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Abstract. In this article, we present simulations of 3D hopper flows through conical hoppers, with a focus 
on time fluctuations of flow-related quantities (velocity, coordination number and solid fraction). Dedicated 
post-processing techniques are used to obtain local and yet statistically meaningful measurements of these 
quantities. Simulations show that the fluctuations that were already observed in 2D hopper flows are still 
present in 3D. A parametric study also demonstrates that the frequency of the fluctuations is strongly related 
to the stiffness parameter of the contact law used in the simulations. 

1 Introduction 
Fluctuations of granular flows in conical hoppers have 
been reported both experimentally [1-3] and numerically 
[4-6] in the granular science literature. They are often 
attributed to intermittent arch networks above the outlet 
of hoppers which trigger high-frequency instationarities 
of the flow [6], or stress-related static avalanches [1]. In 
a previous work in 2D [3], we demonstrated that these 
instationarities take the form of organized waves which 
propagate upstream in the hopper. However, conclusions 
drawn in 2D do not necessarily apply in 3D, since the 
stability, strength and dynamics of force chains are 
rather different in both topologies. The 3D case is 
investigated here in a similar DEM framework, in order 
to determine (i) if these organized instationarities do 
exist in a 3D topology and (ii) if they do behave as 
acceleration waves propagating upwards. Besides, the 
results of the first stage of a comprehensive parametric 
study are presented and their implications on discrete 
modelling of granular flows are detailed. 
 

2 Simulations  
In order to study flow fluctuations, simulations are 
driven in the standard DEM framework. Spherical 
particles are used, with a unit density, a unit average 
diameter (this diameter is used all along this paper as a 
unit for distances) and a moderate polydispersity (i.e. a 
coefficient of variation of the grains volumes equal to 
0.4). Contacts between grains and with walls are 
penalized in the normal and tangential direction by a 
contact stiffness Kn. Normal kinetic energy is damped by 
a viscous dashpot with a dissipation parameter of 0.2 
(with the classical definition, see e.g. [5]). In the 
tangential direction, Coulomb friction is considered, with 
a coefficient of 0.4. The equations of motion are solved 
with a velocity-Verlet explicit scheme. Since linear 

contact laws (in displacement and velocity) are used, 
classical scaling rules make it possible to generalize 
these results to other geometries (in contrast with the 
remarks of [7], into which nonlinear stiffness and normal 
damping are used). The hopper has a conical shape, with 
an opening angle equal to 70°. Its outlet is a circle of 
diameter 10. It is filled with approximately 50,000 grains 
which are deposited under gravity. The outlet is then 
opened a t=0, triggering the flow through the hopper. 

 Fig. 1 shows the proportion of material passed through 
the outlet along time, for various values of the contact 
stiffness ranging from Kn=104 to 108. It appears from this 
figure that the flow rate is constant (i.e. independent 
from the height of material in the hopper) and does not 
depend on the contact stiffness. 

 
Fig. 1. Proportion of material passed through the hopper in 
time, for different values of the contact stiffness. 
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3 Fluctuations  
In the remainder of this article, attention is paid to a 
narrow time period (between instants t=5 and t=7), 
illustrated in Fig. 1 and called hereafter the "interval of 
observation". Fig. 2 shows two snapshots of the velocity 
fields (i.e. velocity norms of each grain), at two close 
instants in this interval, for the simulation corresponding 
to Kn=106. From these snapshots, it clearly appears that 
the velocity field is not stationary. 

 

Fig. 2. Time fluctuations of the velocity field. 
 

In order to characterize in a more quantitative way these 
fluctuations, appropriate data processing is needed. 
Indeed, some relevant data are attached to grains (e.g. 
velocity and coordination number, i.e. number of 
contacts per grain), while some others are attached to 
collections of grains (e.g. solid fraction). In any case, all 
these quantities do follow the grains in their motion, as 
always in a Lagrangian framework. Conversely, a proper 
statistical analysis requires an Eulerian description, 
where quantities are attached to fixed spatial locations. 
For this purpose, two different approaches are used: 

-grain-related quantities (velocity and coordination 
number) are interpolated at fixed locations between 
grains using moving least squares, in a spherical domain 
with a radius equal to 5 distance units around the desired 
location.  

-A local solid fraction at a given location (x,y,z) of space 
is computed by a weighted averaging technique which 
complies with the principle of mass conservation: 

                    Fs(x,y,z)=(πd2)3/2 ΣVie-ri(x,y,z)/d  (1) 

In this expression Vi corresponds to the volume of the 
grain i, ri(x,y,z) corresponds to the distance from the 
centre of this grain to the location (x,y,z), and the 
summation is executed on all the grains located in a 
sphere of radius d=8 around this location. 

These post-processing techniques are used to analyse the 
evolutions of velocity, coordination number and solid 
fraction along a vertical profile located on the axis of 
revolution of the hopper. This is performed every 0.002 

time units during the interval of observation, in order to 
draw an accurate picture of the fluctuations of the hopper 
flow. Acquired data are summarized in Fig. 3. 

In this figure, it clearly appears that the fields of 
velocity, coordination number and solid fractions are 
submitted to organized variations, albeit to various 
extents. Velocity and coordination number seem to obey 
to unpredictable fluctuations in the lower part of the 
hopper (i.e. below a height of 5 average diameters for 
coordination number, and 15 for velocity) and to evolve 
towards organized and periodic patterns above this 
height. Regarding velocity, the intensity of these 
fluctuations is rather limited, while the coordination 
number fluctuates more strongly, especially in the upper 
part of the flow. 

Solid fraction, in contrast, shows extremely faint 
fluctuations (Fig. 3c.-left), with an interplay between two 
patterns (Fig. 3c.-right): some slow variations related to 
the downward motion of organized clusters of grains, 
and some rapid fluctuations with the same period as 
those of velocity and coordination number. 

 

4 Influence of contact stiffness  
In many mechanical systems, especially in continuum 
and structural mechanics, natural oscillations are related 
to the dynamic interplay between density and stiffness 
(like for example in the spring-mass classical system). In 
a granular system composed of rigid grains, the only 
stiffness (i.e. ratio between a force and a displacement) 
in the system is the contact stiffness. This parameter is 
well-known for controlling the local oscillations, 
because the period of the most frequent eigenmode of 
the system drives the time step used for resolution, and 
hence the simulation cost. 

To investigate the influence of the contact stiffness on 
the fluctuations, this parameter is varied from 104 to 108, 
i.e. over 4 decades. Fig. 4 shows two space-time 
diagrams corresponding to the evolution of the 
coordination number on the vertical axis of revolution of 
the hopper, for values of the stiffness equal to 105 and 
107. 

It appears that the contact stiffness has a large influence 
on the flow fluctuations. When the stiffness is small (i.e. 
soft contacts), the fluctuations occur at a lower 
frequency, and the velocity of propagation of the 
upstream "waves" (i.e. the slope of the patterns observed 
in the space-time diagram) is quite low. On the contrary, 
when the stiffness is high (i.e. hard contacts), 
fluctuations are very frequent, and there is no noticeable 
upwards propagation of the pattern (or this propagation 
occurs too fast to be observed at this sampling rate and 
the fluctuations appear synchronized in space). In both 
cases, the amplitudes of the variations seem to be rather 
similar. 
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Fig. 3. Statistics of several quantities during the interval of observation. Left: Time-averaged values (plus and minus one time-related 
standard deviation) as a function of the vertical position ; Right: Space-time diagrams ; a. Coordination number ; b. Velocity ; c. 
Solid fraction. For b. and c., quantities were normalized in the space-time diagrams to enhance the visibility of fluctuations: to each 
local instantaneous value, the local time-average was subtracted, and the result was divided by the local time-related standard 
deviation.
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Fig. 4. Space-time diagrams of the coordination number for two different values of the contact stiffness. a. Kn=105 ; b. Kn=107.

Fig. 5 provides the evolution of the main frequency of 
the fluctuations (obtained by computing the 
autocorrelation function of the time evolution of the 
coordination number at a height of 40 average diameters 
and by running a peak search) as a function of the 
contact stiffness. This figure clearly shows that the 
period is proportional to the inverse square root of the 
contact stiffness. 

This behaviour is typical of eigenmodes in structural 
mechanics, but is rather surprising in the framework of 
granular mechanics because the fluctuations observed 
here are not local, but are at the scale of the system. 
Besides, this result seems to indicate that the same 
eigenmode is activated in all the five simulations, 
whatever the value of the contact stiffness. The dynamic 
mechanisms leading this system to evolve towards 
established excitations of a given mode of vibration are 
yet to be understood.  

 
Fig. 5. Influence of the contact stiffness on the main period of 
the fluctuations. 

5 Conclusion and prospects  
The preliminary results reported in this communication 
indicate that granular flows through 3D conical hoppers 

are spontaneously submitted to organized and periodic 
fluctuations, in a way similar to the 2D case. It appears 
that the main period of these fluctuations scales with the 
inverse square root of the contact stiffness. 

This finding gives rise to several questions, among 
which an important one is related to the way contact 
stiffness is considered in a modelling framework. 
Indeed, this parameter may be either considered as a 
physical parameter (accounting for the deformability of 
the grains, in which case it is related to their Young 
modulus and Poisson ratio) or as a numerical parameter 
(as a penalization of the contact interpenetration, like in 
FEM contacts). The latter situation is more common, 
because (i) accounting for a realistic stiffness of the 
grains usually leads to very stiff contacts and to 
prohibitive computational costs, and (ii) it is often found 
that this parameter has no influence on the physical 
phenomena of interest for the modeller (see e.g. Fig. 1). 

Based on the results of the present paper, it appears that, 
if fluctuations are the actual phenomenon that the 
modeller wishes to investigate, then the contact stiffness 
should be considered as a physical parameter and chosen 
appropriately to reflect the actual stiffness of the grains. 
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