
Constitutive characterization of strength and deformation for natural clay 
and cemented sand 

Z.W. Gao & J.D. Zhao 
Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong 

ABSTRACT: Due to the influence of bonding and soil fabric, the behavior of a natural soil differs significant-
ly from that of a remolded soil. It has been found that a soil with bonding may exhibit enhanced soil strength, 
stiffness as well as brittleness, and the soil fabric may lead to anisotropic soil behavior. A general failure cri-
terion and constitutive framework considering both aspects of natural soils is of significant importance for 
practical analysis and design of geo-structures. In this paper, we first employ an anisotropic failure criterion to 
characterize the peak strength of cemented sands and natural clays. By replacing the constant frictional para-
meter with a hardening parameter, the anisotropic failure criterion is then modified to be a yield function, 
based on which a constitutive model is proposed to describe the effect of bonding and fabric anisotropy on the 
behavior of naturally bonded soil. Simulations of the behavior of cemented sands by the model agree favora-
bly with test results.     

1 INTRODUCTON  

Natural soils are routinely dealt with in geotech-
nical engineering. It has long been observed that 
the behavior of natural soils differs significantly 
from that of reconstituted soils. This is due to in-
trinsic structure in natural soils existing in form of 
bonding and fabric (Burland, 1990). The bonding 
of natural soils normally originates from the sedi-
mentation process (Mitchell & Soga, 
2005).Meanwhile, cementation has often been 
used in soil improvement to enhance the soil 
strength, stiffness as well as the resistance to li-
quefaction (e.g. Ismael, 1999; Porbaha et al., 2000; 
Gallagher & Mitchell, 2002), during which bond-
ing may be formed. Fabric anisotropy of natural 
soils is formed during the deposition and compac-
tion processes and usually takes the form of cross-
anisotropy (or transverse-isotropy) characterized 
by one direction with distinctive anisotropy per-
pendicular to a bedding or lamination plane where-
in it is largely isotropic (e.g. Casagrande & Caril-
lo, 1944; Callisto & Calabresi, 1998; Miura & 
Toki, 1984; Lade & Kirkgard, 2000). This perpen-
dicular direction, normally coincident with the di-
rection of deposition, is referred to as the axis of 
anisotropy.  

Bonding and fabric anisotropy play different 
roles in affecting the behavior of natural soils. Soil 
bonding may lead to increased peak strength, stiff-
ness as well as brittleness of soils (e.g., Clough et 
al. 1981; Horpibulsuk, et al., 2005; Wang & 
Leung, 2008). It is also found that cemented soils 
are prone to dilate, which leads to higher liquefac-
tion resistance (e.g. Saxena et al., 1988; Gallagher 
& Mitchell, 2002). The importance of fabric aniso-
tropy to soil behavior has long been recognized in 

both sand (e.g. Oda et al., 1978; Miura & Toki, 
1984) and clay (e.g. Callisto & Calabresi, 1998; 
Lade & Kirkgard, 2000). For example, it has been 
observed that soil strength and stiffness are higher 
in conventional triaxial compression and lower in 
conventional triaxial extension (e.g. Miura & Toki, 
1984; Callisto & Calabresi, 1998). It is also found 
that, as the major principal stress direction de-
viates from the direction of deposition, the soil be-
comes more contractive, and the resistance to li-
quefaction decreases accordingly (e.g. 
Kumruzzaman & Yin, 2010; Yoshimine et al., 
1998; Miura & Toki, 1984). 

Evidently, soil structure may have an important 
impact on the strength and deformation characte-
ristics of natural soil, and should be carefully con-
sidered in the analysis and design of geotechnical 
structures. In particular, to accurately characterize 
the strength of natural soils, a general failure crite-
rion and suitable constitutive framework are in-
deed needed. While both isotropic and anisotropic 
failure criteria have been proposed to characterize 
the failure of geomaterials (see a detailed review 
by Gao et al., 2010), limited attempts have been 
made towards modeling the failure and deforma-
tion characteristics of natural soils. In this paper, 
we will first apply a newly developed anisotropic 
failure criterion (Gao et al., 2010) which has been 
verified by test data on a wide range of geomate-
rials, such as sand, clay and rock, to characterize 
the failure of natural soils. Special attention will 
be paid on the behavior of cemented sand and nat-
ural clay. Regarding the constitutive modeling of 
natural soils, existing studies have been devoted to 
either of the two aspects (bonding and fabric ani-
sotropy) of natural clays (e.g. Rouainia, & Muir 
Wood, 2000; Asaoka et al., 2000; Liu & Carter, 
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2002), but rarely two of them simultaneously for 
sand (e.g. Hirai et al., 1989; Sun & Matsuoka, 
1999; Hicher et al., 2008; Li & Dafalias, 2002). 
Indeed, Michalowski (2008) has found that the 
orientation of fibres in artificially cemented soils 
is usually anisotropic and may cause strongly ani-
sotropic behavior in the soil. It is thereby desirable 
to develop a model that can take into account of 
the bonding and fabric anisotropic effect in a com-
prehensive way to treat cases like this. This shall 
be attempted in this paper. A simple elasto-plastic 
will be developed here to investigate the behavior 
of sandy soils by considering the effect of bond-
ing, de-bonding process as well as inherent fabric 
anisotropy. The yield function is adapted from an 
anisotropic failure criterion previously proposed 
by the authors (Gao et al., 2010). Test results on 
cemented Ottawa sand (Wang & Leung, 2008) and 
Multiple-sieving-pluviated (MSP) Toyoura sand 
(Miura & Toki, 1984) will be used to verify the 
model performance.  

2 A GENERAL ANISOTROPIC FAILURE 
CRITERION FOR GEOMATERIALS 

The anisotropic failure criterion proposed by Gao 
et al. (2010) is in the following form  
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where fM  is a frictional parameter; α  is a 
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where ijδ  is the Kronecker delta; ijσ  is the 

commonly referred Cauchy stress tensor; rp  is a 

reference pressure; 0σ  is the triaxial tensile 

strength of a material; n  is a model parameter. 
Key to the anisotropic failure criterion is the addi-
tion of the function ( )f A  defined below to in-

troduced the influence of anisotropy 
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where d  and β  are material constants. A  is 
an anisotropic variable reflective of the influence 
of loading direction with respect to fabric, defined 
as follows 
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where /3ij ij kk ijs σ σ δ= − , 3ij ij kk ijd F F δ= − . ijF  

is the fabric tensor defined by Oda & Nakayama 
(1989). For a cross-anisotropic material, assuming 
that the principal axes of fabric align in the refer-
ence coordinate ( )1 2 3, ,x x x  with the 2 3x x−  

plane being the isotropic plane, ijF  can be ex-

pressed as,  
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where ∆  is a scalar that characterizes the magni-
tude of the cross-anisotropy. Its value ranges from 
zero when the material is absolutely isotropic, to 
unity when the degree of anisotropy is the maxi-
mum. Note that when ( ) 1f A ≡ , the anisotropic 
failure criterion becomes identical to the underly-
ing isotropic failure criterion as in Yao et al. 
(2004). The primary effect of the function ( )f A  
is to change the shape of the underlying isotropic 
failure surface in the deviatoric plane. When 

( ) 1f A > , it plays a role to expand the failure sur-
face with respect to the isotropic one, and to shrink 
it when ( ) 1f A < . 

3 APPLICATION OF THE FAILURE 
CRITERION TO NATURAL SOILS 

In Gao et al. (2010), the failure criterion has been 
verified by a comparison of the model predictions 
with test results on sand, clay and rock. In the fol-
lowing sub-sections, we shall further apply it to 
cemented sands and natural clays.  

3.1 Cemented sand 

Reddy & Sexena (1993) performed a series of true 
triaxial tests under constant mean stress on Monte-
rey No. 0 sand with 2% of Portland cement type I. 
Complementary conventional triaxial tests were 
also conducted to investigate the failure characte-
ristics in the meridian plane. Shown in Fig. 1 is the 
comparison between the test data and the predic-
tion of the failure criterion presented in Eq.(1) in 
both the meridian plane and the deviatoric plane. 
Since the anisotropic effect has not been investi-



gated in the tests, the isotropic criterion is em-
ployed to perform the simulations. Note that the 
parameter Mf is determined by best fitting all 
available test data in triaxial compression, with 
each data point in the deviatoric plane correspond-
ing to a single test. It is noticed that the criterion 
slightly underestimates the test results in the devia-
toric plane, especially at 0.75b = . Nevertheless, 
the coincidence between the test results and crite-
rion simulations is satisfactory. Note that the dis-
tances of the data points from the origin in the de-
viatoric plane are set to 2 /3q  throughout the 
paper, where q  is the deviatoric stress. 
 

 
(a) Meridian plane 

 
(b) Deviatoric plane 

Fig. 1 Comparison between the test results on cemented 
Monterey No. 0 sand and simulations of the failure crite-
rion in Eq.(1) 

3.2 Natural clay 

Stress path-controlled triaxial and true triaxial tests 
have been carried out by Callisto & Calabresi 
(1998) on a natural soft clay, Pisa clay. The soil 
tested was sampled from the upper clayey deposit 
found below the Tower of Pisa. All the samples 
were reconsolidated to the in-situ stress state and 
then sheared to failure with a constant mean stress 
of 88.2 kPa under drained conditions. Since 
there is no sufficient data to determine all parame-

ters required for characterizing the failure in the 
meridian plane (Mf, σ0 and n) , only Mf is deter-
mined according to the stress at failure at 0θ =  
(see Gao et al. (2010) for the definition) by setting 

0 0σ =  and 1n = . The rest parameters α , d  
and β  are determined according to the procedure 
discussed in Gao et al. (2010). As can be seen 
from the comparison in Fig. 2, the isotropic crite-
rion overestimates the strength in the range of 
120 180θ≤ ≤o o , while the anisotropic criterion 
captures the overall trend satisfactorily. Note that 
the value of α  in both the isotropic and aniso-
tropic failure criteria is the same.  
 

 
Fig. 2 Test results on the failure of natural Pisa clay and 
model predictions by both the isotropic and anisotropic 
failure criteria 

4 A SIMPLE ELASTO-PLASTIC 
CONSTITUTIVE MODEL FOR SAND SOILS 

In this section, the anisotropic failure criterion will 
be extended to model the deformation and yielding 
of cemented sandy soils. In particular, the bonding, 
de-bonding and the inherent fabric anisotropic ef-
fect will be taken into account.  

4.1 Elastic moduli 

The following nonlinear relations are employed to 
describe the elastic shear modulus G and bulk 
modulus K in sand 
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where 0G  is a material constant;  e  is the void 
ratio; ν  is the Poisson’s ratio. The additional 
term ( )0exp rpσ  is introduced to improve the 



model description of the elastic behavior in ce-
mented soils. 

4.2 Yield function 

We extend the anisotropic failure criterion in 
Eq.(1) to a yield function, by replacing fM  with 
a hardening parameter H as follows, and use it in 
the proposed model  
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4.3 Hardening law 

In line with the yield function in Eq.(8), the fol-
lowing hardening law is employ for H, 

( )h
H f

r

Gc
dH dL r dL M H

Hp

ζ
= = −          (9) 

where dL  is a loading index and �  denotes 
the Macauley bracket with 0x =  when 0x ≤  
and x x=  when 0x > . hc  is a positive model 
parameter. ζ is a scaling factor to take into ac-
count the effect of fabric anisotropy in the soil 
stiffness, 

( )exp 1k Aζ = − +                        (10) 

where k  is a positive model parameter, which 
renders ζ  a decreasing function of A . This is 
consistent with experimental observations that, 
under otherwise identical conditions, the soil re-
sponse becomes softer as the major principal stress 
direction deviates away from the direction of de-
position (e.g. Yoshimine et al., 1998; Miura and 
Toki, 1984). Note that 1ζ ≡  in conventional tri-
axial compression ( 1A = − ), which renders this 
shear model a convenient reference for model ca-
libration.  

Experimental observations (e.g., Clough et al. 
1981; Schnaid et al., 2001) show that the bonding 
of soils is gradually damaged due to plastic defor-
mation, which results in the degradation of shear 
modulus after peak strength. In this model, the 
amount of de-bonding is simply assumed to be 
proportional to the plastic deviatoric strain incre-
ment as follows, 

0 0d dL rσ =                           (11) 

where 0r  denotes the evolution direction of 0σ  
and is expressed as 
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where m  is a positive parameter. Such an evolu-
tion law renders that the bonding keeps decreasing 
with the plastic deformation process as long as 

0 0σ > . Once the bonding is totally damaged, it 
can not be recovered by pure plastic deformation 
as 0r  stays zero. 

4.4 Dilatancy and flow rule 

To include the effect of bonding and fabric aniso-
tropy in the dilatancy, we propose the following 
dilatancy equation, 
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where p
vdε  is the plastic volumetric strain incre-

ment, p
ije  is the plastic deviatoric strain incre-

ment, 1d  is a positive model parameter, Mp is the 
phase transformation stress ratio measured in con-
ventional undrained triaxial compression tests on 
remolded samples. The role of denominator is to 
control the volume change given by this dilatancy 
equation. As the sample is sheared to the critical 
state, the plastic deviatoric strain increment is infi-
nite, which makes the value of D  approach 0 (Li 
& Dafalias, 2004). The two scaling factors Cd  
and Fd  are used to characterize the bonding and 
anisotropic effect respectively, 
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where 0c  a positive model parameter and k  is 
the same as that in the expression of ζ . It can be 
seen from the expression for Cd  that, as the 
bonding effect increases, the phase transformation 
stress ratio decreases. In other words, the soil is 
more prone to dilate and the liquefaction resistance 
increases. This is in accordance with the experi-
mental observations (e.g., Saxena et al., 1988; Gal-
lagher & Mitchell, 2002). The term Fd  renders 
the phase transformation ratio increases as the ma-
jor principal stress direction deviates more from 
the direction of deposition, which implies the sand 
is more prone to liquefy (e.g., Yoshimine et al., 
1998; Miura & Toki, 1984).  

 



Furthermore, associated flow rule is assumed in 
this paper,  

p
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where ijn  is a unit tensor defined as 
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5 MODEL VERIFICATION 

 
(a) 

 
(b) 

Fig. 3 Comparison between the model predictions and 
tested results on cemented Ottawa sand in triaxial com-
pression  
 
We demonstrate the predictive capability of the 
model in characterizing the structure effect on 
sandy soils in this section. Fig. 3 shows a compari-
son between the model simulation and tested 
stress-strain relations on cemented Ottawa sand 
(Wang & Leung, 2008). Evidently, the model cap-

tures the general trend satisfactorily. Nevertheless, 
it tends to under-estimate the peak strength of ce-
mented samples, especially in the case the cement 
content is 2%. This is due to that the initial value 
of the triaxial tensile strength 0iσ  has been de-
termined by neglecting the de-bonding before the 
peak strength state. Better prediction can be 
achieved by specifying slightly greater value of 

0iσ  in this case. Meanwhile, from the comparison 
we see the model gives less volume contraction for 
the un-cemented samples and less volume expan-
sion for the cemented samples. Fig. 4 shows a 
comparison between the model simulations and the 
test results on the multiple-sieving pluviated 
(MSP) Toyoura sand (Miura & Toki, 1984). 
Again, reasonable agreement is found between the 
two. The proposed model appears to be capable of 
providing reasonable predictions on the behavior 
of cemented sandy soils. 
 
 

 
(a) 

 
(b) 

Fig. 4. Comparison between the model simulations and 
test results on MSP Toyoura sand in true triaxial tests.  



6 CONCLUSION 

In this paper, an anisotropic failure criterion is first 
applied to the prediction of strength for natural 
clays and cemented sands. Based on the fabric ten-
sor proposed by Oda and Nakayama (1989), an 
anisotropic variable A  is introduced to character-
ize the relative orientation between the soil fabric 
and loading direction. Comparison between the 
predictions and test results on cemented sand and 
natural clay demonstrates that the anisotropic fail-
ure criterion can address the structure effect on 
soil strength reasonably. 

The anisotropic failure criterion has also been 
generalized to model the behavior of cemented 
sands, with bonding, de-bonding and inherent fa-
bric anisotropy being carefully considered. In this 
model, the anisotropic failure criterion is extended 
to a yield function by replacing the constant fric-
tional coefficient with a hardening parameter. The 
conventional triaxial compression on remolded 
samples is made as a reference for model calibra-
tion. All parameters can be optimized based on the 
conventional triaxial compression and extension 
test results. The model has been verified by test re-
sults on cemented Ottawa sand (Wang & Leung, 
2008) and MSP Toyoura sand (Miura & Toki, 
1984), and model predictions compare well with 
the test data.  
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