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a b s t r a c t 
Soil fabric and its evolving nature underpin the non-coaxial, anisotropic mechanical behaviour of sand, 
which has not been adequately recognized by past studies on constitutive modelling. A novel three- 
dimensional constitutive model is proposed to describe the non-coaxial behaviour of sand within the 
framework of anisotropic critical state theory. The model features a plastic potential explicitly expressed 
in terms of a fabric tensor reflecting the anisotropy of soil structure and an evolution law for it. Under 
monotonic loading, the fabric evolution law characterizes a general trend of the fabric change to grad- 
ually become co-directional with the loading direction before the soil reaches the critical state. When 
sand is subjected to rotation of principal stress directions, the fabric evolves with the plastic strain in- 
crement which is further dependent on the current stress state, the current fabric and the direction of 
stress increment. During its evolution, the fabric rotates towards the loading direction and reaches a final 
degree of anisotropy proportional to a normalized stress ratio. With the incorporation of fabric and fabric 
evolution, the non-coaxial sand behaviour can be easily captured, and the model response converges to 
be coaxial at the critical state when the stress and fabric are co-directional. The model has been used to 
simulate the mechanical behaviour of sand subjected to either monotonic loading or continuous rotation 
of principal stress directions. The model predictions agree well with test data. 

© 2016 Published by Elsevier Ltd. 
1. Introduction 

Non-coaxial sand response refers to an inconsistency of the 
principal axes of plastic strain increment and those for the stress. 
It is commonly observed in experimental tests on both naturally 
deposited and reconstituted sands ( Roscoe, 1970; Li and Yu, 2010; 
Rodriguez and Lade, 2014 ). Roscoe (1970) is among the first to ob- 
serve the non-coaxial behaviour in his simple shear tests on sand. 
His tests show that the principal strain rate and the principal stress 
are more non-coaxial at lower shear strain level. They tend to 
be more coaxial when the shear strain increases, and become to- 
tally coaxial when the sand reaches the critical state. Similar non- 
coaxial response has also been observed in hollow cylinder tor- 
sional shear tests with fixed principal stress directions and variable 
intermediate principal stress ( Symes et al., 1984; Gutierrez et al., 
1991; Miura et al., 1986; Rodriguez and Lade, 2014 ). Rather appar- 
ent non-coaxial response has been observed in sand subjected to 
continuous rotation of principal stress axes ( Gutierrez et al., 1991; 
Miura et al., 1986; Nakata et al., 1998; Yang et al., 2007 ). These 
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tests indicate that the degree of non-coaxiality, defined by the rel- 
ative angle between the principal plastic strain increment direc- 
tion and that of the stress, depends on both the stress ratio and 
fabric anisotropy. For example, higher degree of non-coaxiality is 
observed in more anisotropic samples at relatively lower stress ra- 
tio, and it gradually diminishes as the stress ratio approaches the 
critical state. 

Proper understanding of the non-coaxial behaviour of sand can 
be of great theoretical significance and practical importance. For 
example, when an offshore geo-structure is subjected to wave 
loads or an embankment pavement is subjected to repeated traf- 
fic loads, it may lead to continuous rotation of principal stress di- 
rections and induce significant accumulation of non-coaxial plastic 
deformation in relevant soils over a sustained period of loading, 
which may potentially cause liquefaction to the offshore geostruc- 
tures or permanent distress to the road embankments ( Ishihara, 
1983 ). More recent micromechanical studies suggest that non- 
coaxial deformation may act as a crucial trigger for strain localiza- 
tion in anisotropic sand ( Gao and Zhao, 2013; Guo and Zhao, 2014; 
Zhao and Guo, 2015 ), a phenomenon widely considered a key pre- 
cursor for catastrophic failures such as landslide and debris flow. 
Due to its apparent importance, non-coaxial sand behaviour has 

http://dx.doi.org/10.1016/j.ijsolstr.2016.11.019 
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Notation 
A anisotropic variable 
b intermediate principal stress parameter 
D m , D t dilatancy equation for monotonic loading 

and rotation of principal stress direction 
D r relative density 
e , e c void ratio and critical state void ratio 
ε e 

i j , ε p i j elastic and plastic strain 
F ij deviatoric void fabric tensor 
f yield function 
G elastic shear modulus 
g ( θ ) interpolation function for the critical state 

stress ratio 
K elastic bulk modulus 
K pm , K pt plastic modulus for monotonic loading and 

rotation of principal stress direction 
M c , M e critical state stress ratio in triaxial com- 

pression and triaxial extension 
p mean normal stress 
R stress ratio 
r ij stress ratio tensor 
s ij deviatoric stress tensor 
α angle between the major principal stress 

and direction of deposition 
δij Kronecker delta 
ε 1 , ε 2 , ε 3 major, intermediate and minor principal 

strain respectively 
ε z , ε r , ε z , ε z θ axial, radial, vertical and shear strain 
θ Lode angle of the stress tensor 
σ 1 , σ 2 , σ 3 major, intermediate and minor principal 

stress respectively 
σ ij stress tensor 
σ z , σ r , σ z , σ z θ axial, radial, vertical and shear stress 
ψ state parameter 

been one of the focal topics in constitutive modelling of sand over 
the past two decades (e.g., Tobita and Yanagisawa, 1992; Gutierrez 
et al., 1993; Li and Dafalias, 2004; Qian et al., 2008 ). 

Replace by ‘An approach followed by several existing models in 
classical’ soil mechanics has been to simply assume that the plas- 
tic strain increment direction is dependent on both the current 
stress state and stress increment direction ( Darve, 1974; Dafalias, 
1975; Dafalias 1977; Dafalias, 1986; Gutierrez et al., 1993; Papami- 
chos and Vardoulakis, 1995; Hashiguchi and Tsutsumi, 2003; Li 
and Dafalias, 2004; Yu and Yuan, 2006; Nicot and Darve, 2007; 
Lashikari and Latifi, 2008; Qian et al., 2008 ). This approach is 
coined by Dafalias (1986) as hypoplasticity which offers a vi- 
able pathway to capture the non-coaxial sand behaviour to a rea- 
sonable extent. However, it may not provide adequate links of 
the non-coaxial response in sand with the underpinning physi- 
cal attributes and fundamental mechanisms. Rather clearer than 
ever, non-coaxiality is indeed a natural response observed in 
any anisotropic materials including sand. The crucial role played 
by fabric anisotropy in dictating the non-coaxial behaviour in 
anisotropic sand should be adequately recognized and explicitly 
considered. More importantly, the fabric exhibits an evolving na- 
ture with deformation, which serves as a crucial physical mech- 
anism accounting for the change of non-coaxial response in sand 
( Li, 2013; Gao et al., 2014; Thornton and Zhang, 2006; Li and Yu, 
2009; Li and Yu, 2010; Yang, 2013a; Guo and Zhao, 2014; Zhao 
and Guo, 2015; Oda and Konishi, 1974; Fu and Dafalias, 2011 ). As 
shown by the micromechanical studies of Li and Yu (2010) , the fab- 
ric of granular materials will evolve (including changing in princi- 

pal directions and magnitude) when they are subjected to shear. 
The rotation of fabric produces strain components normal to the 
stress direction, which accounts for non-coaxial sand response in 
rotation of principal stress directions. Evidently, fabric and fabric 
evolution are indispensable for modelling the non-coaxial sand be- 
haviour ( Yu, 2008 ). Proper consideration of fabric and its evolu- 
tion in a model may help to simulate the non-coaxial behaviour 
in sand more rigorously. Indeed, there has been a number of non- 
coaxial sand models developed to account for the effect of inherent 
anisotropy, but without considering fabric evolution. For instance, 
Tobita and Yanagisawa (1992) have proposed using a yield func- 
tion expressed in terms of a modified stress tensor dependent on 
both the stress tensor and fabric tensor. An associated flow rule 
based on this yield function has been used. The model can pre- 
dict coaxial responses for an initially isotropic material and non- 
coaxial responses for an initially anisotropic material with its ini- 
tial fabric being non-coaxial with the loading direction. Neverthe- 
less, since there is no account for fabric evolution, the change of 
the degree of non-coaxiality with plastic deformation as evidenced 
by numerous experiments cannot be captured ( Roscoe, 1970; Gao 
et al., 2014 ). Nemat-Nasser and Zhang (2002) have developed a 
micromechanically-based constitutive model based on an assump- 
tion that the deformation in granular materials is induced by rel- 
ative sliding and rolling of particles. The study further employed 
a non-coaxial flow rule dependent on both fabric anisotropy and 
fabric change in the course of deformation. However, the predic- 
tive capability of the model remains to be testified to reproduce 
the typical non-coaxial sand behaviour observed in numerous tor- 
sional shear tests or simple shear tests. 

In this study, a constitutive model for describing non-coaxial 
behaviour of granular materials will be proposed based on the 
anisotropic critical state theory ( Li and Dafalias, 2012 ) wherein 
the role of fabric and fabric evolution is highlighted. In monotonic 
loading with fixed loading direction, a plastic potential explicitly 
expressed in terms of the invariants and joint invariants of the 
stress ratio tensor r ij and a deviatoric fabric tensor F ij is proposed. 
In conjunction with a fabric evolution law, the non-associated flow 
rule based on this plastic potential can naturally address the non- 
coaxial behaviour of granular materials under monotonic loading 
without significant rotation of principal stress directions. The plas- 
tic strain increment under rotation of principal stress axes is as- 
sumed to be dependent on the directions of the current stress, fab- 
ric and stress increment. The fabric is assumed to rotate towards 
the loading direction and to approach a magnitude proportional to 
a normalized stress ratio under rotation of principal stress axes. At 
the critical state, the predicted soil response becomes totally coax- 
ial. 
2. Model framework 

Following Li and Dafalias (2004) , we propose a hypoplasticity- 
like model in this paper to account for the accumulation of plas- 
tic deformation under rotation of principal stress directions and 
fabric evolution. The evolution of fabric with plastic deformation 
is considered in line with the anisotropic critical state theory ( Li 
and Dafalias, 2012; Gao et al., 2014 ). The model is formulated in 
the space of stress ratio r ij : r ij = ( σ ij −p δij )/ p = s ij / p , where σ ij is 
the stress tensor, p = σ ii /3 is the mean normal stress, δij is the 
Kronecker delta ( δij = 1 for i = j and δij = 0 for i ̸ = j ), and s ij is 
the deviatoric stress. To facilitate a better understanding of our 
new model formulation, the model framework proposed by Li and 
Dafalias (2004) is briefly introduced. 

The plastic shear strain increment is expressed as ( Li and 
Dafalias, 2004 ) 
d e p 

i j = d e pm 
i j + d e pt 

i j = ⟨ L m ⟩ m i j + ⟨ L t ⟩ γi j (1) 
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where de p 

i j is the total plastic shear strain increment, de pm 
i j and de pt 

i j 
denote the plastic shear strain increment due to monotonic loading 
with fixed loading direction and due to rotation of principal stress 
directions, respectively; L m and L t are the corresponding loading 
indices; m ij and γ ij are traceless unit vectors defining the direc- 
tions of plastic strain increment, ⟨⟩ are the Macauley brackets such 
that ⟨ x ⟩ = x for x > 0 and ⟨ x ⟩ = 0 for any x ≤ 0. 

The total plastic volumetric strain increment dε p v is decomposed 
into one portion due to monotonic loading, dε pm 

v , and the other 
portion due to rotation of principal stress directions, dε pt 

v , as fol- 
lows 
dε p v = d ε pm 

v + d ε pt 
v = √ 

2 
3 
(

D m √ 
d e pm 

i j d e pm 
i j + D t √ 

d e pt 
i j d e pt 

i j )
= √ 

2 
3 ( ⟨ L m ⟩ D m + ⟨ L t ⟩ D t ) (2) 

where D m (= d ε pm 
v / √ 

2 d e pm 
i j d e pm 

i j / 3 ) and D t (= d ε pt 
v / √ 

2 d e pt 
i j d e pt 

i j / 3 ) 
denote the dilatancy relations for monotonic loading and rotation 
of principal stress directions, respectively. Notably, the decomposi- 
tion of strain increment according to Eqs. (1) and ( 2 ) is merely for 
convenience of model development rather than yielding any solid 
physical significance. The main model formulations will be pre- 
sented in the following section, while detailed derivations of the 
constitutive equations are shown in the Appendix. 
3. Mechanical behaviour of sand in monotonic loading 

In the proposed model, the mechanical behaviour of sand in 
monotonic loading is described according to the classical plasticity 
theory, including key components governing the plastic potential, 
flue rule, yield function, dilatancy relation, hardening law and fab- 
ric evolution. In this paper, monotonic loading refers to the load- 
ing condition whereby the direction of principal stress remains 
unchanged while the shear strain keeps increasing. Typical exam- 
ples include the conventional triaxial compression and extension. 
In some literature, such loading conditions are called proportional 
loading (e.g., Li and Dafalias, 2004 ). 
3.1. Plastic potential and flow rule for monotonic loading 

In order to model the non-coaxial sand behaviour in monotonic 
loading without significant of principal stress direction rotation, 
a plastic potential explicitly expressed in terms of the invariants 
and joint invariants of the r ij and F ij is employed. In conjunction 
with a law describing an evolving fabric, the non-associated flow 
rule based on this plastic potential can naturally address the non- 
coaxial behaviour of granular materials under such loading condi- 
tions. 

The plastic potential g is expressed in terms of the fabric tensor 
F ij and the stress ratio tensor r ij as below 
g = R/ g ( θ ) − H g exp [−k ( A − 1 ) 2 ] = 0 (3) 
with ( Li and Dafalias, 2004 ) 
g ( θ ) = 

√ (
1 + c 2 )2 + 4 c (1 − c 2 ) sin 3 θ −

(
1 + c 2 )

2 ( 1 − c ) sin 3 θ (4) 
where R = √ 

3 / 2 r i j r i j , c ( = M e / M c ) is the ratio between the critical 
state stress ratio in triaxial extension M e and that in triaxial com- 
pression M c , θ is the Lode angle, k is a positive model parameter, A 
is an anisotropic variable defined by a joint invariant of F ij and n ij , 
H g is so defined as to render g = 0 according to current r ij and F ij . 
The plastic potential expressed by Eq. (3) borrows the expression 
of yield function used by Gao et al. (2014) . 

An important inclusion in the plastic potential function in Eq. 
(3) is a fabric anisotropy variable A defined by the following joint 
invariant between the fabric tensor F ij and the loading direction 
tensor n ij (see also Li and Dafalias, 2012; Gao et al., 2014 ) 
A = F i j n i j (5) 
where F ij is a symmetric, traceless tensor whose magnitude F = √ 

F i j F i j is referred to as the degree of fabric anisotropy. The def- 
inition of F ij can be found in Li and Yu (2009, 2010) and Li and 
Dafalias (2012) which will not be repeated here. For convenience, 
F ij is normalized such that F is unity at the critical state. For an 
initially cross-anisotropic sand sample with the x −y plane being 
isotropic plane (typically the deposition plane) and the deposition 
direction aligning with the z -axis, the initial F ij can be expressed 
as 
F i j = 

( 
F z 0 0 
0 F x 0 
0 0 F y 

) 
= √ 

2 
3 
( 

F 0 0 0 
0 −F 0 / 2 0 
0 0 −F 0 / 2 

) 
(6) 

where F 0 is the initial degree of fabric anisotropy. Note that in the 
above expression a coordinate system aligned with the direction of 
sample deposition has been assumed. If one chooses a coordinate 
system which is not aligned with the deposition direction of the 
sample, a corresponding orthogonal transformation is needed. The 
deviatoric unit loading direction tensor n ij in Eq. (5) is defined as 
follows ( Li and Dafalias, 2004 ) 
n i j = N i j − N mm δi j / 3 ∥∥N i j − N mm δi j / 3 ∥∥ (7) 
with 
N i j = ∂ f 

∂ r i j = ∂ [ R/g(θ ) ] 
∂ r i j = 1 

g ( θ ) ∂R 
∂ r i j − 1 

g 2 ( θ ) ∂g ( θ ) 
∂ r i j (8) 

where f is the yield function the expression of which will be 
shown in Eq. (13) in the subsequent sections. Evidently, one has 
n ii = 0 and n ij n ij = 1. A concrete derivation of the expression for N ij 
can be found in Gao et al. (2014) . Note that the loading direction 
n ij here is defined as the normal to the yield surface or the gra- 
dient of the first portion of their plastic potential for simplicity. A 
more rigorous definition for n ij can be based on the direction of 
plastic strain increment, as discussed in Li and Dafalias (2015) and 
Dafalias (2016) . 

A crucial ingredient to model the non-coaxial sand response 
hinges on an assumption that the fabric tensor F ij used in Eq. 
(3) evolves with the plastic shear strain. In particular, based upon 
both experimental and micromechanical studies, the following fab- 
ric evolution law is employed for monotonic loading with fixed 
loading direction (see also Gao et al., 2014 ) 
dF m 

i j = ⟨ L m ⟩ )i j = ⟨ L m ⟩ µ1 (n i j − F i j ) (9) 
where µ1 is a positive model constant representing the rate of fab- 
ric evolution. The evolution law above is a simplified form of the 
one proposed by Li and Dafalias (2012) . It renders F ij rotates to- 
wards the loading direction n ij and reach a magnitude of unity at 
the critical state. 

By assuming a non-associated flow rule in the deviatoric stress 
space for monotonic loading, the plastic deviatoric strain incre- 
ments de pm 

i j can be written as 
de pm 

i j = ⟨ L m ⟩ m i j , with m i j = ∂ g/∂ r i j − ∂ g/∂ r mm δi j / 3 ∥∥∂ g/∂ r i j − ∂ g/∂ r mm δi j / 3 ∥∥ (10) 
From the plastic potential Eq. (1) , one can get 

∂g 
∂ r i j = ∂ [ R/ g ( θ ) ] 

∂ r i j ︸ ︷︷ ︸ 
N i j 

+ ∂g 
∂A ∂A 

∂ n kl ∂ n kl 
∂ r i j ︸ ︷︷ ︸ 

*i j 
(11) 
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Since ∂g 

∂A ∂A 
∂ n kl = 2 k ( A −1 ) R 

g(θ ) F kl Eqs. (3) and (11) can be rewritten as 
∂g 
∂ r i j = ∂ [ R/g(θ ) ] 

∂ r i j ︸ ︷︷ ︸ 
N i j 

+ 2 k ( A − 1 ) R 
g ( θ ) F kl ∂ n kl 

∂ r i j ︸ ︷︷ ︸ 
*i j 

(12) 
By including fabric anisotropy in the plastic potential via the 

joint invariant A , ∂g 
∂ r i j and m ij can be expressed by two additive 

parts as shown in Eq. (12) . The first part N ij is apparently coaxial 
with the stress ratio tensor r ij (or the stress tensor σ ij ). The sec- 
ond part *ij involving F ij plays a unique role towards modelling 
the non-coaxial behaviour for sand. When the fabric tensor and 
stress tensor are initially coaxial and the loading direction does 
not change during the loading process, only the components of 
the fabric tensor will change while its principal axes of the fab- 
ric will not rotate during the loading process. In this case, F ij and 
*ij will stay coaxial with r ij , which gives rise to a prediction of 
coaxial soil behaviour. When the fabric and stress are initially non- 
coaxial, a non-coaxial strain will occur as *ij ̸ = 0 ( Eq. (12) ). As 
the fabric evolves, F ij rotates towards n ij ( Eq. (9) ) and A increases 
( Eq. (5) ), which leads to a reduction of magnitude for *ij . As a re- 
sult, the portion of non-coaxial strain increment in the total plas- 
tic strain increment gradually decreases with the fabric evolution. 
At the critical state when A = 1 and F ij = n ij , *ij = 0, which indi- 
cates that the non-coaxial strain increment totally vanishes. Such 
a model prediction is in agreement with both experimental obser- 
vations and micromechanical studies ( Gao et al., 2014 ). Note that 
the model also predicts a totally coaxial response for an isotropic 
sample with F ij =0, because F ij =0 makes *ij =0 in this case ( Eq. 
12 ). 
3.2. Yield function and hardening law for monotonic loading 

Though it is instructive to express the yield function for 
anisotropic granular materials in terms of both the stress ten- 
sor and fabric tensor ( Li, 2013; Gao et al., 2014 ) which may help 
to describe the accumulation of plastic strain subjected to rota- 
tion of principal stress directions ( Wang, 1970; Li, 2013 ), a fabric- 
independent yield function is used in the present study for the 
sake of simplicity. The expression of the yield function is assumed 
to be 
f = R/ g ( θ ) − H = 0 (13) 
where H is a hardening parameter. The following evolution law for 
H is proposed ( Gao et al., 2014; Li and Dafalias, 2012 ): 
dH = ⟨ L m ⟩ r h = ⟨ L m ⟩ G ( 1 − c h e ) 

pR [ M c g ( θ ) exp ( −nζ ) − R ] (14) 
where c h and n are two positive model parameters; ζ is the dila- 
tancy state parameter defined by Li and Dafalias (2012) 
ζ = ψ − e A ( A − 1 ) (15) 
where e A is a model parameter, ψ = e −e c is the state parameter 
defined by Been and Jefferies (1985) with e and e c being the cur- 
rent void ratio and the critical state void ratio corresponding to the 
current mean normal stress p , respectively. In the present work, 
the critical state line in the e −p plane is given by ( Li and Wang, 
1998 ) 
e c = e , − λc ( p/ p a ) ξ (16) 
where e , , λc and ξ are material constants and p a ( = 101 kPa) is the 
atmospheric pressure. Note that the expression of the critical state 
line in the e −p plane is not fabric-dependent in this model. The 
dilatancy state parameter ζ expressed in terms of ψ and A is used 
to model effect of pressure, density and anisotropy on mechanical 
response of sand. In some models, a fabric-dependent expression 

for the critical state line has been used to render the state param- 
eter ψ fabric-dependent ( Wan and Guo, 2004 ). 

Note also that Eq. (14) is used to obtain the plastic modulus 
which is a key part for the constitutive model ( Eq. (36 ) in the Ap- 
pendix). The final expression of the plastic modulus is the same as 
r h which is similar to the one used in Li and Dafalias (2012) . How- 
ever, Li and Dafalias (2012) have not employed any explicit yield 
surface in their model, but assumed directly a plastic modulus de- 
pendent of the difference of R and a ‘virtual’ peak stress ratio that 
played the role of the bounding surface. 
3.3. Dilatancy relation for monotonic loading 

The following fabric-dependent dilatancy function for mono- 
tonic loading is used in this model ( Li and Dafalias, 2012; Gao 
et al., 2014 ): 
D m = d 1 

M c g ( θ ) 
[

1 + R 
M c g ( θ ) 

]
[ M c g ( θ ) exp ( mζ ) − R ] (17) 

where d 1 and m are two model constants. More detailed explana- 
tion of the dilatancy relation is given in Gao et al. (2014) and Li 
and Dafalias (2012) . 
4. Mechanical behaviour of sand in rotation of principal stress 
directions 
4.1. Tangential loading effect 

The tangential loading effect needs to be properly considered 
to model the mechanical behaviour of soils subjected to pure ro- 
tation of principal stress directions if such a yield function as that 
expressed by Eq. (13) is to be used ( Dafalias, 1986; Gutierrez et al., 
1993; Hashiguchi and Tsutsumi, 2003; Li and Dafalias, 2004; Yu 
and Yuan, 2006; Nicot and Darve, 2007; Lashikari and Latifi, 2008 ). 
This is because L m becomes 0 when dr ij is orthogonal to n ij [see Eq. 
(13) ], whereas a real sand specimen may show significant accu- 
mulation of plastic deformation under such loading condition (e.g., 
Nakata et al., 1998 ). This essentially makes the model a hypoplastic 
type ( Dafalias, 1986 ). 

In the present model, the tangential loading effect is considered 
according to the following equation ( Li and Dafalias, 2004 ) 
ω χi j d r i j − ⟨ L t ⟩ K pt = 0 (18) 
where K pt is the plastic modulus under pure rotation of principal 
stress directions, χ ij is the tangential loading direction expressed 
as 
χi j = d r i j − n kl d r kl n i j (19) 
and 
ω = 〈1 − [ R/ M c g ( θ ) ] 20 〉 (20) 

Eq. (20) indicates that, when R < M c g ( θ ), ω is approximately 1 
and plastic strain occurs in rotation of principal stress directions. 
When R > M c g ( θ ), however, ω =0 and the tangential loading ef- 
fect vanishes as L t =0. Note that ω =0 at R > M c g ( θ ) is assumed 
for the sake of simplicity, since no test data on pure stress axis ro- 
tation for sand with R > M c g ( θ ) is available. As will be shown in 
the discussion of K pt in the following section, the model gives infi- 
nite plastic shear strain increment under pure rotation of principal 
stress directions at R = M c g ( θ ), which is consistent with the critical 
state theory. Note that the tangential loading direction χ ij is de- 
fined based on the yield function for this model ( Eq. 13 ). For other 
models with different expression for the yield function, χ ij will be 
different. 
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4.2. Flow rule for pure rotation of principal stress axes 

Much more significant non-coaxial deformation occurs when a 
sand specimen is subjected rotation of principal stress directions 
than monotonic loading with fixed loading direction ( Gutierrez 
et al., 1993; Li and Yu, 2010 ). Hence, the flow rule for monotonic 
loading alone is not sufficient for modelling the mechanical be- 
haviour of sand in rotation of principal stress directions. Past stud- 
ies show that the flow rule for sand in rotation of principal stress 
directions can be expressed in terms of both the current stress 
state and the stress increment ( Gutierrez et al., 1993; Nicot and 
Darve, 2007; Yu and Yuan, 2006; Lashikari and Latifi, 2008; Li and 
Dafalias, 2004; Hashiguchi and Tsutsumi, 2003 ). This approach will 
be followed in this paper, with special emphasis being placed on 
the role of fabric and fabric evolution. The flow rule for rotation of 
principal stress directions of this model is give as below 
de pt 

i j = ⟨ L t ⟩ γi j = ⟨ L t ⟩ B m i j + B ′ n ′ i j ∥∥B m i j + B ′ n ′ i j ∥∥ (21) 
where 
B = [ R/ M c g ( θ ) ] a and B ′ = ⟨ 1 − B ⟩ (22) 
n ′ i j = χi j ∥∥χi j ∥∥ (23) 
where a is a positive model parameter. The McCauley brackets ⟨⟩ 
are used to prevent B ’ from becoming negative when R > M c g ( θ ). 
Since n ’ ij is orthogonal to n ij , the non-coaxial deformation is mainly 
contributed by the term associated with n ’ ij . Note that the term 
Bm ij gives both coaxial and non-coaxial strain increments where 
the coaxial increment dominates. The expressions of B and B ’ are 
proposed on the basis of experimental observations that the de- 
gree of non-coaxiality decreases as the stress ratio R / g ( θ ) increases 
(e.g., Gutierrez et al., 1993; Li and Yu, 2010 ). A unique feature 
of the flow rule expressed by Eq. (23) is that it accounts for 
the effect of anisotropy through incorporating m ij which is fabric- 
dependent. This renders the plastic flow only coaxial at the critical 
state with both R = M c g ( θ ) and A = 1, as B ’ = 0 only when R = M c g ( θ ) 
and m ij is coaxial with n ij (or r ij ) only when R = M c g ( θ ) and A = 1. 
Such model responses are supported by experimental observations 
( Miura et al., 1986; Gutierrez et al., 1993; Yang et al., 2007 ). 
4.3. Plastic modulus and dilatancy relation for rotation of principal 
stress directions 

The plastic modulus and dilatancy relation are essential for 
modelling sand behaviour. Experimental data available in literature 
show that the mechanical behaviour of sand subjected to rotation 
of principal stress directions is dependent on various factors, in- 
cluding density, mean normal stress, fabric anisotropy, stress ratio 
and strain accumulation. There have been few attempts on devel- 
oping comprehensive constitutive models to describe the mechan- 
ical behaviour of sand under pure rotation of principal stress di- 
rections. For instance, most of the existing models are not able to 
account for the effect of sand density. Li and Dafalias (2004) were 
among the first to propose a model for sand behaviour under rota- 
tion of principal stress directions in consideration of the effect of 
density and fabric anisotropy. The formulations used in this study 
are based on this work. 

The plastic modulus for rotation of principal stress directions 
K pt is given by 
K pt = G ( h 1 − e ) 

p a F 
[

M c g ( θ ) − R 
R 

]
(24) 

where h 1 is a positive model parameters. Note that K pt =∞ when 
the soil fabric is isotropic with F = 0, and thus, no plastic defor- 
mation occurs under rotation of principal stress directions, which 
is in accordance with the expectation that the rotation of prin- 
cipal stress directions should not cause plastic deformation for 
an isotropic sand specimen. Since K pt decreases as F increases, 
more plastic strain accumulates under otherwise identical condi- 
tions ( Yang, 2013b ). At the critical state, R = M c g ( θ ) and K pt =0, 
indicating that the plastic shear strain increment is infinite. This 
complies with the critical state theory. 

Based on the work of Li and Dafalias (2004) , the dilatancy re- 
lation for rotation of principal stress directions is proposed as fol- 
lows 
D t = d 2 e d 3 ζ

g ( θ ) [ M c g ( θ ) − R ] 
e d 4 1 (25) 

with 
1 = ∫ K pt L t √ 

)′ 
i j )′ 

i j (26) 
where d 2 , d 3 and d 4 are three positive model parameters and )’ ij 
denotes the direction of fabric evolution under rotation of principal 
stress directions. The expression for )’ ij will be given in the sub- 
sequent sections. Note that )′ 

i j in Eq. (26) is used for imporoving 
model performance. It is impossible to measure it in a real test. 
The term g ( θ ) at the denominator is used to make the sand re- 
sponse more contractive as the intermediate principal stress vari- 
able b increase ( Yang et al., 2007; Tong et al., 2010 ). The dilatancy 
relation implies that there is no volumetric change at the critical 
state as D t =0 when R=M c g ( θ ). The presence of ζ makes the di- 
latancy relation dependent on density, mean effective stress and 
fabric anisotropy, as ζ is expressed in terms of both ψ and A . The 
term exp ( d 4 1) is used to improve model prediction for volumetric 
change of sand in rotation of principal stress directions. It can be 
seen from Eqs. (25) and ( 26 ) that, in continuous rotation of princi- 
pal stress directions with constant stress ratio R / g ( θ ), D t gradually 
approaches 0 as 1 increases, an observation supported by experi- 
mental data (e.g., Nakata et al., 1998; Tong et al., 2010 ). Physically, 
this term implies that continuous fabric evolution due to rotation 
of principal stress directions (represented by √ 

)′ 
i j )′ 

i j ) makes the 
sand specimen stiffer ( Li and Yu, 2010; Yang, 2013a ). 
4.4. Fabric evolution in rotation of principal stress directions 

It remains difficult to measure fabric evolution in laboratory. 
Available knowledge on sand fabric evolution has been primarily 
acquired via micromechanics-based investigations such as those 
based on discrete element simulation ( Li and Yu, 2010; Yang, 
2013a ; Li and Dafalias, 2011; Fu and Dafalias, 2015 ). These simu- 
lations indicate that, under continuous rotation of principal stress 
directions, the fabric of sand always rotates towards the loading di- 
rection and approaches a constant magnitude after certain cycles. 
The final degree of anisotropy F is proportional to the stress ratio 
R . Based on such observations, the following fabric evolution law 
is proposed for rotation of principal stress directions 
dF t i j = ⟨ L t ⟩ )′ 

i j = ⟨ L t ⟩ µ2 [ R 
M c g ( θ ) n i j − F i j ] (27) 

where µ2 is a positive model parameter. 
5. Elastic moduli and incremental elastic relation 

As plastic strain typically dominates sand deformation, the 
effect of anisotropy on elasticity of sand is considered negligi- 
ble in this model (though it can be taken into account in a 
consistent manner with the proposed framework according to 
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Table 1 
Model parameters for Toyoura sand. 

Elasticity Critical state Monotonic 
loading 

Rotation of 
principal stress 
directions Initial degree of 

anisotropy 
G 0 =125 M c =1.25 k = 0.03 H 1 = 5.02 F 0 =0.45 
v = 0.2 c = 0.75 c h = 0.9 a = 2.0 

e , = 0 . 934 n = 3.0 d 2 = 4.14 
λc =0.019 d 1 = 0.2 d 3 = 3.94 
ξ =0.7 m = 5.3 d 4 = 0.0 0 042 

e A =0.1 µ2 =10 0 0.0 
µ1 =5.7 

Zhao and Gao, 2016 ). The following isotropic pressure-dependent 
elastic stress strain relations ( Richart et al., 1970 ; Li and Dafalias, 
2004, 2012 ) are employed 
G = G 0 ( 2 . 97 − e ) 2 

1 + e √ 
p p a (28) 

K = G 2 ( 1 + ν) 
3 ( 1 − 2 ν) (29) 

where G and K denote the elastic shear and bulk modulus, respec- 
tively, G 0 is a material constant, e is the void ratio and ν is the 
Poisson’s ratio assumed to be a constant. In conjunction with Eqs. 
(28) and ( 29 ), the following hypoelastic relation is assumed for 
calculating the incrementally reversible deviatoric and volumetric 
strain increments de e 

i j and dε e v : 
d e e i j = d s i j 

2 G and d ε e v = d p 
K (30) 

6. Model simulations 
Test data on Toyoura sand are used to verify the predictive ca- 

pability of the proposed model. The tests to be used for the veri- 
fication include the undrained simple shear tests on dry-deposited 
Toyoura sand reported by Yoshimine et al. (1998) , the drained tests 
with continuous rotation of principal stress directions on Toyoura 
sand prepared by Multiple Seiving Pluviation (MSP) method by 
Miura et al. (1986) and the undrained tests with continuous ro- 
tation of principal stress directions on Toyoura sand prepared by 
MSP method by Nakata et al. (1998) . 

The determination of model parameters for monotonic load- 
ing with fixed loading direction has been discussed in Gao et al. 
(2014) which will not be repeated. Only the method for determin- 
ing the parameters associated with rotation of principal stress di- 
rections will be provided here. Under pure rotation of principal 
stress directions, the sand fabric changes fast as it keeps rotat- 
ing with the principal stress directions ( Li and Yu, 2010; Fu and 
Dafalias, 2015 ). Therefore, the parameter µ2 is typically big and a 
default value of 10 0 0 can be used. The parameters h 1 and a should 
be determined using the stress-strain relation of sand in drained 
rotation of principal stress directions. h 1 affects the sand stiffness 
and a describes the degree of non-coaxiality. The parameters d 2 , 
d 3 and d 4 have significant influence on the dilatancy of sand in ro- 
tation of principal stress directions. They should be determined by 
trial and error using the test results under undrained rotation of 
principal stress directions. The parameters determined for Toyoura 
sand are listed in Table 1 . The same initial degree of anisotropy F 0 
is assumed for Toyoura sand prepared by both dry-deposition and 
MSP methods. 
6.1. Model simulation for sand behaviour in monotonic loading 

A sand sample may show non-coaxial response in monotonic 
loading when the initial fabric is anisotropic (e.g., Gutierrez et al., 

1993; Rodriguez and Lade, 2014; Gao et al., 2014; Zhao and Guo, 
2015 ). The present model can describe such sand behaviour using 
a flow rule involving fabric tensor ( Eq. (10) ). 

Fig. 1 shows the model response for dry-deposited Toyoura 
sand in undrained simple shear tests. More details of the test pro- 
cedure can be found in Yoshimine et al. (1998) . In the figures, σ 1 
is the major principal stress, σ 3 is the minor principal stress, ε1 
is the major principal strain, ε3 is the minor principal strain, K 0 
is the initial value of σ 3 / σ 1 , α is the angle between the vertical 
direction and major principal stress direction and α( d ε) is the an- 
gle between the vertical direction and major principal strain incre- 
ment. Notably, the model offers good predictions on the stress and 
stain relation, effective stress paths and non-coaxial response for 
both tests. Note that α( d ε) is always 45 ° for both tests ( Fig. 1 e and 
f). For the test with an initial isotopic stress state ( K 0 =1), α first 
decreases to a minimum value around 40 ° and then gradually ap- 
proaches α( d ε) ( Fig. 1 e). In the case with an initially anisotropic 
stress state ( K 0 =0.5), α increases steadily with the ε 1 −ε 3 and 
approaches α( d ε) ( Fig. 1 e). Such a trend is well captured by the 
model ( Fig. 1 f). The reduced difference between α( d ε) and α is due 
to fabric evolution. When the samples reach the critical state with 
infinite ε 1 −ε 3 , R = M c g ( θ ) and A = 1, the non-coaxial strain incre- 
ment vanishes and α will reach 45 °. To demonstrate the role of 
a fabric-dependent plastic potential in modelling non-coaxial sand 
response in simple shear, model simulations with k = 0 (rendering 
the plastic potential fabric-independent) are presented in Fig. 1 g. 
It is evident that, for the sample with K 0 = 1, the simulated α
reaches 45 ° at the very beginning of the test, while the test data 
shows that α first decreases to 40 ° and then recovers gradually to- 
wards 45 °. The simulation in Fig. 1 g also shows that α reaches 45 °
when the shear strain is about 1% for the sample with K 0 = 0.5, 
while the experimental data indicate that this cannot happen un- 
til the shear strain is much larger than 14%. This indicates that a 
fabric-dependent plastic potential is indeed crucial for modelling 
the non-coaxial sand response in simple shear. 

Fig. 2 shows the model simulation for sand in drained torsional 
shear tests with constant b and α, where b = ( σ2 − σ3 ) / ( σ1 − σ3 ) 
is the intermediate principal stress variable with σ 2 being the 
intermediate principal stress. The model gives lower shear mod- 
ulus ( Fig. 2 a) and more contractive response ( Fig. 2 b) as α in- 
creases, which is in agreement with experimental observations 
( Miura et al., 1986; Yoshimine et al., 1998 ). Fig. 2 (c) indicates that 
α( d ε) = α when α= 0 ° and α=90 °, which is also observed in labo- 
ratory tests on various types of sand ( Miura et al., 1986; Gutierrez 
et al., 1993; Yoshimine et al., 1998; Rodriguez and Lade, 2014 ). The 
coaxial response is induced by the change of magnitude of fabric 
tensor only without any change in the principal axes of the fab- 
ric in the cases of α=0 ° and α=90 °. In all the other cases when 
α is between 0 ° and 90 °, coaxiality is predicted at relatively low 
σ 1 −σ 3 due to the employment of isotropic elastic relation in Eq. 
(30) . Beyond this elastic stage, a distinct difference between α( d ε) 
and α in the order of 5 to 8 ° is found as shown in Fig. 2 (c), which 
signals a clear non-coaxiality. From a practical perspective, the 5–
8 ° of non-coaxiality may not appear to be particularly significant. 
It is however important from a theoretical point of view. Upon fur- 
ther loading, the fabric tends to rotate towards the direction of 
stress, and the difference between α( d ε) and α predicted by the 
model decreases, and the non-coaxiality will totally disappear at 
the critical state. Notably, the model gives α( d ε) ≥ α for all the 
tests, which is supported by both experimental tests ( Symes et al., 
1998; Yoshimine et al., 1998; Yang, 2013b ) and micromechanical 
studies ( Li and Yu, 2009; Yang, 2013a; Li and Yu, 2015; Yang et al., 
2015 ). Fig. 2 d shows the model simulation for non-coaxial sand re- 
sponse with a fabric-independent plastic potential ( k = 0). It can be 
seen that the model gives α( d ε) = α in this case, which is appar- 
ently not in agreement with experimental observations. 
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a b

c d

e f

g

Fig. 1. Comparison between experimental results (a, b, e) and model simulations (c, d, f) for mechanical behaviour of dry-deposited Toyoura sand in undrained simple shear 
tests (test data from Yoshimine et al., 1998 ) and illustration of effect of fabric-dependent plastic potential for modelling non-coaxial sand response (g). 
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a b

c d

Fig. 2. Model simulation for stress strain relation (a and b) and non-coaxial sand response in drained torsional shear tests with constant α and b (c); (d) Model simulation 
for non-coaxial sand response with fabric-independent plastic potential. 
6.2. Model simulation for sand behaviour in continuous rotation of 
principal stress directions 

Miura et al. (1986) performed a series of drained hollow 
cylinder torsional shear tests on Toyoura sand prepared by MSP 
method. During their tests, the principal stress directions were ro- 
tated continuously at constant p , constant b and constant mobi- 
lized friction angle ϕm [ sin ϕ m = ( σ1 − σ3 ) / ( σ1 + σ3 ) ]. The samples 
were proportionally loaded to the prescribed p, b and ϕm before 
the application of principal stress direction rotation. In Figs. 3–10 , 
D r is the relative density of sand after pre-shearing and before the 
rotation of principal stress direction. 

The experimental results and model simulations for the strain 
developments of two of the tests are compared in Fig. 3 (initial 
α=0 °) and Fig. 4 (initial α=90 °). While the model provides rather 
good predictions for the axial strain εa , the circumferential strain 
εθ and the shear strain εa θ , it overestimates the radial strain εr . 
Fig. 3 c and d also show the evolution of volumetric strain in 7 cy- 
cles of R1 + 0 °δ° test. The model can capture the increase of vol- 
umetric strain with number of cycles but overestimates the max- 
imum volumetric change. Fig. 5 a shows the ε a θ − ( ε a −ε θ )/2 rela- 
tion for four tests with different initial α ( p, b and ϕm are the 
same). Fig. 5 b shows the corresponding model simulations for the 
strain paths. Evidently, the model predictions capture the general 
trend of the strain paths for the sand. The maximum discrepancy 
between the model predictions and test data is observed for the 
R1 + 90 ° test (initial α=45 °). Indeed, the strain distribution in a 
real sand test is commonly non-uniform, whereas the model simu- 
lations have been based on a uniform-strain assumption for a sam- 
ple. This may be attributable to the observed discrepancy. 

Figs. 6 and 7 show the experimental results and model sim- 
ulations for the degree of non-coaxiality denoted by α( d ε) −α in 

the R1 + 0 ° test and the R1 − 90 ° test. The model offers satisfac- 
tory estimations on the degree of non-coaxiality for both cases. 
However, it does not perform equally well in capturing the periodi- 
cal variation of α( d ε) −α, since the model gives constant α( d ε) −α
after the major principal stress direction has changed about 45 °. 
As show by Lashkari and Latifi (2008) , in order to capture the pe- 
riodic variation of α( d ε) −α, one has to assume that the plastic 
strain increment is dependent on the major principal stress di- 
rection α. However, such model formulation does not satisfy the 
requirement of objectivity as α is not an objective quantity. Fur- 
ther studies need to be devoted to identifying the micromechani- 
cal mechanism for the periodic variation of α( d ε) −α. Better model 
formulations for modelling the non-coaxial response may be pro- 
posed based on such mechanism. 

A serious of undrained torsional shear tests with continuous 
rotation of principal stress directions have been carried out by 
Nakata et al. (1998) on Toyoura sand prepared by the MSP method. 
The initial confining pressure p c was 100 kPa and the intermediate 
principal stress variable was b = 0.5. Before the application of prin- 
cipal stress direction rotation, the samples were first proportionally 
loaded to a prescribed p c and q ( = √ 

3 / 2 s i j s i j ) with b = 0.5 under 
drained loading condition. 

Figs. 8 and 9 show the measured and simulated strain compo- 
nents (axial strain εa , circumferential strain εθ and shear strain εa θ
and radial strain εr ) as well as the excess pore pressure u against 
the number of cycles of stress rotation. The model predicts the 
evolution of excess pore pressure reasonably well for both sam- 
ples. The simulated strain development captures the general trend 
but is less accurate than for the excess pore pressure. A possible 
reason may be that the model assumes a uniform deformation for 
the sample, but the actual strain distribution inside the sample can 
be highly non-uniform. 
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a b

c d

Fig. 3. Experimental data (a, c) and model simulation (b, d) of strain evolution in drained torsional shear tests (R1 + 0 ° test, test data from Miura et al., 1986 ). 
a b

Fig. 4. (a) Experimental data and (b) model simulation of the relation between strains and direction of principal stress (R1 + 180 ° test, data from Miura et al., 1986 ). 
a b

Fig. 5. (a) Experimental data and (b) model simulation of the strain paths under rotation principal stress direction (test data from Miura et al., 1986 ). 
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a b

Fig. 6. (a) Experimental data and (b) model simulation of the angles of non-coaxiality (R1 + 0 ° test, test data from Miura et al., 1986 ). 
a b

Fig. 7. (a) Experimental data and (b) model simulation of the angles of non-coaxiality (R1-90 ° test, test data from Miura et al., 1986 ). 
a b

c d

Fig. 8. Experimental results (a and b) and model simulations (c and d) for strain components and excess pore pressure against number of cycles of rotation (D r = 90%, test 
data from Nakata et al., 1998 ). 
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a b

c d

Fig. 9. Experimental results (a and b) and model simulations (c and d) for strain components and excess pore pressure against number of cycles of rotation (D r = 30%, test 
data from Nakata et al., 1998 ). 

a b

Fig. 10. Model simulation of fabric evolution in drained rotation of principal stress directions. 
6.3. Fabric evolution in continuous rotation of principal stress 
directions 

It is instructive to trace the evolution of fabric evolution during 
the loading process and to assess its impact on the mechanical re- 
sponse of sand. In Gao et al. (2014) , we have demonstrated how 
the model captures the fabric evolution in monotonic loading with 
fixed loading direction. This section will be devoted to the case of 
rotation of principal stress direction. Fig. 10 shows the simulated 
fabric evolution under pure rotation of principal stress directions. 
The loading condition is identical to the R1 + 0 ° test performed 
by Miura et al. (1986) . In the figure, α( F ij ) denotes the angle be- 
tween the vertical direction and the major principal fabric direc- 

tion. Fig. 10 a indicates that both the degree of anisotropy F and 
the anisotropic variable A increase at the initial loading stage and 
then gradually become constant after the major principal stress 
direction has changed by about 70 °. Evidently, the fabric rotates 
with the rotation of the principal stress direction, but its magni- 
tude stays unchanged. It can be seen from Fig. 10 b that the an- 
gle between the directions of the major principal stress and ma- 
jor principal fabric, denoted by α−α( F ij ), increases at the initial 
loading stage, indicating the change of fabric change is lagging be- 
hind the stress change due to the passive nature of former. When 
α reaches about 70 °, α−α( F ij ) becomes constant. The simulated 
fabric evolution is similar to the distinct element simulations by 
Fu and Dafalias (2015) . 
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7. Conclusion 

Granular materials may show non-coaxial response due to fab- 
ric anisotropy. Micromechanical studies indicate that proper con- 
sideration of fabric and fabric evolution is crucial for modelling 
the non-coaxial sand response. A new constitutive model has been 
proposed to simulate the non-coaxial sand behaviour. The model 
is formulated within the framework of the anisotropic critical state 
theory ( Li & Dafalias, 2012; Gao et al., 2014 ) and highlights the key 
role played by sand fabric and its evolution in dictating the non- 
coaxial shear behaviour in sand. The proposed model contains the 
following main features: 
(a) A plastic potential explicitly expressed in terms of the fabric 

tensor. In conjunction with the fabric evolution law, it enables 
the non-coaxial response of sand in monotonic loading with 
fixed loading direction to be conveniently and faithfully cap- 
tured. 

(b) Dependence of plastic strain increment on the current stress 
state, the direction of stress increment and the current fabric 
in rotation of principal stress directions. This feature renders 
the model predicts a relatively stronger non-coaxial response 
when the stress ratio is low and the degree of fabric anisotropy 
is high. The sand response becomes coaxial at the critical state 
when the fabric is co-directional with the loading direction and 
reaches its critical state value. 

(c) A fabric evolution law dependent on the plastic deviatoric 
strain. According to such a law, in monotonic loading, the fab- 
ric reaches a constant magnitude and becomes co-directional 
with the loading direction at the critical state. When the sand 
sample is subjected to rotation of principal stress directions, the 
fabric always rotate towards the loading direction and approach 
a constant magnitude dependent on the stress ratio. 

(d) Both the plastic modulus and dilatancy relation dependent on 
the fabric and fabric evolution for rotation of principal stress 
directions. It is further assumed that no plastic deformation 
is produced in principal stress direction rotation when a sand 
sample has isotropic fabric. 
The model has been employed to simulate the mechanical be- 

haviour of Toyoura sand, and the model predictions have been well 
verified by test results under both monotonic loading and rota- 
tion of principal stress directions. Notably, the present model em- 
ploys a yield function independent of the fabric, and therefore, the 
tangential loading effect must be considered separately to model 
sand response subjected to rotation of principal stress directions. 
The representation theorem for tensor-valued isotropic functions 
( Wang, 1970 ) indicates that proper yield function and plastic po- 
tential function expressed in terms of the stress tensor and σ ij , 
fabric tensor F ij and other internal variables can lend both math- 
ematical rigor and physical soundness in constitutive modelling of 
anisotropic sand ( Li, 2013; Li and Dafalias, 2015; Dafalias, 2016 ). 
Indeed, the energy dissipation in anisotropic granular materials is 
inherently associated with the sand fabric and its evolution dur- 
ing the loading process. If a fabric-dependent yield function and 
a fabric-dependent plastic potential can be found appropriate for 
both monotonic loading and pure rotation of principal stress axes„
with further consideration of fabric evolution, a more consistent 
model can be developed to offer a unified description of non- 
coaxial sand behaviour in a more natural way. Future work will 
be done in this regard. 

It is noteworthy that the presented formulation makes the 
model incrementally nonlinear, and its numerical implementation 
in finite element method is rather challenging. Most implicit stress 
integration methods require explicit second derivatives of the yield 
function/ the plastic potential function, which proves to be difficult 
for the present model especially in the case of principal stress rota- 

tion. In this regard, it is advisable to employ the explicit stress in- 
tegration method with automatic sub-stepping proposed by Sloan 
et al. (2001) . This explicit integration method is able to handle 
highly nonlinear constitutive relations by subdividing each loading 
step automatically and adaptively according to its degree of nonlin- 
earity. The method has been demonstrated by Zhao et al. (2005) to 
suit for a wide range of complex soil models, with reasonable ef- 
ficiency, accuracy and robustness. Hence it is advisable to employ 
this stress integration method to implement the present model in 
FEM for practical boundary value problem simulations. 
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Appendix. The constitutive equations 

According to the elastic stress strain relation and equations for 
the plastic strain increment, one can get 
d σi j = E i jkl d ε e kl = E i jkl (d ε kl − d ε p 

kl ) = E i jkl (d ε kl − d ε pm 
kl − d ε pt 

kl )
= E i jkl [d ε kl − ⟨ L m ⟩ x kl − ⟨ L t ⟩ x ′ kl ] (31) 

where E ijkl is the elastic stiffness tensor expressed as 
E i jkl = ( K − 2 G / 3 ) δi j δkl + G (δki δl j + δli δk j ) (32) 
and 
x i j = m i j + 1 

3 
√ 

2 
3 D m δi j (33) 

x ′ i j = γi j + 1 
3 
√ 

2 
3 D t δi j (34) 

The condition of consistency for the yield function Eq. (13) can 
be expressed as 
df = ∂ f 

∂ r kl ∂ r kl 
∂ σi j d σi j − ⟨ L m ⟩ ∂ f 

∂H r h = ∂ f 
∂ σi j d σi j − ⟨ L m ⟩ K pm = 0 (35) 

where 
K pm = − ∂ f 

∂H r h = r h (36) 
The loading mechanism for rotation of principal stress direc- 

tions can be written as 
ω χkl ∂ r kl 

∂ σi j ︸ ︷︷ ︸ 
C i j 

d σi j − ⟨ L t ⟩ K pt = 0 (37) 
Substituting Eqs. (33) and ( 34 ) into Eq. (35) , one can get 

∂ f 
∂ σi j [d ε i j − ⟨ L m ⟩ x i j − ⟨ L t ⟩ x ′ i j ] − ⟨ L m ⟩ K pm = 0 (38) 

Eq. (37) can be rewritten as below based on Eqs. (33) and ( 34 ) 
C i j [d ε i j − ⟨ L m ⟩ x i j − ⟨ L t ⟩ x ′ i j ] − ⟨ L t ⟩ K pt = 0 (39) 

Combing Eqs. (38) and ( 39 ), the expression for L m and L t can be 
got as below 
L m = C i j − C cd x cd ∂ f 

∂ σi j / ( ∂ f 
∂ σpq x pq + K pm )

K pt − C pq x pq ∂ f 
∂ σcd x ′ cd / ( ∂ f 

∂ σpq x pq + K pm )d ε i j = *i j d ε i j (40) 
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L t = ∂ f 

∂ σi j − ∂ f 
∂ σcd x ′ cd *i j 

∂ f 
∂ σpq x pq + K pm d ε i j = H i j d ε i j (41) 

Substituting Eq. (40) and ( 41 ) into Eq. (31) , the constitutive 
equation can be obtained as below 
d σi j = 4i jkl d ε i j (42) 
4i jkl = E i jkl − h ( L m ) E i jmn x mn *kl − h ( L t ) E i jmn x ′ mn H kl (43) 
where h ( L )is the Heaviside step function, with h ( L > 0) = 1and h ( L 
≤ 0) = 0. 
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