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Summary
For modeling discrete particle-block systems, a new framework of discontinuous
deformation analysis is established on the basis of finite-dimensional variational
inequality. The presented method takes into account the contacts, the rolling
resistance, and the tensile resistance of cemented interface among particles
and blocks using the corresponding variational or quasivariational inequalities.
The new formulation avoids using the artificial springs that are usually indis-
pensable in many conventional methods dealing with similar discrete problems
and conveniently integrates the rigid circle particles, the nonrigid ring parti-
cles, and the arbitrary shape blocks into a uniform framework. The proposed
discontinuous deformation analysis approach is further coupled with the finite
element method using a node-based composite contact matrix and several sim-
ple transformation matrices to solve practical problems. A particle/block-based
composite contact matrix is constructed to further broaden the application of
the proposed method. The accuracy, robustness, and capability of the presented
method are demonstrated with examples.
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1 INTRODUCTION

Discrete particle or block systems are commonly encountered in various engineering problems in civil, mechanical and
chemical engineering, and mining industry. The mechanical responses in such systems are widely regarded complicated
and challenging to characterize and model. They may include not only multibody interactions but also fluid-solid cou-
pling and sometimes cross-scale interactions as well. Historically, there have been a wide variety of theories developed
for analyzing such discrete particle/block systems, including fluid dynamics, granular mechanics, soil mechanics, rock
mechanics, and powder technology. Indeed, discrete systems can range from very small to large length scales and can be
tackled by different approaches. For example, the molecular dynamics method1-6 has been proposed to model the physical
movements and interactions of atoms and molecules. The lattice Boltzmann method7-11 has been widely employed to sim-
ulate the evolution of a fluid system through modeling the collisions and propagations of fictive particles over a discrete
lattice mesh. Meanwhile, the discrete element method (DEM)12-16 has been particularly popular in simulating engineer-
ing materials such as granular sands. The DEM typically treats a material as an assembly of discrete particles interacting
with one another through interparticle contacts and frictions and solve the Newton's equations of motion governing the
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particle system.17 In addition, the combined finite DEM,18-25 the particle method, and the corresponding contact
algorithm26-28 have been presented. The related developments and applications of these methods can be found in
monographs.29,30

In parallel with the aforementioned discrete methods, the discontinuous deformation analysis (DDA)31 has also
received much attention in analyzing discrete block/particle systems, in particular in application for civil/rock engineer-
ing. Discontinuous deformation analysis is sometimes categorized as a special class of DEM, but it solves a boundary
stress-displacement problem based on the principle of minimum potential energy (or by Hamilton's principle) similar to
the finite element method (FEM). To improve its capacity in coping with deformation, the nodal-based DDA32 and the cou-
pled FEM-DDA approach33 have been proposed. In dealing with geometrical nonlinearity, various forms of extension on
DDA have been proposed, including those based on the postadjustment method,34 the Taylor series method,35 the trigono-
metric method,36 the displacement-strain modification method,37 and the strain-rotation (SR)–DDA38,39 based on the SR
decomposition theorem.40-42 In particular, the SR-DDA formulation helps to void the small deformation assumption. The
issue of contact nonlinearity has been tackled more recently by such methods including the open-close iteration (OCI),31

the augmented Lagrange multiplier method,43 the Lagrange multiplier method,44 the complementarity method,45-47 and
the variational inequality method.48 Other latest developments in DDA include the angle-based method49 in addressing
the indeterminacy of vertex-vertex contact, the new contact theory,50 and the generalized contact potential-based DDA51

to address the potential contact.
In the original framework of DDA, a circle particle is commonly approximated by an equilateral polygon, which

inevitably increases the computational cost when the simplex integration52 is used. The subsequent developments of
rigid particle DDA,53 the nonrigid particle DDA,54 and the rigid block DDA55 still adopt the penalty method and the OCI
scheme and have to deal with the contact nonlinearity. The penalty method depends heavily on the stiffness of artificial
contact spring, whose value, however, is difficult to determine and is usually problem dependent. Thus, it is not always to
obtain the correct contact forces for all cases. In a typical OCI, the contact springs are repeatedly installed and removed
from the specific contact points to reflect the change of contact states, ie, either opening or closing. Accordingly, the gov-
erning equation needs to be constantly reformed and resolved. The OCI scheme may thus cause dramatic decrease in
computational efficiency with the increasing number of contact pairs, and more importantly, no theory has been estab-
lished to ensure the convergence result obtained from the OCI to the final correct contact states. In addition, the OCI may
lead to nonphysical complications among the contact nonlinearity, the geometrical nonlinearity, and the material nonlin-
earity. Meanwhile, the recent developments of the theory of finite-dimensional quasivariational inequality and the dual
formulation of DDA (called DDA-d)56 render the artificial springs totally dispensable for both the normal and shear con-
tacts and make the OCI unnecessary as well. While it has been demonstrated that the DDA-d has attained much improved
accuracy, robustness, and acceptable efficiency as compared with previous formulations, it still needs to use the equilat-
eral polygon to approximate the circle particle and has to rely on an assumption of constant strain and constant stress
inside of a block. Moreover, it remains a pending problem in the DDA-d to simulate the behavior of rock bolt, which is
the required function of the original DDA. Moreover, an unphysical phenomenon of “one-step lag” (to be explained in
detail in Section 4.3) exists in the DDA-d.

In this study, first, considering the independence between the shape of block and the basic unknowns in DDA, we
extend the interpolation shape function of the circle particle to ring particle. In doing so, the rigid and nonrigid circles or
ring particle, the arbitrary shape rigid and nonrigid block can all be integrated together to construct a new DDA frame-
work. Moreover, the tactics of “double contact displacement” is proposed to overcome the aforementioned unphysical
phenomenon of “one-step lag.” Second, applying the concept of instantaneous center of rotation in theoretical mechan-
ics, the rolling resistance is translated into an equivalent variational inequality formulation. Meanwhile, the mechanical
behavior of cemented interface is described by the quasivariational inequality and the normal and shear contacts.
Consequently, the artificial springs can be totally abandoned in 4 cases of normal contact, shear contact, rolling resistance,
and tensile resistance of cemented interface. For simplicity, the new DDA framework will be abbreviated as particle-block
(PB)–DDA in the sequel to highlight its capability of simulating complicated particle-block systems. Third, to accommo-
date cases where the particle or block needs to be further discreted, a node-based composite contact matrix is formulated
to facilitate effective coupling between DDA and FEM, and meanwhile, it may help improve the accuracy of stress and
strain of individual particle or block. Indeed, the DDA and the FEM share a common basis of the principle of mini-
mum potential energy, which inspires us to introduce the FEM formula governing link/bolt, spring, and beam element
directly into the PB-DDA. Therefore, the link/bolt, spring, and beam become the connectors between particles or blocks.
To simulate the behavior of these connectors, whereafter, we construct a particle/block-based composite contact matrix,
which allows other models to be implemented in the PB-DDA with ease, including the bonded particle model,57,58 the
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clumped particle model,59 and the bonded block model.60 The aforementioned enrichments greatly broaden the potential
applications of the PB-DDA, which will be demonstrated with examples in the following sections.

2 DISPLACEMENT APPROXIMATION

Consider a 2D rigid body with an arbitrary geometrical shape, as shown in Figure 1. The displacement of an arbitrary
point A in the body can be described by its rotation about a certain axis passing through a reference point C and the
translation of the body. The basic unknown vector is assumed as follows:

d = [u0, v0, !]T, (1)
where u0 and v0 are the translational displacement of reference point of a particle or block in the x and y direction,
respectively. ! is the rotation angle of the rigid body about the axis passing through the reference point C, which is assumed
to be the geometric centroid of a particle or block in this study. The displacement u(x, y) of any point A can be expressed as

u(x, ") =
[

ux(x, ")
u"(x, ")

]
= T(x, ")d, (2)

where (x, y) is the coordinate of point A and the interpolation shape function T(x, y) is given by

T(x, ") =
[

1 0 "c − "
0 1 x − xc

]
, (3)

where (xc, yc) is the coordinate of point C. In the framework of DDA, a rigid body with complex geometry can be presented
straightforward with its shape features, without resorting to the use of many particles to approximate its profile in other
approaches such as DEM.

Now, we further consider a particle or a ring-shaped body (which can be regarded as a particle with a nonzero inner
diameter), which can only exhibit volumetric deformation without shear strain. The following basic unknown vector can
be adopted:

d = [u0, v0, !, #]T, (4)
where # is the Cauchy strain and #x = #y = # in this case. Accordingly, the interpolation shape function can be expressed

T(x, ") =
[

1 0 "c − " x − xc
0 1 x − xc " − "c

]
. (5)

For a deformable block of arbitrary shape, the basic unknown vector can be written as
d =

[
u0, v0, !, #x, #", $%"

]T, (6)
where #x, #y, and $xy are the 3 Cauchy strain components. The corresponding interpolation shape function is

T(x, ") =
[

1 0 "c − " x − xc 0 "−"c
2

0 1 x − xc 0 " − "c
x−xc

2

]
. (7)

C

C

C

Inner diameter is nonzero. 

Rigid or deformable particle 

Rigid or deformable block

FIGURE 1 Geometrical shapes of rigid or deformable body [Colour figure can be viewed at wileyonlinelibrary.com]
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The interpolation functions in Equations (3), (5), or (7) are all first-order functions of x and y. The interpolation shape
function and the basic unknown vector constitute the bases for establishing the control equation of motion of a body.

3 CONTACT TYPES

Major contact types considered in our method include, but not limited to, the particle-particle contact (P–P contact), the
particle-block contact (P-B contact), the block-block contact (B-B contact), and the loop–loop contact (L-L contact), each
of which is discussed as follows.

For particle-particle contacts, we consider the following 2 cases. Case I occurs when 2 particles are considered “outside”
to each other (eg, Figure 2A); Case II occurs when particle Pi is inside of particle Pj whose inner diameter is nonzero, as
shown in Figure 2B. The centroid line PiPj intersects particles Pi and Pj at points Ci and Cj, respectively, where i and j are
the global indexes of the 2 particles. If the distance between Ci and Cj is less than a specified threshold d0, particles Pi and
Pj are considered to be in contact, and this contact can marked as contact pair Ci-Cj-PP, where the subscript “PP” indicates
that the contact is a particle-particle contact. The midpoint of points Ci and Cj is defined as the contact point C. Line AB
passes through the contact point C and is perpendicular to line PiPj. It is defined as the contact surface. The unit vector
n from point C to point Pi is defined as the unit normal vector of the contact pair. For convenience in programming, we
take the index i is less than the index j, namely, i<j. Thus, the unit vector n points toward the interior of particle with the
smaller index. The unit shear vector ! of the same contact pair is defined by rotating n clockwise, as shown in Figure 2.

For particle-block contacts, 4 cases, as shown in Figure 3, are considered. Case I: Particle Pi contacts the edge ViVj of
block Bj from the outside of the block (see Figure 3A); Case II: Particle Pi contacts block Bj from the inside of the block
(see Figure 3B); Cases III and IV: The vertex Vj of block Bj contacts particle Pi from either the outside of inside of the
particle, as shown in Figure 3C and 3D, respectively. In cases I and II, if the distance CiCj between particle and block is
less than a specified threshold d0, these contacts will occur and are termed as Ci-ViVj-PB, where the subscript “PB” denotes
a particle-block contact. The midpoint of line Ci and Cj is defined as the contact point C, and line DE paralleling to edge
ViVj and passing through point C is defined as the contact surface, as shown in Figure 3A and 3B. For cases III and IV, if
the distance between point Ci and vertex Vj is less than d0, such a contact will occur and is termed as Ci-Vj- PB. The contact
surface DE is perpendicular to line PiVj and passes through the contact point C defined by the midpoint of line CiVj, as
shown in Figure 3C and 3D. The unit normal vector n is perpendicular to line DE and points to the interior of particle Pi.
By rotating n clockwise, we can obtain the unit shear vector !, as shown in Figure 3.

Three contact types between blocks are considered in the original DDA, namely, the vertex-edge contact, the edge-edge
contact, and the vertex-vertex contact. Among the 3, the vertex-edge contact is considered the most basic one, while the
latter 2 types can be ultimately translated into the vertex-edge contact, as shown in Figure 4. Point V* is the projection
of vertex Vk belonging to block Bi on edge ViVj of block Bj. If the distance between points Vk and V* is less than d0,
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FIGURE 2 Particle-particle contacts. A, Case I; B, Case II [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Particle-block contacts. A, Case I; B, Case II; C, Case III; D, Case IV [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Vertex-edge contact of the block-block contact [Colour figure can be viewed at wileyonlinelibrary.com]

the contact pair Vk-ViVj-BB is detected, where the subscript “BB” stands for the block-block contact. The midpoint of line
VkV* is defined as the contact point C. It should be pointed out that vertexes Vk and V* are the 2 contact points belonging
to blocks Bi and Bj, respectively, in the original DDA, and vertex Vk and vertex V* are thereby considered separate points.
In reality, once contacted, the contact point can be regarded as 1 single point for the 2 contact bodies. In this study,
midpoint C is defined as the contact point. Indeed, blocks Bi and Bj may own contact point C simultaneously, which has
been validated by numerical simulations. The contact surface DE is parallel to edge ViVj and passing through point C.
The unit normal vector n is perpendicular to line DE and points to the interior of block Bj, which possesses edge ViVj. By
rotating n clockwise, the unit shear vector ! can be obtained, as shown in Figure 4.

Figure 5 shows the edge-edge contact. If the distances between vertexes Vk, Vl, and edge ViVj are all less than d0 (the left
of Figure 5) or the distances between vertexes Vk and Vi and edges ViVj and VkVl are all less than d0 (the right of Figure 5),
the edge-edge contact VkVl-ViVj-BB is considered to occur, and it is further translated into 2 pair of vertex-edge contacts,
namely, the vertex-edge contacts Vk-ViVj-BB and Vl-ViVj-BB (the left of Figure 5) or the vertex-edge contacts Vk-ViVj-BB and
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FIGURE 5 Edge-edge contact of the block-block contact [Colour figure can be viewed at wileyonlinelibrary.com]

Vi-VkVl-BB (the right of Figure 5). In this case, one of the contact pairs is called as the “adjoint contact pair” of the other
contact pair. The vertex-edge contact Vk-ViVj-BB or Vi-VkVl-BB, is called “adjoint vertex-edge contact”.

As for the vertex-vertex contact, one needs first to identify the 2 candidate contact edges and then to select 1 edge and 1
vertex according to the geometrical relationship to form a vertex-edge contact. Accordingly, the treatment of vertex-vertex
hereby adopted is the same as the way in the original DDA.

To account for deformability, a block can be subdivided into elements. In this case, the boundary of the block is called
the loop, as shown in Figure 6. Both blocks Bi and Bj are subdivided. If there is a contact between the 2 blocks, the contact
is referred to as the loop-loop contact (L-L contact). Since elements Ei

k and E&
k can be regarded as 2 smaller blocks, the

loop-loop contact can be treated as a block-block contact. Apparently, depending on different circumstances, there may be
particle-loop contacts (P-L contacts) and block-loop contacts (B-L contacts) in a discrete particle-block system, as shown
in Figure 7. The former can be treated as the particle-block contacts, while the latter can be tackled as the block-block
contacts.
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kE j
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kE j
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0d

FIGURE 6 A loop-loop contact [Colour figure can be viewed at wileyonlinelibrary.com]

Particle-loop contact 

Block-loop contact

FIGURE 7 Particle-loop contact and block-loop contact [Colour figure can be viewed at wileyonlinelibrary.com]
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4 DISCONTINUOUS DEFORMATION ANALYSIS UNDER THE
FRAMEWORK OF THE VARIATIONAL INEQUALITY

Variational inequality has been employed in treating the Signorini problem,61 and its application in DDA can be found in
the work of Jiang and Zheng,48 while detailed theory about variational inequality can be referred to the work of Facchinei
and Pang62; here, we will offer the equivalent formulations of the contact conditions, the rolling resistance, and the tension
resistance of the cemented interface under the framework of the variational inequality. For completeness, the governing
equation of a single body (particle or block) motion is briefly discussed.

4.1 Governing equation of a body motion
Consider a rigid or deformable block Bi, as shown in Figure 8. The centroid of the block is located at point C. In this
Figure, G denotes the body force; F, P, and u are the specified point loading, surface loading, and displacement constraint,
respectively. The vertexes Vk and Vm are the contact points and the unit vertors nk, !k, and nm; !m corresponds to the kth
and the mth contact pairs, respectively. According to the definitions for the unit normal and shear vector and the laws of
action and reaction, the contact force ('n

knk, '(k!k) acts on edge ViVj of block Bi, while the contact force (−'n
mnm, −'(m!m)

applies to vertex Vm of block Bi. We consider a block Bi with ni contact pairs.
The Newmark scheme63 with adopted parameters $ = 1.0 and ) = 0.5 is employed in the time integration of this study.

In consideration of the interpolation shape function T(x, y) and the minimization of total potential energy of the block,
the governing equation for a body motion can be expressed as56

Kidi − Cipi = fi, (8)

where Ki is the equivalent stiffness matrix, di is the basic unknown vector, and fi is the equivalent loading vector. Ci
and pi are the contact matrix and the undetermined contact force vector acting on block Bi, respectively. Note that the
dimensions of Equation (8) can be 3, 4, or 6 for the rigid particle or block, the deformable particle, or the deformable
block, respectively. For a rigid or deformable particle, the Appendix summarizes the analysis formulas of key submatrices
needed for the generation of Ki; while for a rigid or deformable block, the simplex integration method52 is adopted.

The contact matrix is given by
Ci =

[
C1

i ,C2
i , … ,Ck

i , … ,Cni
i
]
, (9)

where each C k
i is the 3 × 2, 4 × 2, or 6 × 2 matrix associated with the kth contact pair on block Bi defined as follows:

C k
i (xk, "k) = skT T

i (xk, "k)[nk, !k], k = 1, … ,n i, (10)

where (xk, yk) are the coordinates of the kth contact point and sk is the sign indicating that the kth contact force is either
positive or negative according to the definition of the unit normal and shear vector. In addition, the 2 × 2 matrix [nk, !k]
is expressed as

[nk, !k] =
[ cos * n

k cos * (
k

cos ) n
k cos ) (

k

]
, (11)

C BiVk
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FIGURE 8 Edge-edge contacts of the block-block contact [Colour figure can be viewed at wileyonlinelibrary.com]
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where (cos * n
k , cos ) n

k ) and (cos * (
k , cos ) (

k ) are the direction cosines of the vectors nk and !k, respectively. The contact
force vector pi for the ni contact pairs on block Bi is

pi =
[
'n

1 , '
(
1 , '

n
2 , '

(
2 , … , 'n

n i
, '(

n i

]T. (12)

If the action point of a point loading does not coincide with the centroid of a body, the point loading may result in both
body translation and rotation. For a rigid body, the following interpolation shape function can be used to translate the
point load into an equivalent loading vector:

T R(x, ") =
[

0 0 "c − "
0 0 x − xc

]
, (13)

such that the point loading will only cause the rotation of the rigid body. As illustrated in Figure 9, the use of TR(x, y)
renders the effect of loading F applied at point A(x, y) to be equivalent to the moment mR acting on the centroid C(xc, yc).
Indeed, TR(x, y) will also be employed in the implementation of the rolling resistance.

Note that, for a deformable particle, TR(x, y) becomes

T R(x, ") =
[

0 0 "c − " x − xc
0 0 x − xc " − "c

]
, (14)

while for a deformable block, TR(x, y) should be written as

T R (x, ") =
[

0 0 "c − " x − xc 0 "−"c
2

0 0 x − xc 0 " − "c
x−xc

2

]
. (15)

It should be noted that the interpolation shape function T(x, y) or TR(x, y) and the basic unknown vector d are only used
to construct the governing equation. To overcome the possible volume expansion caused by the rotation of rigid body, the
postadjusted method will be employed to calculate the displacement of any point after solving the controlling equation.
For a rigid particle or block, the postadjusted displacements are55

{
u x = u0 + (x − x c) (cos ! − 1) − (" − " c) sin !
u" = v0 + (x − x c) sin ! + (" − " c) (cos ! − 1) ,

(16)

while for a deformable particle,
{

u x = u0 + (x − x c) (cos ! − 1) − (" − " c) sin ! + (x − x c) #
u" = v0 + (x − x c) sin ! + (" − " c) (cos ! − 1) + (" − " c) #,

(17)

and for the deformable block,34

{
u x = u0 + (x − x c) (cos ! − 1) − (" − " c) sin ! + (x − x c) #x + (" − " c) $%"∕2
u" = v0 + (x − x c) sin ! + (" − " c) (cos ! − 1) + (" − " c) #" + (x − x c) $%"∕2.

(18)

C(xc,yc)
A(x,y) xF

yF
F

Rm

FIGURE 9 Equivalent moment caused by a point loading [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2 Contact force
Frictional resistance will be triggered when there is either a trend of relative sliding or a real relative sliding occurring
along the contact surface defined previously, according to the static friction and the sliding friction, respectively. For a
typical vertex-edge contact pair k, if the following shear strength is adopted:

(
(
'n

k
)
= ck + +k'n

k , (19)

where 'n
k is the normal contact force of the kth contact pair, ck is the cohesion of the contact surface, and +k is the sliding

friction coefficient. Equation (19) is a function of 'n
k . Considering the Coulomb friction law, the friction-induced shear

contact force '(
k should fall in the interval of [−(('n

k ), (('
n
k )]. In other words, the shear contact force '(

k is a function of
the normal contact force 'n

k . On the other hand, because the contact force vector pi in Equation (8) is undetermined, in
order to obtain the basic unknown vector di in Equation (8), di can be split into the following 2 components:

di = d'
i + d,

i , (20)

where d'
i and d,

i are the contributions of the contact force vector pi and the equivalent loading vector fi, respectively. As
a result, Equation (8) can be further rewritten as

Kid,
i = fi, (21)

and
Kid'

i = Cipi. (22)

Indeed, the partition expressed by Equation (20) embodies the idea of “predictor-corrector” technique as follows. A “pre-
dicted value” is first obtained without considering the contact force, and a “corrected value” is then calculated when the
contact force is considered, which is further added to the “predicted value.” As a matter of convenience, Equations (21)
and (22) are referred to as “noncontact step” and “contact step,” respectively. From Equations (21) and (22), we can readily
calculate

d,
i = K−1

i fi, (23)

d'
i = K−1

i Cipi. (24)

To determine d'
i , one needs to solve the contact force vector pi first. According to the work of Zheng et al,56 the con-

straints of no-penetration constraint and no-tension constraint at the contact point can be translated into the following
complementarity condition: {

g n
k ≥ 0, 'n

k ≥ 0
g n

k '
n
k = 0,

(25)

which is equivalent to the variational inequality VI-pn(k). Find 'n
k ≥ 0 such that

(
q n

k − 'n
k
)

g n
k ≥ 0, ∀q n

k ≥ 0, (26)

where q n
k is related to the normal contact force 'n

k and g n
k is the normal contact gap of the kth contact pair. Moreover, the

Coulomb friction law can be reformulated into the following condition:

g (
k

⎧
⎪
⎨
⎪⎩

≥ 0, if '(
k = −(

(
'n

k
)

= 0, if |||'
(
k
||| < (

(
'n

k
)

≤ 0, if '(
k = (

(
'n

k
)
,

(27)

where g (
k is the tangential relative sliding gap of the kth contact pair and (('n

k ) is determined by Equation (19). Further-
more, the condition Equation (27) is equivalent to the quasivariational inequality QVI-p((k). Find |'(

k | ≤ (('n
k ) such that

(
q (

k − '(
k
)

g (
k ≥ 0, ∀ |||q

(
k
||| ≤ (

(
'n

k
)
. (28)

In the following, we will redefine the gaps g n
k and g (

k . For a typical kth vertex-edge contact pair shown in Figure 10, at the
starting time t0 of the current time step, the contact point V i

k(x
0
i , "

0
i ) belonging to block Bi coincides with the contact point

V &
k (x

0
& , "

0
& ) that belongs to block Bj. At the end of the time step t0 + Δt, the contact points V i

k and V &
k move to V i∗

k (x i, " i)
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FIGURE 10 One pair of vertex-edge contacts [Colour figure can be viewed at wileyonlinelibrary.com]

and V &∗
k (x & , "&), respectively. The normal contact gap g n

k is the projection of the vector Rk pointing Ci∗
k to C &∗

k onto nk,
according to

g n
k = nT

k (x& − x i), (29)

where
xm = [xm, "m]T =

[
x 0

m, "0
m
]T + Tm

(
x 0

m, "0
m
) (

d,
m + d'

m

)
, m = i, &. (30)

After some mathematical manipulations, we have

g n
k = 'n

-& + g n
-& , (31)

where
'n
-& = nT

.-pi − nT
.&p&

nT
.- = nT

k TiF̃i

nT
.& = nT

k T&F̃& ,
(32)

and
F̃m = K−1

m Cm, m = i, &, (33)

g n
-& = nT

k

(
x 0
& − x 0

i + T&d,
& − Tid,

i

)
, (34)

where Cm(m = i, j) is the contact matrix (Equation (9)). Note that x 0
& − x 0

i = " at the start of the current time step;
Equation (34) is reduced to

g n
-& = nT

k

(
T&d,

& − Tid,
i

)
. (35)

In the tangential direction, the tangential relative sliding gap g (
k is defined as

g (
k = !T

k (u& − u i), (36)

where
um =

[
u x

m, u"
m
]T = Tm

(
x 0

m, "0
m
) (

d,
m + d'

m

)
, m = i, &. (37)

Similar to g n
k , we have

'(
-& = !T

.-pi − !T
.&p&

!T
.- = !T

k TiF̃i

!T
.& = !T

k T&F̃&

g (
-& = !T

k

(
T&d,

& − Tid,
i

)
.

(38)

Since the contact points V i
k and V &

k are at the same location at the start of the current time step, g (
k is exactly the projection

of the vector Rk onto !k. Moreover, g n
k and g (

k are all functions of the contact force vectors pi and pj. Hereafter, F̃ is called
the flexibility matrix.
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If there are N contact pairs in a discrete particle-block system at the current time step, each contact pair corresponds to
the variational inequality VI-pn and the quasivariational inequality QVI-p( . By combining all of these VI-pn and QVI-p( ,
we have the following dual form of DDA, abbreviated as DDA-d.56 Find the global contact force vector p ∈ X(p) ⊂ R2N

such that
(q − p)TG(p) ≥ 0, ∀q ∈ X(p), (39)

where
p =

[
'n

1 , '
(
1 , … , 'n

N , '
(
N
]T, (40)

and the constraint X(p) is a closed set in R2N and dependents on the global contact force vector p. In addition, the contact
gap function G(p) is defined as

G(p) =
[
g n

1 (p), g (
1 (p), … , g n

N(p), g (
N(p)

]T. (41)

One can refer to the work of Zheng et al56 for more detail. In this study, the compatibility iteration56 based on the
projection-contraction algorithm64 will be adopted, which, in conjunction with the variational or quasivariational inequal-
ity formulations, can help totally avoid using the artificial contact spring, and may replace the OCI of the original DDA
to solve all the contact forces occurring in a discrete particle-block system.

In addition, note that the shear strength described by Equation (19) is no longer suitable for the adjoint vertex-edge
contact, which stems from a same edge-edge contact when the cohesion c is nonzero. The shear strength for the adjoint
vertex-edge contact needs to be reexamined specifically. As shown in Figure 11, vertex-edge contacts V1-V3V4-BB and
V2-V3V4-BB are 2 adjoint vertex-edge contact pairs, which should join together to resist the potential tangential sliding.
It has been reported that there is an unreasonable sharing ratio65 between them in the OCI of the original DDA. This
unreasonable ratio may cause that the 2 contact pairs cannot undergo the state of opening, sliding, or closing at the same
time. If the cohesion c ≠ 0, we might rewrite c as follows:

c = c1 + c2, (42)

where c1 and c2 correspond to the contributions by contacts V1-V3V4-BB and V2-V3V4-BB, respectively, and satisfy

kc =
c1
c2

= 1, (43)

and thus, for the contact V1-V3V4-BB, the shear strength can be given by

(
(
'n

1
)
= kc

1 + kc
c + +1'n

1 , (44)

and for the contact V2-V3V4-BB, the shear strength reads

(
(
'n

2
)
= 1

1 + kc
c + +2'n

2 . (45)

At the end of the compatibility iteration,56 kc will converge to an appropriate value, leading naturally to a final unique
compatible contact state for the 2 adjoint vertex-edge contact pairs.
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4.3 One-step lag
Once the compatibility iteration is completed, the contact conditions of no penetration and no tension at the contact points
are expected to be satisfied. More specifically, the normal gaps should all be equal to zero, and the shear gaps converge
to correct values. However, according to our numerical experience, there are cases where an unphysical phenomenon of
“one-step lag” may occur in the aforementioned “predictor-corrector” process, which needs to be fixed. To demonstrate
this, the normal contact, as shown in Figure 12, is taken as an example.

Assume that there is a contact pair at the initial step (at time t), with point C0 being the contact point (see Figure 12).
During the noncontact step, namely, when the contact force is not considered, contact point C0 reaches at point C*, leading
to an initial nonzero normal contact gap g n

0 n ≠ ". The compatibility iteration is then invoked until the convergence
is achieved to determine the normal contact force. The determined contact force is further considered to carry out the
contact step in an attempt to make g n

0 n = ", equivalently, to push point C* back to point C1 at time t + 1t. Now, the
following phenomenon can be clearly pictured. After the time interval 1t, the position of the contact point remains at its
initial position. Physically, the normal contact force should occur at the time when contact occurs, but the normal contact
gap does not yet appear. In addition, the same applies to the shear direction. This phenomenon is the so-called “one-step
lag”. If the initial velocity component of any block or particle is not equal to zero at the initial time t, to eliminate this
undesired lag, the ultimate basic known at time t + 1t is estimated by

if
(

v0
i ≠ 0

) ̄̄di = 2d'
i + d,

i , (i = 1, 2, … , k) , (46)

where k is equal to 3 for rigid body or 4 for deformable particle or 6 for deformable block. This is to say that the displace-
ment caused by the contact force is doubled at t + 1t time. Equation (46) is referred to as “double contact displacement”
in this paper.

In the Newmark time integration, the velocity and acceleration are computed based on the basic knowns. Thus, the
modified basic known ̄̄d (see Equation (46)) can be used to update the stress and the relevant geometry, while the original
basic known d (see Equation (20)) is still employed to calculate the velocity and acceleration. This is demonstrated in the
following examples.

4.4 Rolling resistance for particles
Rolling resistance may become important for a particle-particle contact or a particle-block contact. An illustration of mod-
eling of rolling resistance in this study is shown in Figure 13. There is a contact pair between particle Oi(the centroid of
the particle) and surface AB. Vectors n and ! are the unit normal and shear vector, respectively. G is the gravity force of
the particle, and F is the point loading acting on point A. While pnn is the normal contact force determined by the com-
patibility iteration, ⌢' (! can is called the unknown rolling friction. 4 0 is the initial angle velocity, dR is an undetermined
distance, and 5 is the rolling friction coefficient with a dimension of length.

The rolling resistance is intended both to limit the translational motion of the particle and to suppress its rotation.
To this end, we consider the contact point C as a temporary fixed point inspired by the fact that the contact point C is
the instantaneous center of rotation, which implies that the instantaneous velocity of point C is zero. We then move the
normal contact force pnn by an undetermined distance dR on the contact surface AB; thus, we have a normal rolling
resistance force ⌢' nn, as shown in Figure 13. An equivalent moment, referred to as the rolling resistance moment, can
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then be constructed as follows:
m Rs = ⌢' nn × d R!

s = n × !.
(47)

Suppose that there are nR rolling resistant forces acting on the particle Oi, by applying the interpolation shape function
TR(x, y) expressed by Equation (13), (14), or (15), the total applied moment mRs can be translated into the equivalent
loading vector for the governing equation

R im R
i → fi, (48)

where
m R

i =
[
m R

1 s 1, … ,m R
nR

s nR

]T =
[
⌢'n

1n1 × d R
1 !1 , … , ⌢'n

nR nnR × d R
nR
!nR

]T
, (49)

which is referred to as the rolling resistance moment vector, and
R i =

[
T R

1 , … ,T R
nR

]
. (50)

The matrix Ri is called the rolling resistance matrix in this study. The exerted moment mRs on the particle may lead to an
additional contribution to the basic unknown vector as follows:

dR
i → di, (51)

where dR
i is caused by the rolling resistance moment m R

i . Since point C is assumed to be temporarily fixed, the
displacement uO = (uox, uoy)T of point O is maybe nonzero. According to Newton's second law, one has

⌢' ( = 2M ass
⌢d

(

(Δt)2 , (52)

where Mass is the mass of the particle, Δt is the time step size, and ⌢d
(

is the tangential displacement of point O given by
⌢d

(
= uT

O!. (53)

In practice, there is no need to consider the force ⌢' ( since its action point C has been temporarily fixed.
For an arbitrary kth rolling resistance, due to the moment mRs, the particle undergoes a rotation angle !m. Considering

the initial angle velocity 4 0 and the rotation angle !f caused by external loads, we have the following total rotation angle:
g R

k
(

m R
k s

)
= 40Δt + !, + !m. (54)

In this study, g R
k is called the rolling gap, taking counterclockwise as positive. In analogy to the shear strength, a “rolling

strength” is defined as follows:
( R (

d R
k
)
= ⌢' n

k d R
k , (55)

where d R
k (see Figure 13) is undetermined. In analogy to the Coulomb friction law, one can have the following condition

similar to Equation (27):

g R
k

⎧
⎪
⎨
⎪⎩

≥ 0, if m R
k = −( R (

d R
k
)

= 0, if |||m
R
k
||| < ( R (

d R
k
)

≤ 0, if m R
k = ( R (

d R
k
)
.

(56)
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Indeed, g R
k and m R

k can be seen as a pair complementary variable. Figure 14 depicts the relationship between them.
Consequently, we can further establish the following equivalent quasivariational inequality QVI-mR(k). Find |m R

k | ≤
( R(d R

k ) such that
(

q R
k − m R

k
)

g R
k ≥ 0, ∀ |||q

R
k
||| ≤ ( R (

d R
k
)
, (57)

which is a counterpart to Equation (28) in the rolling case.
If there are N rolling resistances in the discrete particle-block system at the current time step, there are N quasivaria-

tional inequalities QVI-mR. Assembling them leads to the following formulation for the rolling resistance.
Find the global rolling resistance moment vector MR ∈ X(MR)⊂ R N such that

(
q R − M R)TG(M R) ≥ 0, ∀q R ∈ X(M R), (58)

where
M R =

[
m R

1 ,m R
2 , … ,m R

N
]T, (59)

and the rolling gap function G(MR) reads

G(M R) =
[
g R

1 (M R), … , g R
k (M R), … , g R

N(M R)
]T, (60)

where the rolling gap g R
k (M R) is defined by Equation (54). Moreover, the constraint X(MR) is dependent on the MR and

is a closed set in RN as follows:
X(M R) = X1

(
m R

1
)
× · · · × Xk

(
m R

k
)
× · · · × XN

(
m R

N
)
, (61)

where Xk(m R
k ) ⊂ R is the constraint set of the rolling resistance moment m R

k in the kth rolling resistance and relies on the
distance d R

k associated with the kth rolling resistance. It is given by

Xk
(

m R
k
)
=
{|||m

R
k
||| ≤ ( R (

d R
k
)}

=
[
−( R (

d R
k
)
, ( R (

d R
k
)]

, (62)

for k = 1, … , N, with ( R(d R
k ) defined by Equation (55).

4.5 Tensile resistance at cemented interface
Cementations may exist at natural or artificial interfaces or joints and may account for certain tensile strength at the
interface or joint. Take the case in Figure 15 as example. Two blocks, connected by a joint k, are subjected to 3 forces F1,
F2, and F3 acting on points A1, A2, and A3, respectively. The tensile resistance offered by the joint C i

k∕C &
k is in an opposite

direction to the interface tension −' t
knk and acting on point C i

k of block Bi, where the definition of nk is the same as
Section 3. Assume that the allowable tensile deformation of the cementing material is d t

0. In other words, the interface
tension −' t

knk will reach its maximum once the distance g t
k between points C i

k and C &
k is equal to d t

0. Moreover, if the
distance continues to be increased, the cementing material will be broken. According to

g t
k = g t

k − d t
0

{
> 0, if ' t

k = 0
= 0, if 0 ≤ ' t

k ≤ tk,
(63)

where tk is the tensile strength of joint k and g t
k is called the tensile gap. In this study, 4 hypotheses are adopted. (i) Only the

cemented joints or interfaces detected at time t = 0 is needed to be considered. (ii) The cementing material is inextensible
before failure, namely, d t

0 = 0, as illustrated in Figure 16. (iii) The external force does not effect on the tensile strength of
cementing material before failure. (iv) The tensile strength of cementing material is unrecoverable after failure.
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Furthermore, Equation (63) can be made equivalent to its variational inequality VI-pt(k). Find 0 ≤ ' t
k ≤ tk such that

(
q t

k − ' t
k
)

g t
k ≥ 0, ∀0 ≤ q t

k ≤ tk. (64)

If there are N joints in the discrete particle-block system at the current time step, there will be N variational inequalities
VI-pt, which combine to form the following variational formulation for the tensile resistance at the interface.

Find the global interface tension vector p t∈ X(p t)⊂ R N such that

(q t − p t) tG(p t) ≥ 0, ∀q t ∈ X(p t), (65)

where

p t =
[
' t

1, '
t
2, … , ' t

N
]T, (66)

and the tensile gap function G(p t) is given by

G(p t) =
[
g t

1(p t), … , g t
k(p

t), … , g t
N(p t)

]T, (67)

where g t
k(p t) ≤ is the tensile gap. In addition, the constraint X(p t) depending on the pt is a closed set in RN and is

defined by
X(p t) = X1(' t

1) × · · · × Xk(' t
k) × · · · × XN(' t

N), (68)
where Xk(' t

k) ⊂ R is the constraint set of the interface tension ' t
k corresponding to the kth joints defined by

Xk
(
' t

k
)
=
{

0 ≤ ' t
k ≤ tk

}
= [0, tk] , (69)

for k = 1, … , N.
Similar case may exist at the interface between 2 blocks, as shown in Figure 17. Suppose 2 forces F1 and F2 are applied

to the 2 blocks at points A1 and A2, respectively. The tensile resistance exerted by the cemented interface C i
1C i

2 may be
transferred to the 2 joints C i

1 and C i
2. Namely, the tensile resistance is in opposite direction to the resultant force of the

interface tensions −' t
1n1 and −' t

2n2 acting on points C i
1 and C i

2 of block Bi, respectively. We assume an additive tensile
strength

t = t1 + t2, (70)
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where t1 and t2 correspond to contributions by joints C i
1 and C i

2, respectively. A tensile-shearing ratio between the two is
introduced

k t =
t1
t2

=
||' t

1
||

|||'
t
2
|||
, (71)

to facilitate their individual contribution can be appropriately specified. The 2 joints, ie, C i
1 and C i

2, which belong to the
same cementing interface, are called “adjoint joints” in this study. Hence, for a pair of adjoint joints, the condition in
Equation (63) becomes

⎧
⎪
⎪
⎨
⎪
⎪⎩

g t
1 = g t

1 − d t
0

{
> 0, if ' t

1 = 0
= 0, if 0 ≤ ' t

1 ≤ t1

g t
2 = g t

2 − d t
0

{
> 0, if ' t

2 = 0
= 0, if 0 ≤ ' t

2 ≤ t2,

(72)

where
t1 = k t

1 + k t
t, t2 = 1

1 + k t
t. (73)

5 CONNECTOR

In a discrete particle/block system, any 2 independent particles or blocks can be connected through one or more
connectors. The connectors considered in this study include rock bolts, springs, and beams.

5.1 Rock bolt connector
The rock bolt is an effective reinforcement in civil and mining engineering. The original DDA is capable of simulating
the behavior of rock bolt. Figure 18 shows 2 blocks Bi and Bj connected by a rock bolt A1A2, where points A1(x1, y1) and
A2(x2, y2) are the 2 connecting points and forces F1 and F2 are the 2 axial forces acting on points A1 and A2, respectively.
According to the original DDA without considering the blot, the governing equation of the 2 blocks can be expressed as

[
Ki,i Ki,&
K&,i K&,&

] [
d i
d &

]
=

[
f i
f &

]

Ki,i = Ki, Ki,& = K&,i = ", K&,& = K& ,
(74)

where Ki, Kj, di, dj, fi, and fj are the equivalent stiffness matrices, the basic unknown vectors, and the equivalent loading
vectors corresponding to blocks Bi and Bj, respectively. Meanwhile, the link element in the theory of FEM66 presents the
following form: [ kLe

1,1 kLe
1,2

kLe
2,1 kLe

2,2

] [
u1
u2

]
=
[

F1
F2

]
, (75)

where u1 and u2 are the displacements of points A1 and A2, respectively, and

kLe
1,1 = 67

l L , kLe
1,2 = kLe

2,1 = − 67
l L , kLe

2,2 = 67
l L, (76)
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L =
[

l x
l"

] [
l x l"

]
=
[

l 2
x l xl"

l xl" l 2
"

]
, (77)

l x =
x2 − x1

l , l" =
"2 − "1

l , (78)

where E, A, and l are Young's modulus, the cross-sectional area, and the length of the link element, respectively.
Meanwhile, we have [

u1
u2

]
= T Le

-&

[
di
d&

]
=
[

Ti 0
0 T&

] [
di
d&

]
, (79)

where Ti, Tj, di, and dj are the interpolation shape functions and the basic unknown vectors corresponding to blocks Bi
and Bj, respectively.

Substituting Equation (79) into Equation (75) and multiplying it by the transformation matrix [T Le
-& ]T yields

67
l T T

i

[
l x
l"

] [
l x l"

]
Ti → Ki,i, (80)

− 67
l T T

i

[
l x
l"

] [
l x l"

]
T& → Ki,& , (81)

− 67
l T T

&

[
l x
l"

] [
l x l"

]
Ti → K&,i, (82)

67
l T T

&

[
l x
l"

] [
l x l"

]
T& → K&,& , (83)

and
[ T T

i 0
0 T T

&

] [
F1
F2

]
→

[
fi
f&

]
. (84)

By comparison, it is evident that the formulations in Equations (80) to (84) are indeed identical with their counterparts
in the original DDA.31 In other words, because the principle of minimum potential energy is employed by DDA and
FEM, we can use the simple transformation matrices and the relevant formulas (Equation (75) for link/bolt element,
Equation (85) for spring element, and Equation (87) for beam element) in FEM to establish the controlling equation with
considering rock bolt, spring (see Section 5.2), or beam (see Section 5.3).

5.2 Spring connector
Figure 19 shows 2 blocks Bi and Bj connected by a spring A1A2. Points A1(x1, y1) and A2(x2, y2) are the 2 connecting points.
Its FEM formula reads [

k −k
−k k

] [
u1
u2

]
=
[

F1
F2

]
. (85)
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In the same fashion as in Section 5.1 for rock bolt, one can obtain

kT T
i Ti → Ki,i

−kT T
i T& → Ki,&

−kT T
& Ti → K&,i

kT T
& T& → K&,&

T T
i F1 → fi

T T
& F2 → f& ,

(86)

where k is the stiffness of spring.

5.3 Beam connector
Now, let us consider 2 particles Pi and Pj bonded together by an elastic beam AB, as shown in Figure 20. Points A(xA,
yA) and B(xB, yB) are the 2 end points of the beam. There is an angle ! between the local coordinate system 8 - 9 and
the global coordinate system x-y. The governing equation of the 2 particles without considering the beam is the same as
Equation (73). According to the theory of beam element in FEM, the governing equation in the global coordinate system
reads67

⎡
⎢
⎢
⎢
⎢⎣

kBe
1,1 kBe

1,2 kBe
1,3 kBe

1,4
kBe

2,1 kBe
2,2 kBe

2,3 kBe
2,4

kBe
3,1 kBe

3,2 kBe
3,3 kBe

3,4
kBe

4,1 kBe
4,2 kBe

4,3 kBe
4,4

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢⎣

u A

!A

u B

! B

⎤
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢⎣

F A

M A

FB

M B

⎤
⎥
⎥
⎥
⎥⎦

, (87)
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FIGURE 20 Two blocks bonded by a beam [Colour figure can be viewed at wileyonlinelibrary.com]
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where [u A, ! A, u B, ! B]T is the degree of freedom of beam, [F A, M A, F B, M B]T is equivalent loading vector, and

kBe
1,1 =

[
A 1* 2 + A 2) 2 (A 1 − A 2) *)
(A 1 − A 2) *) A 1) 2 + A 2* 2

]
, kBe

1,2 =
[

A 3)
−A 3*

]
, kBe

1,3 =
[
−A 1* 2 − A 2) 2

(A 2 − A 1) *)

]
, kBe

1,4 =
[

(A 2 − A 1) *) A 3)
−A 1) 2 − A 2* 2 −A 3*

]

kBe
2,1 =

(
kBe

1,2
)T, kBe

2,2 = [A 4] , kBe
2,3 = [−A 3) ] , kBe

2,4 =
[

A 3* A 5
]

kBe
3,1 =

(
kBe

1,3
)T, kBe

3,2 =
(
kBe

2,3
)T, kBe

3,3 =
[
A 1* 2 + A 2) 2] , kBe

3,4 =
[
(A 1 − A 2) *) −A 3)

]

kBe
4,1 =

(
kBe

1,4
)T, kBe

4,2 =
(
kBe

2,4
)T, kBe

4,3 =
(
kBe

3,4
)T, kBe

4,4 =
[

A 1) 2 + A 2* 2 A 3*
A 3* A 4

]
,

(88)

A 1 = 67
l , A 2 = 126:

(1 + b) l3 , A 3 = 66:
(1 + b) l2 , A 4 = (4 + b)6:

(1 + b) l , A 5 = (2 − b)6:
(1 + b) l

b = 12kBeE
G

( r
l
)2

, * = cos !, ) = sin !,
(89)

where E, G, A, r, l, and I are Young's modulus, the shear modulus, the area of cross-section, the radius of gyration of
cross-section, the length of the beam, and the bending stiffness of section, respectively. For the rectangular cross-section,
kBe = 1.2; while for the circular cross-section, kBe = 10/9.

To establish the governing equation considering the beam, we introduce the following matrix:

T Be
-& =

⎡
⎢
⎢
⎢⎣

Ti 0
Ei 0
0 E&
0 T&

⎤
⎥
⎥
⎥⎦
. (90)

For a rigid particle or block, E = [ 0 0 1 ]; for a deformable particle, E = [ 0 0 1 0 ]; and for a deformable block, E =
[ 0 0 1 0 0 0 ]. Using the matrix T Be

-& , we can translate the degrees of freedom of the beam into the basic unknown vector
of a particle or block, according to

⎡
⎢
⎢
⎢⎣

u A

!A

u B

! B

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

Ti 0
Ei 0
0 E&
0 T&

⎤
⎥
⎥
⎥⎦

[
di
d&

]
. (91)

The substitution of Equation (91) into Equation (87) and premultiplying by [T Be
-& ]T gives

T T
i kBe

1,1Ti + E T
i kBe

2,1Ti + T T
i kBe

1,2Ei + E T
i kBe

2,1Ei → Ki,i

T T
i kBe

1,3T& + E T
i kBe

2,3T& + T T
i kBe

1,4E& + E T
i kBe

2,4E& → Ki,&

T T
& kBe

3,1Ti + E T
& kBe

4,1Ti + T T
& kBe

3,2Ei + E T
& kBe

4,2Ei → K&,i

T T
& kBe

3,3T& + E T
& kBe

4,3T& + T T
& kBe

3,4E& + E T
& kBe

4,4E& → K&,&

T T
i FA + E T

i M A → fi

T T
& FB + E T

i M B → f& .

(92)

6 COMPOSITE CONTACT MATRIX

6.1 Node-based composite contact matrix
When a block needs to be subdivided into subelements to enhance the accuracy of strain or stress, this can be done by
coupling the FEM with DDA. Consider a block B consisting of a total of l 3-node triangular elements, namely, E1, E2, … ,
El, with a total of n nodes. Force F is the prescribed external loading, and p1, p2, … , and pm are the unknown contact
forces acting on the boundary of the block, as shown in Figure 21.

For an arbitrary point A(x, y) in a 3-node triangular finite element Ek, as shown in Figure 22, the interpolation shape
function is given by

ΔT(x, ") =
[ΔT;1 ,

ΔT;2 ,
ΔT;3

]
, (93)
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FIGURE 22 A 3-node triangular element

where
ΔT-(x, ") =

[
< i 0
0 < i

]
, i = n 1,n 2,n 3, (94)

where < i(i = n 1, n 2, n 3) are the 3 area coordinates of point A(x, y); and n1, n2, and n3 are the global indexes of the nodes
with respect to block B (one can refer to the work of Fan et al68, 69 for more detail). In FEM, the basic unknown is the nodal
displacement; the governing equation of motion of the block is expressed as

K̄d − C Nodep = f , (95)
where K̄ is the 2n × 2n equivalent stiffness matrix and f is the 2n equivalent nodal loading vector. The equivalent nodal
displacement vector d is

d = [u1, v1, … ,ui, vi, … ,un, vn]T, (96)
where [ui, vi]T is the displacement of ith node and the undetermined contact force vector p reads

p =
[
'n

1 , '
(
1 , … , 'n

m, '(
m
]T. (97)

In Equation (95), the 2n × 2 m matrix C Node is called the node-based composite contact matrix, which is closely related
to the n nodes of the l elements and the m contact forces.

For any element Ek containing m1th to mkth contact pairs (m1 and mk are the global indexes of contact forces with
respect to the considered block B), we can construct the following triangular element contact matrix:

ΔC =
[ΔC=1 , … , ΔC& , … , ΔC=k

]
, (98)

where each ΔC j is the 6 × 2 matrix associated with the jth contact pair on element Ek, and it can be written as
ΔC&(x& , "&) = s&ΔTT

& (x& , "&)[n& , !&], & = m 1, … ,m k, (99)
where (xj, yj) is the coordinate of the jth contact point. The sign sj and matrix [nj, !j] are the same as the one in
Equation (10).

Substitution of Equation (93) into Equation (99) yields

ΔC&(x& , "&) = s&
[ΔT;1 ,

ΔT;2 ,
ΔT;3

]T[n& , !&], & = m 1, … ,m k. (100)
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Thus, we have
ΔC-,&(x& , "&) = s&ΔTT

- (x& , "&)[n& , !&], i = n 1,n 2,n 3; & = m 1, … ,m k. (101)

Up to now, the node-based composite contact matrix can be defined as

C Node =
⎡
⎢
⎢
⎢⎣

ΔC1,1 ΔC1,2 · · · ΔC1,m
ΔC2,1 ΔC2,2 · · · ΔC2,m
⋮ ⋮ ΔCi,& ⋮

ΔCn,1 ΔCn,2 · · · ΔCn,m

⎤
⎥
⎥
⎥⎦
, i = 1, … ,n; & = 1, … ,m, (102)

where each of the 2 × 2 submatrix ΔCi, j(i = n 1, n 2, n 3; j = m 1, … , m k) is determined by Equation (101). Because i = n 1,
n 2, n 3, and j = m 1, … , m k are all the global indexes with respect to block B; therefore, the subscripts i and j are exactly
the row index and the column index of ΔCi, j in C Node.

To calculate the normal and shear contact gap pertaining to the contact point in a certain element Ek, it is necessary
to obtain the nodal displacement vector d,

k and the flexibility matrix F̃k for the element Ek. For a noncontact step, from
Equation (95), we have

d,
= K̄−1f . (103)

The nodal displacement vector d,
k of element Ek can be obtained through

d,
k =

⎡
⎢
⎢
⎢⎣

d,
[2n 1 − 1 ∶ 2n 1]

d,
[2n 2 − 1 ∶ 2n 2]

d,
[2n 3 − 1 ∶ 2n 3]

⎤
⎥
⎥
⎥⎦
, (104)

where d,
[2i − 1 ∶ 2i](i = n 1,n 2,n 3) imply the elements of d,

from (2i-1)th to (2i)th. Moreover, n1, n2, and n3 are the
global indexes of the nodes. While the flexibility matrix F̃k of element Ek is given by

F̃k =
⎡
⎢
⎢⎣

K̄−1[2n 1 − 1 ∶ 2n 1, ∶]
K̄−1[2n 2 − 1 ∶ 2n 2, ∶]
K̄−1[2n 3 − 1 ∶ 2n 3, ∶]

⎤
⎥
⎥⎦

C Node, (105)

where K̄−1[2i − 1 ∶ 2i, ∶](i = n 1,n 2,n 3) denote all column elements from (2i-1)th to (2i)th row of K̄−1 and n1, n2, and n3
are also the global indexes of the nodes. Here, note that the “double contact displacement” should be adopted as well to
avoid the “one-step lag.”

6.2 Particle/block-based composite contact matrix
Some particles or blocks can be connected by bolts, springs, or beams to build up an assembly, as shown in Figure 23.
Assume that the total number of particles and blocks is n, namely, B1, B2, … , Bn, the force F is the prescribed external
loading, and p1, p2, … , and pm are the unknown contact forces acting on the assembly. The governing equation is

⌣K⌣d − C P∕b⌣p = ⌣f , (106)

where ⌣K is the equivalent stiffness matrix and ⌣f is the equivalent loading vector. The equivalent basic known vector ⌣d is
⌣d = [d1, … ,d i, … ,dn]T, (107)

where d i corresponds to the ith particle or block Bi. The undetermined contact force vector ⌣p is
⌣p =

[
'n

1 , '
(
1 , … , 'n

m, '(
m
]T. (108)

In Equation (106), the matrix C P/b is called the particle/block-based composite contact matrix, which is given by

C P∕b =

⎡
⎢
⎢
⎢
⎢⎣

C 1
⋱

Ci
⋱

Cn

⎤
⎥
⎥
⎥
⎥⎦

, i = 1, … ,n, (109)
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FIGURE 23 An assembly of particles and blocks [Colour figure can be viewed at wileyonlinelibrary.com]

where Ci is the contact matrix for the particle or block and is determined by Equation (9).
To estimate the normal or shear contact gap for a contact point pertaining to a certain particle or block Bi, we have to

solve the known vector d̃,
i and the flexibility matrix F̃i for block Bi. For the noncontact step, from Equation (106), we have

⌣d
,
= ⌣K

−1⌣f , (110)

and
d,

i =
[
⌣d

, [
k0(i − 1) + 1 ∶ k0i

]]
, (111)

where ⌣d
,
[k0(i − 1) + 1 ∶ k0i](i = 1, … ,n) stand for the elements of ⌣d

, from k0(i-1) + 1th to k0ith. For an assembly
consisting of rigid particles and blocks only, k0 = 3; for one with deformable particles, k0 = 4; and k0 = 6 for an assembly
comprised of deformable blocks. The flexibility matrix F̃i of block Bi is

F̃i =
[
⌣K

−1
[k0(i − 1) + 1 ∶ k0i, ∶]

]
C P∕b, i = 1, … ,n, (112)

where ⌣K
−1
[k(i − 1) + 1 ∶ .-, ∶](i = 1, … ,n) signify all column elements from k0(i-1) + 1th to k0ith row of ⌣K

−1. Then, the
compatibility iteration is employed to solve the unknown contact forces.

If there are m rolling resistances, the following particle/block-based composite rolling resistance matrix RP/b should be
used:

R P∕b =

⎡
⎢
⎢
⎢
⎢⎣

R1
⋱

R i
⋱

R m

⎤
⎥
⎥
⎥
⎥⎦

, i = 1, … ,m, (113)

where Ri(i = 1, … , m) is determined by Equation (50). To form the corresponding equivalent rolling resistance vector,
Equations (47), (49), and (59) can be used.

7 NUMERICAL EXAMPLES

In this section, several interesting and challenging examples are designed to validate the potential of the new DDA. For
convenience, DDA0 denotes the original DDA31 for an arbitrary shape block with first-order displacement field. D-DDA
refers to the DDA53 with rigid disks only. DDA-d stands for the modified DDA described in the work of Zheng et al,56 while
PB-DDA stands for the proposed DDA in this study. In the following examples, an extremely large density is adopted for
a static particle or block to avoid the introduction of additional energy caused by the usage of fixed springs.

7.1 Static heap of 3 disks
The first problem to be considered is a static heap formed by 3 disks, as shown in Figure 24. Three rigid disks of the same
size are placed over one another vertically on a fixed horizontal base before the gravity is switched on. The weights of
the 3 disks are G1, G2, and G3, respectively. An idealized configuration is employed to test the proposed algorithm. Let
the radius of all 3 disks R = 10.0 m and their material density is the same ? = 2500 kg/m3. Assume the acceleration of
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FIGURE 24 Configuration of 3-disk heaping [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Contact forces F1, F2, and F3 corresponding to CS = 100 (see Figure 24)
Contact Penalty value (Pa) used by D-DDA PB-DDA
force, N 0.10 × 1012 0.10 × 1013 0.10 × 1014 0.10 × 1015

F1 7 853 981.63397 7 853 981.61908 7 853 981.62785 7 853 981.01220 7 853 981.63323
AE −110.18062 −0.01489 −0.00613 −0.62177 −0.00075
F2 15 707 963.26795 15 707 963.22662 15 707 963.27239 15 707 969.45410 15 707 963.26647
AE −380.73067 −0.04133 0.00444 6.18615 −0.00148
F3 23 561 944.90192 23 561 944.77060 23 561 944.81216 23 561 950.83944 23 561 944.89971
AE −467.90848 −0.13132 −0.08976 5.93752 −0.00222

Note: Analytical solution (N): F1 = 7 853 981.63397; F2 = 15 707 963.26795; F3 = 23561944.90192. Abbreviations: AE, absolute
error; CS, calculation step; D-DDA, discontinuous deformation analysis with rigid disks; DDA, discontinuous deformation
analysis; PB-DDA, particle-block discontinuous deformation analysis.

gravity g = −10 m/s2. An extremely large density ?b = 1011? is assumed for the base to render it stationary. A time step
length # = 0.001 s is adopted. A zero-order displacement approximation is adopted in the PB-DDA. In the following
simulations, several penalty parameters P = 0.10 × 1012, 0.10 × 1013, 0.10 × 1014, and 0.10 × 1015 Pa are used by the D-DDA
to observe the stability of the 3 disks. If the system is stable, it is evident that contact forces F1 = G1, F2 = G1 + G2, and
F3 = G1 + G2 + G3, respectively. Some representative values for contact forces obtained from the D-DDA and PB-DDA
are listed in Table 1. Evidently, the absolute errors of contact forces obtained by D-DDA do not show a consistent negative
correlation with the penalty value since, when the penalty number is increased to P = 0.10 × 1015 Pa, the absolute errors
blow up again. However, since no contact penalty is needed in PB-DDA, the absolute accuracy is improved almost one
order of magnitude compared with the best case by D-DDA (P = 0.10 × 1014 Pa).

7.2 Static stability of 4 blocks
A second example to be considered is the static stability of 4 identical blocks B1, B2, B3, and B4 stacked, as shown in
Figure 25, on a static horizontal base. The length and width of the blocks are 20.0 m, and 10.0 m, respectively. The stag-
gering distance is 5.0 m. The gravity is the only external force loaded on them. The forces F1 and F2 are the contact forces
acting on block B4 at points A1 and A2, respectively. Under the given geometric conditions and statics relation with pos-
itive contact forces F1 and F2, the 4 blocks are theoretically stable. The material density of the blocks is ? = 2000 kg/m3.
The acceleration of gravity is set g = −10 m/s2, and the time step # = 0.001 second. To avoid the motion of base, a big
material density is given for the base at ?b = 1011?, and its weight is ignored. The computations of DDA0, and PB-DDA
adopt Young's modulus E = 0.10 × 1015 Pa and Poisson's ratio @ = 0.45. In this example, 4 cases of penalty parameters
P = 0.10 × 1012, 0.10 × 1013, 0.20 × 1014, and 0.10 × 1015 Pa are considered in the DDA0. Table 2 summarizes typical con-
tact forces F1 and F2 obtained by the 2 approaches. When P = 0.10 × 1012 Pa, the calculations by DDA0 suggest that the
4 blocks are stable, but the obtained contact forces indicate otherwise. When P ≥ 0.10 × 1013 Pa, the values of the con-
tact forces obtained by DDA0 are consistent with its analysis result. There is no apparent correlation between the penalty
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TABLE 2 Contact forces F1 and F2 corresponding to CS = 100 (see Figure 25)
Contact Penalty value (Pa) used by DDA0 PB-DDA
force, N 0.10 × 1012 0.10 × 1013 0.20 × 1014 0.10 × 1015

F1 7556.48247 999 999.99724 1 000 000.61471 1 000 000.06365 1 000 000.02319
AE −992 443.51753 −0.00276 0.61471 0.06365 0.02319
F2 7603.17995 999 999.99724 6 999 996.57054 6 999 999.84910 6 999 999.88567
AE −6 992 396.82005 −6 000 000.00276 −3.42946 −0.15090 −0.11433

Note: Analytical solution (N): F1 = 1 000 000.00000; F2 = 7 000 000.00000. Abbreviations: AE, absolute error; CS, calcula-
tion step; DDA, discontinuous deformation analysis; PB-DDA, particle-block discontinuous deformation analysis.

parameter and the contact forces obtained by DDA0. On the other hand, the PB-DDA can help obtain the contact forces
with relatively better precision.

7.3 Reciprocal motion of a ring particle within a frame
In this example, we consider the undulation motion of a ring particle in a frame to examine the “one-step lag” phe-
nomenon and the effectiveness of its treatment by the “double contact displacement” approach. Suppose the inner and
external diameters of the ring particle are 2.0 m and 6.0 m, respectively. At initial time, the ring particle is located at the
centroid of a quadrate frame (the inner side length is equal to 40.0 m), which is kept static. Moreover, the initial velocity
of the ring particle is set as v = (2.5, 5.0) m/s. Both the particle and the frame are assumed to be rigid bodies. Neither
external force nor friction is considered. Due to the conservation of momentum, the ring particle will undergo reciprocal
motion along the blue dash line, as shown in Figure 26, along which there are 6 inflection points marked by “*.” The time
step is chosen as # = 0.05 second, and the total calculation step is CS = 2050. The predictions are shown in Figure 27.

In designing the example in Figure 26, we specifically assume that both components of the initial velocity are nonzero
and demonstrate the “one-step lag” prediction by DDA-d.56 This makes the displacement in the normal direction remain

Static frame 
Inflection point 

Theoretical trajectory
40.0 m 

40.0 m 

(2.5,5.0)v

FIGURE 26 Configuration of a circle particle in a quadrate frame
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FIGURE 27 Reciprocating motion of a particle. A, Prediction by DDA-d; B, Prediction by PB-DDA

always one time step behind the displacement in the shear direction. The trajectory (the red solid line in Figure 27A)
of the particle predicted by the DDA-d shows apparent deviations from the theoretical trajectory (the blue dash line in
Figure 27A). On the other hand, the PB-DDA improved by the “double contact displacement” technique can provide
nearly identical predictions with the theoretical solution, as shown in Figure 27B.

7.4 Cyclic motion of a block
A third case treated here is the cyclic motion of a block within a static quadrate framework, as shown in Figure 28, to
validate the conservation of momentum. The internal side length of the quadrate framework is 120.0 m, while the side
length of the block is 20.0 m. At the initial time, the centroid of the block coincides with that of the framework, ie,
point O. The initial velocity of the block is given by v = (2.5, 5.0) m/s (denoting horizontal and vertical components of
the velocity, respectively). No external local is considered in this example. Due to the conservation of momentum, the
block will undergo periodical translational motion along the blue dash line, along which there are 6 inflection points
marked by “*.” For both the block and the framework, Young's modulus E = 0.50 × 1014 Pa and Poisson's ratio @= 0.35 are
adopted. The material density of block is set to ? = 2300 kg/m3 and that of the framework to ? f = 109?. The framework is
assumed to be motionless. The time step is #= 0.01 second. Five sets of penalty parameters are adopted by the DDA0, ie,
P = 0.10 × 1012, 0.10 × 1013, 0.10 × 1014, 0.10 × 1015, and 0.10 × 1016 Pa. The trajectory of point O is shown in Figure 29.

Notably, the predictions by DDA0 and PB-DDA are different. When P = 0.10 × 1012, only the first segment AB of the
trajectory (the red solid line) for point O predicted by DDA0 is correct (see Figure 29A). While for the other 4 cases of
penalty parameters, only the initial segments ABCD of the trajectory of point O predicted by DDA0 coincide with the
theoretical trajectory (the blue dash line), and apparent block rotation is found in all 4 cases (see Figure 29B, 29C, 29D,
and 29E). In contrast, the predicted trajectory of point O by PB-DDA agrees well with the theoretical trajectory, and the

120.0 m

120.0 m

20.0 m

20.0 mOStatic frame 

Inflection point 

Theoretical trajectory

(2.5,5.0)v

FIGURE 28 Configuration of a block in a quadrate framework
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FIGURE 29 Trajectories of point O predicted by DDA0 in A, B, C, D, and E and by PB-DDA in F. A, P = 0.1 × 1012 Pa, CS = 10 000;
B, P = 0.1 × 1013 Pa, CS = 10 000; C, P = 0.1 × 1014 Pa, CS = 10 000; D, P = 0.1 × 1015 Pa, CS = 10 000; E, P = 0.1 × 1016 Pa, CS = 10 000;
F, P is not needed, CS = 10 000

block undergoes translational motion only, as shown in Figure 29F. Indeed, since DDA0 does not refer to the acceptable
contact force, the conversation of momentum is satisfied only at the initial stages corresponding to segments ABCD of the
trajectory. Therefore, the trajectory of the block may not be faithfully predicted, especially for later stage of the simulation.
In particular, it is also difficult to determine an appropriate penalty parameter for DDA0 in such cases. The PB-DDA
clearly helps us avoid this issue.

7.5 Rolling of a disk on a frictionless surface inside a ring
Figure 30 presents a disk O1 is initially located inside a ring O2 at point A (−60.0, 0.0) where points A, O1, and O2 are
on the same horizontal line AO1O2. The radii of the disk and the inner ring are given by R1 = 40.0 m and R2 = 100.0 m,
respectively. The material density of the disk ? = 1 kg/m3, and the material density of ring adopts an extreme value of
?r = 1012? to prevent the motion of ring. Gravity and friction are not considered for the ring. The acceleration of gravity
g = −10 m/s2. Both the disk and the ring are assumed to be rigid. The time step is set to # = 0.005 second, and the total
calculation step CS = 4 000. Under gravity, the disk will move periodically along the bottom half circle of the ring, with
a theoretical curve of contact force depicted in Figure 31. During the first semiperiod at the time t1 = 4.675 seconds, the
maximum contact force predicted by PB-DDA is Fmax1 = 150 803.493116 N, which agrees well with the theoretical solution
F = 3 mg = 150 796.447372 N. During the second semiperiod at the time t2 = 14.025 seconds, the maximum contact force
is Fmax2 = 150 796.553208 N, which is almost identical with the theoretical solution F = 3 mg = 150 796.447372 N. The
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FIGURE 31 Contact force versus time [Colour figure can be viewed at wileyonlinelibrary.com]

predicted trajectory of point O1 by PB-DDA is shown in Figure 32. It is observed that the disk may climb up to the same
height at point O1* on the right-hand side as its releasing point O1, and then go back to point O1 again, which implies
both the mechanical energy and the moment of the system are conservative by the proposed algorithm.

7.6 Sliding motion of a block on frictional surface
A further example of block with a side length of l = 1.0 m sliding on friction surface of a static block is investigated, as
shown in Figure 33. Contacts V1-BC-BB and V2-BC-BB are the pairs of adjoint vertex-edge contacts. G is the gravity. A given
tractive force F = 1000 N is applied to point A. The contact forces Fn1, Fs1, Fn2, and Fs2 are undetermined. Both blocks are
assumed to be rigid body. For the smaller block, the material density is specified at ? = 1000 kg/m3, and the acceleration
of gravity g = −10 m/s2. For the bigger block, the material density of block is given by ?b = 1012?. The time step is set
to be # = 0.01 second. In order to exam the relative motions between the 2 contact pairs, we set the eccentric distance
d = 0.7 m, the sliding friction coefficient + = 0.0, and the cohesion c = 400 N. The predicted results are shown in Table 3.
In DDA-d, because the shear ratio between the adjoint vertex-edge contacts is ignored, the over-resistance to the sliding
arises, which leads to incorrect predictions of the normal and shear contact forces by DDA-d. In contrast, the contact
forces predicted by the PB-DDA agree rather well with the theoretical solutions.
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FIGURE 32 Trajectory of point O1 predicted by particle-block discontinuous deformation analysis [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 33 Configuration of a block on friction surface [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Contact forces for cohesion c = 400 N (see Figure 33)
Contact force Fn1, N Contact force Fn2, N Contact force Fs1+ Fs2, N

DDA-d PB-DDA DDA-d PB-DDA DDA-d PB-DDA
CV 4400.00001 4599.99999 5599.99999 5399.99999 −800.00000 −400.00000
TS 4600.00000 4600.00000 5400.00000 5400.00000 −400.00000 −400.00000
AE −199.99999 −0.00001 199.99999 −0.00001 −400.00000 0.00000

Abbreviations: AE, absolute error; CV, calculation value; DDA-d, dual formation of discontinuous defor-
mation analysis; PB-DDA, particle-block discontinuous deformation analysis; TS, theoretical solution.

7.7 Rolling motion of a disk on frictional surface
In this example, we consider the rolling motion of a disk of R = 1.0 m over the frictional surface of a static block, as shown
in Figure 34. Points A and O are taken as 2 monitoring points. The material density of the disk is set to be ? = 1000 kg/m3

and the acceleration of gravity g = −10 m/s2. In PB-DDA, the disk is treated as a rigid body, while the block is assumed
deformable, and its gravity is not considered. The material density of block is given by ?b = 1012?; its Young's modulus is
set to E = 0.10 × 1010 Pa and its Poisson's ratio @= 0.25. The time step is set to be # = 0.01 second. Under the gravity G, a
given tractive force F = 1000 N, and the unknown contact force, the disk will move rightwards. Several cases of distance
d = 0.0, 0.5, 1.0, 1.5, and 2.0 m between the line of action of the force F are explored. The contact surface AB is adopted
to test the pure rolling motion of the disk. The major results are summarized in Table 4. The predicted maximum normal
contact force Fn by the PB-DDA has an absolute error of 0.00182 N as compared with the theoretical value, while that for
the shear contact force is 0.00001 N, showing rather accurate predictions by the PB-DDA.

Meanwhile, to examine the rolling resistance effect, a large rolling friction coefficient 5= 1.0 m is adopted (which means
that the rang of value of rolling resistance moment is limited between -1G and 1G while the disk remains static). The
predicted results are summarized in Table 5. At difference distance d, PB-DDA realistically predicts appropriate rolling
resistance moment in resisting the rolling motion of the disk. The displacements of points A and O, namely, UA and UO,
are predicted to be zero, implying no move for the 2 points as expected.
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FIGURE 34 Configuration of a disk rolling along a frictional surface [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Contact force for the pure rolling motion of a disk (see Figure 34)
Contact Distance d, m
force, N 0.0 0.5 1.0 1.5 2.0

Fn 31 415.92836 31 415.92714 31 415.92654 31 415.92654 31 415.93015
TS G
AE 0.00182 0.00060 0.00000 0.00000 0.00361
Fs −1000.00001 −666.66666 −333.33334 0.00000 333.33333
TS -F -2F /3 -F /3 0 F /3
AE −0.00001 0.00001 −0.00001 0.00000 −0.00001

Note: G = 31 415.92654 N; F = 1000.0 N; Fn, normal contact force; Fs, shear contact force. Abbrevia-
tions: AE, absolute error; TS, theoretical solution.

TABLE 5 Rolling resistance to a disk (see Figure 34)
Rolling Distance d, m
resistance 0.0 0.5 1.0 1.5 2.0
!0(rad) 0.0 −0.000005 −0.000011 −0.000016 −0.000021
Mr(N·m) 0.0 499.99975 999.99959 1499.99938 1999.99914
Fr(N) 0.0 −0.33333 −0.66667 −1.00000 −1.33333
UA(m) 0.0 0.0 0.0 0.0 0.0
UO(m) 0.0 0.0 0.0 0.0 0.0

Note: !0, initial rolling angle; Mr, rolling resistance moment; Fr, rolling resistance
force; UA, displacement of point A; UO, displacement of point O.

To investigate the motion of the disk, we further fix d = 1.0 m, and the total calculation step CS = 500, and consider
the following 3 cases. (I) The sliding friction coefficient is specified at a large value at += 10.0 and the rolling friction
coefficient 5= 0.0 m, which renders the disk to undergo pure rolling. (II) The sliding friction coefficient is set at += 0.005
and the rolling friction coefficient at 5= 0.005 m. The disk will undergo both sliding and rolling in this case. (III) The
sliding friction coefficient is set at += 0.005 and the rolling friction coefficient at 5= 0.0 m, whereby no rolling resistance
is considered. The trajectories of points A and O are shown in Figure 35.

When CS = 500, points A and O reach points A* and O*, respectively (see Figure 35). For the pure rolling, namely, case
I, the length of the blue trajectory OO* is the shortest, while the curvature of the blue trajectory AA* is the biggest. As can
be seen, due to the decrease in sliding friction coefficient and increased rolling resistance, the red trajectory OO* in case
III is the longest and the curvature of the red trajectory AA* is the smallest. For case II, the length of the green straight
OO* and the curvature of the green curve AA* are in between cases I and III.

7.8 Two blocks connected by a cemented interface
Figure 36 shows 2 blocks B1 and B2 connected by a cemented interface C1C2, which is designed to validate the cemented
interface model of our new PB-DDA. Lines AB and CD are the geometric symmetry lines of block B2. The half-height
of block B2 is H = 1.0 m. As we proposed, the cemented interface C1C2 is made equivalent by 2 joints C1 and C2. The
action point of force F is on line CD and in parallel with line AB, with a vertical distance between the line of action of
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FIGURE 36 Configuration of blocks connected by the cementing interface [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Interface tensions (see Figure 36)
Interface tension, N t = 2,000 N

h = 0.0 m h = 0.5 m h = 1.0 m
P1 −499.99999 −750.00001 −999.99999
TS −500.00000 −750.00000 −1000.00000
AE 0.00001 −0.00001 0.00001
P2 −499.99999 −249.99999 −0.00001
TS −500.00000 −250.00000 0.00000
AE 0.00001 0.00001 −0.00001

Abbreviations: AE, absolute error; TS, theoretical solution.

F and line AB by h. In our simulation, it is assumed that F = 1000 N, the material density of block B2 ? = 1000 kg/m3,
and the gravity is ignored. Block B1 is assumed to be fixed without motion. In addition, the 2 blocks are considered as
nondeformable. The time step is set to 0.01 second; the tensile strength of cementing material is given by t = 2000 N.
The interface tensile forces P1 and P2 are predicted when B2 is subjected to F, and the results are summarized in Table 6.
Evidently, the numerical predictions by PB-DDA are rather close to the theoretical solutions.

7.9 Undulation motion of a circle particle
The bouncing motion of a particle between 2 static blocks, as shown in Figure 37, is taken as an example to examine the
node-based composite contact matrix. A particle of radius r = 0.5 m is assumed to be initially located in between 2 blocks
(H1 = H2 = 0.5 m). Both blocks are supposed to be static, and the bottom block is subdivided into subelements. Both the
upper block and the particle are treated as rigid bodies, while the bottom block with a Young's modulus E = 0.10 × 1015 Pa
and a Poisson's ratio @= 0.45. Therefore, its deformation can be ignored; this is appropriate for examining the node-based
composite contact matrix. The material density of the particle ?= 2500 kg/m3, and its gravity is ignored. The initial velocity
of the particle is set to be V0 = (v0x, v0y) = (v0x = 1.0, v0y = 1.0, 2.0, or 3.0) m/s. The time step is set to be 0.05 second,
and the total time is equal to 1.0 second. Therefore, the particle will arrive to point B (the distance between points A
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FIGURE 37 Configuration of the reciprocating motion of a particle [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 38 Undulation motion of a particle between 2 blocks. A, V0 = (1.0, 1.0) m/s; B, V0 = (1.0, 2.0) m/s; C, V0 = (1.0, 3.0) m/s [Colour
figure can be viewed at wileyonlinelibrary.com]

and B is L = 1.0 m) after several collisions, the times of which depends on the value v0y. When V0 = (1.0, 1.0) m/s, the
particle arrives at point B after going through 2 collisions, as shown in Figure 38A. The trajectory of centroid of particle
resembles a single-period triangular wave. When V0 = (1.0, 2.0) m/s, 4 collisions are needed to allow the particle to reach
B, and the 2-period triangular wave is accurately predicted by PB-DDA, as shown in Figure 38B. If V0 = (1.0, 3.0) m/s,
the corresponding trajectory appears as the triangular wave with 3 periods, while the time of collisions is 6, as shown in
Figure 38C. The example demonstrates that the principle of conservation of energy is strictly satisfied in the coupling of
PB-DDA and FEM. This means that the node-based composition contact matrix is right and valid.
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7.10 Drop of a particle “chain”
Figure 39 further presents an example of particle “chain” to examine the validity of the particle/block-based composite
contact matrix proposed by this study. A chain consisting of 2 star-shaped blocks and 9 smaller identical particles with
a radius r = 2.0 m is considered, and springs are used to connect these particles/blocks. The particle “chain” is initially
placed at a height of H = 3.0 m above a bigger static particle of radius R = 8.0 m. The gravity is then turned on for the
“chain,” leading its fall and impact on the bottom bigger particle. The acceleration of gravity g = −10 m/s2, and the time
step is set to be # = 0.005 second. All blocks and particles in the chain are assumed to be rigid bodies. The stiffness of

Static particle 

“Chain”

R = 8.0 m

L = 22.0 m

H = 3.0 m
r = 1.0 m

FIGURE 39 Configuration of a particle “chain” [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

(C) (D)

FIGURE 40 Movement of a “chain” obtained by particle-block discontinuous deformation analysis. A, CS = 155; B, CS = 200; C, CS = 263;
D, CS = 540 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 41 Final state of a “chain” obtained by particle-block discontinuous deformation analysis [Colour figure can be viewed at
wileyonlinelibrary.com]

the 10 springs is equal to 0.5 × 1010 Pa. The 10 springs not only serve as the connectors but also play a role of energy
absorbers. The dynamic behavior of the “chain” is examined. When CS = 155, the “chain” touches the bottom static
particle, as shown in Figure 40A. While the middle part of the “chain” rebounds slightly, its 2 ends continue to move
down accompanied by rotation, as shown in Figure 40B. At CS = 263, the 2 stars impact on the bigger particle, as shown
in Figure 40C and then start to bounce back. Figure 40D shows the position of the “chain” at CS = 540. After a long time,
due to the loss of kinetic energy, the “chain” settles down on the bigger particle, as shown in Figure 41.

From this example, we can safely conclude that the dynamic behavior of the “chain” can be captured by the governing
equation with the particle/block-based composite contact matrix.

8 CONCLUSIONS

A new comprehensive framework of DDA has been proposed to simulate discrete particle-block systems wherein rigid
and nonrigid circle particles, ring-shaped particles, arbitrary-shaped block, and various complicated contact types among
them have been rigorously integrated. The mechanics of rolling resistance and the tensile resistance at cemented inter-
face have also been carefully considered, with their equivalent variational or quasivariational inequality formulations in
conjunction with constraint conditions on the normal and shear contacts being incorporated into the framework. The
following apparent benefits are gained through the new formulations of the DDA framework toward modeling a discrete
particle-block system. (i) It helps get rid of the necessity of artificial springs in coping with potential interactions occur-
ring between individual bodies, which, otherwise, are always needed in other DDA methods. (ii) The existing formulas
governing the link, spring, and beam elements in FEM are exploited to establish the relevant controlling equations in
PB-DDA using the simple transformation matrices, which help bypass complicated mathematical derivations. (iii) The
node-based composite contact matrix derived for coupled modeling of PB-DDA and FEM may help enhance the accuracy
of predicted stresses and strains. (iv) The particle/block-based composite contact matrix obtained in this study enables the
proposed PB-DDA to retain all functions of the original DDA while broadening its application range. The accuracy and
effectiveness of the proposed new DDA framework have been validated through a wide variety of demonstrated exam-
ples. Next, we will extend the proposed DDA framework to 3-dimensional cases and investigate the corresponding parallel
algorithm.
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APPENDIX

DERIVATION OF MATRICES GOVERNING RIGID OR DEFORMABLE CIRCLE OR RING
PARTICLES
Take a deformable ring, as shown in Figure A1, as an example, where RE and RI are the external and inner diameters of the
ring, respectively. The rectangular coordinate system X-Y is global, while the coordinate system x-y is the local coordinate
system with taking the centroid C(Xc, Yc) of the ring as the origin of coordinates. Note that x-axis is meanwhile the polar
axis of local polar coordinates.

A.1 Submatrix of stiffness
The stiffness submatrix can be expressed in the following general form:

KP = ∫∫ BTDBdXdY , (A.1)

where
D =

[
0 0 0 1
0 0 0 1

]
, (A.2)

and
E = E

1 − @2

[
1 @
@ 1

]
, (A.3)

where E and @ are the Young's modulus and Poisson's ratio, respectively. In consideration of Equations (A.2) and (A.3),
Equation (A.1) can be recast into

KP =
A6

(
R 2

E − R 2
I
)

1 − @

⎡
⎢
⎢
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥⎦
. (A.4)

A.2 Submatrix of mass
The mass submatrix can be generally written as

MP = ∫∫ TTTdXdY , (A.5)

where T is the interpolation shape function. The relationship between the global coordinate system X-Y and the local
coordinate system x-y reads

X = x + Xc

Y = " + Yc .
(A.6)

dA

x

y

X

Y
r

ER

d

IR

O
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FIGURE A1 A deformable ring [Colour figure can be viewed at wileyonlinelibrary.com]
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The relationship between the polar coordinates and the local rectangular coordinates is given by
x = r cos !
" = r sin !,

(A.7)

where (r, !) is the polar coordinate of any point in ring. For an infinitesimal area dA, we have

B7 = dXdY = dxd" = rdrd!. (A.8)

Using Equations (A.6) to (A.8) yields

MP =
⎡
⎢
⎢
⎢⎣

g1 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 g2

⎤
⎥
⎥
⎥⎦
, (A.9)

where
g1 = A

(
R 2

E − R 2
I
)
, g2 = A

(
R 4

E − R 4
I
)
∕2. (A.10)

A.3 Submatrix of initial stress
The initial stress submatrix generally presents the following form:

fC0 = ∫∫ BT
[
C0
C0

]
dXdY , (A.11)

where C0 is the initial stress. Substituting Equation (A.2) into Equation (A.11) leads to

fC0 = 2A
(

R 2
E − R 2

I
)
⎡
⎢
⎢
⎢⎣

0
0
0
C0

⎤
⎥
⎥
⎥⎦
. (A.12)

A.4 Submatrix of body force
The body force submatrix is written as

fbody = ∫∫ TT
[
,X
,Y

]
dXdY , (A.13)

where fX and fY are 2 components of body force. Substituting Equation (A.2) into Equation (A.11) and considering
Equations (A.7) and (A.8) yields

fbody = A
(

R 2
E − R 2

I
)
⎡
⎢
⎢
⎢⎣

,X
,Y
0
0

⎤
⎥
⎥
⎥⎦
. (A.14)


