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ABSTRACT 

Limit analysis is widely used to evaluate the stability of structures in civil engineering. In comparison with 
elasto-plastic analysis, limit analysis can avoid the complicated computation of incremental analysis. A solution 
procedure based on radial point interpolation method for upper bound limit analysis of structures is presented. 
For evaluating the integrations of the external work rate and internal power dissipation rate, a new meshless 
integration technique based on Cartesian Transformation Method (CTM) was used to transform the domain 
integral into a boundary integral and a 1D integral. Finally, the nonlinear optimization problem derived from the 
upper bound limit analysis can be solved based on distinguishing rigid/plastic zones. And some examples of 
stability analysis show that this approach is a valid and simple technique. 
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INTRODUCTION

Limit analysis is a powerful method for stability analysis and limit bearing capacity of engineering structures. In 
geotechnical engineering, upper bound limit analysis is widely used to analyze the slope stability. Drucker (1952) 
firstly presented limit analysis based on plastic limit theorem, and then Chen (1975) introduced limit analysis 
into the geotechnical engineering for analyzing the bearing capacity, earth pressure on retaining wall and slope 
stability. It takes advantage of the lower and upper theorems of classical plasticity to bracket the true solution 
from a lower bound to an upper bound. However, it is difficult to obtain analytical solution for practical 
engineering, and numerical approaches are often required for limit analysis. In the past three decades, many 
studies have been devoted to developing numerical methods of limit analysis.  

Many researchers (Lysmer 1970; Anderheggen and Knopfel 1972; Bottero et al. 1980; Sloan 1988, 1989; Sloan 
and Kleeman 1995) constructed numerical limit analysis based on finite element method and linear 
programming theory, where the general yield criterion often was linearized to a convex polyhedron, and the 
nonlinear inequalities were approximated by a set of linear inequalities. Especially for the slope stability 
analysis, following the related work by Sloan and Kleeman (1995), some researchers (Yu et al. 1998; Kim et al. 
1999; Kim et al. 2002, etc) have applied the lower and upper bound approach to evaluate the slope stability. On 
the other hand, following the work of Zouain et al. (1993), Lyamin and Sloan (2002) proposed a nonlinear 
numerical method to perform upper and lower bound limit analysis based on linear finite elements and nonlinear 
programming. The results showed that their approach is vastly superior to a widely used linear programming 
formulation, especially for large scale applications. However, this approach has a potential difficulty in applying 
these formulations is that special stress or displacement finite elements need to be used. Therefore, an 
alternative nonlinear technique which named the direct iterative algorithm is used to perform limit analysis of 
non-frictional materials (Zhang et al., 1991; Liu et al., 1995; Capsoni and Corradi, 1997). Following these ideas, 
Li and Yu (2006) extended the direct iterative algorithm to calculate plastic collapse loads of 2D and 3D 
structures obeying the ellipsoid yield criterion. In these approaches, upper bound limit analysis of structures is 
formulated as a nonlinear optimization problem with a single equality constraint, and a technique based on 
distinguishing rigid/plastic zones was adopted to solve this special nonlinear constrained optimization problem.  
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Recently, as the development of finite element method, a so-called ‘meshless’ method has attracted more 
attention in the field of numerical method. Recently, Chen et al. (2008) and Le et al. (2009, 2010) constructed 
lower and upper formulation of limit analysis based element-free Galerkin (EFG) method which first proposed 
by Belytschko et al. (1994). Although the EFG method has been successfully applied to the lower and upper 
bound approaches, two issues are still not well studied: 1) difficulties in the enforcement of essential boundary 
conditions. This is because its shape function which calculated based on the moving least square method (MLS) 
is lack of Kronecher delta function property, i.e., where is the Kronecker delta function; 2) complexity in 
numerical algorithms for calculating shape function and its derivatives. For two issues, the one of approach is 
so-called radial point interpolation method (RPIM) proposed by Wang and Liu (2002). The RPIM shape 
functions have the Kronecker delta function property and partitions of unity. Therefore, the essential boundary 
conditions could be easily enforced. Furthermore, the accuracy of RPIM is higher than that of the MLS (Liu and 
Gu 2005). On the other hand, regarding the integral strategy, some truly meshless methods commonly rely on 
the nodal integration technique. However, direct nodal integration is unstable because of under-integration and 
vanishing derivatives of shape functions at the nodes. To overcome this difficulty, Beissel and Belytschko (1996) 
added a residual of the equilibrium equation terms to the potential energy functional for stabilizing nodal 
integration. However, Beissel and Belytschko (1996) stated that the accuracy of this method is less than that of 
the original EFG method. Up-to-date stabilized conforming nodal integration technique is proposed by Chen et 
al. (2001, 2002), they modified the shape functions prior to nodal integration, even though this method is 
considered as a robust integration technique, it is based on the construction of a Voronoi diagram. So it cannot 
be considered a true meshless method. Recently, Khosravifard and Hematiyan (2010) proposed a new meshless 
integration technique based on Cartesian Transformation Method (CTM), in their method a domain integral is 
transformed into a boundary integral and a 1D integral. 

In this paper, we reformulated the upper bound limit analysis of structures using the nonlinear programming 
theory and the RPIM method, and the new integration technique proposed by Khosravifard and Hematiyan 
(2010) to calculate the internal dissipation power and external work rate. And the present method was used to 
calculate the limit loading parameter of a vertical slope. The layout of this paper is as follows: Section 2 briefly 
describes the upper bound limit analysis formulation for an ellipsoid yield function using RPIM method and 
CTM integration. A direct iterative algorithm based on Lagrange method is used to solve the nonlinear 
programming problem in Section 3. Numerical example for vertical slope is provided in Section 4 to illustrate 
the validity of the present method. 

NUMERICAL FORMULATION FOR UPPER BOUND APPROACH BASED ON RPIM MESHLESS 
METHOD
The upper bound theorem 

The upper bound theorem of limit analysis states: among all kinematically admissible velocities (that is the 
plastic admissible strains), the real one yields the lowest rate of plastic dissipation power (Drucker and Prager 
1952) 

* * *T T

V V

D dV d dVT u f u                                                     (1) 

where  is the limit load multiplier, T is the basic load vector of surface tractions, f is the body force vector, u* is 
the kinematic admissible velocity vector, D( * ) denotes the function for the rate of the plastic dissipation power 
in terms of the admissible strain rate * ,  denotes the traction boundary, and V denotes the space domain of 
the structure. Here, the kinematic admissible velocity vector u* must satisfy the following two conditions (Chen 
2002): 
1) Compatibility and velocity bound conditions 

* * *1 in
2

Vu u                                                            (2a) 

uon* uu                                                                     (2b) 
2) The yield criteria function 

0f                                                                             (3) 
The above two conditions can be related by the associated flow rule, i.e., 

* f                                                                          (4) 

where u denotes the displacement boundary;   is the non-negative plastic multiplier. Therefore, the solution 
of limit load multiplier based on upper bound theorem can be formulated as the following mathematical 
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programming problems (the surface traction is omitted) 
*

*

* * *

*

min

. . 1

1 in
2

                      on 

V

T

V

u

D dV

s t dV

V

f u

u u

u u

                                                         (5) 

From the optimum of limit loading multiplier opt, the limit loading can be computed according to the following 
equation: 

lim optf f                                                                            (6) 

Nonlinear optimization problems for the plane strain von-Mises yield criterion 

In general, the slope stability problems are treated as the plain strain problems in geotechnical engineering. For 
the plain strain condition, the von-Mises (or Tresca) yield criterion can be written as (Pastor, 2000) 

2 21 0
4 x y xyf c                                                         (7) 

where c is the cohesion. According to the associated flow rule, the power of dissipation can be formulated as a 
function of strain rates as (Capsoni and Corradi, 1997) 

TD                                                                         (8) 
where 

2 2

2 2

2

0
0

0 0

c c
c c

c
                                                                      (9) 

Therefore, the mathematical programming problem (5) of finding the upper bound solution of limit loading 
multiplier can be formulated as the following nonlinear optimization problem: 
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                                                       (10) 

Radial point interpolation method 

The approximation of the field variables of interest x using radial point interpolation method (RPIM) can be 
expressed in the following form (Liu and Gu, 2005): 

1( ) sT T
q m su

U
x R x P x G x U

0
                                                  (7) 

where u(x) is the function of field variables, Us={u1, u2, …, un}T is the vector of function values, (x) is the 
RPIM shape functions corresponding to the nodal value and given by 

1
1 2

T T
q m nx R x P x G x x x                                       (8) 

in which, Rq is the moment matrix of the radial basis function (RBF) given by 
1 1 2 1 1

1 2 2 2 2

1 2

n

n
q

n n n n n n

R R R
R R R

R R R

x x x
x x x

R

x x x

                                                     (9) 

and Pm the polynomial moment matrix is defined as follows 
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1 1 2 1 1
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P

x x x

                                                     (10) 

and the matrix G is defined as 
q m
T
m

R P
G

P 0
                                                                 (11) 

Therefore, the k-th element of shape function can be expressed as follows, 

, ,
1 1

n m

k i ji k n j k
i j

R G p Gx x x                                              (12) 

where G(i,k) is the element of matrix G-1. A classical RBF is multiquadric basis (MQ), which has the following 
form (Gu and Liu, 2005): 

2 2 2 q

i i i c cR x x y y dx                                               (13) 

where c and q are two shape parameters, dc is the character length that relates to the nodal spacing in the local 
support domain. In addition, the complete polynomial basis of order p for two-dimensional domains can be 
written in the following form (Gu and Liu, 2005): 

2 21T p px y x xy y x yP x                                              (14) 

If the function u(x) stands for the displacement field for two-dimensional domains, it can be interpolated from 
the vectors of nodal function value and RPIM shape function corresponding to the nodal value, i.e., 

1 1

0
( ) ( )

0

n n
I I

I I
I II I

u
v

u x x u                                                    (15) 

where I(x) is the matrix of shape function of node I, and uI is the nodal displacements. And, the derivatives of 
the RPIM shape functions can be formulated as follows (Wang and Liu 2002): 

, ,
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n m
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pR
G G

x x x
                                                (17a) 
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According to the approximation of displacement field function, the plastic admissible strains can be expressed 
as

1
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where B is the strain matrix. Therefore, substituting Eq. (18) into nonlinear programming problem, the 
discretized formulation of upper bound approach based on RPIM meshless method can be expressed as follows: 

min

. . 1
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                                                       (19) 

A new integration method based on CTM 

In the numerical formulation of nonlinear programming problem (19) based on RPIM, the main task is to 
calculate the integration in the objective function and constrained equations. Recently, Khosravifard and 
Hematiyan (2010) proposed a new meshless integration technique based on Cartesian Transformation Method 
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(CTM), in their method a domain integral is transformed into a boundary integral and a 1D integral. According
to the CTM integral technique, the integral can be calculated in terms of the following formulation, for 2D 
problems: 

2 2

1

Gn
D D

i i
i

I W fW F x x                                                           (20) 

where 
2D x y x y

i i i i iW J J w wx
and xi is the Gaussian points, i=1,…,nG, where nG is the number of the Gaussian points. Furthermore, by 
introducing the transformation matrix Ce, the nodal velocity vector uI  for each node can be expressed by the 
global nodal velocity vector U for the slope, i.e 

I eu C U                                                                            (21) 

Therefore, the objective function of nonlinear programming problem (19) can be reformulated as follows: 
2

1

Gn
D T

i i
i

I W x U K U                                                               (22) 

where 
T T

i e eK C D DC

On the other hand, the integral of external work rate can be calculated by using 1-D Gaussian quadrature method, 
and the nodal traction force vector F can be expressed as follows 

1

ct Gtn n
TT

il i i e
l i

J wF x f x C                                                       (23) 

Therefore, the RPIM formulation of nonlinear programming (19) can be finally expressed as follows: 
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                                                        (24) 

where KvU=0 is the plastic incompressibility should be satisfied for the materials with von Mises’ or Hill’s yield 
criterion, the matrix Kv can be expressed as follows: 

v v eK D C ; 1 2v v v vnD D D D ; , , ; 1, ,vi i x i y i nD

In addition, it should be pointed out the velocity boundary conditions can be imposed by means of the 
conventional finite element technique due to the use of radial point interpolation shape function in this study. 

THE DIRECT ITERATIVE METHOD 

For the nonlinear programming problem (24), there is a calculation of square root which could make the 
objective function unsmooth and nondifferentiable. This causes some difficulties in solving the nonlinear 
programming problem. Following the work of Li and Yu (2006), it can be overcome using an iterative algorithm 
for distinguishing rigid/plastic zones. At first, the NLP (24) are transformed into an unconstrained optimization 
problem using Lagrange method. The Lagrange function is the following form: 

2 2

1 1
, 2 1

G Gn n
TD T D T

i i i v v
i i

L W WU x U K U x K U K U F U                    (25) 

where  is the Lagrange multiplier. Following the work of Li and Yu (2005), an iterative control parameter ICP

was defined as follows: 
ICP T

iU K U                                                                     (26) 
And then, the Lagrange function can be reformulated as: 

2 2

1 1
, 2 1

G G
Tn n

i TD D T
i i v vICP

i i
L W W

U K U
U x x K U K U F U                  (27) 

For finding all rigid regions, the following iterative process is needed. 
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Step1: initializing the nonlinear objective function 

Let iterative control parameter ICP=1, then, the initial nodal displacement velocity can be estimated by solving 
the following equation system: 

2
0 0

1

0 1

Gn
D T

i i v v
i
T

W x K K K U F

f U
                                                    (28) 

and the initial load multiplier  can be calculated by using: 
2

0 0 0
1

Gn
D T

i i
i

W x U K U                                                             (29) 

Step k+1 (k=0, 1, 2 …): distinguishing the nondifferentiable areas to revise the objective function 

Based on the results at step k, the value of ICP need to be calculated at very Gaussian integral point of CTM, 
then the Gaussian integral point set S will be subdivided into two subsets: the subset 1k

rS  where the object 
function is not differentiable and the subset 1k

PS  where the object function is differentiable, i.e., 
1 1, 0 ; , 0k ICP k ICP

r pS i S S i S                                             (30) 

For ICP=0, the original optimization problem can be solved in terms of the following problem: 
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The revised NLP problem can be solved in terms of the following equation system: 

1 1 1

2 2 21
1 1 1
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By solving the Eq. (32), we can obtain the nodal velocity and limit load multiplier at this step 
2

1 1 1
1

Gn
D T

k i k i k
i

W x U K U                                                        (33) 

The above iterative process is repeated until the following convergence criteria are satisfied 
1 1

1 2
1 1

;k k k k

k k

U U
U

                                                       (34) 

where 1 and 2 are the computational error tolerances. 

UPPER BOUND FOR THE HEIGHT LIMIT OF A VERTICAL SLOPE 

The height limit of a vertical slope is a classical problem of limit analysis or yield design theory. The vertical 
slope (See Figure 1) is subjected only to own weight. The soil is homogeneous and isotropic, and its cohesion is 
c, unit weight is . According to the research by Pastor et al. (2000), the new bounds of limit loading parameter 
is as follows: 

3.7603 3.7859HQ
c

                                                              (35) 
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Figure 1 The model of critical height of a vertical slope

(a)                              (b) 
Figure 2 The layout of the field nodes: (a) regular; (b) irregular

For this test problem, two types of layout of field nodes as shown in Figure 2 can be used to discretize the 
domain. And then, the RPIM shape function can be constructed based on the discretization of field nodes. For a 
reliable RPIM shape function construction, a T2L-Scheme proposed by Liu (2010) is used to select local 
supporting nodes. On the other hand, the interpolation accuracy of RPIM can also be affected by the 
dimensionless shape parameters c, q and numbers of field nodes. Therefore, these parameters should be 
analysed one by one.  

Firstly, the shape parameters c=4 and q=0.5 are fixed for analysing the effect of nodal layout on the limit 
loading parameter Q . In addition, the optimal parameters for the direct iterative algorithm can be chose 
according to the research of Li and Yu (2006). And the computational error tolerances 1= 2=0.001 are fixed.  

0 10 20 30 40 50 60 70
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Iteration Step

Li
m

it 
Lo

ad
in

g 
M

ul
tip

lie
r

95 nodes, 576 integral points
95 nodes, 1024 integral points
141 nodes, 576 integral points
141 nodes, 1024 integral points
186 nodes, 576 integral points
186 nodes, 1024 integral points
224 nodes, 576 integral points
224 nodes, 1024 integral points
264 nodes, 576 integral points
264 nodes, 1024 integral points
303 nodes, 576 integral points
303 nodes, 1024 integral points
376 nodes, 576 integral points
376 nodes, 1024 integral points
389 nodes, 576 integral points
389 nodes, 1024 integral points
518 nodes, 1024 integral points
577 nodes, 1024 integral points
701 nodes, 1024 integral points

Figure 3 The convergence sequence of limit loading multiplier with iterative steps for irregular nodal layout 
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Table 1 The results of limit load multiplier for irregular nodal layout (576 integral points) 
Nodes 95 141 186 224 264 303 376 389 

2.496 2.242 2.163 2.102 1.954 1.921 1.814 1.784 
Q 9.985 8.968 8.650 8.407 7.825 7.682 7.257 7.137 

errors 58% 42% 37% 33% 23% 21% 15% 13% 
Runtime (s) -- -- -- 29 48 92 195 171 

Table 2 The results of limit load multiplier for irregular nodal layout (1024 integral points) 
Nodes 95 141 186 224 264 303 376 389 518 577 701 

2.509 2.293 2.219 2.157 2.086 2.084 2.007 2.025 1.847 1.837 1.662 
Q 10.037 9.170 8.877 8.627 8.345 8.335 8.028 8.098 7.387 7.348 6.650 

errors 59% 45% 41% 37% 32% 32% 27% 28% 17% 16% 0.5% 
Runtime (s) -- -- -- 42 73 112 171 171 701 902 1360 

With the above parameters, the optimal value of limit loading multiplier can be found using the direct iterative 
algorithm based on regular and irregular nodal layout. The convergence of limit loading multiplier with iterative 
steps for irregular nodal layout is shown in Figure 3. The optimal value of limit multiplier and the corresponding 
limit loading parameter for 576 and 1024 integral points are shown in Table 1 and Table2 respectively. As the 
same numbers of integral point, the accuracy of limit loading parameter will increase with the increasing 
numbers of field node (see Figure 5a). For regular nodal layout, the convergence sequence of limit multiplier 
with iterative steps is shown in Figure 4. And the optimal value of limit multiplier and the corresponding limit 
loading parameter for different integral points are shown in Table 3. In this case, the number of integral points 
dependents on that of field nodes, hence, the accuracy of limit loading parameter is analysed just for the 
different numbers of field node. From the Figure 5b and Table3, the accuracy of limit loading parameter will 
also increase with the increasing numbers of field node.  
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Figure 5 The limit loading multiplier with different numbers of field nodes: (a) irregular nodal layout, and (b) 

regular nodal layout 
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Table 3 The results of limit load multiplier for irregular nodal layout  
Nodes 83 293 446 631 

3.108 2.203 2.215 1.575
Q 12.432 8.813 8.500 6.287

errors 97% 40% 35% 0.04%
Runtime (s) 0.1 35 194 1169 

By comparing the results of limit load parameter listed in Tables1, 2 and 3 (see Figure 5), it is very apparent that 
the accuracy of limit load parameter for regular nodal layout is higher than that of irregular layout. However, the 
reason of difference between two nodal layouts is not analysed here, and it will be further studied in the 
following research works. 

CONCLUSIONS AND DISCUSSIONS 

In this paper, a new formulation of upper bound approach based on RPIM and nonlinear programming is 
proposed. In the present method, the CTM integration method is used to calculate the internal dissipation, and 
the direct iterative algorithm is used to solve nonlinear programming for finding the optimal value of limit 
loading parameter of vertical slope. By the classical vertical slope stability problem, the validity of the present 
method is verified in this paper. The accuracy of limit loading parameter mainly depends on the number of field 
nodes and integral points. On the other hand, the accuracy of limit loading parameter for regular nodal layout is 
higher than that of irregular layout. The reasons of different accuracy need to be further studied. It may be 
carried out from the following two aspects, i.e., the CTM integration method and interpolation of RPIM shape 
function. 
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