
3D multiscale modeling of strain localization in granular media

Ning Guo ⇑, Jidong Zhao

Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:

Available online 9 February 2016

Keywords:

Hierarchical multiscale approach

3D simulation

Strain localization

Diffuse failure

FEM/DEM

Granular media

a b s t r a c t

A hierarchical multiscale modeling approach is used to investigate three-dimensional (3D) strain local-

ization in granular media. Central to the multiscale approach is a hierarchical coupling of finite element

method (FEM) and discrete element method (DEM), wherein the FEM is employed to treat a boundary

value problem of a granular material and the required constitutive relation for FEM is derived directly

from the DEM solution of a granular assembly embedded at each of the FEM Gauss integration points

as the representative volume element (RVE). While being effective in reproducing the complex mechan-

ical responses of granular media, the hierarchical approach helps to bypass the necessity of phenomeno-

logical constitutive models commonly needed by conventional FEM studies and meanwhile offers a

viable way to link the macroscopic observations with their underlying microscopic mechanisms. To

model the phenomenon of strain localization, key issues pertaining to the selection of proper RVE pack-

ings are first discussed. The multiscale approach is then applied to simulate the strain localization prob-

lem in a cubical specimen and a cylindrical specimen subjected to either conventional triaxial

compression (CTC) or conventional triaxial extension (CTE) loading, which is further compared to a case

under plane-strain biaxial compression (PBC) loading condition. Different failure patterns, including

localized, bulging and diffuse failure modes, are observed and analyzed. Amongst all testing conditions,

the PBC condition is found most favorable for the formation of localized failure. The CTC test on the cubi-

cal specimen leads to a 3D octopus-shaped localization zone, whereas the cylindrical specimen under CTC

shows seemingly bulging failure from the outlook but rather more complex failure patterns within the

specimen. The CTE test on a uniform specimen normally ends in a diffuse failure. Different micro mech-

anisms and controlling factors underlying the various interesting observations are examined and

discussed.

! 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Loading paths and conditions affect many aspects of the shear

behavior of a granular medium, including its peak and residual

strength, deformation responses and failure patterns. As shown

by Uthayakumar and Vaid [1] and Yoshimine et al. [2], a sand sam-

ple sheared under the undrained condition may show a hardening

response in conventional triaxial compression (CTC), whereas it

may fail in form of static liquefaction in conventional triaxial

extension (CTE) at the same initial density. Another prominent

example is slope stability analysis. The factor of safety derived

for a slope based on 2D plane strain assumption may differ sub-

stantially from that based on a full 3D analysis [3]. Instabilities

and failures of sand have been widely related to catastrophic haz-

ards such as landslides and debris flow in geotechnical engineering

and have hence become a focal topic of research in geomechanics.

Compelling experimental evidence indicates that loading condi-

tions may dictate the occurrence of instability patterns in sand,

in conjunction with other key factors such as density and confining

pressure. For example, Lee [4] observed that the failure of speci-

mens subjected to plane-strain biaxial compression (PBC) was

always characterized by localized shear bands, whereas either

localized or bulging diffuse failure mode could take place in CTC

tests, depending on the density and the confining pressure level.

Peters et al. [5] found that localized shear failures more often occur

in sand under PBC loading, and bulging or diffuse failures are more

commonly observed in CTC or CTE. Alshibli et al. [6] also reported

that all their PBC tests ended up with localized failure character-

ized by well-developed conjugate shear bands whereas their CTC

specimens showed bulging failure patterns.

Numerical simulations of failures in granular media have been

commonly based on plasticity models and the finite element

method (FEM), with a majority of them focusing on the 2D

plane-strain case [7,8, among others]. These 2D studies indeed
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successfully reproduce the formation and the development of

shear band(s) which are consistent with experimental observa-

tions under the PBC condition. However, there have been rather

limited numerical studies on the failure patterns of granular media

under more general 3D loading conditions, and it is even more

scarce for a comprehensive comparison of the macro–micro behav-

ior in a granular material at failure under 2D and 3D conditions.

Only a small handful of studies have made some attempts in this

line. Based on FEM simulation of CTC tests on heterogeneous sands,

for example, Andrade and Borja [9] investigated the influence of

randomly distributed density on strain localization in sand.

Andrade et al. [10] treated the CTC test on sand based on a multi-

scale approach where FEM with a simple two-parameter plasticity

model was used to solve the boundary value problem (BVP) and

the evolutions of the two model parameters were traced from a

concurrently performed laboratory or discrete element method

(DEM) test. A viscoplastic model was employed by Kodaka et al.

[11] to simulate failures in saturated clay under the CTC loading

using FEM where the effects of sample size were emphatically

examined. Huang et al. [12] conducted a comprehensive bifurca-

tion analysis of the failure modes under all CTC, CTE and PBC load-

ing conditions and concluded that uniform bifurcation is more

likely to occur in CTC tests and localized failure is more common

in PBC and CTE tests. Notably, they have employed a special

boundary condition (rigid pressure boundary) in their FEM simula-

tions in conjunction with consideration of initial heterogeneity.

Bifurcation analysis is typically based on a specific constitutive

model and the characteristics of the acoustic tensor or the

second-order work, and the approach has been followed by many

other studies to identify the onset conditions of strain localization

[13–16].

It is widely agreed today that key microscopic mechanisms

underpin the dominant macroscopic behavior of a granular mate-

rial. A thorough understanding of the failures in a granular material

demands thus a robust modeling tool to provide simulations for

both 2D and 3D loading conditions and meanwhile to be able to

provide insights into the underlying microscopic mechanisms

accounting for these failures. A 2D hierarchical multiscale

approach has recently been developed by the authors [17–19]

and has been successfully applied to simulate geotechnical engi-

neering problems such as failure of retaining wall and footing

[20] and to model the interplay between anisotropy and strain

localization [21]. The approach will be extended in the present

study to 3D to consider more realistic general loading conditions.

While conceptually sharing certain similarities with the work by

Andrade et al. [10], our approach features the use of DEM packings

embedded into the Gauss integration points of the FEM mesh to

derive the local material responses, which helps to totally bypass

the need for phenomenological constitutive assumptions such as

yielding and flow rules. These DEM packings are treated as repre-

sentative volume elements (RVEs) which receive local boundary

conditions from the FEM computations and return stress and tan-

gent stiffness to FEM to solve a BVP. As demonstrated in Guo and

Zhao [18,20], the approach is capable of reproducing complex

material and structural responses of granular media including ani-

sotropy, non-coaxiality, cyclic hysteresis and strain localization,

and helps to bridge the micro and macroscopic modeling of gran-

ular media and enables effective cross-scale analyses. The current

study constitutes a new development of the approach for general

3D modeling of granular media. It is also noted that similar multi-

scale approaches have been presented by Kaneko et al. [22], Miehe

et al. [23], Nguyen et al. [24] and Li et al. [25], all of which however

were developed in 2D only.

The study is organized as follows. The solution procedure and

the formulation of the hierarchical multiscale approach are first

described in Section 2. Section 3 gives the DEM model parameters

and discusses the guideline to determine the proper RVE size. The

simulation results and pertaining analyses of the CTC, CTE and PBC

tests are presented in Section 4. Major conclusions are summarized

in Section 5. For symbols and notations, vectors and tensors are

denoted with boldface letters; ‘!’ and ‘:’ are the inner and the dou-

ble contraction operators, respectively; ‘r’ and ‘r!’ take the gradi-

ent and the divergence of a variable, respectively; ‘tr’ and ‘dev’ take

the trace and the deviator of a tensor, respectively; ‘"’ is the dyadic

operator.

2. Hierarchical multiscale model

Two open-source codes are coupled in the hierarchical multi-

scale approach — Escript [26] for the FEM computation and YADE

[27] for the DEM computation. The FEM is employed to discretize

the continuum domain of a BVP into FE mesh and to solve the gov-

erning equations over the discretized domain. A mesoscale discrete

particle assembly is considered at each Gauss point of the FEM

mesh which, after receiving boundary conditions from the FEM,

is solved by DEM to derive the local constitutive response. The

obtained material response is further passed onto the FEM for

the global solution. Meanwhile, the DEM solutions in the multi-

scale approach can naturally reproduce the nonlinear, state/path-

dependent shear responses observed for granular media. A brief

introduction of the formulations and the solution procedure is

summarized in the following.

2.1. FEM solver

A quasi-static mechanical problem is governed by the following

equilibrium equation:

r ! rþ qb ¼ 0 ð1Þ

where r is the stress tensor, q is the bulk density of the material,

and b is the body force (e.g. gravity). The variational form of Eq.

(1) can be obtained by multiplying it with a test function du and

integrating them over the domain X with the help of the Gaussian

theorem
Z

X

rdu : rdX'

Z

X

qdu ! bdX ¼

Z

Ct

du ! tdCt ð2Þ

where t is the traction exerted on the Neumann boundary Ct . The

discrete matrix form of Eq. (2) is readily obtained for a discretized

FE domain

Ku ¼ R ð3Þ

where u is the primary unknown displacement vector. The global

stiffness matrix K is assembled from

K ¼

Z

X

BTDBdX ð4Þ

where B ð¼ @N=@xÞ is the deformation matrix (N is the discretiza-

tion function). D is the tangent modulus commonly used in solving

a nonlinear problem. The residual force R in Eq. (3) is contributed by

several terms per Eq. (2)

R ¼

Z

X

NTqbdXþ

Z

Ct

NTtdCt '

Z

X

BTr0 dX ð5Þ

where r0 is the current (old) stress.

For a general nonlinear problem, Eq. (3) is frequently solved

through Newton–Raphson iterations, by updating K and R with

updated tangent modulus D and the stress tensor r at the local

Gauss points of the FE mesh. In the current study, both D and r
are homogenized from the RVE packings, as detailed in the follow-

ing subsection.
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2.2. DEM solver

In the hierarchical multiscale approach, a RVE packing is

embedded to each Gauss point of the FEM mesh to derive the local

material constitutive response. As schematically illustrated in

Fig. 1, each RVE packing receives the local deformation ru from

the FEM solution as its boundary condition and is solved by the

DEM solver. Based on the DEM solution, the local tangent operator

D and the stress tensor r are extracted and returned to the FEM

which are then used in Eqs. (4) and (5) by the FEM solver.

The stress tensor for a RVE packing is homogenized based on

the Love’s formula

r ¼
1

V

X

Nc

d
c
" f c ð6Þ

where V is the volume of the RVE packing, Nc is the number of con-

tacts within the packing, and f c and d
c
are the contact force and the

branch vector joining the centers of the two contacted particles,

respectively. An illustration of the interparticle contact is shown

in Fig. 2. With the stress tensor, two commonly referred stress mea-

surements—the mean stress p and the deviatoric stress q can be

calculated

p ¼ '
1

3
trr

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
devr : devr

r ð7Þ

Note that r in Eqs. (1) and (6) is defined positive for extension fol-

lowing the convention in solid mechanics and FEM computations.

When presenting the results, we follow the convention in soil

mechanics to treat compression as positive. For the strain measures,

we obtain the strain tensor from the symmetric part of the displace-

ment gradient e ¼ ðruþrTuÞ=2 and find the volumetric strain ev
and the deviatoric strain eq accordingly

ev ¼ 'tre

eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
deve : deve

r

ð8Þ

The tangent operator can be estimated from the homogenized

modulus of the discrete packing according to Wren and Borja

[28] and Kruyt and Rothenburg [29]

D ¼
1

V

X

Nc

ðknn
c " d

c
" nc " d

c
þ ktt

c " d
c
" tc " d

c
Þ ð9Þ

where nc and tc (see Fig. 2) are the unit normal and the tangential

vectors at a contact, respectively. kn and kt are the normal and the

tangential contact stiffnesses in the DEM model, respectively.

In the current study, a linear force–displacement contact law is

assumed, where kn and kt are determined from two parameters Ec

and mc through

kn ¼ Ecr
(

kt ¼ mckn
ð10Þ

where r( ð¼ 2r1r2=ðr1 þ r2ÞÞ is the common radius of the two con-

tacted particles with radii r1 and r2, respectively. The contact nor-

mal force f cn and the tangential force f ct are then calculated

f cn ¼ 'kndn
c

f ct ¼ 'ktu
c
t

ð11Þ

where d is the overlap between the two contacted particles, and uc
t

is the relative tangential displacement at the contact. To reproduce

the frictional interparticle contact behavior, a Coulombian thresh-

old is imposed on the tangential force

f ct
"

"

"

" 6 tanu f cn
"

"

"

" ð12Þ

where u is the interparticle friction angle. In addition to the inter-

particle contact force, a numerical damping, f damp, is also assumed

to dissipate the kinetic energy of the particles. The direction of

f damp is opposite to the translational velocity of the particle vp

and its magnitude is proportional to the unbalanced force f unbal

on the particle with a damping ratio a

f damp ¼ 'ajf unbaljvp=jvpj ð13Þ

Ec; mc; u; a, along with the particle size distribution and particle

density qp are the general user defined parameters in the DEM

model (see [27] for more detail).
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Fig. 1. Solution procedure of the hierarchical multiscale approach.

dc

nc

t c

f c

kn

kt

Fig. 2. Illustration of an interparticle contact.

Table 1

Parameters used in the DEM model.

Radii (mm) qp (kg/m3) Ec (MPa) mc u (rad) a

2–6 265,000 600 0.8 0.5 0.1
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3. Selection of RVE size

The macroscopic responses of a granular medium are intrinsi-

cally governed by its microscopic properties, such as particle size

distribution, interparticle contact and kinematics (sliding and rota-

tion), and particle morphology (e.g. roundness, sphericity and

roughness). The choice of a proper RVE is thus central to the hier-

archical multiscale analysis. For a particular problem, these micro-

scopic parameters should be carefully calibrated in the DEM

model, for example, to benchmark some standard experimental

data on sand. For convenience, the current study employs a simpli-

fied DEM model using spherical particles without considering roll-

ing resistance, and adopts DEM model parameters which are

typical in the literature, as listed in Table 1. The particle density

qp is scaled 100 times of the real value of silica sand grain in the

study to accelerate the local DEM computations. It is proved to

be a safe and efficient technique in simulating quasi-static prob-

lems [30]. Periodic boundary is used for the RVE, which satisfies

the Hill–Mandel-type condition for energy conservation during

scale transition [23].

Particular focus of the multiscale modeling is placed on the

selection of the RVE, specifically, the proper RVE size or the suffi-

cient number of particles to be considered for a RVE packing. While

the size effect on strength for a heterogeneous material is well

known, there is no widely agreed recommendation of RVE size

for a granular material. The RVE size of a granular medium depends

not only on the material itself (e.g. particle size distribution, den-

sity and pressure condition), but also on the structure sensitivity

of the physical quantities under concern [31]. According to the def-

initions by Hashin [32] and Drugan and Willis [33], the RVE should

be large enough to contain sufficient information about the

microstructure and to accurately reproduce the overall modulus

of the material. Meanwhile, it should be much smaller than the

macroscopic body to prevent localization occurring inside the

RVE. To determine the sufficient particle number in the RVE, we

consider five different RVE sizes, containing 125, 300, 580, 1000

and 2000 particles, respectively. The particle size distribution and

the material properties are the same as given in Table 1. Five real-

izations are randomly generated with different packing configura-

tions for each RVE size. All packings (25 realizations in total) are

then consolidated to the same initial void ratio e0 ¼ 0:66 and the

same initial isotropic pressure p0 ¼ 100 kPa. Since the mechanical

properties of the RVEs are concerned here, their shear responses

under drained CTC loading (loaded in the z-direction,

rx ¼ ry ¼ 100 kPa) are examined.

Fig. 3 shows a comparison among the different RVEs in terms of

their stress–strain behaviors.1 As can be seen, when the particle

number is only 125 (Fig. 3(a)), the shear behavior for each realization

shows great fluctuations. The deviations among different realiza-

tions are also large. With the increase of the particle number

(Fig. 3(b)–(e)), the fluctuation is decreased and the deviation

becomes narrower. This consistent trend unambiguously indicates

that the shear behavior of a RVE packing gets increasingly stable

and reliable when its particle number increases. By comparing

Fig. 3(c), (d) and (e), we can see the shear behavior can be treated

as stable when the particle number is larger than 580. The average

responses of the three RVEs with 580, 1000 and 2000 particles are
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Fig. 3. Shear behaviors of RVEs with different sizes.

1 To differentiate the color used in plotting Figs. 3, 4, 11 and 14, the readers are

referred to the web version of this article.
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relatively smooth and very close to each other as seen from Fig. 3(f),

whereas the average responses from the other two small RVEs are

still fluctuated. Although the fluctuation and the deviation can be

further reduced by increasing the RVE size and an ideal RVE should

have negligible deviations among different realizations of an identi-

cal initial condition, we elect to use 1000 particles in our RVE for the

following multiscale tests. As shown in the sequel, a typical multi-

scale triaxial test needs to handle millions of discrete particles in

one simulation. The marginal improvement on the shear response

by using more than 1000 particles in the RVE may well be overshad-

owed by the dramatically increased computational cost in terms of

CPU time and memory demand. Therefore, a RVE with 1000 particles

serves as a reasonable compromise between reliable RVE responses

and affordable computational cost. Fig. 4 shows the final RVE

adopted after isotropic consolidation ðe0 ¼ 0:528; p0 ¼ 100 kPaÞ.

Note that a relatively dense packing of RVE are prepared in the study

to facilitate the formation of shear band. In addition to the packing

configuration in Fig. 4(a), the interparticle contact system is also pre-

sented in terms of the force chain network in Fig. 4(b) (chain width

proportional to the magnitude of contact normal force) and the

contact-normal based fabric tensor in Fig. 4(c), which is defined as

[34]

/ ¼

Z

H

EðHÞnc " nc dH ¼
1

Nc

X

Nc

nc " nc ð14Þ

where the distribution function EðHÞ can be approximated by a

second-order Fourier expansion

EðHÞ ¼
1

4p
½1þ Fa : ðn

c " ncÞ* ð15Þ

where Fa ð¼ 15=2dev/Þ is the deviatoric fabric tensor, whose aniso-

tropic intensity can be characterized by a scalar Fa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2Fa : Fa

p

[35]. The fabric tensor provides a convenient tool to characterize

the internal structure of granular media under mechanical loading.

As shown in Fig. 4, the initial RVE is roughly isotropic as the force

chain is relatively homogeneous and the contact normal distribu-

tion is largely uniform.

4. 3D loading tests

Due to the hierarchical structure of the multiscale approach, the

RVE packings at the Gauss points of the FE mesh can be solved by

0

15

30

45

| fn
c| ( N )

(c)(a) (b)

Fig. 4. (a) Prepared RVE packing and periodic cell; (b) force chain network; (c) contact normal distribution.
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Fig. 5. Dimension and mesh for the cubical and the cylindrical specimens with the

20-node hexahedral element. The weak elements in the cubical specimen span from

y ¼ 0 m to y ¼ 0:05 m.
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DEM independently, which renders it straightforward to imple-

ment the parallel computing technique to speed up the multiscale

modeling. We have implemented a message passing interface

(MPI) [36,37] in our code to run separate DEM computations in

parallel on a high-performance computing (HPC) cluster. A typical

test presented in this section costs about 24 h using 4 HP ProLiant

SL250 Gen8 nodes (each with 2 + 10-core 2.2 GHz CPU and

8 + 8 GB RAM) on a local cluster. As one such simulation involves

millions of discrete particles for the whole problem domain, the

performance demonstrates the multiscale approach is more effi-

cient than the regular DEM. Indeed, an almost linear scalability

can also be observed from the parallel computing scheme.

Two specimens with typical shapes in laboratory element tests,

cubical and cylindrical, are chosen to perform the 3D loading tests.

The heights of both specimens are 0.1 m. The cubical specimen has

a square cross-section with a side length of 0.05 m, and the cylin-

drical specimen has a diameter of 0.05 m. FE meshes for the two

specimens are shown in Fig. 5. Both specimens are discretized into

1024 20-node hexahedral elements using Gmsh [38]. Note that a

similar discretization has been used by Andrade and Borja [9]. A

reduced integration scheme, involving 8 Gauss points for each ele-

ment, is adopted in the FEM computation (see also [11]). As a

result, the multiscale computation for each specimen involves a

total of 8192 RVE packings. With 1000 particles for every RVE,

Fig. 8. Contours of shear strain for the uniform cubical specimen under the (a) CTC; (b) CTE and (c) PBC conditions at the final loading stage (jeaj ¼ 10%).
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the total number of particles involved amounts to over 8 million.

Three loading conditions, including the CTC, the CTE, and the

PBC, are performed. In all testing cases, the bottom surface of the

specimen is fixed, while the top surface is assumed rough, which

means there are no lateral displacements allowed for nodes on

the top surfaces. Uniform vertical displacements are then applied

on these top-surface nodes to load the specimens axially. In CTC

and CTE, a constant lateral confining pressure of 100 kPa is applied

on the vertical surfaces of the specimen. In PBC (adapted from the

cubical specimen), the displacements in the y direction are

restricted for the nodes on the two outer surfaces at y ¼ 0 m and

y ¼ 0:05 m, respectively. The confining pressure is only applied

on the other two vertical surfaces (at x ¼ 0 m and x ¼ 0:05 m) of

the specimen. An extra cubical specimen with preset weak ele-

ments in the central height spanning from y ¼ 0 m to y ¼ 0:05 m

(see Fig. 5, left) is also examined under the three loading condi-

tions. The weak elements are generated by assigning slightly loose

RVE packings (initial void ratio e0 ¼ 0:707, the same to other RVE

packings otherwise) to their Gauss points. Gravity is not consid-

ered in all tests (i.e. b ¼ 0 in Eq. (1)).

4.1. Stress–strain responses

The nominal axial stress–strain responses of the uniform spec-

imens without preset weak elements are shown in Fig. 6. The nom-

inal axial stress is calculated from the total force exerted on the top

surface normalized by the area of the top surface. The responses of

the RVE packing under the same conditions from separately per-

formed pure DEM tests are also provided (shown as open circles)

for comparison. Evidently, the PBC test gives a higher peak axial

stress ra than the CTC test (411 kPa versus 311 kPa). The softening

in the PBC test is also more significant and occurs at a much smal-

ler axial strain ea than in the CTC one (1.5% versus 2.5%). These

observations are in good agreement with those from experiments

[4,39]. In the PBC test, the peak ra from the multiscale simulation

is slightly higher than that from the RVE response, which is similar

to the 2D plane-strain tests [21] and is attributed by the extra con-

straint imposed by the rough boundary condition. However, the

post peak and the residual ra are rather similar between the mul-

tiscale result and the RVE response, albeit the latter is relatively

fluctuated. Different from the PBC test, the RVE axial stress in the

CTC test is always smaller than the multiscale result after the ini-

tial yield point. The difference in the two loading conditions is

caused by their different failure modes as to be explained in Sec-

tion 4.2. It is also seen that generally ra in the cylindrical specimen

is marginally smaller than that in the cubical specimen. The differ-

ence is only noticeable at around the yield point (ea , 0:25%). In

the CTE test, the axial stress decreases dramatically to a minimum

at ea ¼ '0:3% due to the extension. The minimum ra from the RVE

response is slightly larger than that from the multiscale simulation.

Starting from that point, ra gradually increases and reaches a

roughly constant value of 26 kPa in the cubical specimen, but it

Fig. 9. Contours of shear strain for the uniform cylindrical specimen under the (a) CTC and (b) CTE conditions at the final loading stage (ea ¼ 10% and '7:2% respectively).
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increases steadily in the cylindrical case. While the test on the

cubical specimen still gives a reasonable result compared with

the RVE response in the CTE test, the boundary condition for the

confining pressure on the cylindrical specimen is more complex

and easily becomes ill-posed. The cylindrical specimen has been

found to become severely distorted at the point of ea ¼ '7:2%

(Section 4.2), which forces the termination of the computation at

this point.

The behaviors of the imperfect cubical specimen (with preset

weak elements) are compared in Fig. 7. Generally, their behaviors

are almost the same before the initial yield point and at the late

residual state compared with the behaviors of the uniform cubical

specimen. Nevertheless, the imperfect specimen gives a smaller

peak ra in the CTC and PBC tests and also a smaller valley ra in

the CTE test than their corresponding uniform cases. The difference

is the largest in the PBC condition and is intermediate in the CTC

case. The difference observed in the CTE test is negligibly small.

4.2. Strain localization

This subsection presents a comparison of the different failure

patterns observed in the multiscale simulations of specimens

under various loading conditions. Fig. 8 shows the contours of

the accumulated shear strain eq at the final stage (jeaj ¼ 10%) for

Fig. 10. Contours of shear strain for the imperfect cubical specimen (with weak elements) under the (a) CTC; (b) CTE and (c) PBC conditions at the final loading stage

(jeaj ¼ 10%).
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the uniform cubical specimen under different loading conditions.

Under the CTC condition, a 3D localized zone has been observed.

The emergences of the shear zone onto the x–z and y–z surfaces

both show cross-shaped shear bands (Fig. 8(a, left)), which are sim-

ilar to that observed in an early 2D plane-strain simulation [21].

From the vertical diagonal slices of the specimen (Fig. 8(a, right)),

it is found the most severe localization occurs at the inner-center

of the specimen (maximum eq ¼ 0:33 at the inner-center and

0.21 on the surface) and the shear zone extends from the inner-

center to the eight corners of the specimen. A similar 3D shear zone

of the octopus shape has also been observed by the simulation of

Kodaka et al. [11] for water-saturated clay. In contrast, under the

CTE condition, a diffuse failure with no obvious localization has

been observed (Fig. 8(b)). The specimen deforms relatively uni-

formly except at the boundary areas where boundary effects play

a role. The maximum shear strain (eq ¼ 0:12) is also small com-

pared to that in CTC test (which actually occurs at the corner of

the specimen where the boundary effect is the strongest). Different

from the CTC and the CTE conditions, a pair of cross-shaped conju-

gate planar shear bands (Fig. 8(c, left)) can be clearly identified

under the PBC condition which is commonly seen in 2D plane-

strain experiments and simulations. In contrast to the cross-

shaped shear bands on the x–z plane, one (only at the near-

center cross-sections) or two horizontal bands can be observed

on the y–z plane (Fig. 8(c, right)). From Fig. 8(a), (b) and (c), it is

concluded that shear localized failure is easier to develop in the

PBC condition, where the shear zone is more appreciably concen-

trated within a narrow band and the maximum shear strain is

much larger (eq ¼ 0:51 in PBC versus 0.33 in CTC and 0.12 in

CTE). The localized failure is difficult to initiate in the CTE condition

where diffuse failure takes place instead.

Similarly, the cylindrical specimen has been subjected to the

CTC and the CTE tests. The contours of the accumulated shear

strain at the final stage are presented in Fig. 9. For the CTC condi-

tion, instead of the shear localized failure found on the cubical

specimen, an obvious bulging failure occurs for the cylindrical

specimen (Fig. 9(a, left)). As the shape becomes axisymmetric,

the specimen appears to be more resistant to localized failure.

However, similar to the cubical specimen, the maximum shear

strain is observed at the inner-center of the specimen, as can be

seen from the horizontal slices (Fig. 9(a, right)). Due to the con-

straints at the top and the bottom surfaces, the bulging is also most

severe at the center height of the specimen. These observations

agree qualitatively well with some experiments using X-ray com-

puted tomography [40,41]. Again for the CTE test, the specimen

fails diffusively and the deformation is relatively uniform inside

the specimen (Fig. 9(b, left)). However, from the horizontal slices,

it is found the shear intensity is larger in the outer part than in

the inner part of the specimen (Fig. 9(b, right)). In addition, a

noticeable twisting of the entire specimen is observed, which

explains the increase of the axial stress shown in Fig. 6. By compar-

ing Figs. 8 and 9, we can see that at the same aspect ratio, the spec-

imens with different shapes of the cross-section can have different

failure modes.

In the above analyses, the specimens are prepared to be initially

uniform, with all Gauss points being assigned with identical RVE

packings. In nature, however, a specimen is usually inhomoge-

neous due to randomness, e.g. the distributed density and the

micro-structure. The inhomogeneity or the imperfection can also

exert a profound influence on the strength and the failure pattern

of a specimen [9]. In this study, the imperfection is simplified to a

row of weak elements embedded into the cubical specimen (see

Fig. 5). It is noted random RVE packings can also be assigned to

the Gauss points across the domain to generate the imperfection,

which may make the specimen more realistic but nevertheless is

not attempted in the present study. The failure patterns of the

imperfect cubical specimen under different loading conditions

are shown in Fig. 10. As the embedded weak elements break the

symmetry of the x–z and the y–z planes, under the CTC condition,

the strain localization is more distinct in the x–z plane than in the

y–z plane (Fig. 10(a, left)), which differs from the uniform speci-

men. However, there are vague crossed shear bands seen in the

Fig. 11. Contours of accumulated average particle rotation for the uniform (a) CTC cubical; (b) CTE cubical; (c) PBC cubical and (d) CTC cylindrical specimens at the final

loading stage (jeaj ¼ 10%).
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outer y–z slices and there is a distinctive horizontal band in the

center height of the inner y–z slice (Fig. 10(a, right)), whose posi-

tion corresponds to that of the weak elements. An apparently dif-

ferent failure mode under the CTE condition has been observed

for the imperfect specimen compared with its uniform counterpart

case. Instead of diffuse failure in the previous uniform case, local-

ized failure takes place. Three pairs of crossed conjugate planar

shear bands can be identified in the x–z plane, among which the

one intersecting at the weak elements is most distinct (Fig. 10(b,

left and middle)). The effect of the weak elements is even stronger

in the CTE condition than in the CTC one. Only horizontal bands (4

for the outer slices and 3 for the inner one) can be observed in the

y–z slices (Fig. 10(b, right)). The shear band pattern of the imper-

fect specimen under the PBC condition is rather similar to that of

the uniform specimen (Fig. 10(c)). With the embedded weak ele-

ments, the maximum shear strain increases under all loading

conditions.

In addition to the shear strain contour, X-ray computed

tomography [42] and DEM simulations [43] reveal that significant

particle rotation takes place within shear localized zones. This has

also been demonstrated in our previous 2D multiscale simulations

[20,21]. The accumulated average particle rotation h for a RVE

packing is defined as

h :¼ ðhx; hy; hzÞ
T ¼

1

Np

X

Np

hp ð16Þ

where Np is the number of particles, hp is the accumulated rotation

of an individual particle. The contours of h projected onto the verti-

cal planes for the uniform specimens at the final loading stage are

shown in Fig. 11. For the cubical specimen under the CTC condition,

a similar fourfold pattern is observed on both the y–z (hx, Fig. 11(a,

left)) and x–z (hy, Fig. 11(a, right)) planes. Looking from the positive

x (or y) to the negative x (or y) axis, we observe positive (shown in

red for anti-clockwise rotation) hx (or hy) at the top-right and the

bottom-left quarters but negative (shown in blue for clockwise

rotation) hx (or hy) at the top-left and the bottom-right quarters of

the y–z (or x–z) plane. This pattern is close to that observed from

2D simulations, indicating crossed shear bands on these two verti-

cal planes. But unlike the slim bands in 2D test [21], the localized

zones appear to be round and fat. For the cubical specimen under

the CTE condition, except at the top and the bottom ends, the

domain is relatively uniform with almost zero average particle rota-

tion on both y–z and x–z planes (Fig. 11(b)), which is consistent

with the diffuse failure pattern found in Fig. 8(b). Indeed, even close

to the boundary constraints, the rotation magnitude is relatively

small (maximum jhj , 0:04). The PBC test shows a rather similar

pattern on the x–z plane (Fig. 11(c, right)) to that of a 2D plane-

strain test, with well developed cross-shaped conjugate planar

shear bands. The magnitude of average particle rotation inside the

localized zones is much larger (jhj , 0:3) than the other cases. In

contrast, the particles have almost zero rotation on the y–z plane

(Fig. 11(c, left)) even inside the horizontal bands seen in Fig. 8(c,

right). For the cylindrical specimen under the CTC condition

(Fig. 11(d)), a localized pattern similar to that in the cubical speci-

men under the same CTC condition (Fig. 11(a)) is observed, which

is a rather surprising finding as the specimen is found undergoing
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a bulging failure from the shear strain contour (Fig. 9(a)). However,

the contour of h suggests that shear localization, perhaps less dom-

inant than bulging, also develops inside the specimen. Not pre-

sented here, the contour of the cylindrical specimen under the

CTE condition has a similar diffuse pattern to that of the cubical

specimen (Fig. 11(b)) before severe distortion occurs. One further

remark on the average particle rotation defined in Eq. (16) is that

h is more representative of the global rotation of the RVE (Fig. 14

(d, left)). The rotation of individual particles inside the shear bands,

although has large magnitudes, may experience different directions

[44,45].

The orientation of shear band under the different loading condi-

tions is further examined. Fig. 12 shows the orientation angle of

the shear band measured with respect to the minor stress direction

of the specimens (horizontal in CTC and PBC, vertical in CTE). Since

planar shear bands are observed in the PBC and the CTE tests

(Figs. 8(c), 10(b) and (c)), the angles under the two test conditions

are measured from the surface of the specimens. While localization

in the CTC test forms a 3D octopus-shaped zone, the angle of shear

band is estimated from both the surface and the vertical diagonal

planes. It is found from Fig. 12 that the angle on the surface plane

is larger than that on the vertical diagonal plane, the latter of which

is deemed more appropriate for the angle of the 3D shear localized

zone. A decreasing trend is also observed from CTC to PBC and to

CTE, which suggests the shear band angle decreases with the

increase of the intermediate principal stress ratio. Nevertheless,

the drop from PBC to CTE is marginally small.

4.3. Multiscale analysis

A prominent feature of the hierarchical multiscale approach is

its capacity in providing direct macro–micro bridging for granular

media. To demonstrate this, two Gauss points of the uniform cubi-

cal specimen, as shown in Fig. 13(d), are selected, where Point A

(coordinate = (0.0013, 0.0013, 0.0138)T) is located inside the shear

localized zone for the CTC and the PBC tests and Point B (chosen for

CTC test only, coordinate = (0.0263, 0.0263, 0.0763)T) is outside the

localized zone. The dilation responses, the loading paths and the

evolutions of fabric anisotropy of the two points are plotted in

Fig. 13(a)–(c). In the CTC test, Point A undergoes a large deforma-

tion with significant dilation (ev reaches '6:33%), whereas Point

B undergoes a small deformation with mild dilation (ev reaches
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Fig. 14. Force chain network and fabric of the selected points of the uniform cubical specimen at the final loading stage.
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'2:55%). Nevertheless their loading paths are close to each other,

both following approximately a CTC loading path (Dq=Dp ¼ 3).

Their post-peak stress paths show strong fluctuations for both

points. The fabric anisotropy shows similar evolutions for the

two points under CTC. However, there is a mild decrease in Fa after

ea ¼ 6:8% for Point A, whereas at Point B Fa increases steadily. For

the same point A under different loading conditions, the dilation is

most significant under PBC loading (ev reaches '8:7%). The evolu-

tion of dilation under CTE loading is almost linear (without initial

contraction which is observed for other loading conditions) as the

overall deformation is relatively uniform for the CTE test. The slope

of the loading path (Dq=Dp) is '3 for CTE and slightly less than 3

for PBC. An obvious stress softening is observed for the PBC test

from its loading path (peak q ¼ 255 kPa, residual q ¼ 118 kPa),

which is consistent to the overall softening of the specimen plotted

in Fig. 6. The fabric anisotropy of Point A under CTE increases faster

than under CTC and PBC, and is generally larger. This is because the

confining pressure level is lower for CTE condition than the other

two conditions, which could render the contact force network

more anisotropic [35,46]. The Fa of Point A under CTE reaches a

steady value after ea ¼ '1%, whereas the Fa under PBC experiences

a drastic decrease after ea ¼ 3:5%.

It is instructive to examine the microstructure of the two points

under different loading conditions. Fig. 14 presents the force chain

network and the homogenized fabric (using Eq. (15)) of the two

points at the final loading stage. Under the CTC loading, both Point

A and B possess a highly anisotropic structure. Strong force chains

are found roughly aligned in the vertical direction. The forcemagni-

tudes are comparable for these two points. The smoothed distribu-

tion of the contact normals has a dumb-bell shape,whosemajor axis

tilts slightly from the vertical direction. From the projections on the

x–z and the y–z planes, it is also seen the two points are roughly iso-

tropic in the x–y plane under the CTC loading. By comparing Figs. 13

(b) and (c) and 14(a) and (b), the stress level, the contact force net-

work and the fabric anisotropy of the two points (one inside and the

other outside the shear localized zone) appear to differ insignifi-

cantly. Therefore, the contour of the stress or the contact normal

based fabric anisotropy cannot be used to identify the shear local-

ized zone [18,21]. For Point A under the CTE loading, strong force

chains are found aligned horizontally. The smoothed distribution

of the contact normals looks like a donut or a red blood cell with

major axes in the horizontal plane. The contact force magnitude in

CTE is generally smaller than that in CTC. Under the PBC condition,

Point A undergoes a significant anti-clockwise rotation on the x–z

plane seen from the positive y-axis, which is consistent with the

observation in Fig. 11(c). Except one exceptionally large force chain,

the average force magnitude of Point A under PBC is comparable to

that under CTC. Indeed, Point A experience a similar stress level

under the two conditions as seen from Fig. 13(b). The smoothed dis-

tribution of the contact normals presents a dumb-bell shape on the

x–z projection, whose major direction, however, is oblique from the

vertical direction due to the rotation of the RVE packing. on the y–z

plane, the smoothed distribution of the contact normals has a

potato-like shape, suggesting the y-direction possesses the

second-most interparticle contacts under the PBC loading.

5. Conclusions

A 3D hierarchical multiscale approach has been presented to

investigate strain localization under three typical loading condi-

tions: CTC, CTE and PBC. While providing a robust alternative to

conventional phenomenological approaches in modeling granular

media and relevant BVPs, the proposed approach offers a straight-

forward means to establish the macro–micro relationship towards

a deeper understanding of the behavior of granular media. The

multiscale modeling of strain localization in granular media leads

to the following major findings, among the three loading

conditions:

(a) The PBC testing condition gives rise to the highest peak

nominal axial stress as well as the most significant softening

response, which agrees with the experimental observations

[4,39]. The CTC and the CTE tests on the cubical and the

cylindrical specimens give similar nominal axial stresses.

The inhomogeneous specimen (with preset weak elements)

has smaller peak stresses than the uniform specimen, but

with close residual stresses.

(b) The cubical specimen develops an octopus-shaped shear

localized zone under CTC and two crossed planar shear

bands under PBC, whereas it fails in diffuse mode under

CTE. The cylindrical specimen undergoes a bulging failure

under the CTC loading condition, and a distorted diffuse fail-

ure under CTE. The weak elements facilitate the formation of

localized failure for the cubical specimen under the CTE

loading condition.

(c) The contour of average particle rotation is a good indicator

for strain localization. The particles inside the shear local-

ized zone experience much more severe rotation than those

outside the localized region. From the contour of average

particle rotation, shear localization is also found for the

cylindrical specimen under the CTC loading, although bul-

ging failure is observed from the outer surface of the speci-

men. The shear band orientation (with respect to the minor

stress direction) shows a decreasing trend from the CTC to

the PBC to the CTE loading conditions (with increasing of

the intermediate principal stress ratio).

(d) The multiscale approach enables a cross-scale analysis of the

strain localization problem. The dilation is large for the point

inside the shear localized zone and it ismild for the point out-

side the localized zone. However, there are no big difference

in the stress level, the interparticle force magnitude and the

contact normal based fabric anisotropy for points inside and

outside the localized zone, which suggests these quantities

may not be well suited for identifying the shear localized

zone as compared to other quantities such as shear strain,

density or average particle rotation. The fabric anisotropy

presents different shapes under different loading conditions.

There are also some limitations of the current approach. The

material response is captured by the local RVE packing and the

RVE needs to be carefully chosen for a particular problem. DEM

commonly adopts simplified models to describe sand grains and

their interactions, quantitative modeling of real sand behavior, at

this stage, still requires some undesired phenomenological calibra-

tion of the DEM model, e.g. by adding rolling resistance. Faithful

modeling of particle shape is a continuous pursuit of the authors’

group towards possible improvements in this regard [47–49].

The second issue lies in the computational efficiency. As a full 3D

simulation involves millions of particles, the computational cost

is considerable. Although parallel computing techniques adopted

in the current study help to relieve certain burden, the algorithms

in both the DEM (e.g. accelerating interparticle contact detection)

and the FEM (e.g. using more efficient tangent operator) computa-

tions need to be further optimized for practical application of the

proposed multiscale approach.
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