulate their mechanical behavior appropriately. According to classical elasto-plastic theory, the total

strain increment can be divided into two parts, elastic strain increment and plastic strain increment, i.e.,

deij ¼ deeij þ depij: ð1Þ
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The elastic strain increment satisfies the elastic constitutive relationship,

drij ¼ De
ijklde

e
kl ð2Þ

in which De
ijkl is the elastic stiffness tensor. Substituting Eq. (2) to Eq. (1),

drij ¼ De
ijklðdekl � depklÞ: ð3Þ

According to symmetry of incremental stress tensor drij and incremental strain tensor deij, three principal

components of the incremental strain tensor, depi ði ¼ 1; 2; 3Þ can be dealt as three components of a 3-D

vector dep. They can be formulated as the sum of three linear independent vectors. These vectors can be

chosen as the linear independent gradients of three potential functions written as ui ði ¼ 1; 2; 3Þ. Then these

principal components of the incremental strain tensor can be written as:

depi ¼
X3
k¼1

dkk �
ouk

ori
: ð4Þ

The generalized constitutive relationship can be derived from the last equation with direct coordinates

transformation method as following:

depij ¼
X3
k¼1

dkk �
ouk

orij
: ð5Þ

By substituting Eq. (5) into Eq. (3), the elasto-plastic constitutive relationship as follows can be obtained as:

drij ¼ De
ijklðdekl � depklÞ ¼ De

ijkl dekl

 
�
X3
m¼1

dkm
oum

orkl

!
: ð6Þ

The hardening law of the yield surface is chosen as,

wkðrij;HÞ ¼ 0 ðk ¼ 1; 2; 3Þ: ð7Þ
The parameters dkm in Eq. (6) can be computed from the requirement of consistency as follows:

dwk ¼
owk

orij
drij þ

owk

oH
dH ¼ 0 ðk ¼ 1; 2; 3Þ; ð8Þ

dkm ¼ A�1
mn

own

orij
De

ijkldekl: ð9Þ

Here,

Amn ¼ � owm

oH
oH
oepij

oun

orij
þ owm

orij
De

ijkl

oun

orkl
;

H is hardening parameter depending on the work hardening law.

Hence the incremental stress–strain relationship

Dijkl ¼
De

ijkl Elastic;

De
ijkl � De

ijqr

oum

orqr
A�1
mn

own

orst
De

stkl Plastic:

8<
: ð10Þ

Loading condition will then take the following form

maxð�uu1; �uu2; �uu3Þ
> 0 Loading;
¼ 0 Neutral;
< 0 Unloading;

8<
: ð11Þ



3572 W. Zhou et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 3569–3584
where

�uuk ¼
ouk

orij
drij; k ¼ 1; 2; 3:

2.2. Multi-potential theory for jointed rock masses

Randomly distributed pre-existing microcracks in rock masses may usually affect the failure mode of

jointed rock masses since fracturing often develops along these microcracks or interfaces. These phenomena

were observed in a large number of failures of rock masses. Take the Malpassat arch dam for example,

development of several arrays of pre-existing cracks in the bedrocks finally lead to the failure of the arch
dam. Similar failure modes were also reported in laboratory tests of rock masses. It is assumed that pre-

existing cracks can be generalized and described by three sets of dominant cracks, and then each of them

can be associated with a potential function (in fact, the three functions correspond to yield surface in the

classical elasto-plasticity).

It is worth noting that in case of 2-D problems, the number of sets of cracks, as well as that of potential

functions, can be decreased to 2 thus the same to potential functions. Localization modes of the 2-D and

3-D specimen are shown in Figs. 1 and 2 respectively.

Three potential functions used to describe three dominant sets of cracks may take forms of the well-
known Rankine or Mohr–Coulomb criteria. The Rankine criterion is defined as

uk ¼ rðkÞ
1 � rðkÞ

t ¼ 0; k ¼ 1; 2; 3: ð12Þ
Fig. 1. Failure mode of uni-axial compression specimen.

Fig. 2. Failure mode of 3-D specimen.
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In the same way, those of Mohr–Coulomb criterion can be written as

uk ¼ fkrðkÞ þ ck � sðkÞ ¼ 0; k ¼ 1; 2; 3: ð13Þ
In the last two equations, rðkÞ ¼ mðkÞi rijm

ðkÞ
j , sðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðkÞ
i rðkÞ

i � ðrðkÞÞ2
q

, rðkÞ
i ¼ rijm

ðkÞ
j , mðkÞi the unit normal vector

of the kth generalized crack sets. fk and ck are frictional parameter and cohesive stress of the kth potential

function respectively. By substituting these potential functions into Eqs. (10) and (11) respectively, the

loading conditions and the tangent stiffness tensor can be obtained.

3. Bifurcation mode of localization for jointed rock masses

3.1. Conditions for bifurcation of localization

The emergence of localization in jointed rock masses can be characterized as the variance of behavior of

the characteristic tangent stiffness tensor of rock masses. In order to analyze the localization in jointed rock

masses, it is assumed that the current state of static equilibrium can be characterized in terms of continuous

displacement ui, stresses rij and strains eij. With increased loading it can be observed that discontinuous

bifurcation of the rate of displacement gradient _uui;j may occur across a fixed singular surface X with ori-

entation nðaÞi (unit vector) within the rock mass. Let xi be the position on the singular surface. The dis-
placement ui remains continuous after the onset of localization, whereas the displacement gradient _uui;j will
exhibit a jump across the singular surface, i.e.,

½ _uui;j� � uþi;j � u�i;j 6¼ 0 ð14Þ

in which ½ _uui;j� ¼ o½ _uui�=oxj, ‘‘+’’ refers to the plus side of the plane of discontinuity and ‘‘)’’ to the minus side.

According to Maxwell�s compatibility conditions, the rate of displacement gradient must satisfy the form

½ _uui;j� ¼ cinj; ð15Þ
where ci is an arbitrary vector. According to the geometric relationship of the deformation, the jump of

strain rate becomes

½ _eeij� ¼ 1
2
ðcinj þ cjniÞ: ð16Þ

Define unit vector mi as the orientation of ci, i.e.,

mi ¼ ci=jcj: ð17Þ
So the vectors n and m represent the orientation characters of the localization. There are three noteworthy

extreme cases:

(i) if m � n ¼ 0. The material in the band deforms in simple shear while a shear band develops.

(ii) if m � n ¼ 1. The band undergoes extension normal to the planes of discontinuity. In certain circum-
stances this implies a splitting failure mode.

(iii) if m � n ¼ �1. The band undergoes compression normal to the planes of discontinuity and the band will

be a compaction one.

Equilibrium across the discontinuity planes requires that the tractions be continuous,

½ _rrij�nj ¼ 0: ð18Þ
The tangent stiffness tensor Dijkl will take the same value on both sides of the singular surface X, since
Dijkl ¼ Dijlk, from Eqs. (10), (16) and (17),

njDijklnkml ¼ 0: ð19Þ
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Define the characteristic tangent stiffness tensor T as

T ¼ TilðnÞ ¼ njDijklnk: ð20Þ

Then Eq. (19) becomes

TilðnÞml ¼ 0: ð21Þ

The onset of localization occurs at the first point in the deformation history of which a nontrivial solution

of Eq. (21) exists. Therefore, the focus of the localization problem is then to determine the zero eigenvalue
of tensor Til, the possibility for localization is that

f ðnÞ ¼ detðTilðnÞÞ ¼ 0: ð22Þ
3.2. Numerical method for localization direction

It is often difficult to obtain the analytical solution of vectors n and m from Eqs. (19) and (22). The
nonlinear programming method for the eigenvalue problem is formulated here. According to the stiffness

tensor, Dijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ for isotropic elastic materials, the function f ðnÞ can take the simple

form

f ðnÞ ¼ ðkþ 2lÞl2; ð23Þ

where k and l are the Lam�ee constants of the virgin material. For isotropic elastic materials, the function

f ðnÞ is always positive and independent of n. In the process of continuous loading or deformation,

properties of materials will degrade, and the value of the function may decrease. Finally the value of the

function may become zero or even negative, which in turn indicates the onset of localization. In order to

detect the variance of the signs of function f ðnÞ, the minima of function for every increment of deformation

should be computed and Eq. (22) be checked. This eventually results in considering the following nonlinear
programming problem

minn f ðnÞ � detðTilðnÞÞ
subjected to jnj ¼ 1

�
ð24Þ

in which TilðnÞ is the characteristic tangent stiffness tensor of the current time.

Using Lagrange–Newton Method, the nonlinear programming problem in Eq. (24) can be formulated to

the equivalent characteristic equation

rf ðnÞ � rjnj2K ¼ rf ðnÞ � 2Kni ¼ 0; ð25Þ

where K is a Lagrange multiplier.

On substituting Eq. (22) into Eq. (25) leads to, then

detðTðnÞÞDijklT�1
kj ðnÞnl � Kni ¼ 0: ð26Þ

Denote the first term on the left hand of Eq. (26) as S, i.e.,

SilðnÞ � detðTðnÞÞDijklT�1
kj ðnÞ: ð27Þ

Then Eq. (26) becomes

SilðnÞnl � Kni ¼ 0: ð28Þ
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Two steps are needed to obtain the solution of Eq. (28):

(a) For computing convenience, the direction vector n is expressed in terms of spherical coordinates,

namely,

n ¼ ðcos/ cos h; cos/ sin h; sin/Þ: ð29Þ

Variations of / and h, which are limited from 0 to 2p and 0 to 1

2
p respectively, are then scanned at a

certain increment (say, 5�) to determine a preliminary approximation nð0Þ to the minima.
(b) By using the former approximation, the following iterative scheme can lead to the locations of the min-

ima

SilðnðkÞÞnðkþ1Þ
l � Kðkþ1Þnðkþ1Þ

i ¼ 0: ð30Þ

Herein at each iteration an eigenvalue problem may be formed based on the matrix SðnðkÞÞ which is

derived from the previous iteration of nðkÞ. Then the minimum eigenvector can be determined and taken

as the new iterate nðkþ1Þ. The step is repeated successively until the eigenvector converged within a given

error.
Once the orientations of the localization band have been obtained, the corresponding vector m can be

determined from Eq. (21).
4. FEM implementation

In the following variational statement which includes the weak form of the strain–displacement equa-
tions, constitutive equations, equilibrium equations and static boundary conditions are implemented to

discretize the problemZ
V
deT~rrðeÞdV þ d

Z
V
rTðou� eÞdV ¼

Z
V
duT�bbdV þ

Z
St

duT�ttdS: ð31Þ

This variational equality must hold for any admissible variations du, de and dr. Herein, ~rrðeÞ is the stress

computed from the assumed strain through constitutive relationship, and o is a kinematic operator which
transforms displacements into strains, �bb and �tt are the prescribed forces and surface forces, respectively.

These unknown fields are interpolated as follows:

u � Nd þN cdc; ð32Þ

e � Bd þ Ge; ð33Þ

r � Ss; ð34Þ
herein N is the standard displacement interpolation matrix, B is the standard strain interpolation matrix,

N c and G are matrices containing some enhancement terms for displacements and strains respectively, S is

the stress interpolation matrix, d, dc, e and s are degrees of freedom corresponding to nodal displacements,

enhanced displacement modes, enhanced strain modes and stress parameters, respectively. The interpola-
tion shown above can lead to a large number of special techniques beside the well-known B-bar approach.

By substituting equations from (32) to (34) into the variational equality, Eq. (31), and taking into ac-

count the independence of variations, these discretized equations can be obtained:Z
V
BT~rrðBd þ GeÞdV ¼ fext; ð35Þ



3576 W. Zhou et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 3569–3584
Z
V
GT~rrðBd þ GeÞdV �

Z
V
GTS dV s ¼ 0; ð36Þ

Z
V
STBc dV dc �

Z
V
STG dV e ¼ 0; ð37Þ

Z
V
BT

c S dV s ¼ 0; ð38Þ

where oðNdÞ ¼ Bd and oðN cdÞ ¼ Bcd, Bc is the strain interpolation matrix corresponding to the dis-

placement interpolation N c. The vector of external forces f ext ¼
R
V N

T�bbdV þ
R
St
NT�ttdS. The vector of

nonstandard external forces, f c ¼
R
V N

T
c
�bbdV þ

R
St
NT

c
�ttdS may decrease to zero in the case of loads being

assumed to be applied outside the region with enhanced interpolation.

The following stress–strain equation in the rate form is adopted to linearize the function of ~rr upon d
and e,

_~rr~rr ¼ D _ee � DðB _dd þ G _eeÞ; ð39Þ
herein D � o~rr=oe is the tangential stiffness matrix of the material. Substituting Eq. (39) into Eqs. (35)–(38)

leads to a set of linear equations

Z
V

BTDB BTDG 0 0
GTDB GTDG �GTS 0

0 �STG 0 STBc

0 0 BT
c S 0

2
664

3
775dV

_dd
_ee
_ss
_ddc

8>><
>>:

9>>=
>>; ¼

_ff ext

0

0

0

8>><
>>:

9>>=
>>;: ð40Þ

Since the interpolations of stress and strain may be in discontinuous forms, the interpolation functions can

be properly selected such that each stress or strain parameter is associated with only one finite element. The

same holds for the enhanced displacement parameters, so the parameters e, s and dc can be eliminated on

the element level. thus the global equations contain only the standard displacement degree of freedom d.
There are three basic types of approaches to simplify Eq. (40) with properly selected interpolation

functions, see [5,18]. Eq. (40) will finally become

Kbb Kbg

Kgb Kgg

� �
_dd
_ee

� �
¼

_ff int

0

� �
; ð41Þ

where Kbb ¼
R
Ve
BTDBdV , Kbg ¼

R
Ve
BTDG dV , Kgb ¼

R
Ve
GTDBdV , Kgg ¼

R
Ve
GTDG dV . _ee can be elimi-

nated supposed Kgg is regular and written as

_ee ¼ �KggKgb
_dd: ð42Þ

Substituting Eq. (42) into Eq. (39) leads to

_ee � B _dd þ G _ee ¼ B _dd � GK�1
gg Kgb

_dd ¼ ðB � GK�1
gg KgbÞ _dd � B _dd; ð43Þ

where B � B � GK�1
gg Kgb is the well-known B-bar matrix.

Then the element stiffness matrix can be written as

K ¼ Kbb � KbgK
�1
gg Kgb ¼

Z
Ve

B
T
DBdV : ð44Þ

For elements satisfying the localization conditions in Section 3, the element stiffness matrix will be modified
accordingly to consider the localization effects. This modification can be easily done in the standard FEM

codes and thus enhanced the applicability of the FEM for localization problem.
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5. Case studies

For a specimen with original imperfection, several studies were performed with two potential functions

to simulate the localization of the material. Two functions adopted are Rankine criterion and Mohr–

Coulomb criterion as in Eqs. (29) and (30) (it should be noted that number k equals 2 for 2-D problem and

3 for 3-D problems).

As for Rankine criterion, namely maximum tension cut-off criterion, the potential function is defined

by

uk ¼ rðkÞ
1 � rðkÞ

t ¼ 0; k ¼ 1; 2: ð45Þ

For Mohr–Coulomb criterion, its potential function is

uk ¼ fkrðkÞ þ ck � sðkÞ ¼ 0; k ¼ 1; 2: ð46Þ
FEM analysis were performed for specimens with the above two criterion. The input data for this model

used in this study are shown as follows, initial elastic modulus E ¼ 30 GPa, Poisson�s ratio l ¼ 0:2. Other

parameters for the model are given here: r1
t ¼ 3:36 MPa, r2

t ¼ 3:60 MPa, f1 ¼ tan 30�, f1 ¼ tan 35�, c1 ¼
0:80 MPa, c1 ¼ 0:90 MPa. With these two potential functions, several studies were performed for test

specimens. These include specimens under tension or compression.
5.1. Original imperfections on the upper edge

The original shape of the specimen is shown in Fig. 3, with left edge horizontally constrained and bottom

vertically constrained. The 2-D FEM mesh consists of 8 · 7 elements embedded with discontinuity. The

displacement load is exerted on the right edge. In order to demonstrate the effects of the imperfection to the

localization bands, different positions of imperfection in the specimen were set, namely on the upper-left

corner, upper-right corner and both upper corner of the upper side.
If there is original imperfection on the upper-right corner, the shear band as shown in Fig. 4 will emerge

within the specimen. As can be seen from the figure, localization band will be triggered from the im-

perfection and form a nearly diagonal band in the specimen. If there is original imperfection on the upper-

left corner, the shear band within the specimen is shown in Fig. 5, also a nearly diagonal band start-

ing from the imperfection in the upper-left corner. If original imperfections are on both corners of the

upper edge, then two localization bands in two diagonal will form in the specimen as demonstrated in

Fig. 6.
Fig. 3. Original mesh of the specimen.



Fig. 5. Localization: imperfection on upper-left corner.

Fig. 4. Localization: imperfection on upper-right corner.
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5.2. Specimen with randomly distributed microcracks

Different ratios of vertical and horizontal displacements, say, different Uv=Uh were applied on the upper

and right side of the 2-D specimen within which the distributed microcracks were distributed randomly.

The FEM mesh for the specimen, consisting of 80 · 150 elements, is shown in Fig. 7. The vertical and
horizontal displacement Uv and Uh increments prescribed as displacement load were increased in certain

proportions as 1/0, 5/1, 1/1, )1/0, )5/)1 and )1/)1. The first three cases correspond to tensile load on one

or two sides of the specimen, while the latter three correspond to compression load on the sides.

The localization results for tension are shown in Figs. 8–10. In the uni-axial tension case, namely

Uv=Uh ¼ 1=0, the localization band is nearly perpendicular to the maximum principal stress, i.e., the di-

rection of the tensile load. This case was demonstrated in Fig. 8. When tensile load is put on the horizontal

side of the specimen, another localization band fainter than the former one nearly in the diagonal line of the

specimen was observed in the results shown in Fig. 9. Furthermore, when the ratio of the horizontal load
increases, a notable localization band appears with the former one, shown in Fig. 10.



Fig. 6. Localization: imperfection on upper corners.

Fig. 7. FEM mesh of specimen.
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Under compression, localization was detected only when the ratio of Uv to Uh equals )1/0, which is
shown in Fig. 11. Different from the pure compaction band perpendicular to the compression stress on the

vertical side, the localization band emerges with a certain angle to the horizontal line. The band is a

compacting and shearing one. No localization was detected for other two ratios.
6. Engineering case

Xiluodu arch dam to be located on the upper stream of Jinsha River in southwest China, one of the main
tributaries of Yangtze River, is under construction now. The double curvature arch dam is designed to be

278 m high and will be constructed on complex rock formations with developed horizontal faults and

fissures. Characterized data of the Xiluodu project is listed in Table 1. Three-dimensional FEM compu-

tation was performed using the multi-potential model of discontinuous bifurcation proposed in this paper



Fig. 8. Localization results when Uv=Uh ¼ 1=0.

Fig. 9. Localization results when Uv=Uh ¼ 5=1.
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in order to simulate the complex geological and fracture conditions in the bedrock masses. Altogether 9852
elements containing 11,558 nodes are simulated, and among them, 270 elements are dam body elements.

There are 11 different materials whose parameters are set to account for the complicated geological con-

ditions, including several horizontal large faults and millions of microfracture in the bed rock mass. Fig. 12

shows the coarse 3-D FEM mesh of the arch dam for the localization analysis.

Physical modeling tests, a rupture model test in order to find the limit capacity of the resistance dam

structure under static structural loads and to simulate its ultimate failure modes, have been conducted

recently. The models were reproduced to simulate the dam itself, with the dam geological formations in-

cluding several large faults and rock joints. The model scale is 1:250.
A comparison between failure patterns of the dam from both numerical analysis and the physical

rupture modeling tests with the overloading of upstream water pressure has been made to evaluate its safety



Fig. 11. Localization results when Uv=Uh ¼ �1=0.

Fig. 10. Localization results when Uv=Uh ¼ 1=1.
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and stability. The failure pattern of the arch dam from numerical analysis is shown in Fig. 13 with seven

times upstream water pressure overloading. Fig. 14 shows the results from physical modeling tests with

seven times upstream water pressure overloading. The failure pattern of the arch dam from numerical

simulation is in approximately agreement with that of the physical modeling tests.
7. Conclusion

In this paper, damage localization is analyzed as discontinuous bifurcation based on the mechanisms of

localization of jointed rock masses in the framework of multi-potential theory. In order to obtain the lo-

calization orientation, a numerical method was used to compute the solution of the eigenvalue problem



Table 1

Characterized data of the Xiluodu project

Xiluodu project

Location Jinsha River, Sichuan, China

Main function Power generation

Total installed capacity 14,400 MW

Annual power output 63,010 GWh

Project configuration Arch dam, water releasing structure, diversion channel, switch

station, log-passing system, secondary dam

Dam body

Dam type Double curvature arch dam

Max. height 278 m

Crest length 841 m

Thickness at the base of crown 14 m

Thickness at the top of crown 69 m

Max. central angle of arch (left bank) 48.74�
Max. central angle of arch (right bank) 47.44�
Upstream curvature radii range (right bank/left bank) 236.91–512.49 m/241.51–419.16 m

Downstream curvature radii range (right bank/left bank) 150.82–271.15 m/94.46–270.02 m

Fig. 12. Coarse FEM mesh of Xiluodu arch dam.

Fig. 13. Localization results from numerical analysis with seven times upstream water pressure overloading.
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resulting from the bifurcation model. To take into account the effect of localization, elements embedded

with discontinuous deformation were adopted and corresponding codes were designed into standard FEM

program. With the aid of the enhanced FEM program, localizations in several specimens were studied in
this paper. Xiluodu arch dam also serves as an example for numerical analysis. Numerical results of the

arch dam are coincided very well with those of the physical modeling tests.



Fig. 14. Failure of upstream of Xiluodu arch dam with seven times upstream water pressure overloading (physical modeling test).
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