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ABSTRACT 
 
     This paper presents a novel method of generating and packing realistic sand 
samples for discrete element modeling. In order to generate an assembly of 2D 
particles in an arbitrary container shape, a number of essential properties are identified 
and reproduced, including size distribution, packing density, possible preferred particle 
orientation, and particle shapes. Four descriptors (Elongation, Circularity, Roundness 
and Regularity) are considered to characterize these shape factors.  
 
     To generate the packing, the container is partitioned into a number of polygons 
using a Constrained Voronoi Tessellation with prescribed statistical distribution of the 
polygons sizes and orientations. An iterative stochastic method is employed to perform 
the tessellation. Each polygon of the tessellation is then filled with a virtual sand particle, 
generated randomly and accordingly to the prescribed shape features. A method based 
on the discrete Fourier transform is used for the generation. Finally, each virtual particle 
is replaced by a collection of discs, also called Overlapping Discrete Element Clusters 
(ODECs). The whole packing is then ready for use in a DEM simulation. 
 
     The proposed method has been applied to the modeling of repose angle of Toyoura 
sand in comparison with experimental results. The process of calibration of the contact 
laws in the DEM simulation is discussed, and the potential of the method in a broad 
field of applications is highlighted. 
 
 
1. INTRODUCTION 
 
     Understanding the micromechanical behaviour of granular materials has become a 
major thematic topic in several scientific fields, such as geomechanics, powder industry, 
or sedimentology. While modern experimental techniques provide an insight into the 
small-scale behaviour of granular materials (Desrues et al. 2004, Hall et al. 2010, 
Cavaretta et al. 2010), the continuous increase of computational power has led to a 
growing interest in numerical simulation of granular behavior based on a discrete 
modelling of the grain scale of granular media. 
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     The Discrete Elements Method (DEM) was first proposed by Cundall and Strack 
(1979), and has been continuously developed and improved over the past decades. 
One of the most recent challenges in such simulations is to account for the realistic 
shapes of the particles. In the field of geomechanics, for example, natural sands may 
have very different intrinsic properties, depending on their geological history and 
mineralogical composition (Blott and Pye 2008). This kind of property is expected to 
have a large influence on the mechanical behaviour of these sands, and the discrete 
methods are certainly a relevant way to investigate this influence. While the majority of 
discrete simulations were only dealing with circular (or spherical in 3D) particles due 
obviously to computational efficiency, there have been a number of attempts (Azema et 
al. 2007, Pena et al. 2007, Mollon et al. 2012, among others) incorporating more 
complex particle shapes. Though capable of simulating qualitatively the behaviour 
related to nonregular particles, these methods remain too simple to forecast accurately 
the quantitative behaviour of a granular material. 
 
     In addition to complex particle shapes, effective packing is another unsolved 
important issue. A packing method consists in generating in a given container a 
collection of particles with a desired number, density and orientation distribution. 
Gravitational deposition methods are straightforward but very time consuming and not 
suitable for arbitrary container shapes, while geometric methods may only be applied to 
circular/spherical particles. 
 
     The approach proposed in this paper combines and improves some existing 
approaches coupled with several algorithmic innovations, by following three main 
stages as described in Sections 2 to 4. Section 5 is devoted to a brief discussion on the 
accuracy and potential of the method based on two packing examples, and Section  6 
presents an application of this method to the study of a granular flow through a hopper. 
 
 
2. PARTICLE GENERATION 
 
     Describing the shape of a particle is not a straightforward task, and a large number 
of shape descriptors have been proposed in the literature. A complete review of the 
different approaches is summarized in Blott and Pye (2008). The present study only 
focuses on four different descriptors (see Fig. 1), namely the Elongation, the 
Roundness, the Circularity, and the Regularity defined as follows 
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where S is the smallest possible dimension of a grain (obtained by minimization with 
respect to an angle of rotation θ, see Fig. 1a), L is the grain dimension in the direction 
normal to the one of θ, Rinsc is the radius of the largest inscribed circle in the particle 
(Fig. 1c), the Rc terms correspond to the radii of the nc circles that approximate the 
particle contour (the method used here to fill a 2D particle with circles was proposed in 
Ferellec and McDowell (2008), and will be discussed later in the present article, see Fig. 
1b), Rcirc is the smallest circumscribed circle of the particle (see Fig. 1c), P is the 
perimeter and Pconv is the convex perimeter of the particle (Fig. 1d). 
 
 

 
 

Fig. 1. Global shape descriptors of an illustrative particle: a. Elongation=0.663 and θ=–
29.7°; b. Roundness=0.370; c. Circularity=0.746; d. Regularity=1.431 

 
 
     Besides these shape descriptors, an alternative approach proposed by Meloy (1977) 
has been used extensively later by Garboczi (2002) and Das (2007) among others. 
This approach is based on the Discrete Fourier Transform (DFT) of the contour of the 
grain. In 2D, the method consists in choosing a suitable centre O for the particle, and to 
discretize its contour in a number NP of points Pi separated by a constant angle θP with 

respect to O (i.e. such that 2
p p

Nθ π= ). Thus, each point Pi is defined by an angle θi 

and by a radial distance ri=OPi. Following the Fourier theory, the discrete signal ri(θi) 
can be represented by the following series: 
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where n is the harmonic number and N is the total number of harmonics. A DFT can be 
applied to the discrete signal ri(θi), and will provide the discrete Fourier spectrum 
{An,Bn} of this signal, such that: 
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     The average radius of the particle r0 is given by: 
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     Thus, the number N of harmonics is equal to the number of points used to discretize 
the particle contour. It was shown in Das (2007) that the normalized amplitude of the 
spectrum obtained by DFT was a relevant signature for a given population of granular 
particles with common shape properties. This normalized amplitude is given for each 
harmonic n by: 
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Fig. 2. Illustrative normalized amplitude spectrum 



  

The amplitudes {Dn} are called "Fourier descriptors". A typical normalized amplitude 
spectrum is provided in Fig. 2. The first Fourier descriptor D0 is equal to 1 because of 

the normalization, since 2 2

0n n
A B r+ = . D1 corresponds to a "shift" of the grain contour 

with respect to the position of point O, and can be set to zero if this point O is well 
chosen. It is thus not very relevant for the shape description. On the contrary, D2 is 
extremely important, since it describes the elongation of the particle. As proposed in 
Das (2007), it can be considered that the descriptors D3 to D8 define the main 
irregularities of the particle contour, and that the modes Dn for n>8 are good descriptors 
of the roughness of the particle surface. For natural sands, for example, it was shown in 
Das (2007) that these modes decrease linearly with the descriptor number in a log-log 
frame. The surface roughness of a given sand can thus be described by only a slope 
and an intercept. In order to simplify the present analysis, simple spectra will be defined 
hereafter using only the values of D2, D3, and D8. The remaining descriptors will be 
assumed to follow the expressions: 
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     Eq. (11) is analogous to the observations of Das (2007), i.e. the amplitudes of the 
modes larger than 8 decrease linearly with n in a log2-log2 frame, with a slope β. Eq. 
(10) is a similar expression for the modes 4 to 7, except that the slope is equal to α. In 
the present study, we arbitrarily state: 
 

2−== βα            (12) 

 
     The Fourier descriptors are a relevant way to characterize the shape of a particle or 
of a population of particles, but they also may be used to perform the reverse operation, 
i.e. to generate a particle with prescribed features. Generation of a relevant and 
realistic population of particles with different shapes but with the same amplitude 
spectrum may be done by considering the phase angle δn of each mode of amplitude 
Dn. For a given particle, these phase angles are defined by: 
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     Thus, a random particle with a prescribed amplitude spectrum {Dn} can be 
generated by randomly assigning a phase angle δn to each mode of order >0. Each of 
these random angles follows a uniform distribution on the interval [-π;π], and the 
discretized contour of the corresponding particle is obtained using Eq. (5), with: 
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     This generation method is applied in the present study. Two examples of grain 
generations are proposed in Fig. 3, each of them following the amplitude spectrum 
provided in Fig. 2. It clearly appears on the figure that the random phase angles lead to 
different ri(θi) signals and to different grain shapes, but with common visual features 
which can be easily recognized. 
 
 

 
 
Fig. 3. Example of random generation of two grains with the illustrative spectrum in Fig. 

2: random sampling of the phase angles, computation of the random signals r(θ), 
plotting of the corresponding particles contours. 

 
 

3. CONSTRAINED VORONOI TESSELLATION 

 
     Before being introduced in a DEM code to simulate a given system, the generated 
particles have to be packed in a realistic way. A classical way to divide a domain of 
space in several sub-domains is to use the so-called Voronoi Tessellation (Fortune 
1987), which makes use of an initial set of seeding points. It is proposed in the present 
study to use such a domain partition in order to pack an assembly of particles in a 
container, in such a way that each generated particle belongs to only one Voronoi cell. 
However, there is no direct method to generate directly a cloud of seeding points in 
such a way that their Voronoi cells follow prescribed statistical distributions in terms of 
sizes and orientations. A method called Inverse Monte-Carlo (IMC) was proposed in 
Gross and Li (2002) and Xu and Li (2009) to address this issue. The principle of this 
stochastic iterative method is to introduce randomly some modifications in a set of 
points and to accept these modifications if the statistics of the corresponding Voronoi 
tessellation are improved when compared to some target distributions. Thus, the set of 



  

points tends little by little to the desired distributions. The main stages of the method as 
proposed initially in Gross and Li (2002) are: 
 

A. Generate an initial set of points within the selected domain, and perform a 
Voronoi tessellation. 
 
B. Evaluate the statistics of this Voronoi tessellation (note that we are here 
focusing on the cells sizes and orientations, but it could be any other property, 
such as the number of neighbours or the perimeter). 
 
C. Compute an error corresponding to the discrepancy between the current and 
the target statistics. 
 
D. Move randomly one of the points of the set to another position in the domain. 
Compute the new Voronoi tessellation, and the new error value. 
 
E. If the error has been reduced with respect to the previous state, accept the 
modification. Otherwise, ignore it. 
 
F. Cycle on the steps D and E until the error is smaller than a prescribed threshold. 

 
     This algorithm is very robust, but has the drawback of being very slow if dealing with 
a large sample, because it requires the computation of the whole Voronoi tessellation at 
each cycle. We therefore proposed an improvement of the algorithm (Mollon and Zhao 
2012). It is simply a modification of the stage D of the initial IMC algorithm. This stage is 
replaced by a set of operations, which consist in only modifying the local cells around 
the moving point. This new algorithm is not straightforward to implement but has the 
advantage to increase dramatically the computation speed, especially in the case of 
large samples. Thanks to this modification, the computation time of each cycle of IMC 
is independent from the total number of points. 
 
 
4. CELL FILLING 

 
     The IMC methodology presented in the previous section makes it possible to build 
up a partition of a container-domain in a number of polygonal sub-domains with 
prescribed statistics in terms of size and orientations. In order to model accurately the 
packing of a granular assembly, each of these cells may be filled with a particle 
generated using the method presented in Section 2. However, to take advantage of the 
prescribed properties of the Voronoi tessellation obtained by IMC, the particles should 
be able to reproduce the properties (size and orientation) of the cells in which they are 
generated. A method to respect this condition when filling a polygonal cell with a 
particle with a given Fourier spectrum is proposed in this section. The principle of this 
method is to perform for each particle an optimization such that this particle should 
occupy a prescribed proportion of the surface of the polygonal cell, and that it should 
be entirely contained inside the cell. This optimization is performed for seven variables : 



  

the phase angles of the modes D2 to D7 (i.e. the modes that are considered as 
controlling the particle shape, as proposed in Section 2), and the average radius r0 of 
the particle. The particle shape is obtained from the following minimization, using the 
notations of Fig. 4: 
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where Fs is the target solid fraction of the particle in the cell (i.e. the proportion of the 
surface of the cell covered by the particle), Sp is the particle surface, S is the cell 
surface, and ri and rmax,i are the radial distances from the centre to the edges of the 
particle and of the cell respectively, for an angle θi with 1 128i≤ ≤  (if the particle contour 
is discretized by 128 points). The set of variables (r0, δ2, δ3, δ4, δ5, δ6, δ7) obtained from 
this optimization is combined with the chosen discrete normalized amplitude spectrum 
{Dn} and with random values for the remaining phase angles (δn for n>7), and the final 
contour of the particle is computed from Eqs. (14), (15), and (5). More details about the 
cell-filling algorithm and the links between the shape descriptors and the Fourier 
descriptors may be found in Mollon and Zhao (2012). 
 

 
 

Fig. 4. Notations used in the cell-filling method 
 
     The particle shape defined by this optimization method cannot be introduced directly 
in a DEM code because usual codes are not able to perform neighbourhood and 
contact detections with arbitrary shapes. One of the most convenient methods to deal 
with this issue is to use the Overlapping Discrete Element Clusters (ODEC) framework, 
as proposed in Ferellec and McDowell (2008). In this framework, the complex shape of 
the particle is filled with a collection of overlapping disks (spheres in 3D) which are 
rigidly assembled as a single "cluster". Such a cluster may then be introduced in a DEM 
code (able to handle neighbourhood and contact detections of discs or spheres), in 
such a way that no internal effort develops between the "slave elements" of a given 



  

cluster. This method is used in the remainder of this article, and the interested reader 
may find a detailed description of the ODEC algorithm in Ferellec and McDowell (2008). 
 
 
5. PACKING EXAMPLES 

 
     To illustrate the potential of the method, two packings are performed and detailed 
hereafter. They make use of the illustrative Voronoi tessellations described earlier in 
this article. These rather dense packings are composed of 500 particles each, and their 
main features are: 
 

• Example 1: large size dispersion, isotropic orientations, moderate Elongation, 
low Roundness and Regularity. 

 
• Example 2: small size dispersion, mostly horizontal orientation, elongated 

particles with high Roundness and Regularity. 
 
     The properties of size dispersion and of orientation are directly obtained from the 
characteristics of the Voronoi tessellations as described in Section 3, while the 
properties related to the shape descriptors are obtained by choosing carefully the 
discrete Fourier spectrum. The target solid fraction is set to 0.65 in both examples. The 
Fourier descriptors and resulting solid fractions are provided in Fig. 5, as well as the 
obtained packings. More precisely, for each of the two examples, Fig. 5 provides a 
detailed view of the packing, two plots of the packing for which the colours of the 
particles correspond respectively to sizes and orientations, the target and obtained size 
distributions, the target and obtained rose diagrams of the particles orientations, and 
the expected average values and obtained distributions of the four shape descriptors 
(Elongation, Roundness, Circularity and Regularity). All these results show that a fairly 
good match is obtained between the target and resulting statistics of the packings. The 
plots of the two packings illustrate the potential of the method and its ability to generate 
a wide range of granular materials in very diverse configurations. 



  

 
 
Fig. 5. Two detailed examples of packing: (a1, a2) Detailed view of the packing; (b1, b2) 

Particle sizes; (c1, c2) Particle orientations; (d1, d2) Target and obtained size 
distributions; (e1, e2) Rose diagram of the target and obtained orientation distributions; 
(f1, f2) Target value and obtained distribution of Elongation; (g1, g2) Target value and 
obtained distribution of Roundness; (h1, h2) Target value and obtained distribution of 

Circularity; (i1, i2) Target value and obtained distribution of Regularity 



  

 6. APPLICATION TO A GRANULAR FLOW THROUGH A HOPPER 

 
     In this section, a simple demonstrative example is shown by employing the 
aforementioned approaches to reproduce some experimental results obtained by 
Nakashima et al. (2011). Nakashima et al. (2011) have conducted their experiments by 
flowing Toyoura sand through a hopper under different gravity conditions (though we 
are only focusing here on the results obtained under 1G). 
 

 
 

Fig. 6. Layout of the simulation 
 
 
     The Fourier spectrum of Toyoura sand is obtained from Das (2007), and the true 
size distribution (D50=0.2mm, Cu=1.24) of this sand is used to replicate the experiments. 
However, in order to limit the computational cost, the scale of the experimental 
apparatus is reduced by a factor 10, leading to the final dimensions shown in Fig. 6. 
Moreover, the experiment is simplified to a 2D framework wherein the packing method 
described in the previous sections is used to generate the sand sample (1500 particles, 
each composed of approximately 20 overlapping discs). The obtained granular system 
is introduced in the commercial software Itasca PFC2D to simulate the hopper flow. In 
the simulation, the following mechanical parameters are adopted: 
 
 

Table 1. Mechanical parameters of the PFC2D simulation 
 

Local damping coefficient 0.7 

Contact normal and tangential stiffness 105 

Contact friction coefficient 0.05 



  

     The simulated flow and deposition processes of the sand sample are plotted in Fig. 
7 (colours corresponding to the velocities of the grain). It appears in this figure that the 
velocity field in the hopper and during the deposition is not symmetric and not 
continuous. This flow complexity, likely to be related to the non-circularity of the 
particles, will be the topic of future studies. Fig. 8 shows a detailed view of the sand 
deposit. A post-processing algorithm similar to the one described in Mollon et al. (2012) 
is used to determine a close envelope of the deposit, as shown in white solid line in the 
figure. Such an envelope may be useful, for example to assess the global void ratio of 
the deposit. 
 
 

 
 

Fig. 7. Granular flow through the hopper and deposition (colour indicates velocity) 
 
 

 
 

Fig. 8. Geometry and contour of the final deposit 
 

 
     A sensitivity study is performed on the three mechanical parameters (local damping, 
contact stiffness, and contact friction) to evaluate their relative influence on the shape 
of the deposit. The results are plotted in Fig. 9. As is shown, both the contact stiffness 
and the contact friction have a significant influence on the repose angle, while the local 



  

damping does not. It also appears that the small number of particles used here is not 
sufficient to achieve a realistic triangular shape for the deposit, and that it is therefore 
very difficult to obtain a reliable value of the numerical repose angle. However, a 
comparison with the expected deposit shape (plotted in Fig. 9 using the repose angle 
obtained experimentally in Nakashima et al. 2011) shows that this simulation is able to 
reproduce some satisfying deposition behaviours using very low values of the contact 
friction coefficient (between 0 and 0.1). For comparison, it is reported in Nakashima et 
al. (2011) that a contact friction coefficient of 0.6 coupled with a coefficient of rolling 
friction of 1.6*10-5 was required to reproduce the experimental results with a discrete 
modelling based on disc-elements. The use of complex-shaped elements thus allows a 
realistic modelling of sands without using the coefficient of rolling friction, which is a 
parameter quite difficult to calibrate. 
 
 

 
 

Fig. 9. Sensitivity study on the mechanical parameters of the simulation (Damping 
coefficient, contact stiffness, and contact friction coefficient) 



  

 
CONCLUSION 

 

     This article presents a new method for the generation and packing of samples of 
granular materials for introduction in a DEM code. Compared to existing methods, this 
new framework has the advantage to be able to deal with complex particle shapes and 
anisotropic particle orientations, in any container geometry. The proposed method is 
based on several existing approaches developed in different frameworks as well as on 
several algorithmic innovations. Its main principles are (i) to generate a Constrained 
Voronoi Tessellation of the container in a large number of polygonal subdomains 
respecting some target statistics in terms of sizes and orientations, and (ii) to fill each of 
these subdomains with a virtual particle respecting some target shape characteristics. 
To achieve the first of these goals, an existing stochastic and iterative method called 
Inverse Monte-Carlo (IMC) method was chosen, improved, implemented and fully 
tested. The second purpose of the study was fulfilled by using a new method of random 
particle generation based on the Fourier Descriptors approach, and by developing an 
original algorithm to fill efficiently each Voronoi cell with such a generated particle. As 
shown in the two examples developed in the article, the proposed packing methodology 
makes it possible to generate a wide range of granular samples, with very different 
characteristics in terms of container shape, particle number, size distribution, particles 
orientations, elongations, shapes, and packing density. In the framework of 
computational geomechanics, the experimental data already available in scientific 
literature (such as the Fourier amplitude spectra provided in Das (2007) for several 
sands) make it possible to apply this method directly to the modelling of real materials. 
A short example of application is provided in the last section of this article, which 
describes the simulation of sand flow through a hopper and deposition. This example 
emphasizes the potential of the proposed packing methodology in a wide range of 
applications. 
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