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Abstract Strength anisotropy is an important soil behavior

which is closely related to the microstructural characteristics in

soil. Proper consideration of the microscopic properties of a

soil is key to accurate description of its strength anisotropy.

This paper presents a failure criterion for cross-anisotropic

soils based on the Spatially Mobilized Plane (SMP) criterion.

In the new criterion, the shear-normal stress ratio defined in the

SMP is related to the relative orientation of the loading direc-

tion with respect to the axes of material anisotropy through a

microstructure-based tensor. The formulation includes only

two parameters which can be easily calibrated by conventional

triaixal tests. By comparison with tests data, the criterion is

shown to offer good characterization of the strength anisotropy

for a variety of geomaterials with cross-anisotropy.

Keywords Anisotropy � Failure criterion �
Microstructure � Shear strength � Soil and rock

1 Introduction

Due to depositional process and other microstructural

patterns, naturally occurring materials, such as soil and

rock, are typically cross-anisotropic [2]. The material

behavior within the depositional plane is found largely

isotropic, while it is quite different in the direction per-

pendicular to this plane (the direction is commonly called

the axis of anisotropy). The cross-anisotropic structure of

geomaterials affects many facets of the material behavior.

One outstanding example is the strong dependence of shear

strength on the loading direction relative to the symmetric

plane of a soil or rock. This phenomenon cannot be satis-

factorily described by isotropic failure criteria, such as the

Mohr–Coulomb criterion, the Drucker-Prager criterion,

the Hoek–Brown criterion, the SMP criterion [12] or

Lade’s isotropic failure criterion [7]. Proper characteriza-

tion of the strength anisotropy for geomaterials has been an

active research area in geomechanics, driven partly by its

obvious importance to practical design in geotechnical

engineering.

In describing the phenomenon of different strengths

observed in different loading conditions for the same soil,

conventional approaches usually stick to an isotropic fail-

ure criterion (e.g., the Lade’s criterion [7]) but adopt dif-

ferent friction angles. While the friction angle has long

been considered as an intrinsic material property, changing

the friction angles for the same soil at different loading

conditions is apparently questionable. As highlighted by

numerous past studies, it is indeed the presence of material

anisotropy that gives rise to the observed strength dis-

crepancy in different loading conditions. Consequently,

there have been a variety of failure criteria developed for

geomaterials based on different approaches in consider-

ation of the material anisotropy with respect to the loading

direction [1, 4, 8, 11, 17, 18]. For example, using a coor-

dinate rotation of the principal stress space and utilization

of Lade’s isotropic failure criterion [7], a three-dimensional

failure criterion for cross-anisotropic soils was proposed by
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Abelev and Lade [1]. An anisotropic variable defined by

the joint invariant of a second-order fabric tensor and the

stress tensor has been employed in [4] in their formulation.

Pietruszczak and Mroz [17, 18] have proposed a micro-

structure-based tensor in developing their failure criterion

for rocks. This microstructure tensor has been further

adopted by Lade [8] in conjunction with his own isotropic

failure criterion to formulate a new one for cross-aniso-

tropic soils. Liu and Indraratna [11] have employed a

vector to represent the anisotropy of material strength.

These criteria have gained varied degree of success in

predicting the strength anisotropy for various materials.

The major drawbacks associated with the existing studies,

however, lie in the large number of material parameters (or

functions) required to be identified in their formulations. In

many cases, advanced tests, such as true triaxial testing, are

needed to calibrated these parameters, which is indeed

inconvenient for practical use. Importantly, microstruc-

ture has been recognized attribute to important material

behavior of geomaterials on the continuum level such as

strength anisotropy. Most existing failure criteria involve

parameters and failure mechanisms which are ambiguously

correlated to the microstructural characteristics of the

material [17].

This paper aims to develop a new general failure crite-

rion for transversely isotropic geomaterials based on con-

sideration of microstructure. We adopt the isotropic SMP

criterion [12] to quantify the mobilized strength in a fric-

tional material. The SMP criterion features a clear micro-

structure-based failure mechanism of spatial mobilized

plane (see Fig. 1) along which sliding of soil particles is

believed to take place to the greatest extent in the principal

stress space. Meanwhile, the microstructure tensor-based

approach proposed in [17, 18] will be employed to consider

the coupled effect of loading direction and material

anisotropy. The combination of the two approaches will

lead to a new three-dimensional failure criterion featuring

not only a clear microstructural concept for the failure of

transversely isotropic materials, but also with only two

material parameters which can be easily calibrated by

conventional triaxial tests. The new failure criterion offers

reasonable predictive capability on describing the strength

anisotropy for a wide range of materials, as will be dem-

onstrated in the subsequent sections.

2 Formulation of the anisotropic failure criterion

It is instructive to briefly introduce the microstructure

tensor-based approach by Pietruszczak and Mroz [17] first.

Centered to their approach is the definition of a scalar

anisotropy parameter g though the projection of a micro-

structure tensor onto the direction of the generalized

loading direction.

The microstructure tensor aij used by Pietruszczak and

Mroz [17] denotes a tensorial measure of the material

fabric describing such microstructural characteristics as the

spacial distribution of particles, voids or the arrangement of

inter-granular contacts in a material. It indeed shares a

similarity with the fabric tensor defined by Oda [15, 16]

which was used in [4]. The principal triad of aij is

expressed by the unit vectors vi, si, ti (as shown in Fig. 2),

and the spectral representation of aij [17]

aij ¼ a1vivj þ a2sisj þ a3titj ð1Þ

where a1, a2, a3 are the principal values of the micro-

structure tensor. For convenience of manipulation, the

microstructure tensor aij is often defined to be coaxial with

the axes of orthotropy of the material.

It is necessary to specify the loading orientation with

respect to the microstructure directions of the material

before a failure criterion for anisotropic geomaterials can

be formulated. Figure 2 shows the components of loading

orientation relative to the axes of the cross-anisotropic

material microstructure. The magnitudes of the resultant

stresses acting on the planes characterized by normals 1, 2

and 3 are calculated as

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
11 þ r2

12 þ r2
13Þ

q

ð2Þ

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
12 þ r2

22 þ r2
23Þ

q

ð3Þ

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
13 þ r2

23 þ r2
33Þ

q

ð4Þ

The following generalized loading vectors are defined

[17]
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Fig. 1 Spatially mobilized plane in the principal stress space [14]
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Li ¼ L1vi þ L2si þ L3ti ði ¼ 1; 2; 3Þ ð5Þ

in which vi, si and ti are unit vectors as shown in Fig. 2.

The unit vector specifying the loading direction is

expressed as

ðl1; l2; l3Þ ¼
ðL1; L2; L3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1 þ L2

2 þ L2
3

p ð6Þ

With the generalized loading direction defined above,

Pietruszczak and Mroz [17, 18] proposed the following

formulation of failure criteria for anisotropic materials

f ¼ g ¼ g0ð1þ XijliljÞ ð7Þ

Here, f is the function of stresses. g is a scalar parameter

specifying the effect of load orientation li with respect to

the material axes and is a homogeneous function of stress

of degree zero, such that it does not depend on the

magnitude of stresses, but only on the relative orientation

of the principal stress triad with respect to the eigenvectors

of the microstructure tensor. In Eq. (7), g0 is the average

value of g, which is defined as follows and denotes the

radius of the sphere as shown in Fig. 3

g0 ¼
akk

3
ð8Þ

In Eq. (7) Xij is a deviatoric measure of the material

microstructure [17] defined below

Xij ¼
aij � 1

3
dijakk

1
3

akk

ð9Þ

where dij is the Kronecker delta. For an orthotropic mate-

rial, there are two distinct eigenvalues for Xij. As such,

only one scalar chosen from either of the two eigenvalues

of Xij (e.g., X1) is sufficient to characterize the cross-

anisotropy of the material. Evidently, for an isotropic

material Xij ¼ 0; which will be discussed in detail in the

following section.

In essence, Eq. (7) embodies an perturbation of the

material anisotropy by its relative orientation with respect

to the loading direction used in defining a failure criterion.

3 A new failure criterion for cross-anisotropic soils

In general cases, Eq. (7) can be recast as

g ¼ g0ð1þ X1l2
1 þ X2l2

2 þ X3l23Þ ð10Þ

For cross-anisotropic materials, given that X1 ¼ X3; X1 þ
X2 þ X3 ¼ 0 and l1

2 ? l2
2 ? l3

2 = 1, then Eq. (10) becomes

g ¼ g0½1þ X1ð1� 3l2
2Þ� ð11Þ

As such, only two parameters, g0 and X1 need to be

determined, while the loading direction l2 can be deter-

mined from the stress state.

As mentioned in the introduction, the SMP failure cri-

terion [12] offers the critical shear-normal stress ratio

(s/rN) on a spatial mobilized plane (Fig. 1) along which

failure of an isotropic soil may likely occur. The stress ratio

can be expressed in terms of stress invariants as

s
rN

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1I2

9I3

� 1

r

ð12Þ

in which I1, I2 and I3 are respectively the first, second and

third stress invariants of the stress tensor

I1 ¼ r1 þ r2 þ r3 ð13Þ
I2 ¼ r1r2 þ r2r3 þ r3r1 ð14Þ
I3 ¼ r1r2r3 ð15Þ

3L

1L12σ

11σ
13σ

2L 22σ

21σ
23σ

32σ

31σ33σ

iυ

is

it

Fig. 2 Description of the load orientation relative to axes of the

cross-anisotropic material microstructure

η0=0.511 
Ω1=−0.0611

η0

η

1, 3-directions

2-direction

l2

Fig. 3 Variation of g indicated by the symmetric shape for San

Francisco Bay Mud
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Here, r1, r2 and r3 are principal effective stress compo-

nents.

The isotropic SMP failure criterion exhibits a curved

failure locus circumscribing the Mohr–Coulomb hexagon

in the deviatoric plane. It was originally developed for

cohesionless granular materials only. Matsuoka et al. [13]

have further extended it for cohesive-frictional materials,

by introducing the following bonding stress

r0 ¼ c cot u ð16Þ

where c is the cohesion, and u is the internal friction angle.

Based on r0, the following translated principal stress r̂i and

translated stress invariants Î1; Î2; Î3 are defined

r̂i ¼ r1 þ r0 ði ¼ 1; 2; 3Þ ð17Þ

Î1 ¼ r̂1 þ r̂2 þ r̂3 ð18Þ

Î2 ¼ r̂1r̂2 þ r̂2r̂3 þ r̂3r̂1 ð19Þ

Î3 ¼ r̂1r̂2r̂3 ð20Þ

Using these translated stress invariants in place of the

original stress invariants in Eq. (12), the shear strength of

cohesive-frictional materials can also be characterized.

In this paper, we proposed the following failure criterion

for cross-anisotropic materials by ‘‘marrying’’ the SMP

criterion with the g proposed by Pietruszczak and Mroz

[17, 18]:

s
rN

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1I2

9I3

� 1

r

¼ g ¼ g0½1þ X1ð1� 3l22Þ� ð21Þ

For general cohesive-frictional materials, the shear-normal

stress ratio can be calculated by using the translated

stress invariants defined above. The values of parameters

g0 and X1 are considered to be microstructure related soil

parameters. g0 is the average value of g, which represents

the maximum value of shear-normal stress ratio on a spatial

mobilized plane of a soil under the loading direction

defined by l2. Detailed discussion on l2 will be given in the

following section.

Physically, the criterion in Eq. (21) may be interpreted

as a negotiation between the possible failure plane defined

by SMP and the material bedding plane. If the spatial

mobilized plane is closer to the perpendicular plane of the

bedding plane, it is likely induced a higher shear strength.

Otherwise, a smaller shear strength will be observed.

Mathematically, we note that the expression in Eq. (21)

resembles the form used by Lade [8] who also used g.

While we emphasize a clear microstructural concept in this

study, the new criterion has only two parameters to be

calibrated, one less than used by Lade [8]. Nevertheless, it

is noteworthy that strength anisotropy may be stress or

density dependent. Generally, it was observed that the

behavior of anisotropy decreases with increased isotropic

pressure [9]. Lade’s [8] criterion has been able to account

for this effect with the extra parameter. However, at the

common stress range soils are experienced or tested in

practice, the effect can be neglected.

4 Specific expressions of the loading direction

Following Lade [8], we partition the deviatoric plane into

three sectors as shown in Fig. 4. Also shown in the figure

are the different stress states applied to a horizontally

bedded cross-anisotropic soil sample in each sector. It is

expedient to use the intermediate principal stress ratio,

b = (r2 - r3)/(r1 - r3), to express the stress state. Evi-

dently, b = 0 at triaxial compression (TC) and b = 1 at

triaxial extension (TE). Note also in this figure, x-y plane

coincides with the bedding planes of the sample, and z-axis

is the axis of orthotropy.

In soil mechanics, the following definition of major

stress ratio R is commonly used [20] (note that a similar

definition may be used for the translated principal stresses

defined in previous section)

R ¼ r1

r3

ð22Þ

The cross-anisotropic failure criterion can then be

expressed in terms of R and b as follows

s
rN

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbRþ Rþ 2� bÞðbR2 þ 2Rþ 1� bÞ
9RðbRþ 1� bÞ � 1

s

¼ g ð23Þ

To calculate the right-hand side of Eq. (21), it is convenient

to give the specific expressions of l2
2 for different loading

xσ yσ

zσ

I I

IIII

III III

2σ

3σ

1σ

3σ

2σ

1σ

2σ

3σ

1σ

Fig. 4 Orientation of the soil samples showing cross-anisotropy in all

three sectors in the p-plane[8]
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conditions. Special loading conditions that are commonly

taken for true triaxial tests and torsional shear tests are

considered, by following the procedure outlined by Lade [8].

4.1 True triaxial tests

Under true triaxial conditions as shown in Fig. 4, the

principal stresses coincide with the axis of orthotropy. As a

result, the following specific expressions for l2
2 in the three

sectors can be obtained.

In Sector I:

l2
2 ¼

R2

R2 þ ½bðR� 1Þ þ 1�2 þ 1
ð24Þ

In Sector II1:

l2
2 ¼

½bðR� 1Þ þ 1�2

R2 þ ½bðR� 1Þ þ 1�2 þ 1
ð25Þ

In Sector III:

l2
2 ¼

1

R2 þ ½bðR� 1Þ þ 1�2 þ 1
ð26Þ

4.2 Torsional shear tests

Under a typical torsional shear test, the stress condition is

shown in Fig. 5 respect to the bedding plane of the sample. The

inside and outside pressures are maintain at the same value of

rr, which is equal to the intermediate principal stress r2. The

orientation of the major principal stress to the axis of anisot-

ropy is b, and it is related to the value of b according to

b ¼ sin2 b [8, 10]. As a result, the expression of l2
2 can be

obtained as

l2
2 ¼

R2ð1� bÞ þ b

R2 þ ½bðR� 1Þ þ 1�2 þ 1
ð27Þ

As such, for b = 0, l2
2 = R2/(R2 ? 2), and for b = 1,

l2
2 = 1/(2R2 ? 1).

5 Parameter calibration

The new criterion needs to determine two material parame-

ters, g0 and X1. By far conventional triaxial compression/

extension tests remain the major testing types that are rou-

tinely accessible to practicing engineers. It is hence more

convenient if a failure criterion can be calibrated by these

routine tests. Reliable parameters for the failure criterion can

be obtained from different sets of test data that show the cross-

anisotropic features between them. Indeed, test results can be

obtained on horizontal and vertical samples of cross-aniso-

tropic soils as shown in Fig. 6, from which the two parameters

can be easily determined. If torsional shear tests are available,

they can also be used for the parameter calibration. A sys-

tematic procedure on the parameter determination is given as

follows. As mentioned in the Introduction, these parameters

should be material constants independent of the specific

calibration tests, rather than variable quantities as the con-

ventional ways manipulating the friction angle.

5.1 From triaxial tests

We take the case of San Francisco Bay Mud [6] as an

demonstrative example here. Conventional triaxial compres-

sion tests on both vertical samples and horizontal samples

have been conducted for this soil. The friction angle obtained

from tests on the vertical sample (Fig. 6a) is uv ¼ 30:6�;
while for the horizontal sample case (Fig. 6b) it isuh ¼ 27:4�.
Under conventional triaxial compression conditions, the

principal stress ratio Rf [21] at failure can be calculated from:

Rf ¼
1þ sin u
1� sin u

ð28Þ

Thus, for the vertical sample Rfv = 3.07, while for the

horizontal sample Rfh = 2.71. Inserting b = 0 under

conventional compression condition into Eq. (23) with

the two values of R, we have gv = 0.557 and gh = 0.490.

The following two linear equations are readily obtained

from Eq. (21).

gv ¼ g0½1þ X1ð1� 3l22Þ�
gh ¼ g0½1þ X1ð1� 3l22Þ�

�

ð29Þ

In these two equations, the values of l2
2 are obtained from Eq.

(24) for the vertical sample and from Eq. (26) for the hori-

zontal sample. The two linear equations are then collectively

solved for g0 and X1. For the case of San Francisco Bay Mud,

we have g0 = 0.511 and X1 ¼ �0:0611.

oP
iP

W

TM

zσ

θσ z

zθσ
θσ

rσ 2σ=

β
1σ

3σ

Fig. 5 Stress state in torsional shear tests

1 Eq. (12a) in [8] appears to have been mis-printed with a missing

square for R in the numerator of l2
2.
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5.2 From torsional shear tests

Tests on Santa Monica beach sand by Lade et al. [10] are

taken as an example for this case. A total of 34 drained

torsional shear tests were performed with constant effective

confining pressure, rr
0 = 196 kPa, for medium dense

Santa Monica beach sand (e = 0.68 corresponding to a

relative density of 70 %). The friction angle under triaxial

compression is obtained at uc ¼ 40:7�; while the friction

angle under triaxial extension is ue ¼ 38:4�.
With b = 0, a value for Rfc = 4.77 is readily obtained

from Eq. (28). Hence from Eq. (23), we have gc = 0.811 in

this case. For b = 1, Rfe = 4.28 from Eq. (28) and

ge = 0.747 from Eq. (23). Similar to the case in last sub-

section, two linear equations are obtained by substituting gc

and ge into the right-hand side of Eq. (21). With the cor-

responding values of l2
2 being calculated from Eq. (27), we

can arrive in the following values for the two unknowns for

medium dense Santa Monica beach sand: g0 = 0.769 and

X1 ¼ �0:0309. According to the same procedure, the fol-

lowing pair of parameters have been obtained for the glass

beads tested in [5]: g0 = 0.466 and X1 ¼ �0:0734.

It will be useful to have an approximate range of the two

material parameters involved in the proposed criterion for

future study as well as practical use. Based on our expe-

rience gained from the parametric calibrations, the fol-

lowing ranges are recommended for cross-anisotropic soils:

(a) for clay with a friction angle varying from 15� to 40�,

the typical ranges are as follows: g0 2 ð0:19; 0:71Þ; X1 2
ð�0:074;�0:450Þ; (b) for sand with a friction angle in the

range of 25� to 45� the ranges for the two parameters are as

follows: g0 2 ð0:37; 0:84Þ; X1 2 ð�0:067;�0:146Þ.

6 Evaluation of the proposed criterion against test data

6.1 Triaxial tests

6.1.1 San Francisco Bay Mud [6]

With the parameters determined above, the new failure

criterion has been employed to predict the shear strength of

San Francisco Bay Mud. A comparison of experimental

data with the predictions is presented in Fig. 7. Also

z

x

yo

Isotropic planeSymmetry axis

(a) Vertical sample

(b) Horizontal sample

Fig. 6 Vertical and horizontal samples of cross-anisotropic soil

Isotropic criterion (Matsuoka and Nakai, 1974

(a)

(b)

) 

Cross-anisotropic criterion (η0=0.511, Ω1=−0.0611) 
Test data (Kirkgard and Lade, 1993)

I I

IIII

III III

Ι1=500kPa

xσ yσ

zσ

Sector III cross-anisotropic criterion
Sector II  cross-anisotropic criterion
Sector I  cross-anisotropic criterion
Isotropic criterion
Sector I Sector IIISector II

Fr
ic

tio
n 

an
gl

e 
ϕ 

(°
)

Intermediate principal stress parameter b

Fig. 7 Comparison of the predictions of the new failure criterion (as

well as isotropic SMP criterion) wtih test data for San Francisco Bay

Mud [6] (a)in the p-plane and (b) in b�u diagram
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presented in the figure are the predictions by the isotropic

SMP criterion. From both the deviatoric plane in Fig. 7a

and the b�u diagram in Fig. 7b, the anisotropic failure

criterion clear shows a better comparison with the test data

than the isotropic criterion. Notably from Fig. 7a, however,

the new failure criterion slightly underestimates the

strength of the soil in Section II of the deviatoric plane. In

the b�u diagram, its predictions overestimate the shear

strength in the low b case for Section III but show a mild

underestimation in the high b range of Section I.

6.1.2 Spherical glass beads [5]

A series of triaxial tests were performed by Haruyama [5]

to investigate the influence of inherent anisotropy on the

deformation-strength behaviors for an assembly consisting

of spherical particles of glass beads. The direction of

specimen deposition coincided with that of the principal

stress, rz. The conventional triaxial compression and con-

ventional triaxial extension test results have been employed

for the parameter determination. Shown in Fig. 8 is a

comparison between the test data and the proposed cross-

anisotropic failure criterion. Evidently, the proposed failure

criterion can reasonably capture the influence of cross-

anisotropy on the peak strength for the spherical glass

beads, and generally shows a better performance than the

isotropic SMP criterion.

6.1.3 Yuubari shale [19]

The proposed failure criterion has been applied to the

prediction of shear strength on a rock, the Yuubari shale

case [19]. The translated principal stresses defined in

Eq. (17) have been used in the formulation. The cohesion

related parameter r0 of rock can be derived directly from

the Mohr-Coulomb cohesion and the internal friction

angle [3], which is for Yuubari shale r0 = 93 MPa [19].

Figure 9 shows a comparison of the prediction with test

data in the r1–r2 space with a constant r3. From this fig-

ure, it can be seen that the cross-anisotropic criterion pre-

dicted the test data better than the isotropic criterion for

both r3 = 25 kPa, and r3 = 50 kPa.

I I

IIII

III III

Ι1=294kPa

Isotropic criterion (Matsuoka and Nakai, 1974) 

(a)

(b)

Cross-anisotropic criterion (η0=0.466, Ω1=−0.0734) 
Test data (Haruyama, 1981)

xσ yσ

zσ
Fr

ic
tio

n 
an

gl
e 

ϕ 
(°

)

Intermediate principal stress parameter b

Sector III cross-anisotropic criterion
Sector II  cross-anisotropic criterion
Sector I  cross-anisotropic criterion
Isotropic criterion
Sector I Sector IIISector II

Fig. 8 Comparison of test data for glass beads (Haruyama, 1981[5])

with predictions from the new cross-anisotropic failure criterion as well

as isotropic SMP criteria (a) in the p-plane and (b) in b�u diagram

1
σ

2σ

3σ

Extended SMP criterion (Matsuoka et al.[13])

Cross-anisotropic criterion 

3σ

(M
Pa

)

(MPa)

=50 MPa

=25 MPa

η0=0.377, Ω1=−0.04

1σ

2σ

Fig. 9 Comparison of failure criteria with test data for the Yuubari

shale (Data after Takahashi [19])
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6.1.4 Torsional shear tests

We take the case of medium dense Santa Monica beach

sand tested by Lade et al. [10] as an example. Thirty-four

drained torsional shear tests on this sand have been tested

by Lade et al. [10]. In the torsional shear tests, the value of

b is related to the inclination of r1 with respect to the

bedding axis, b, as shown in Fig. 5, according to b ¼ sin2 b
[10]. Hence, b = 0.0, for b = 0�, and b = 1.0, for

b = 90�. b = 0.0 and b = 1.0 correspond to triaxial

compression and conventional triaxial extension respec-

tively. Appropriate parameters have been determined in

previous section for this sand. Figure 10a presents the

predicted results in comparison with the test data in

the normalized szh–rz - rh plane. It appears that both the

isotropic and the cross-anisotropic failure criteria can

predicted the strength for this sand very well. However,

when we compare their performance in the u�b diagram,

as shown in Fig. 10b, the improved prediction by the cross-

anisotropic failure criterion is evident, as the isotropic

criterion generally overestimate the friction angle in most

range of b. Comparisons in Fig. 10 demonstrate that the

effects of stress rotation in torsional shear tests can be well

captured by the proposed failure criterion.

7 Conclusion and discussion

Based on the SMP failure criterion and the approach pro-

posed by Pietruszczak and Mroz [17, 18], a new failure

criterion for cross-anisotropic materials has been proposed

in this paper. The new criterion takes full account the

microstructural characteristics of the two methods, and

features only two parameters which can be easily deter-

mined by either conventional triaxial tests or torsional

shear tests. Application of the criterion to the prediction of

shear strength for a wide range of materials including San

Francisco Bay Mud [6], spherical glass beads [5], Santa

Monica beach sand [10] and Yuubari shale [19] have

shown the new criterion is capable of capture the strength

anisotropy for these materials pretty well.

As has been mentioned earlier, Lade [8] has proposed a

similar cross-anisotropic criterion based on his own iso-

tropic criterion and the approach by Pietruszczak and Mroz

[17]. Though not presenting here, our calculation shows

that Eq. (21) gives a slightly smaller value of the friction

angle u than Lade’s [8] criterion, except at b = 0. It is also

emphasized that the two studies differ from each in both

the expression and physical meaning of the mobilized shear

stress on the left-hand side of each criterion. The current

criteria stresses more the microstructural consideration

which may bring more consistence with Pietruszczak and

Mroz’s approach. Also notably, Gao et al. [4] have

developed an anisotropic failure criterion based on an

isotropic failure criterion proposed by Yao et al. [22],

wherein an anisotropic variable in terms of the invariants

and joint invariants of the stress tensor and the fabric tensor

have been introduced into the frictional coefficient of the

failure criterion to account for the influence of cross-

anisotropy. By introducing the microstructure tensor [17]

into the SMP failure criterion, the current study evidently

differs from Gao et al. [4] in both the methodology to

consider the anisotropic fabric and the specific isotropic

criterion based on which the anisotropic criterion has been

developed. In addition, the formulation of this new crite-

rion includes only two parameters which can be easily

calibrated by conventional triaixal tests or torsional shear

tests, while more than five parameters are required in the

study by Gao et al. [4].
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Test data (Lade and Nam, 2008)
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Fig. 10 Comparison of failure criteria with torsional shear test data

for medium dense, cross-anisotropic Santa Monica beach sand [10]

(a) in normalized rz - rh-szh and (b) in the b�u diagram
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