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A B S T R A C T

The strain and local rotation at any material point in a deformable body can be descripted by the strain-rotation
(S-R) decomposition theorem. This paper presents a three-dimensional dynamic deformation formulation based
on the S-R decomposition. The three-dimensional dynamic analysis formulation is generic and can be easily
implemented into numerical methods. By combining the new formulation with the discontinuous deformation
analysis (DDA), a new method named SR-3D-DDA is developed. We further use several examples to demonstrate
that the S-R based DDA can help effectively eliminate the nonphysical volume change exhibited by existing DDAs
and improve the accuracy of the predictions.

1. Introduction

Modern engineering design requires numerical tools to be devel-
oped in three-dimensional (3D) to be truly predictive. 3D formulations
have therefore been implemented in mainstream numerical methods
(see e.g. [1–19]). Frequently, numerical predictions of a practical 3D
problem need to address challenges pertaining to various nonlinear
behaviors, including material nonlinearity, contact nonlinearity and
geometric nonlinearity. The conventional popular approaches include
the total Lagrangian formulation (T.L.) and the updated Lagrangian
formulation (U.L.) are all based on the Green’s strain and polar de-
composition theorem [20]. Recently, a new dynamic analysis for-
mulation, based on strain-rotation (SR) decomposition theorem, has
been proposed [21] to tackle geometric nonlinearity. It has demon-
strated an advantage in simultaneously capturing the strain and local
rotation reasonably well. However, it is only limited to two-dimen-
sional cases. Meanwhile, as an alternative to describe the dynamic
behavior of discontinuous media such as rock that involving discrete
block system, 2D discontinuous deformation analysis (2D-DDA) [22]
has been developed and has been extended to 3D as well [23]. DDA is
able to conveniently simulate the translation, rotation and contact of
blocks, while the fundamental unknowns can be made independent of
the shapes of blocks. Various techniques have been developed to ad-
dress the nonlinear behaviors, in particular the contact nonlinearity,
based on new contact models [24] and contact resolution or detection
algorithms [25–30]. A nodal-based 3D-DDA [31] and a particle-based
3D-DDA were further proposed [32] to enhance the predictive

capability of DDA to deal with the deformation of blocks. The bonding
and cracking algorithm aiming at 3D particles were implemented
[33].The some latest advances in DDA can be found in [34]. However,
there have been relatively scarce studies addressing the geometric
nonlinearity in DDA.

An apparent pitfall in both 2D [35] and 3D [36] DDA methods is the
false volume expansion predictions due to the adoption of first-order
rotation approximation. A variety of mitigation methods have been
proposed in the past for DDA, including the displacement adjustment
method [35], the Taylor series method [37], the trigonometric method
[38], and the displacement-strain modification method [39]. Amongst
them, the 3D displacement adjustment method [36] appears to perform
more robustly in suppressing the unreasonable volume expansion in 3D-
DDA. However, in cases of “dual-axial rotation” and “tri-axial rotation”
(to be defined in Section 4), the predictions by 3D displacement ad-
justment method may potentially result in nonphysical expansions in
the direction(s) perpendicular to the rotation axis and nonphysical
contractions in the direction parallel to the same rotation axis. So the
geometrical shape of discrete block is forced to change non-physically
though the volume of the block remains the same. The abovementioned
expansion and contraction associated with 3D displacement adjustment
method seems to have never been mentioned in the literature.

This study presents a substantial extension of the 2D dynamic de-
formation formulation previously proposed by the authors [21] to
three-dimensional case. To effectively address the issue of geometric
nonlinearity, a new formulation based on the S-R (strain-rotation) de-
composition theorem [40–44] is developed which is generic and readily
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applicable to numerical method. The new S-R formulation is then im-
plemented into 3D-DDA to form a new method termed SR-3D-DDA.
Several examples are further presented to demonstrate that the ad-
vantage of the SR-3D-DDA in capturing the geometric nonlinearity of
blocks. The study can offer an effective method in tackling a wide range
of engineering problems involving discontinuous materials.

2. Three-dimensional dynamic formulation based on S-R
decomposition

Considering the following deformable body in an Euclidean space in
Fig. 1, where r and R are the position vectors of a point before and after
deformation, respectively; and u is the displacement vector; gi

0
and gi

(i = 1, 2, 3) represent two local basic vectors at a point corresponding
to the co-moving coordinate system before and after deformation, re-
spectively.

The S-R decomposition theorem [40–44] states the following de-
composition of deformation gradient F into the strain tensor and rota-
tion tensor:

= +F S R (1)

where the strain tensor is defined by
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where δji is the Kronecker-delta. In Eqs. (2) and (3), Lji is defined by
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and the average rotation angle θ is determined according to
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The rotation in a deformed body can be generally described by three
methods: (1) the coordinate axis method, i.e., according to [45] (figure
16.1 therein); (2) the quaternion method [46–48]; and (3) the axis-
angle method [45,49]. In this study, a rotation matrix or tensor is ex-
pressed through a unit rotation axis vector (p) and a rotation angle (α)
about the axis. For a rigid body rotation, the average rotation angle (θ)
in the S-R decomposition is exactly the rotation angle (α) [40]. For the
rotation of deformable body, the average rotation angle has a more
profound meaning. Several typical examples were given by [40] to

illustrate the features of the average rotation angle.
An updated co-moving coordinate as shown in Fig. 2 is adopted,

where the superscript “ t” and “ +t tΔ ” correspond to the two con-
secutive time t and +t tΔ , respectively. In S-R decomposition theorem
[43], the symmetric stress is work-conjugate to the strain defined by Eq.
(2). Considering a deformable body and applying the principle of vir-
tual displacement, the incremental governing equation can be ex-
pressed as [21]

∫ ∫+ + + +

+ + − =

σ δ S S d D S S δ S S d
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where σji is the stress, SΔ Li
j and SΔ Ni

j are the linear and nonlinear strain
increments, respectively. D jl

ik is the material tensor associated with the
rate-form constitutive laws. Moreover Fine and Fpen are the virtual work
corresponding to the inertia force, constraint force of specified dis-
placement, respectively. Fext represents the external force including the
surface and body forces. The hat-lines “ −” and “ =” indicate that the
variable with respect to basic vectors gt i

0
and + gt t

i
Δ 0

, respectively. For
more details one can refer to [21].

The two-dimension problem has been addressed in [21], the three-
dimension discretization format will be deduced here. For discretiza-
tion of space domain, the same interpolation matrix N x y z( , , ) can be
employed for expressing displacement u, velocityV and acceleration A.
It should be pointed out that the expressions of N x y z( , , ) is dependent
on the specific numerical method and the mesh topology.

Consider an arbitrary discrete unit, the displacement and displace-
ment increment vectors related to the discrete unit can be denoted by u
and uΔ , respectively. Reconsidering Eq. (2), at any point in the discrete
unit, the strain vector S can be written as
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Fig. 1. A deformable body in three-dimension Euclidean space.

Fig. 2. Update of the three-dimension co-moving coordinate.
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The linear strain vector SL can be expressed as
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where the linear B-matrix BL is given by
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If the following approximation
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is used, the nonlinear strain vector SN can be given by
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By considering Eqs. (4), (5) and (10), the nonlinear B-matrix BN can
be expressed by
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For the strain increment, the following variant of Eq. (12) can be
employed.
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where ∗uΔ is the displacement increment of the discrete unit corre-
sponding to the previous calculation step. The effectiveness of Eq. (16)
will be verified in Section 4. Therefore, the strain increment vectors SΔ L

and SΔ N can be written as

=
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Noticing the arbitrariness of uδ (Δ ), Eq. (6) can be expressed by the
following matrix format:
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where K and D are the stiffness matrix and material matrix, respec-
tively. And
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where
⌣
uΔ and

⌣
P are the specified displacement and specified traction

of any point on the boundary of the discrete unit, respectively. f is the
force per unit volume of the discrete unit. The penalty matrix k is
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In this paper, the generalized-α method [50] is employed to discrete
the time domain. For more detail one can refer to [21]. It should be
noted that Eq. (17) is only used to treat the governing equation. Ac-
tually, the strain increment is given by

= + − −S u u L L θΔ 1
2
(Δ | Δ | ) Δ Δ (1 cos(Δ )),j

i i
j

i
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(23)

where

Fig. 3. An arbitrary block system. (a) 2D view; (b) 3D view.
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Up to now, through the principle of virtual displacement the three-
dimensional dynamic analysis formulation has been proposed on the
basis of the S-R decomposition theorem. It is worth mentioning that the
geometry of discrete unit has not yet been concretized. In other words,
discrete unit may be the element or block or material point that de-
pends on the specific numerical method. Therefore, the above equations
are general and can be employed by any numerical methods, such as
finite element method, numerical manifold method or meshless
method. We consider only geometric nonlinearity similar to [21].

3. SR-3D-DDA

In this section, we will apply the above general formulation of dy-
namic analysis into DDA in order to establish a new approach termed as
SR-3D-DDA, in which the discrete unit is embodied as the discrete block
that can have arbitrary shapes, as shown in Fig. 3, where we consider a
block “b”.

According to the theory of the 3D-DDA [23], the interpolation

Fig. 4. Configuration of a cube rotating around x-axis.

Fig. 5. Cube and the trajectories of CPs for rotating around x-axis: (a) 3D
view predicted by DDA0, (b) 2D view predicted by DDA0, (c) 3D view
predicted by DDA1, (d) 2D view predicted by DDA1; (e) 3D view pre-
dicted by DDA* and (f) 2D view predicted by DDA*.
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matrix can be given by

where x y z( , , )c c c is the coordinates of the centroid of the block “b”.
Further, for an any point in the block “b”, the displacement u x y z( , , ) and
displacement increment u x y zΔ ( , , ) can expressed by
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where ub and uΔ b are the displacement vector and displacement in-
crement vector of the block “b”, respectively. They can be written as

=u u v w r r r ε ε ε γ γ γ( , , , , , , , , , , , ),b c c c x y z x y z yz zx xy (29)

=u u v w r r r ε ε ε γ γ γΔ (Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ),b c c c x y z x y z yz zx xy (30)

where uc, vc and wc are the three translation components of the centroid
of the block “b”; accordingly, uΔ c, vΔ c and wΔ c are the increments of
three translation components. rx , ry and rz are the rigid-body rotation
angles of the block “b” around x-, y- and z-axis, respectively. Thus, rΔ x ,
rΔ y and rΔ z represent the corresponding rigid-body rotation angle in-

crements. Moreover, ε ε ε γ γ γ, , , , ,x y z yz zx xy and ε ε ε γ γ γΔ ,Δ ,Δ ,Δ ,Δ ,Δx y z yz zx xy are
the six strain components and the increments of the six strain compo-
nents, respectively. In addition, the displacement increment of the
block “b” corresponding to the previous calculation step is

=∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗u u v w r r r ε ε ε γ γ γΔ (Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ,Δ ).b c c c x y z x y z yz zx xy (31)

Further, corresponding to the block “b”, the linear B-matrix

Fig. 5. (continued)
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becomes
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The material matrix D given by

Fig. 5. (continued)

Table 1
Volume of a cube corresponding to single-axial rotation.

Time (CS) DDA0 DDA1 DDA*

CV (m3) ER (%) CV (m3) ER (%) CV (m3) ER (%)

100 1.0408 4.0802 1.0000 0.0000 1.0000 0.0000
200 1.0833 8.3270 1.0000 0.0000 1.0000 0.0000
500 1.2214 22.1354 1.0000 0.0000 1.0000 0.0000
1000 1.4917 49.1706 1.0000 0.0000 1.0000 0.0000
2500 2.7177 171.7739 1.0000 0.0000 1.0000 0.0000

Analytical solution: Volume = 1.0000 m3.
(CS: calculation step, CV: calculation value, RE: relative error).
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Fig. 7. Cube and the trajectories of CPs for rotating around l30-axis:(a)
3D view predicted by DDA0, (b) 2D view predicted by DDA0, (c) 3D
view predicted by DDA1, (d) 2D view predicted by DDA1; (e) 3D view
predicted by DDA* and (f) 2D view predicted by DDA*.

Fig. 6. Configuration of a cube rotating around l30-axis.
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Substitution of Eq. (26), (32)–(34) into Eqs. (18)–(21) yields

+ =K M u F( )Δ ,b b b b (35)

where Kb, Mb and Fb are the stiffness matrix, the mass matrix and the
equivalent force vector of the block “b”, respectively. For detailed
formulations on the matrix of normal contact, the matrices of shear
contact and friction force, one can refer to [23] for more details. Once
these matrices are obtained, the control equation of entire block system

can easily be formed, which furnishes the SR based 3D-DDA. For 2D-
DDA [22], the interpolation matrix reduces to

=
⎡

⎣
⎢
⎢

− −

− −
⎤

⎦
⎥
⎥

−

−T x y
y y x x

x x y y
( , )

1 0 0

0 1 0
.

c c
y y

c c
x x
2

2

c

c
(36)

And ∗uΔ b becomes

=∗ ∗ ∗ ∗ ∗ ∗ ∗u u v r ε ε γΔ (Δ ,Δ ,Δ ,Δ ,Δ ,Δ ).b c c z x y xy (37)

Then, one can obtain

= ⎡

⎣
⎢

⎤

⎦
⎥B

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.bL
(38)

Referring to Eq. (66) in [21], we have

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∼
∗

∗B
r
r

0 0 Δ /2 0 0 0
0 0 Δ /2 0 0 0
0 0 0 0 0 0

.bN

z

z

(39)

Moreover, the material matrix D becomes

Fig. 7. (continued)
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=
−

⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

E
υ

υ
υ

υ
D

1

1 0
1 0

0 0 (1 )/2
2

(40)

For the plane stress problem = =E E υ υ, ; while for the plane strain

problem = − = −E E υ υ υ υ/(1 ), /(1 )2 , where E and υ are the Young’s
modulus and Poisson’s ratio, respectively.

Through substituting Eqs. (36) and (38)–(40) into Eqs. (18)–(21) of
[21], SR-2D-DDA can be achieved. SR-2D-DDA has been integrated into
the modified 2D-DDA presented in [51].

The computational procedure can be summarized as follows:
Step 1: Input geometry and material information.
Step 2: Set initial values, let =∗u uΔ Δb b

0, and construct BbL by using
Eq. (32).

Step 3: Construct ∼BbN by using Eq. (33).
Step 4: Generate the controlling equation by using Eqs. (18)–(21)

and (35) and the generalized-α method [21].
Step 5: Treat contact, and modify the controlling equation if

necessary.
Step 6: Solve the controlling equation to obtain uΔ b.
Step 7: Conduct the open-close iteration until the convergence is

reached.

Fig. 7. (continued)

Table 2
Volume of a cube corresponding to dual-axial rotation.

Time (CS) DDA0 DDA1 DDA*

CV (m3) ER (%) CV (m3) ER (%) CV (m3) ER (%)

100 1.0408 4.0802 1.0000 0.0000 1.0000 0.0000
200 1.0833 8.3270 1.0000 0.0000 1.0000 0.0000
500 1.2214 22.1354 1.0000 0.0000 1.0000 0.0000
1000 1.4917 49.1706 1.0000 0.0000 1.0000 0.0000
2500 2.7177 171.7739 1.0000 0.0000 1.0000 0.0000

Analytical solution: Volume = 1.0000 m3.
(CS: calculation step, CV: calculation value, RE: relative error).
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Fig. 9. Cube and the trajectories of CPs for rotating around
l45-45-axis: (a) 3D view predicted by DDA0, (b) 2D view
predicted by DDA0, (c) 3D view predicted by DDA1, (d) 2D
view predicted by DDA1; (e) 3D view predicted by DDA* and
(f) 2D view predicted by DDA*.

Fig. 8. Configuration of a cube rotating around l45-45-axis.
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Step 8: Compute the strain increment SΔ j
i (Eqs. (23)–(25)) and the

stress increment σΔ j
i by using the constitutive relation.

Step 9: Update strain, stress, geometry, velocity and acceleration by
using the Newmark method [52].

Step 10: Let =∗u uΔ Δb b
0 and repeat Step 3–9 until the total time is

completed.

4. Numerical examples

In this section, several tests are provided to demonstrate the cap-
ability and advantage of the SR-3D-DDA. As is known, the three axis of
Cartesian coordinate system may be the axis of rotation. Here, we will
give three definitions: the first is “single-axial rotation”, which means
that only one angular velocity is nonzero, i.e. ≠ω 0x and = =ω ω 0x y
or ≠ω 0y and = =ω ω 0x z , and so forth; the second is “dual-axial
rotation”, which declares that there are two nonzero angular velocities,
i.e. ≠ω 0x , ≠ω 0y and =ω 0z or ≠ω 0x , ≠ω 0z and =ω 0y , and so
on; the last is “tri-axial rotation”, which indicates that there are three
nonzero angular velocities, namely ≠ω 0x , ≠ω 0y and ≠ω 0z .

For the convenience of comparison, in this paper, DDA0 refers to the
original formulation of DDA given by [23]; DDA1 signifies that the

following 3D displacement adjustment method (Eq. (41)) [36] are
adopted after solving the control equation to overcome the false volume
expansion; and DDA∗ stands for SR-3D-DDA.

= + − − − −
+ − + − −

= + − + − −
+ − − − −

= + − − − −
+ − + − −

u u x x r y y r
z z r x x r

v v x x r y y r
y y r z z r

w w z z r x x r
y y r z z r

Δ Δ ( )(cosΔ 1) ( )sinΔ
( )sinΔ ( )(cosΔ 1)

Δ Δ ( )sinΔ ( )(cosΔ 1)
( )(cosΔ 1) ( )sinΔ

Δ Δ ( )(cosΔ 1) ( )sinΔ
( )sinΔ ( )(cosΔ 1)

c c z c z

c y c y

c c z c z

c x c x

c c y c y

c x c x (41)

4.1. Single-axial rotation of a cube

The configuration of a cube (1 m × 1 m × 1 m) is shown in Fig. 4.
Without loss of generality, we consider a single-axial rotation, and let
the original rotation angular velocities to be =ω 2.00 rad/sx and

= =ω ω 0y z , respectively. The cube will rotate anticlockwise around
the x-axis. And points 1(0, 0.5, −0.5) and 2(1.0, 0.5, 0.5) are used as
the two checking points, as shown in Fig. 4. Moreover, the material is
assumed to be elastic and the density is =ρ 2450 kg/m3, Young’s
Modulus is E = 4.0 × 109 Pa, Poisson’s ratio is =υ 0.35. The gravity is

Fig. 9. (continued)
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not considered. The real time interval per calculation step (CS) is given
by =Δ 0.01 s; the total number of calculation step is CS = 2500; the
spectral radius of the generalized-α method [50] is given by =∞ρ 1. The
results obtained by DDA0, DDA1, and DDA∗ are shown in Fig. 5.

For DDA0, as shown in Fig. 5(a), the expansion along the direction
perpendicular to the axis of rotation is apparent, which results in out-
ward offsets of trajectories of points 1 and 2, as shown in Fig. 5(a). On
the other hand, the trajectories of points 1 and 2 appear to be the two
line segments in Fig. 5(b), implying that nonphysical expansion or
contraction does not occur in the direction parallel to the axis of rota-
tion. Fig. 5(c) up to (f) present some results obtained by DDA1 and
DDA∗, respectively.

For DDA1, as we expected, the trajectories of points 1 and 2 are all
the circles in the 3D view and they are all look like a line segment in the
2D view, as shown in Fig. 5(c) and (d). For DDA∗, as shown in
Fig. 5(e) and (f), the results are almost as the same as that given by
DDA1. In fact, for the case of the other two single-axial rotations,
namely ≠ω 0y and = =ω ω 0x z or ≠ω 0z and = =ω ω 0x y , our cal-
culations indicate that neither expansion nor contraction does not exist
in DDA1 and DDA∗. In addition, Table 1 shows that the volume of the
cube obtained by DDA0 is increasingly enlarged, and DDA1 and DDA∗

can all offer correct values for the volume.

Fig. 9. (continued)

Fig. 10. Geometry of a torus.
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4.2. Dual-axial rotation of a cube

If = − = −ω ω1.7320508 rad/s 0.5 rad/sx y and =ω 0z , the cube will
rotate around l30-axis, in which the subscript “30” means that the in-
tersection angle between the axis of rotation and x-axis is equal to 30°.
And points 1(−0.25, 0.433013, −0.5) and 2(0.616025, 0.933013, 0.5)
serves as the checking points, as shown in Fig. 6. The results obtained
by DDA0, DDA1 and DDA∗ are shown in Fig. 7.

For DDA0, similar to the single-axial rotation, the expansion along
the direction perpendicular to the axis of rotation is also apparent,
leading to outward offsets of trajectories of points 1 and 2, as shown in
Fig. 7(a). Moreover, for the two checking points, their trajectories are
the two line segments in Fig. 7(b). There is neither expansion nor
contraction in the direction parallel to the axis of rotation.

For DDA1, unlike the single-axial rotation, in the direction perpen-
dicular and parallel to l30-axis the corresponding expansion and con-
traction can be identified easily, as shown in Fig. 7(c). Thus, the

trajectory of point 1 or 2 resemblies a trapezoid in the 2D view, as
shown in Fig. 7(d).

For DDA∗, in the 3D view, the trajectories of points 1 and 2 are all
the circles, as shown in Fig. 7(e), whereas in the 2D view, the trajec-
tories of points 1 and 2 are all the line segments, as shown in Fig. 7(f).
Therefore, we can conclude that neither expansion nor contraction
exists in DDA∗ for dual-axial rotation.

In addition, we shown in Table 2 that the volume of the cube given
by DDA0 is gradually expanded, and both DDA1 and DDA∗ can obtain
the correct results. It should be pointed out that DDA1 cannot provide
the shape of cube due to the nonphysical expansion and contraction,
whilst that DDA∗ can guarantee the shape and volume of the cube are
no change.

Fig. 11. Discrete model of a torus.

Fig. 12. Line segments OA and OB and sections O1, O2, O3

and O4 (CS = 0).
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Fig. 13. Line segments OA and OB and sections O1, O2, O3 and O4

(CS = 1000): (a) Predicted by DDA0; (b) Predicted by DDA1 and (c) Predicted
by DDA*.

H. Fan et al. Computers and Geotechnics 95 (2018) 191–210

204



(a)

(b)

A

O

B
1O2O

3O
4O

Axis of rotation 

A

O

B 1O

2O

3O

4O

Axis of rotation 

(c)

A

O

B
1O2O

3O
4O

Axis of rotation 

Fig. 14. Line segments OA and OB and sections O1, O2, O3 and O4

(CS = 8000). (a) Predicted by DDA0; (b) Predicted by DDA1 and (c)
Predicted by DDA*.
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4.3. Tri-axial rotation of a cube

Now, we consider the example of a tri-axial rotation. First, we rotate
the rotational axis of example1 (see Fig. 4) by 45° from x-axis to y-axis,
and then allow a 45° inclined angle between the axis and the x-y plane,
as shown in Fig. 8. Set the original rotation angular velocities to be

= −ω 1.00 rad/sx , = −ω 1.00 rad/sy and = −ω 1.414213 rad/sz , respec-
tively. Therefore, the cube will rotate anticlockwise around the l45-45-
axis. Points 1(−0.103553, 0.603553, 1.060660) and 2(0.603553,
−0.103553, −0.353553) are taken as the two checking points. The
results obtained by DDA0, DDA1 and DDA∗ are shown in Fig. 9.

For DDA0, from Fig. 9(a) and (b) we can know, similar to the single-
and dual-axial rotation cases, there is only an expansion in the direction
perpendicular to the axis of rotation.

For DDA1, like the dual-axial rotation (refer to Fig. 7(c) and (d)),
there are an expansion in the direction perpendicular to the axis of
rotation and a contraction in the direction parallel to the rotational
axis, as shown in Fig. 9(c) and (d).

According to Figs. 5(e) and (f), 7(e) and (f) and 9(e) and (f), DDA∗

performs rather satisfactorily in all three cases of single, dual and tri-

axial rotations.

4.4. Dual-axial rotation of a torus

The geometry of a torus with the centerline radius R= 5.0000 m
and the cross section radius r = 1.0000 m is considered. The center of
the torus coincides with the origin of Cartesian coordinate system and
the center circle is located on the x-y plane, as shown in Fig. 10.

The torus is firstly discretized into 13,104 triangular faces. These
faces are closed on to form a 3-dimensional DDA block with a volume of
98.4153 m3, which is rather close to the analytical solution 98.6960 m3.
In this example, we set the original rotation angular velocities to be

= = −ω ω 5.00 rad/sx y and =ω 0z , respectively. Thus, the torus will
rotate anticlockwise around the l-axis. Points 1(4.00, 0.00, 0.00),
2(−4.00, 4.00, 0.00) and 3(−4.00, 0.00, 0.00) are chosen as checking
points, as shown in Fig. 11. In addition, the material of the torus is
assumed to be elastic and the density is =ρ 2.500 kg/m3, Young’s
Modulus is E = 2.0 × 109 Pa, Poisson’s ratio is =υ 0.25. The gravity is
ignored. Moreover, the real time interval per calculation step is given
by =Δ 0.001 s; the total number of calculation step is CS = 8000; the

Fig. 15. Torus and the trajectories of CPs: (a) 3D view
predicted by DDA0, (b) 2D view predicted by DDA0, (c) 3D
view predicted by DDA1, (d) 2D view predicted by DDA1;
(e) 3D view predicted by DDA* and (f) 2D view predicted by
DDA*.
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spectral radius of the generalized-α method [41] is given by =∞ρ 1.
During the simulation, we will observe the change of lengths of line

segments OA and OB, which are perpendicular intersections and the
line segment OB is coincident with the rotation axis, as well as sections
O1, O2, O3 and O4. For the initial time CS = 0, the lengths of OA and OB
are all set equal to 5.0000 m; Sections O1, O2, O3 and O4 are all the
circles with two dimensions of 2.0000 m and 2.0000 m, respectively, as
shown in Fig. 12.

When CS = 1000, the results obtained by DDA0, DDA1 and DDA∗

are shown in Fig. 13.
As shown from Fig. 13(a), the lengths of line segments OA and OB

are 5.0000 m and 5.1266 m, respectively, and both sections O1 and O2

have a two-dimensional size of 2.0000 m and 2.0506 m, which makes
sections O1 and O2 become to two ellipses. For Sections O3 and O4, the
two dimensions are equal to the 2.0506 m, which renders them remain
to be circles. This indicates, for DDA0, equal expansions in the two
directions perpendicular to the axis of rotation occur, while there is no
change in the direction parallel to the axis of rotation.

As for DDA1 (see Fig. 13(b)), It is can be found that the lengths of
line segments OA and OB are 4.9379 m and 5.0648 m, respectively.
Moreover, for sections O1 and O3, the dimensions parallel to the axis of
rotation are both equal to 1.9752 m; while in the direction perpendi-
cular to the axis of rotation the dimensions are 2.0117 m. Sections O1

and O3 become thus two ellipses. For sections O2 and O4, the two di-
mensions are 2.0134 m and 2.0116 m, respectively. Hence, sections O2

and O4 are no longer circles. Regarding sections O1, O2, O3 and O4, the
two dimensions in the direction perpendicular to the axis of rotation are
2.0116 m and 2.0117 m, very close to each other.

Fig. 13(b) implies that, for DDA1, there are non-equal expansions in
the two directions perpendicular to the axis of rotation and contractions
in the direction parallel to the axis of rotation.

As for the case of DDA∗, it can be observed from Fig. 13(c) that the
lengths of line segments OA and OB are 4.9999 m and 5.0000 m, re-
spectively; Moreover, sections O1, O2, O3 and O4 have the two dimen-
sions of 2.0001 m and 2.0000 m, respectively. This implies that there
are no expansions or contractions in either direction perpendicular to or

Fig. 15. (continued)
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parallel to the axis of rotation.
Fig. 14 further show results when the calculation is continued up to

CS = 8000.
Based on DDA0, the simulation predicts that the length of line seg-

ment OA remains 5.0000 m with the simulating time, while that of line
segment OB is elongated to 6.3350 m at CS = 8000, as shown in
Fig. 14(a). As for sections O1 and O3, the two related dimensions are
2.0000 m and 2.5340 m, respectively, and those corresponding to
Section O2 and O4 are enlarged to 2.5340 m. Evidently, there is no
change in the dimension parallel to the axis of rotation, while there is
continuing expansion in direction perpendicular to the axis of rotation.
As a result, the ellipses O1 and O3 become more flat and the circles O2

and O4 expand larger.
From Fig. 14(b), the predictions by DDA1 show that the lengths of

line segments OA and OB are 4.4152 m and 5.3224 m, respectively.
Sections O1 and O3 have the same two dimensions, namely 1.7650 m
and 2.1290 m, whereas the two dimensions of sections O2 and O4 are
2.1289 m and 2.1290 m, respectively, which remains an ellipse even
though they are very close to circles. Referring to Fig. 14(b), one can
safely conclude that the predictions by DDA1 show noticeable non-
physical expansions and contractions.

While for DDA∗ as shown in Fig. 14(c), the length of line segment
OA remains 5.0000 m as its original value. Moreover, the length of line
segment OB appears to be expanded slightly from its original value
5.0000 m to 5.0016 m. This expansion is only 0.032% which can be
negligible. For the same reason, the related dimensions of sections O1,
O2, O3 and O4 obtained by DDA∗ can be cosnidered not changed, as
shown in Fig. 14(c). Therefore, we conclude that the expansions and
contractions predicted by DDA∗ are vanishingly small and can be totally
neglected.

In addition, the torus at CS = 8000 and the trajectories of three
checking points from CS = 0 to CS = 8000 are shown in Fig. 15 cor-
responding to DDA0, DDA1 and DDA∗.

Due to the expansion along the direction perpendicular to the axis of
rotation, there is an offset outward for each of the trajectories of points
1, 2 and 3, and each trajectory becomes a coplanar circular ring, as
shown in Fig. 15(a). Moreover, these trajectories show like the three
line segments in Fig. 15(b), indicating no occurrence of nonphysical
expansion or contraction in the direction parallel to the axis of rotation,
which is consistent with the conclusions drawn from
Figs. 13(a) and 14(a).

For DDA1, because the two phenomena of expansion and

Fig. 15. (continued)
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contraction exist at the same time, the three trajectories are all offset
outward. But due to point 2 is in the symmetry plane, its trajectory is a
coplanar circular ring; while the trajectory of points 1 or 2 is not co-
planar but contracts along the direction parallel to the axis of rotation
and expands along the direction perpendicular to the axis of rotation, as
shown in Fig. 15(c) and (d).

For DDA∗, because neither expansions nor contractions are found,
each of trajectories of points 1, 2 and 3 remains a perfect circle in the
3D view and appears like a line segment in the 2D view, as shown in
Fig. 15(e) and (f). In other words, from CS = 0 to CS = 8000, the torus
has almost no deformation; which is in contrast with the predictions by
DDA0 and DDA1.

Some relative detailed data are further summarized in Table 3,
which shows that the volume given by DDA0 is continually increased
and the volume obtained by DDA1 almost keeps at a constant value at
the cost of contraction in the direction parallel to the axis of rotation,
and the predictions by DDA∗ remain the same.

5. Conclusions

We presented a 3D dynamic deformation formulation based on the
S-R decomposition theorem that can simultaneously and accurately
describe the strain and local rotation of deformable body. Similar to its
counterpart in 2D, the new 3D dynamic formulation may capture the
strains and local rotations and is generic and independent of numerical
methods to be used. Therefore, it can be easily implemented in such
popular methods as FEM, GFEM/XFEM and NMM. We showcased the
3D dynamic formulation by applying it to DDA and developed an S-R-
decomposition-based DDA method, namely SR-3D-DDA. The robustness
and effectiveness of the new formulation were demonstrated by several
interesting examples, where the new method does not yield nonphysical
expansions or contraction. Next, we will focus on three-dimensional
contact detection and treatment.
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