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Introduction

Landslides are one of the major natural hazards that greatly threaten
human life and property in many countries. Great effort has thus
been paid around the world every year to monitoring and analyzing
the stability of soil and rock slopes. The limit equilibrium method
(LEM;Ahmed et al. 2012) and limit analysis based on the upper and
lower bound theorems have been widely used for slope stability
analysis and design. In both of these approaches to slope stability
analysis, two classical types of failure mechanisms have frequently
been assumed, namely, sliding and rotational failures. Although the
planar or circular sliding failure mechanism has commonly been
adopted inmany studies, rotational failure can be the keymechanism
controlling the failure of a slope in some cases. For example, in
analyzing the failure of the north face of the Vajont slide, Müller
(1968) suggested that block rotation or toppling may have been
a contributing factor. Chen (1975) also remarked that, in the limit
equilibrium analysis of a uniform soil slope, most critical slip
surfaces have been based on the assumption of a rigid body rotation
failure mechanism with such surface shape as logarithmic spiral.
Indeed, toppling failure may be a more important failure mode in the
case of a rock slope. Following the earliest mathematical solution of
toppling proposed by Goodman and Bray (1976), Zanbak (1983)

constructed a set of diagrams for the calculation of the support force
against toppling with different ratios of slope height to block
thickness. Cruden (1989) further extended this model to include the
effect of the friction angle along the block interfaces and the in-
clination of the slope. Some more recent studies have been devoted
to refining the analytical solutions for block toppling (Liu et al. 2008,
2009) and flexural toppling (Amini et al. 2009).

Limit analysis based on upper and lower bound theorems has
proved to be more robust and efficient than the conventional LEM
in many situations, especially when it is combined with the power
of modern computers. Since the pioneering work by Drucker and
Prager (1952) and Chen (1975), there has been much progress in
applying numerical limit analysis to geotechnical engineering and
slope stability analysis (Donald and Chen 1997; Chen et al. 2001a, b).
In particular, FEM based numerical limit analysis has been the pre-
vailing method used by many researchers. Yu et al. (1998) and Kim
et al. (1999, 2002) have applied the lower and upper bound approach
proposed by Sloan (1988, 1989) and Sloan and Kleeman (1995) to
evaluate the stability of slopes. Yang et al. (2004a, b) and Yang and
Zou (2006), based on the Hoek-Brown criterion, proposed a tangential
strengthmethod in anupper bound analysis to obtain the stability factor
of rock slopes. Li et al. (2008, 2009, 2011) have produced stability
charts for rock slopes using theFEM-basedupper and lower techniques
proposed by Lyamin and Sloan (2002a, b) and Krabbenhoft et al.
(2005). An obvious drawback with the traditional FEM-based limit
analysis approaches being applied to rock slopes is their inability to
characterize the behavior of discontinuous rock masses. In this regard,
a good alternative would be the rigid FEM (RFEM;Kawai 1978; Qian
and Zhang 1995). With a lower degree of freedom for the elements
considered in the RFEM than that in the traditional FEM, the com-
putational efficiencymaybemuch improved. Importantly, the physical
discontinuities in discontinuous media can be reasonably treated as
interfaces between the adjacent rigid elements in RFEM. Based on
RFEM, lower bound (Zhang and Qian 1993; Zhang 1999) and upper
bound (Chen et al. 2003, 2004, 2005; Yang and Yang 2010) limit
analysis methods have been developed.

In existing studies by RFEM, the constraint of compatibility
between rigid elements has been imposed in a simplified way, which
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leads to the ignorance of rotational components of the centroid ve-
locity of each rigid element (Zhang 1999; Chen et al. 2003, 2004,
2005). This may essentially lead to the exclusion of the rotational or
toppling failure mode in numerical limit analysis, which, in some
cases, may cause erroneous predictions as mentioned before. The
authors present a new method in this paper by both keeping the
compatibility condition between rigid elements and considering
the rotational velocity for each element. The overturning criterion
proposed by Goodman and Bray (1976) is generalized to govern the
rotational failure. The formulations are then integrated into the
RFEM-based limit analysis. Specifically, the discontinuous kine-
matically admissible velocity between two adjacent rigid elements in
a typical upper bound analysis can now develop into two failure
modes, namely, the simple sliding failure, which is controlled by the
Mohr-Coulomb criterion, and the rotational failure, which is con-
trolled by the new overturning criterion. A mixed formulation of
limit analysis is then developed in which the compatibility equation
and the equilibrium equation are enforced to be satisfied simulta-
neously, and this is then solved as a linear programming problem by
an efficient primal-dual interior-pointmethod proposed byAndersen
et al. (1996). Finally, the present method is validated by several
examples of soil and rock slope stability problems.

Numerical Discretization Based on Rigid
Finite Elements

The following assumptions are generally taken in a RFEM: (1) All
elements are assumed to be rigid and are connected to one another by
the element interface. (2) The deformation energy of a system is
stored in the interfaces only, and a discontinuous velocity field is
allowed at the interface. (3) The interfaces are assumed to be iso-
tropic, and their deformation is perfectly plastic, obeying the Mohr-
Coulomb yield condition and the associated flow rule. With these
assumptions, the compatibility and equilibrium equations between
rigid elements can be found as follows.

Compatibility Equation of Discontinuous
Kinematical Admissible Velocity Field

A possible discontinuous kinematical admissible velocity field at
the interface is shown in Fig. 1 where Pm denotes the center of the
kth interface between two typical rigid elements i and j. The dis-
continuous velocity can be conveniently measured by a strain rate
vector as follows:

_ɛk ¼
�
_nk _sk _uk

�T
(1)

where _nk , _sk , and _uk 5 relative tangential, normal, and angular
displacement rates, at the center of the joint, respectively. The
discontinuous strain rate vectors at all interfaces of a discretized
RFEM domain can be assembled into the following vector:

_ɛT ¼
h
_ɛ T
1 _ɛT2 . . . _ɛTnd

i
(2)

where nd 5 number of all interfaces.
In local coordinates sik -o- n

i
k, the velocity at the center Pi

m of the
kth interface caused by the centroid velocity of ith element can be
written as

_ɛi=k ¼ Li=kNi=k _ui (3)

where _ui 5
�
_uig _vig _vi

g

�T
5 centroid velocity of the ith element;

_uig and _vig 5 translational velocities in the x- and y-directions of the
global coordinates x-o-y; _vi

g 5 rotational velocity of the ith ele-
ment; Ni=k 5 RFEM shape function of the ith element corre-
sponding to the kth interface; andLi=k 5matrix of direction cosines
of the local sik -o- n

i
k axes for the kth interface with respect to the

global coordinate system x-o-y. Specifically, Ni=k and Li=k are
formulated as follows:

Fig. 1. Kinematically admissible discontinuous velocity field of interface between two rigid elements
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Ni=k ¼
2
4
1 0 yi=g2 yk=m
0 1 xk=m 2 xi=g
0 0 1

3
5

Li=k ¼
2
4
cosðn, xÞ cosðn, yÞ 0

cosðs, xÞ cosðs, yÞ 0

0 0 1

3
5 (4)

Likewise, similar definitions can be made for element j, and the
difference of velocity between element i and j can then be found as

_ɛk ¼ Li=k

�
Nj=k _uj 2Ni=k _ui

�
(5)

The following selection matrices Ci and Cj for elements i and j are
introduced:

_uið jÞ ¼ Cið jÞ _U (6)

where _U
T
5
�
_uT1 _uT2 . . . _uTm

�
ð3m31Þ 5 global velocity vector,

wherem is the number of all the rigid elements. The selection matrix
can be expressed as

Cið jÞ ¼

2
666664
0 . . . 0 0

z}|{
1

3iðjÞ22 z}|{
0

3iðjÞ21 z}|{
0

3iðjÞ

0 . . . 0

0 . . . 0 0 0 1 0 0 . . . 0

0 . . . 0 0 0 0 1 0 . . . 0

3
777775
ð3�3mÞ

(7)

Eq. (5) can then be reformulated as

_ɛk ¼ Bk _U (8)

where

Bk ¼ Li=k

�
Nj=k Cj2Ni=k Ci

�
(9)

As a result, the global discontinuous velocity vector Eq. (2) can be
formulated as

_ɛ ¼ B _U (10)

where BT 5 ½BT
1 BT

2 . . . BT
nd �ð3m33ndÞ 5 strain rate matrix.

Eq. (10) represents the compatible condition between two adjacent
rigid elements. This compatibility equation can be used to con-
struct a numerical formulation for the consequent upper bound
limit analysis.

Equilibrium Equations for Rigid Element

To apply the lower bound limit theorem, one needs to derive the
equilibrium equation of rigid elements as well. Assume that the
generalized stresses at the interface k of a rigid element involve
the shear force Vk, the normal force Nk , and the moment Mk, all
applied at the center of the interface as shown in Fig. 2. They can
be denoted in a vector form as

Qk ¼ ½Nk Vk Mk �T , k ¼ 1, . . . , nd (11)

The global stress vector can be written collectively as follows:

QT ¼
h
QT

1 QT
2 . . . QT

nd

i
(12)

According to the principle of virtual work

2d _ɛTQ2 d _U
T
× lF ¼ 0 (13)

Substitution of Eq. (10) into Eq. (13) leads to

2d _U
T
BTQ2 ld _U

T
F ¼ 0 (14)

Considering d _U� 0 in general cases gives the following global
equilibrium equation:

2BTQ2 lF ¼ 0 (15)

where FT 5 ½ fT1 fT2 . . . fTm � 5 global external force vector;
and f i 5

�
fxi fyi mi

�T
5 ith component of F. This equilibrium

Eq. (13) is the same as the one derived byQian andZhang (1995) and
Zhang (1999) using the principle of virtual work. It is also equivalent
to the strong equilibrium equation proposed by Ferris and Tin-Loi
(2001) and Orduna and Lourenco (2003).

Yield Criteria and Flow Rules for Sliding and
Rotation Mechanisms

Yield Criteria for Sliding and Rotation Mechanisms

The kinematical admissible discontinuous velocity derived in the
Equilibrium Equations for Rigid Element section can be separated
into two failure modes as shown in Fig. 3, namely, relative sliding
and rotation of an element with respect to its adjacent element.
Accordingly, two different yield conditions are employed to govern
the failures at the interface: aMohr-Coulomb criterion for the sliding
failure and an overturning failure criterion for the rotation failure.

Sliding Mechanism between Two Rigid Elements

Fig. 3(a) illustrates a translational sliding of element j over element i.
Mobilization of this translational mechanism may be described by
the Mohr-Coulomb criterion, i.e.,

jtj ¼ cþ tanwsn (16)

Fig. 2. Forces acting on a rigid finite element
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Note that compression is taken to be positive here. Based on the
generalized stress defined in Eq. (11), the above Mohr-Coulomb
failure criterion may be recast to the following form:

jVkj2 tanwNk 2 cDx# 0 (17)

where Dx 5 total length of interface. The normal and shear force
acting on the kth interface are defined as follows:

Nk ¼ sDx, Vk ¼ tDx (18)

Note that the use of the absolute value ofVk in Eq. (17) indicates that
the shear direction is unrestricted.

Rotational Failure Mechanism between Two
Rigid Elements

Element rotation has been ignored by previous RFEM-based limit
analyses by Chen et al. (2003, 2004, 2005) and Zhang (1999), and
the main purpose was to maintain the condition of no gap or overlap
between neighboring elements. Although it appears to be reasonable
for the translation-dominant type of slope failure, the assumption
proves to be inadequate to describe cases where the rotation may be
a contributing factor. In this paper, the authors will introduce an
overturning failure criterion to govern both the kinematically and
statically admissible fields in the limit analysis. The criterion is
generalized based on the toppling failure criterion originally pro-
posed byGoodman andBray (1976). Consider a block on an inclined
surface subjected to self-weight only (Fig. 4). Fig. 4 shows a state in
which a rotation or toppling of the block is pending. The critical
condition can be expressed as

y
Dx

# cota (19)

where y 5 height of the block; Dx 5 width of the block; and
a 5 inclined angle of the surface. By multiplying both sides of the
inequality in Eq. (19) with the weight W of the block, the following
expression of the failure criterion is obtained:

Mk 2Nk
Dxk
2

# 0 (20)

where

Mk ¼ W × sina × y
2

, Nk ¼ W × cosa (21)

Assuming that the momentMk at the kth interface is an unrestricted
variable gives the following overturning failure criterion:

jMkj2Nk
Dxk
2

# 0 (22)

To facilitate the subsequent numerical implementation, the sliding
failure criterion in Eq. (17) and the overturning failure criterion in
Eq. (20) for the kth interface can be collectively expressed in the
following matrix form:

wk ¼ FT
k Qk þ ak # 0 (23)

where

FT
k ¼

2
66666664

2tanwk 1 0

2tanwk 21 0

2
Dxk
2

0 1

2
Dxk
2

0 21

3
77777775
; ak ¼

2
6664

2ck Dxk
2ck Dxk

0

0

3
7775 (24)

where wk and ck 5 friction angle and cohesion at the kth interface,
respectively. The failure criteria at all interfaces can then be as-
sembled in the following matrix formulation:

Fig. 3. Failure modes of interface between two rigid elements: (a) sliding; (b) rotation

Fig. 4.Failure criterion for block toppling [adapted fromGoodman and
Bray (1976)]
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w ¼ FTQþ a# 0 (25)

where

wT ¼
h
wT
1 wT

2 . . . wT
nd

i
ð1�4ndÞ

FT ¼

2
6664

FT
1 0 . . . 0
0 FT

2 . . . 0
« « ⋱ «

0 0 0 FT
nd

3
7775
ð4nd�3ndÞ

aT ¼
h
aT1 aT2 . . . aTnd

i

where nd 5 number of interfaces in the discretized domain.

Associated Flow Rule

In conjunction with the previously given failure criteria, additional
constraints on the kinematically admissible velocity field are needed
by considering the associated flow rule. For interface sliding, the
associated flow rule assumes that the tangential velocity change, _m,
is accompanied by the separation velocity, tanw × _m [Fig. 3(a)]. As
for the interface overturning, the associated flow rule requires that
the normal velocity change _m corresponds to an opening angle
change of 2 _m=Dx [Fig. 3(b)]. In relation to the velocity vector in
Eq. (1), these kinematic slip and rotation conditions can be expressed
as _ɛi 5 2 _mk × ∂wk=∂Qi, where wk stands for the failure criterion
corresponding to the kth interface. Assembling all the associated
flow equations for the interface gives

_ɛk ¼ 2Fk _mk (26)

where _mk 5 ½m1k m2k m3k m4k �T 5 vector of nonnegative
plastic multipliers. By substituting Eq. (26) into Eq. (10), the
compatibility condition can be reformulated as follows:

B _U ¼ 2F _m (27)

With the previously given compatibility equation and equilibrium
equation, the upper and lower bound limit analysis can be treated as a
unified mathematical programming problem, which will be conducted
in the Linear Programming for RFEM-Based Limit Analysis section.

Linear Programming for RFEM-Based Limit Analysis

As shown previously, the kinematically admissible velocity field has
been separated into sliding and rotational modes, and the relative
rotation between two rigid elements is governed by the toppling
failure criterion in Eq. (22). Following the assumption of the asso-
ciated flow rule, the relative rotation is further introduced into the
governing equations of the kinematically and statically admissible
fields in the limit analysis. In addition, the compatibility, equilibrium,
and failure equations formulated previously are all in linear form.
Taking this feature, the authors can then formulate theupper and lower
bound theorems into a dual of two linear programming problems.

Primal Problem of Linear Programming for
Kinematic Approach

The upper bound approach of limit theory states that any limit load
multiplier l for a kinematically admissible velocity restricted by the

compatibility equation and associatedflow rule, i.e., Eq. (27), cannot
be smaller than the plastic collapse multiplier lc, i.e., l#lc. An
upper bound limit analysis aims to find the minimum of the load
multiplier lmin to approximate lc. Using the associated flow rule in
Eq. (26) in the virtual principle in Eq. (13) gives the following
equation for the load multiplier:

_mT FT Q2 l _U
T
F ¼ 0 (28)

Further substitution of the failure criteria in Eq. (25) into the pre-
viously revised virtual principle leads to

_mT ðw2 aÞ2 l _U
T
F ¼ 0 (29)

By considering the complementary condition _mTw5 0, the load
multiplier can be formulated as follows:

l ¼ 2 _mTa when _U
T
F ¼ 1 (30)

As a result, the authors can formulate the upper bound approach as
the following linear programming problem:

min l ¼ 2 _mTa such that _U
T
F ¼ 1, B _U ¼ 2F _m, _m$ 0

(31)

Note that boundary conditions in the upper bound approach con-
stitute mainly prescribed velocities, for example, _U5 0. Although
they do not contribute to the real velocity field, the generalized
primal variables in Eq. (31) will not include the quantities on the
prescribed boundaries.

Dual Problem for Static Approach

In the lower bound approach of limit theory, any load multiplier l
corresponding to a statically admissible stress field constrained by
the equilibrium equation in Eq. (15) and the failure criteria Eq. (25)
cannot be greater than the plastic collapse multiplier lc, i.e., l$lc.
The linear programming problem of a lower bound approach is to
find the maximum of the load multiplier lmax. Alternatively, ac-
cording to the dual theory of linear programming, the lower bound
approach can be also formulated as the following dual of the primal
problem of the corresponding upper bound approach:

max l such that 2BTQ2 lF ¼ 0, w ¼ FTQþ a# 0

(32)

The reactions on the boundary can be calculated by the compatibility
matrix B for elements on the traction boundary and the stresses Q,
e.g., Fb 5BT

bQ.
According to the duality theory of linear programming, the upper

(primal) and the lower (dual) bound solutions can be found by solving
the following optimal [Karush- Kuhn-Tucker (KKT)] conditions:

2
6664

0 0 FT 0
0 0 B F

2F 2BT 0 0
0 2FT 0 0

3
7775

2
6664

l

Q
_U
_m

3
7775þ

2
6664

0

0
0
2w

3
7775 ¼

2
6664

1

0
0
2a

3
7775 (33)

wherewT _m5 0; _m$ 0; and w# 0. The authors employ the primal-
dual interior-pointmethod (IPM) proposed byAndersen et al. (1996)
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and a package called MOSEK with its implementation to find the
exact limit solution of the linear programming problem.

Numerical Verifications and Application

The performance of the numerical approaches formulated pre-
viously will be verified by two classical problems first and will be
further applied to an inhomogeneous slope problem.All calculations
were performed on a personal computer with an Intel Core 2 Quad
CPU 2.83 GHz processor.

Failure of Homogeneous Slope with Log-Spiral
Rotational Failure Mechanism

The authors first take an example of the stability of a homogeneous
cohesive-frictional soil slope under self-weight as shown in Fig. 5(a).
Taking a rotational discontinuity mechanism for the rigid body above
the log-spiral toe-failure slip surface BC shown in Fig. 5(a), Chen
(1975) derived an upper bound stability factor, Ns 5 gH=c. For a
given slope with slope angle b and soil frictional angle w, an upper
bound has been found by minimizing a function of the two angles uh
and uo shown in Fig. 5(a), f ðuh, uoÞ. The same problem will be in-
vestigated by our RFEM-based upper bound approach here. To make
it consistent with Chen’s (1975) study, consider the rigid body ABC
to be a single rigid element. As shown in Fig. 5(b), the log-spiral slip
surface is approximated by a number of line segments that constitute
the interface between the rotation element ABC and rest of the
domain. In this study, an upper bound solution for the stability factor
is sought by optimizing the unit weight of the soil mass with a load
multiplier l for a slope with fixed height and cohesion. As a result,
finding the minimum of the stability factor is equivalent to com-
puting the minimum of the load multiplier as follows:

Ns ¼ lmin gH
c

(34)

In doing so, the authors set two ranges of uh and uo and plot the
contours of the stability factor. For example, when the inclined angle
of slope b5 45�, Fig. 6 shows the contours of the stability factor
with four different frictional angles w5 5, 10, 15, and 20�. An
adequate number of line segments for the interface is also required to
gain good convergence of the stability factor, as shown in Fig. 7.
Table 1 lists the obtained stability factors and the corresponding
optimal angle uh and uo for different cases of slope angle and
frictional angle. Our numerical results appear to be quite consistent
with those obtained by Chen (1975).

Planar Translational Failure with Tension Crack

The authorswish to use twomore examples in this section to highlight
the importance of considering the rotational failure mechanism. In the
first example, the authors consider only the sliding failuremechanism,
whereas in the second example, they compare results obtained by
considering the rotational failure mode with those without it.

Dry Slope

First, consider the same homogeneous slope as in the Failure of Ho-
mogeneous Slope with Log-Spiral Rotational Failure Mechanism sec-
tion but with a tensor crack as shown in Fig. 8. In this case, the authors
consider aplanar translational failuremechanism.Theexample is similar
to the plane failure of rock slopes analyzed by Hoek and Bray (1981).
According to Hoek and Bray (1981), the potential failure plane should
satisfy cf .cp .w, where the three angles are shown in Fig. 8.

Based on the LEM, the following general expression for the
factor of safety can be obtained (Hoek and Bray 1981):

Fs ¼ 2cð12 z=HÞnh
12 ðz=HÞ2

i
cotcp2 cotcf

o
sin2 cp

þ cotcp tanw (35)

Theminimum factor of safety of the slope is obtained at a critical crack
length, zc 5 ð12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cotcf tancp

p ÞH. Hoek and Bray (1981) have
further defined the following dimensionless normal stress ratio:

s
gH

¼
nh

12 ðzc=HÞ2
i
cotcp2 cotcf

o
sincp coscp

2ð12 zc=HÞ (36)

Note that in the original expression provided by Hoek and Bray
(1981) the term coscp was inadvertently left out.

The authors have verified the problem using the RFEM-based
limit analysis proposed in this paper. They treat the sliding block
ABCD and fixed-base block ADE as two rigid elements. Although
there is no obvious driving force that may lead to rotational failure
for this example, the rotational failure mechanism in this method is
naturally disabled. The authors employ the method of reducing
strength to find the factor of safety for this problem, by following the
common definition of the factor of safety

Fs ¼ c9
cm9

¼ tanw9
tanwm9

(37)

where c9 and w9 5 effective cohesion and internal frictional angle,
respectively; and cm9 and wm9 5 reduced (mobilized) cohesion and
frictional angle, respectively.

Fig. 5. Homogenous soil slope: (a) failure mechanism with a log-spiral slip surface passing the toe; (b) model of limit analysis based on RFEM
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The factor of safety Fs is computed in conjunction with opti-
mization of the limit load multiplier l according to Eq. (33). Spe-
cifically, an initial value Fs (usually a small one) is chosen first to
calculate the reduced cohesion and frictional angle cm9 and
wm9 according to Eq. (37). These two strength parameters are
substituted into Eq. (24) to obtain an optimal limit load multiplier l
using the proposed method. The process is repeated by gradually
increasing the value of the factor of safety from its initial value.
Consequently, a series of limit load multipliers in conjunction with
the corresponding factor of safety can be obtained, which can be
plotted in a figure like Fig. 9. The ultimate factor of safety for the
problem corresponds to the value at the intersection of the curvewith
the horizontal line l5 1. For instance, for the case of a slope with
a slope face cf 5 60� and a failure plane cp 5 30�, a frictional angle
w5 20� and cohesion c95 30 kN=m2, the factor of safety is de-
termined to be Fs 5 1:5411 (marked as a star in Fig. 9) according to
this procedure. Note that this method shares a certain similarity with
the critical acceleration concept proposed by Sarma (1973).

Fig. 10 further presents the variation of normal stresses and the
factor of safety with the slope and failure plane angles obtained by
the present method in comparison with results obtained by the LEM
fromHoek andBray (1981). As is seen, when only the sliding failure
mechanism is considered, the present method produces results
identical to those of Hoek and Bray’s (1981) LEM.

Wet Slope

This example involves the samegeometry as the last one but differs from
the last one in that there is a underground water table because of rainfall
and the crack isfilledwith porewater to someheight aswell (as shown in
Fig. 11).Theauthors further assume that the rest base is impermeableand
that the water presenting in the crack aswell as along the baseAD yields
a linear pressure distribution as shown in Fig. 11. The height of water in
the crack is assumed to be zw, and gw is the unit weight of water. The
sameproblemwas consideredbyHoek andBray (1981) using theLEM,
and the factor of safety obtained therein is

Fig. 6. Contours of stability factor of slope with inclined angle b5 45� and different friction angles: (a) w5 5�; (b) w5 10�; (c) w5 15�; (d) w5 20�
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Fig. 7. Convergence of the upper bound stability factor by the current RFEM-based limit analysis with number of line segments for the interface:
(a) b5 30�, w5 20�; (b) b5 60�, w5 20�

Table 1. Comparison of Stability Factors Obtained by the Analytical
Method (Chen 1975) and the Present RFEM–Based Numerical Method

Friction
angle w
(degrees)

Slope angle b (degrees)

90 75 60 45 30

5
Chen’s (1975) method 4.1899 5.141 6.158 7.352 9.139
Present method 4.1904 5.142 6.161 7.358 9.155
uo (degrees) 31.0 26.5 21.5 21.5 25.5
uh (degrees) 58.5 74.0 90.0 104.0 116.5

Relative errors
(percentage)

0.01 0.02 0.05 0.09 0.17

10
Chen’s (1975) method 4.5829 5.800 7.258 9.310 13.502
Present method 4.5833 5.801 7.262 9.318 13.523
uo (degrees) 33.5 29.0 25.5 26.5 33.0
uh (degrees) 60.0 75.0 89.5 102.5 113.5

Relative errors
(percentage)

0.01 0.02 0.05 0.09 0.16

15
Chen’s (1975) method 5.0180 6.567 8.629 12.053 21.838
Present method 5.0185 6.569 8.632 12.064 21.870
uo (degrees) 31.0 31.5 29.0 31.5 46.0
uh (degrees) 58.5 76.5 90.0 102.0 108.5

Relative errors
(percentage)

0.01 0.03 0.05 0.09 0.15

20
Chen’s (1975) method 5.505 7.477 10.391 16.162 41.267
Present method 5.506 7.480 10.395 16.174 41.321
uo (degrees) 39.0 34.0 33.5 38 53.0
uh (degrees) 63.5 78.0 90.5 101.5 108.0

Relative errors
(percentage)

0.01 0.03 0.04 0.08 0.13

Fig. 8. Geometry of a dry slope with a tension crack in upper slope
surface

Fig. 9.Determination of the factor of safety by optimizing limit loading
multiplier
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Fs ¼
ð2c=gHÞ ×Pþ

h
Q × cotcp 2

�
gw zw=gH

��
Pþ zw sincp=H

�i
× tanw

Qþ �
gw z2w=gH

2
�
sincp × cotcp

(38)

where

P ¼ ð12 z=HÞ=sincp

Q ¼
n�

12 ðz=HÞ2
�
cotcp2 cotcf

o
sincp

It is noted, however, that in deriving Eq. (38) Hoek and Bray
(1981) assumed that the uplift force attributable to water pres-
sure on the sliding plane AD and the driving force attributable to
water pressure in the tension crack all act through the centroid
of the sliding mass ABCD. The factor of safety defined in Eq.
(39) predicts sliding failure of the slope along AD only according
to

Fs-sliding ¼
P

ForcesresistingP
Forcesdriving

(39)

Fig. 10. Comparison between the LEM and the present method: (a) dimensionless normal stress ratio; (b) factor of safety
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Indeed, in the presence of pore water pressure along AD and in
the crack, it is also possible that overturning failure around A
may happen, for which another factor of safety characterizing the
toppling or rotation failure of the slope needs to be defined as
follows:

Fs-toppling ¼
P

MomentsresistingP
Momentsdriving

(40)

The RFEM-based limit analysis method has been used to calculate
the factor of safety for this slope where both the sliding and rota-
tional failure mechanisms are considered. Specifically, the two
factors of safety, Fs-sliding and Fs-toppling, will be compared after the
computation. IfFs-sliding ,Fs-toppling, the slope failure is controlled by
sliding. Otherwise, the toppling failure mode will dominate. The
smaller one between the two will be adopted as the final factor of
safety for the slope. Fig. 12 presents the obtained results with the
increase of the water level in the crack at different slope angles. The
sliding failure results predicted by the LEM (Hoek and Bray 1981)
are also given for comparison. It is evident from the figure that when
the slope angles are low, e.g., in the cases shown in Fig. 12(a), the
increase of the water level in the crack does not affect the failure
mechanism, which is still sliding in nature. However, when the slope
angles become higher, the impact of the water level on the failure
mode becomes evident. Notably from Figs. 12(b–d), when the water
level in the crack is low, the failure of the slope is still dominated by
the sliding mode, and the authors’ predictions of the factor of safety
are identical with those of the LEM. As the water level is increased,
however, the rotational failure mode may be mobilized before
the sliding failure. Consequently, the LEM predictions may lead
to a greater factor of safety than the authors’ method, and in some
cases, the difference may exceed 90% (such as in the case cf 5 80�,
cp 5 70�, and zw=z5 0:6). More specifically, at the same slope
angle, the higher the failure plane angle is, the lower the water level
that is needed tomobilize a toppling failure for the slope. It is evident
from the example that the consideration of the rotational/toppling
failuremode in conjunctionwith the sliding failuremodemay lead to
a safer design for the slope than considering the latter only.

Inhomogeneous Soil Slope with Weaker Layer

The presentmethodwill be further applied to evaluate the stability of
an inhomogeneous soil slope previously treated by Kim et al.
(2002). Presented in Fig. 13 are the geometry of the slope and the
profile of the soil layers. The shear strength parameters and unit
weight of each layer are also summarized in Table 2. Apparently,
Soil 2 serves as a relatively weak layer in between Soil 1 and Soil 3.

Fig. 11. Geometry of a wet rock slope with a tension crack in upper
slope surface

Fig. 12. Comparison of the factors of safety between the present
method and LEM: (a) cf 5 50�; (b)cf 5 60�; (c)cf 5 70�; (d)cf 5 80�
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The domain is discretized by an unstructured triangle mesh as
shown in Fig. 14. The factor of safety of the problem is then solved
by the proposed method with the same procedure as described in the
Tension Crack section. Fig. 15 shows the consistency of the results
with the refinement of the mesh. When the mesh is fine enough,
a consistent factor of safety is obtained by the proposed method for
the cases considering and not considering the rotational failure
mode. As is summarized in Table 3, in particular, the factor of safety
in consideration for both sliding and rotation failure modes is found
between the upper bound and lower bound obtained by Kim et al.
(2002) and is greater than that obtained by Spencer’s method (Greco
1996). If only sliding failure is considered, however, the obtained
factor of safety is significantly larger than all the cases mentioned
previously. For example, it is around 30% greater than the value ob-
tained by considering both failure mechanisms. Fig. 16 further pre-
sents a comparison of the kinematically admissible velocity fields
obtained for the two cases: (a) by considering sliding failure only and
(b) by considering both sliding and rotational failure modes. As is
shown in Fig. 16, rotational zones can be clearly observed in the
second cases at the crest part of the failure zone as comparedwith the
largely translational failure in the first case. Finally, though not
presented here, the primal-dual interior-point method also proves to
be more efficient than other approaches in solving the problem, such
as the Simplex method (Dantzig et al. 1955), especially when a fine
mesh is used.

Conclusions

Based on the RFEM, a general formulation of upper and lower
bound limit analysis has been presented. The upper and lower bound

solution is expressed as primal and dual linear programming prob-
lems that can be solved by an efficient and robust primal-dual
interior-point method. The novelty in the approach is the consider-
ation of both sliding and rotational failure mechanisms, which is
general in form and covers the traditional LEM as a special case.
Numerical examples demonstrate that the rotational failure mode
may be mobilized before the sliding failure mode in some cases,
which may result in a lower factor of safety for a slope problem. The
proposed method may hence provide an efficient and safe way for
practical slope design. Future study will focus on the application of
the method to more complex problems involving block toppling and
flexural toppling, which are commonly observed in rock slopes.

Fig. 13. Inhomogeneous slope with three layers of soil [adapted from Kim et al. (2002)]

Table 2. Shear Strength Parameters and Unit Weights of Soils

Soils c ðkN=m2Þ w (degrees) g ðkN=m3Þ
1 29.4 12.0 18.8
2 9.8 5.0 18.8
3 294 40.0 18.8

Fig. 14. Typical rigid finite-element mesh for the inhomogeneous slope

Fig. 15. Relationship between factor of safety and number of rigid
elements

Table 3. Comparison of Factor of Safety by Various Methods

Authors Methods Fs

Present method Sliding 0.547
Present method Sliding and rotation 0.421
Greco (1996) Spencer’s method (Monte Carlo method) 0.39
Greco (1996) Spencer’s method (pattern search method) 0.39
Kim et al. (2002) Bishop’s method 0.43
Kim et al. (2002) FEM-based lower bound method 0.40
Kim et al. (2002) FEM-based upper bound method 0.45
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