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A B S T R A C T

The S-R (strain-rotation) decomposition theorem has an ability to capture strain components and rotation
components at the same time. Using the principle of virtual power (VP), in this study, a new formulation
independent of specific numerical methods is proposed for the analysis of dynamic large or small deformation.
Then, the formulation is applied to the discontinuous deformation analysis (DDA), yielding a new DDA based on
the S-R decomposition theorem, abbreviated as SRDDAvp. Compared with the conventional DDA, SRDDAvp

adopts a slightly modified basic variables together with the generalized-α method. The analysis of some typical
examples indicates that SRDDAvp can naturally overcome the issue of volume expansion, effectively improve the
calculation accuracy and, equip DDA with the potential to treat large deformation.

1. Introduction

The discontinuous deformation analysis (DDA) is a discrete block-
based method 1,2. In both 2D-DDA and 3D-DDA, the special shape
functions and basic variables are employed to make the approximation
of displacement field is independent of the shape of block. The
effectiveness of DDA in geotechnical problems has been recognized
3–5, and extensively applied in the analysis of seismic landslides 6–8,
crack propagations 9–11, hydraulic fractures 12,13, masonry structures
14, the path tracking of rockfalls 15, fluid-solid coupling 16 and motion
of particulate media 17,18.

During the past 20 years, the performance of DDA is enhanced
largely. The higher-order DDA 19, a nodal-based DDA 20, the FEM-
DDA 21, the NMM-DDA 22 and the DDA with bonding springs 23

improved the deformability of objects simulated by DDA. The post-
adjustment method 24, the Taylor series method 25, the trigonometric
method 26, the post-contact adjustment method 27, the displacement-
strain modification method 28 overcame the volume expansion of block
due to small deformation assumption, and a procedure 29 to mitigate
the elastic distortions with large rotation. Some convergence criterions
30, the trick of contact state recovery 31, and the strategy of strengthen-
ing the movement trend 32 speeded up the open-close iteration. The
augmented Lagrange multiplier method 33, the Lagrange multiplier
method 34, the complementarity method 35–37the variational inequality
method 38 improved the accuracy of contact force. The one temporary
spring method 39 and the angle-based method 32 handled the inde-

terminacy of vertex-vertex contact. For 3D-DDA, the contact sub-
matrices 40 modified the stiffness matrix. The models of point-to-face
and edge-to-edge contact 41,42 dealt with the various contacts. An
algorithm 43 coped with the frictionless vertex-to-face contacts.
Another algorithm 44 searched and calculated geometrical contacts. A
fast algorithm 45 identified the common plane. A multi-shell cover
algorithm 46 detected contacts. A nodal-based 3D-DDA 47 was devel-
oped. Moreover, the new contact theory 48 developed by Shi is expected
to significantly simplify the difficulties in treating three-dimensional
singular contacts.

It is worth mentioning that the S-R decomposition theorem 49–54 is
an important result in the field of geometric nonlinearity. By this
theorem, the strain and local rotation can be simultaneously and
accurately captured. However, a dynamic formulation based on this
theorem remains absent. In this study, using the principle of virtual
power (VP), a new formulation for dynamic analysis is firstly deduced.
The S-R-D-based formulation is independent of specific numerical
methods. In other words, it provides an opportunity to develop DDA
under the background of the new theory, in which the small strain
assumption is no longer needed. Compared with the conventional
DDA, a slightly modified displacement function and the generalized-
α55 method are utilized in the S-R-D-based DDA, abbreviated by
SRDDAvp, in which the subscript “vp” stands for the principle of virtual
power. The results obtained show that SRDDAvp can naturally over-
come the issue of volume expansion, effectively improve the calculation
accuracy and, equip DDA with the potential to treat large deformation.
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2. S-R decomposition theorem

The S-R decomposition theorem is always associated with the co-
moving coordinate description method. The connection between the
theorem and the co-moving coordinate has been demonstrated and
illuminated in 49–54. Here, for completeness, we only touch upon the
related concepts and theories.

For a deformable body in Euclidean space E 3, the following two
reference frames are chosen to describe the motion of a body:

(1) A global reference system {Xi} (i=1, 2, 3), which is fixed in space.
(2) A co-moving coordinate system {xi} (i=1, 2, 3), which is embedded

in the deformable body, with its coordinate line allowed to stretch
and rotate.

In general, the initial reference frame or the initial co-moving
coordinate system is chosen as a rectilinear or curvilinear orthogonal
system. However, owing to the occurrence of deformation of the
considered body, a new curvilinear system may be formed following
the deformation. Fig. 1 shows the configuration change of a co-moving
coordinate system in the two-dimensional case. The situation in the
three-dimensional case is similar. Let r and R be the position vectors of
a point before and after deformation, and u the displacement vector.
Then, the three vectors have the relationship

R r u= + . (1)

We define the basis vectors at a point in the initial co-moving
coordinate system by

x ig r= ∂
∂ , = 1, 2, 3.i i

0
(2)

After deformation, the basis vectors at the same point change to

x ig R= ∂
∂ , = 1, 2, 3.i i (3)

Using Eq. (1), one can obtain

x x x
R r u∂

∂ = ∂
∂ + ∂

∂ .i i i (4)

In the curvilinear system, any vector can be decomposed with

respect to the basis vector gi
0
. For the displacement u, we have

uu g= j
j

0
(5)

Further, we can obtain

⎛
⎝⎜

⎞
⎠⎟x x u uu g g∂

∂ = ∂
∂ = .i i

j
j

j i j
0 0

(6)

Then, the following transformation of basis vectors can be obtained

Fg g= ,i i
j

j
0

(7)

where Fi
j is a linear differential transformation function and can be

described as

F δ u= + .i
j

i
j j i (8)

where δ i
j is the Kronecker-delta. The covariant derivative u j i of

displacement is expressed as

u u
x uΓ= ∂

∂ + ,j i
j

i ik
j k

0

(9)

where Γi k
j
0

is known as the Christoffel symbol of the second kind 56, and
can be written as 51,54

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g
x

g
x

g
xΓ g= 1

2
∂
∂ + ∂

∂ − ∂
∂ .ik

j li
k

lk
i

ik
l

jl
0 0

0 0 0

(10)

It should be pointed out that gi
0
and gi represent two very important

local basis vectors; the stretch and rotation of a deformable body are
reflected precisely through the transformation of these vectors.

On the other hand, the S-R decomposition theorem 49–54 states that
any invertible linear differential transformation function F yields a
unique additive decomposition:

F S R= + , (11)

where S is a symmetry sub-transformation representing the strain
tensor and is positive definite and is called Chen strain, and R is an
orthogonal sub-transformation representing the local mean rotation
tensor.

The strain tensor is

⎛
⎝⎜

⎞
⎠⎟S u u L L θ= 1

2 + − (1 − cos ),j
i i j i

j k
i

j
kT

(12)

and the rotation tensor is

R δ L θ L L θ= + sin + (1 − cos ),j
i

j
i

j
i

k
i

j
k

(13)

where Lj
i is the unit vector of the rotation axis, and u j i is the

displacement gradient. The superscript T denotes the transpose, and

the notation “ i” represents the covariant derivative with respect to gi
0
.

And Lj
i can be written as

⎛
⎝⎜

⎞
⎠⎟L θ u u= 1

2 sin − .j
i i j i

j
T

(14)

The mean rotation angle θ is determined by the following formula

( ) ) ( )(θ u u u u u usin = 1
2 − + − + − .1 2 1

2
T 2 2

3 2
3
T 2 1 3 1

3
T 2

(15)

For two-dimensional problems, Eq. (15) reduces into

⎛
⎝⎜

⎞
⎠⎟θ u usin = 1

2 − .1 2 1
2
T

(16)

In addition, the strain rate Sj̇
i can be written as 51,54

⎛
⎝⎜

⎞
⎠⎟S V V̇ = 1

2 + ,j
i i j i

j
T

(17)

whereV i j is the velocity gradient, and the notation “ i” represents the
covariant derivative with respect to gi, in order to distinguish it from
“ i”. It should be noted that, in accordance with the theory of tensor
analysis, the corresponding physical components should be adopted in
the calculation.

3. DDA based on S-R decomposition

3.1. Incremental governing equation

Based on the S-R decomposition, the principle of virtual power can

Fig. 1. Co-moving coordinate description of the motion of a deformable body.
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be applied to establish the incremental governing equation, with
respect to the current configuration. Assuming that the solutions for
the static and kinematic variables have been obtained from time 0 up to
time t inclusively, and that the subsequent solution for time t Δ t+ is
now targeted. The procedure to obtain the solution for the next
required equilibrium position is representative, and can be carried
out repetitively until the final state is achieved. At time t Δ t+ , the
principle of virtual power for the deformable body can be expressed by
the following equation with respect to the current configuration

∫ ( )σ δ S dΩ W W Ẇ + + − = 0,
Ω j

it Δ t
i
jt Δ t t Δ t t Δ t t Δ t+ +

in e
+

pen
+

ext
+

t Δ t+

(18)

where the first term represents the virtual power corresponding to the
inner force, and Wt Δ t

in e
+ , Wt Δ t

pen
+ and Wt Δ t

ext
+ are the virtual powers

of inertia force, constraint force of specified displacement, and the
surface and body force, respectively. Ω is the domain of integration. In
addition, σ j

i is the stress, and δSi̇
j is the virtual strain rate, with the

definitions,

⎛
⎝⎜

⎞
⎠⎟∫W ρ A δ V dΩ= ,t Δ t

Ω
i i

t Δ t

in e
+

+

(19)

⎛
⎝⎜

⎞
⎠⎟˘∫W k Δu Δu δ V dS= ( − ) ,t Δ t

Γ
i i i i

t Δ t

pen
+

+

u (20)

and

⎛
⎝⎜

⎞
⎠⎟˘∫ ∫W P δ V dS ρf δ V dΩ= + ,t Δ t

Γ
i i

Ω i
i

t Δ t

ext
+

+

P (21)

where ρ is the material density, A i is the acceleration, δ V i is the
virtual velocity, and k i is the penalty number; Δu i and ˘Δu i represent
the undetermined and specified displacement increments, respectively;
P̆ i

is the specified traction, and f i is the force per unit volume.
Throughout this paper, the superscript t Δ t+ implies that the
representation refers to the configuration of time t Δ t+ . It should
be noted that Eq. (18) is now specified with respect to the co-moving
coordinate system gi

t Δ t+ .
In the incremental interval Δ t between time t and time t Δ t+ , we

take

σ σ Δσ= + ,j
it Δ t

j
it

j
i+

(22)

and

S S ΔṠ = ̇ + ̇ ,j
it Δ t

j
it

j
i+

(23)

and

V V ΔV= + ,t Δ t t+ (24)

where Δσ j
i,ΔSj̇

i and ΔV are the undetermined stress increment, strain
rate increment and velocity increment, respectively. Linearizing the
stress increment yields

Δσ Δtσ= ̇ ,j
i

j
i

(25)

where σ ̇j i is the unknown stress rate in the incremental interval Δ t .
Thus, Eq. (22) becomes

σ σ Δtσ= + ̇ .j
it Δ t

j
it

j
i+

(26)

For time t Δ t+ , the values of all variables have been known at time
t , namely,

( ) ( )δ S δ ΔṠ = ̇ ,j
it Δ t

j
i+

(27)

and

δ V δ ΔV( ) = ( ).t Δ t+ (28)

In this study, ρ, k i, and f i are all treated as constant. At an

arbitrary time, the specified stress and displacement boundary condi-
tions might be known; however, the configuration of time t Δ t+ is
unknown. Therefore, the following approximation can be employed,
and using Eq. (28) gives

˘∫W W k Δu Δu δ ΔV dS≈ = ( − ) ( ) .t Δ t t
Γ

i i t i i
pen

+
pen

u (29)

In the same fashion, we have

˘∫ ∫W W P δ ΔV dS ρf δ ΔV dΩ≈ = ( ) + ( ) ,t Δ t t
Γ i

t i
Ω

i i
ext

+
ext

P t (30)

and Wt Δ t
in e

+ becomes

∫W ρ A δ ΔV dΩ= ( ) .t Δ t
Ω i

t Δ t i
in e

+ +
t Δ t+ (31)

Substituting Eqs. (26) and (27) into Eq. (28) and considering Eqs.
(29), (30) and (31), one can obtain

∫ ∫( ) ( )σ δ ΔS dΩ Δt σ δ ΔS dΩ W W Ẇ + ̇ ̇ + + − = 0.
Ω j

it
i
j

Ω j
i

i
j t Δ t t t

in e
+

pen extt t

(32)

This is the so-called the incremental governing equation, where the
superscript t means that the description is with respect to the
configuration of time t . And Eq. (32) indicates that the virtual work
equation Eq. (18) with respect to the configuration of time t Δ t+ has
been transformed to that refer to the configuration of time t . ΔSi̇

j and
Wt Δ t

in e
+ are the undetermined variables and will be disposed next.

3.2. Updated co-moving coordinate formulation

In order to establish the updated co-moving coordinate formulation
of the incremental governing equation, the initial co-moving system

gi
t 0 52 of time t is chosen as the reference frame of the co-moving
coordinate system gi

t at time t . There are three the main purposes of
this choice:

(1) Transforming Eq. (32) into an equation with regard to the initial

co-moving system gi
t 0

at time t .
By using the results of the fourth section in 52, the first two

terms (FTT) of Eq. (32) can be written as

∫ ∫( ) ( )σ δ ΔS dΩ Δt D S δ ΔS dΩF T T = ̇ + ̇ ̇ ,
Ω j

i
i
j

Ω j l
i k

k
l

i
j

t t (33)

where D j k
i l and ΔSk̇

l
are the material tensor and the unknown strain

rate increment in the interval Δ t with respect to gi
t 0

, respectively. The

bar “−” over a variable indicates that the variable refers to gi
t 0

.
For time t , the velocity vector referring to the co-moving coordinate

systems gi
t and gi

t 0
can be expressed as

V VV g g= = .t
i t

t
i

i t
i

0
(34)

Similarly, the velocity increment vector is given as

Δ Δ V ΔVV g g= = .t
i t

t
i

i t
i

0
(35)

For time t Δ t+ , with respect to the co-moving coordinate systems

gi
t Δ t+ and gi

t Δ t 0+
, which is the initial co-moving system of gi

t Δ t+ , we can
obtain

Δ Δ V ΔVV g g= = ,t Δ t
i t Δ t

t Δ t
i

i t Δ t
i

+
+

+ + 0
(36)

where the double bar “=” over a variable indicates that the variable

refers to gi
t Δ t 0+

in order to distinguish with the variable referring to gi
t 0

.
At time t Δ t+ , on the other hand, the acceleration vector 51,54 can be
defined by
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⎛
⎝⎜

⎞
⎠⎟A V

t V VA g g= = ∂
∂ + .i

t Δ t
i

t Δ t i
j i j

t Δ t

i
t Δ t+ +

+
+

(37)

As for the first term of Eq. (37), owing to fact that the space
derivative is not involved, we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V

t
V

tg g∂
∂ = ∂

∂ .
it Δ t

i
t Δ t

i t Δ t

i

+
+

+
0

(38)

Furthermore, for the second term of Eq. (37), using the following
two equations 52

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x
xg g=

∂
∂ ,i

t Δ t j
t Δ t

i

t Δ t

i
+

+ +
0

(39)

V x
x V x

x
∂

∂ = ∂
∂ ,i

t Δ t
j

k
t Δ t

i k
t Δ t

i
i

t

j
+

+ +
(40)

we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A V
t V V

V
t V V A

A g g

g g

= = ∂
∂ +

= ∂
∂ + = .

i t Δ t
t Δ t

i
i

j i j

t Δ t

i
t Δ t

i
j i

j

t Δ t

i
i t Δ t

i

+
+

+
+

+
0 + 0

(41)

By using Eqs. (36) and (41), the virtual powers of the inertia force

Wt Δ t
in e

+ , in reference to gi
t Δ t 0+

, can be expressed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫W W ρ V

t V V δ ΔV dΩ= = ∂
∂ + ( ) .t Δ t

Ω

i
j i

j
i

in e
+

in e t Δ t+
(42)

With respect to gi
t 0

and gi
t Δ t 0+

, the velocity increment vectors can be
written as

Δ ΔV ΔVV g g= = .i t
i

i t Δ t
i

0 + 0
(43)

Because gi
t 0

and gi
t Δ t 0+

are isomorphic, namely,

ΔV ΔV= .i i (44)

Thus, Eq. (42) becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫W W ρ V

t V V δ ΔV dΩ= = ∂
∂ + ( ) .t Δ t

Ω

i
j i

j i
in e

+
in e t Δ t+

(45)

Moreover, using Eq. (35) yields

˘∫W W k Δu Δu δ ΔV dS= = ( − ) ( ) ,t
Γ

i i t i i
pen pen

u (46)

and

˘∫ ∫W W P δ ΔV dS ρf δ ΔV dΩ= = ( ) + ( ) ,t
Γ i

t i
Ω

i i
ext ext

P (47)

whereWp e n andWe x t are both expressed with respect to the co-moving

coordinate system gi
t 0

. Hence, the incremental governing equation Eq.
(32) becomes

∫ ∫ ( )σ δ ΔS dΩ Δt D S δ ΔS dΩ W W W( ̇ ) + ̇ ̇ + + − = 0.
Ω j

i
i
j

Ω j l
i k

k
l

i
j

in e p en extt t

(48)

Eqs. (45–48) exactly express the new formulation, which is based
on the S-R decomposition theorem and is described in the updated co-

moving coordinate form. The equations will be implemented further in
the context of DDA. It should be pointed out that the rotation tensor R
does not appear explicitly, and that the inertia item is primarily
considered. The above two points are the main differences from the
counterpart employed 52. Moreover, a dynamic analysis cannot be
achieved despite the insertion of the inertia item into the static
formulation 52. That is, there seems to be no shortcut to the dynamic
formulation.
(2) Providing theoretical basis for updating the co-moving coordinate

and state variables of material point.
In solving the incremental governing equation, the initial co-

moving system of each incremental step is required to be rese-
lected and constantly changing. That is, from time t to time t Δ t+ ,

the initial co-moving system is given by gi
t 0

at time t; whereas, from
time t Δ t+ to time t Δ t Δ t+ + , the initial co-moving system is

defined by gi
t Δ t 0+

at time t Δ t+ , as shown in Fig. 2. For the case
that these initial co-moving systems are all selected to be iso-
morphic to the rectilinear orthogonal coordinate system that is
fixed in the space, a formula for updating the co-moving coordinate
of material point has been given by 52:

x x Δu= + ,i
t Δ t

i
t i+ 0

(49)

where Δu i
0

is the displacement increment in the gi
t 0

system during Δ t .
As for the stress, the following formula can be adopted:

σ σ Δtσ σ Δt D ΔS= + ̇ = + ̇ .j
it Δ t

j
it

j
i

j
it

j l
i k

k
l+

(50)

It is worth mentioning that σ ̇ j i is also an objective stress rate in the

gi
t 0

system. For an isotropic material, D D=j k
i l

j k
i l was proved in 52.

(3) Due to the above-mentioned property, when isomorphic coordi-
nate systems are chosen, the Christoffel symbol of the second kind,

Γik
j

0
, will vanish from Eq. (9). The covariant derivative u j i becomes

u u
x= ∂

∂ .j i
j

i (51)

Therefore, the related deduction and calculation can be simplified

considerably. From here on, Γik
j

0
will no longer be required, unless

otherwise noted.

o

g2
0

g1
0

u

r
R

g2
0

g1
0

g2
0t

g1
0t

g1
t g2

g1

Rt u

X 2

X1

g2
t

t t+∆

∆
t t+∆

t t+∆

t t+∆

t t+∆

Fig. 2. Update of the co-moving coordinate.

H. Fan et al. International Journal of Rock Mechanics & Mining Sciences 92 (2017) 19–29

22



3.3. Governing equation and time advancement

Now we start to construct SRDDAvp. In order to facilitate the
description, the bar “−” and the double bar “=” over some variables are
omitted from this point on, unless otherwise noted. The first-order
displacement approximation is adopted for any block. In this study, the
following shape function is used

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥x y

y y x x
x x y yT( , ) =

1 0 − − 0
0 1 − 0 − .

y y

x x
0 0

−
2

0 0
−
2

0

0
(52)

Considering an arbitrary shape block B, for any point x y( , ) inside
the block B, the displacement u can be expressed as

⎛
⎝⎜

⎞
⎠⎟x y u x y

u x y x yu T d( , ) = ( , )
( , ) = ( , ) ,

x
y b

(53)

where u v θ ε ε γd = { , , , , , }b x y xy
Tis the generalized displacement vector

of the block. u and v represent translational components of the block.
While θ is corresponding to the mean rotation angle in S-R decom-
position theorem. εx, εy and γxy are the three Cauchy strain components.
Further, the increment displacement Δu can be described as

⎛
⎝⎜

⎞
⎠⎟Δ x y Δu x y

Δu x y x y Δu T d( , ) = ( , )
( , ) = ( , ) ,

x
y b

(54)

where Δ Δu Δv Δθ Δε Δε Δγd = { , , , , , }b x y xy
Tis the generalized increment

displacement vector of the block. The velocity V can be written as

⎛
⎝⎜

⎞
⎠⎟x y v x y

v x y x yV T V( , ) = ( , )
( , ) = ( , ) ,

x
y b

(55)

where u v θ ε ε γV = { ,̇ ,̇ ,̇ ̇ , ̇ , ̇ }b x y xy
Tis the generalized velocity vector of the

block. Moreover, the acceleration A can be expressed as

⎛
⎝⎜

⎞
⎠⎟x y A x y

A x y x yA T A( , ) = ( , )
( , ) = ( , ) .

x
y b

(56)

where u v θ ε ε γA = { ,̈ ,̈ ,̈ ̈ , ̈ , ̈ }b x y xy
Tis the generalized acceleration vector of

the block. On the other hand, to represent the stress and strain of any
point inside of the block, the vectors x y σ σ σσ( , ) = { , , }1

1
2
2

2
1 T and

x y S S SS( , ) = { , , 2 }1
1

2
2

2
1 T(refer to Eq. (12)) can be employed, respec-

tively. The strain rate vector of any point can be expressed as (refer to
Eq. (17))

{ }x y S S SS B V̇ ( , ) = ̇ , ̇ , 2 ̇ = ,b b1
1

2
2

2
1

(57)

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥B =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,b
(58)

and the strain rate increment vector can be written as

{ }Δ x y ΔS ΔS ΔS ΔS B V̇ ( , ) = ̇ , ̇ , 2 ̇ = . .b b1
1

2
2

2
1

(59)

Noticing the arbitrariness of δ ΔV( )b , Eq. (48) can be recast in the
following matrix format

∫ ∫ ∫dΩ Δt dΩ ρ dΩB σ B D B V T T A W W+ + + − = 0,
Ω b Ω b b b

Ω
b

T T T

Dynamic terms

pen ext
� 	��� 
���

(60)

where D is the material matrix, and

˘∫ Δ Δ dSW T k T d u= ( − ) ,
Γ

bpen T
u (61)

˘∫ ∫dS ρ dΩW T P T f= + ,
Γ Ω

ext T T
P (62)

where ˘Δu , P̆ and f are the specified increment displacement, specified
traction, and force per unit volume, respectively. The penalty matrix k

is

⎡
⎣⎢

⎤
⎦⎥

k
kk = 0

0 .
x

y (63)

It should be noted that the definitions of the stress and the velocity
54 must be employed, with respect to the co-moving coordinate system.
Next, the disposition of the dynamic terms in Eq. (60) will be explained
based on the generalized-α method 55, which is an implicit method for
dynamic analysis. The velocities and accelerations of the Newmark
format 57 at the end of time t Δ t+ are as follows:

γ
β Δ t Δ γ β

β
γ β

β ΔtV d V A= − − − − 2
2 ,b

t Δ t
b b

t t b
+

(64)

β Δt Δ β Δt
β

βA d V A= 1
( ) − 1 − 1 − 2

2 .b
t Δ t

b b
t t b

+
2 (65)

The generalized mid-point velocities and accelerations are given by
55

α γ
β Δ t Δ α γ β

β
α γ β

β ΔtV d V

A

= (1 − ) − (1 − ) − − (1 − )( − 2 )
2

,

b
t Δ t α f

b
f

b
t f t

b

+ − f

(66)

α
β Δt Δ α

β Δt
α β

βA d V A= 1 −
( ) − 1 − − 1 − − 2

2 ,b
t Δ t α m

b
m

b
t m t b

+ −
2

m
(67)

where β, γ , αf and αm are the algorithmic parameters and the relation-
ship between them are as follows:

β α α γ α α= 1
4 (1 − + ) , = 1

2 − + ,m f m f2
(68)

where

α ρ
ρ α ρ

ρ= 2 − 1
+ 1 , = + 1,m f

∞

∞

∞

∞ (69)

and ρ∞ denotes the spectral radius.
After some mathematical manipulations, the incremental governing

equation of one block can be written as

ΔK M d F( + ) = ,b b b b (70)

where Kb, Mb and Fb are the stiffness matrix, the mass matrix and the
equivalent force vector of the block, respectively. As for the other
matrices, such as matrices of normal contact and shear contact and
friction force, they are similar to those given by 1. Once these matrices
are obtained, the global control equation can easily be assembled. Up to
now, SRDDAvp is established.

It should be pointed out that SRDDAvp possesses the ability to
capture the deformation and rotation simultaneously, which inherits
from the S-R decomposition theorem. Exactly due to this ability,
SRDDA can naturally eliminate the volume expansion of blocks.

4. Numerical examples

In this section, several classical tests are analyzed to validate the
availability and potential of SRDDAvp. In this study, DDA0 signifies the
original DDA 1, DDA1 denotes the enhanced DDA by post-adjustment
method 24 to eliminate the volume expansion. It should be pointed out
that Eigen 58, which is a C++ template library for linear algebra, is used
to solve the governing equation.

L=10.00

A B

h=0.05 l=0.20Block1 Block2

Fig. 3. Configuration of a simple pendulum.
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4.1. Simple pendulum

In Fig. 3, Block1 is a long rod with a length of 9.90 m and a high of
h=0.05 m; Block2 is a quadrate and its length of side is l=0.20 m. Point
A serves as the center of rotation, point B is the centroid of Block2, and
the distance between points A and B is given by L=10.00 m. Block1 and
Block2 are connected at point B by contact springs with a stiffness of
0.20×1011 MN/m.

The simple pendulum falls from a horizontal position. In this
example, the gravity of Block2 is the only external force and the mass of
the Block1 is not considered. Let the time step size Δ=0.001 s, the
acceleration of gravity g =–10 m/s2, Young's modulus E =0.20×1011

MPa, Poisson's ratio υ=0.25, the penalty parameter P=0.20×1011 MPa,
and the spectral radius of the generalized-α method 55ρ = 1∞ . The total
number of calculation steps is 6000, and the open-close iterations are
not performed during the simulation. The trajectories of point B are
shown in Fig. 4, and the some data are listed in Tables 1, 2.

From the zoomed view in Fig. 4(a), there is an offset between two
trajectories, which are corresponding to the two different directions of
motion. This is because the false volume expansion is not removed in
DDA0. While in Fig. 4(b) and (c), the offsets of trajectories are not
observed, implying that the false volume expansion is overcome
effectively by DDA1 and SRDDAvp. The effectiveness of SRDDAvp is
proved further by the data in Table 1. It should be emphasized that
compared with DDA1, the accuracy of the maximum angular velocity of
the simple pendulum is improved obviously by SRDDAvp (see Table 2),
especially for the motion from right to left. The relative error is reduced
to RE=0.1346% from RE=0.2774%, implying that the maximum
angular velocity given by SRDDAvp is closer to the theoretical solution.

4.2. Swing of a slender rod

The configuration of a slender rod is shown in Fig. 5. The length
and high of the rod are L=10.00 m, h=0.10 m, respectively. Point A is
the center of rotation, and point B is the centroid of rod. The slender
rod falls freely from a horizontal position. Let the time step size
Δ=0.001 s, the acceleration of gravity g =–10 m/s2, Young's modulus E
=0.20×1011 MPa, Poisson's ratio υ=0.25, the penalty parameter
P=0.20×1011 MN/m. And the spectral radius of the generalized-α
method 55ρ = 1∞ . Under the action of gravity the slender rod starts fall
from a horizontal position. The total number of calculation steps is
5000. The trajectories of points B and C are shown in Fig. 6, and the
some data are listed in Tables 3 and 4.

From the zoomed view in Fig. 6(a), there is also an offset between
two trajectories; this is also caused by the false volume expansion.
From Table 3, as we can see, the false volume expansion basically does
not exist in DDA1 and SRDDAvp. Moreover, from Table 4, the accuracy
of maximum angular velocity of the slender rod is enhanced signifi-
cantly by SRDDAvp, especially for the movement from right to left. The
relative error is reduced to RE=0.1608% from RE=0.2834%. It would
be more meaningful for long time simulation.

4.3. Propagation of a sine wave

Now, the propagation of a sine wave is used to verify SRDDAvp. A
bar-spring structure (Fig. 7) serves as the medium. The bar-spring
structure consists of 40 bars and 39 springs. For each bar, the length is
given by l=0.25 m and the height is h=0.10 m, respectively. The
distance is L=10.00 m between points A and B. Let the time step
length Δ=0.005 s, Young's modulus E =0.20×105 MPa, Poisson's ratio

Fig. 4. Trajectories of point B given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp.

Table 1
Area of Block1 and Block2 (Fig. 3).

CS DDA0 DDA1 SRDDAvp

CV RE (%) CV RE (%) CV RE (%)

500 Block1 0.495021 0.0042 0.495000 0.0000 0.495000 0.0000
Block2 0.040002 0.0042 0.040000 0.0000 0.040000 0.0000

1000 Block1 0.495162 0.0326 0.495000 0.0000 0.495001 0.0001
Block2 0.040013 0.0326 0.040000 0.0000 0.040000 0.0000

2000 Block1 0.495983 0.1986 0.495000 0.0000 0.495001 0.0002
Block2 0.040079 0.1986 0.040000 0.0000 0.040000 0.0000

5000 Block1 0.497018 0.4077 0.495000 0.0000 0.495001 0.0001
Block2 0.040163 0.4077 0.040000 0.0000 0.040000 0.0002

6000 Block1 0.497932 0.5924 0.495000 0.0000 0.495001 0.0002
Block2 0.040237 0.5924 0.040000 0.0000 0.040000 0.0000

Analytical solution:Area Area1 = 0.495 m , 2 = 0.04 m2 2. (CS: calculation step, CV: cal-
culation value, RE: relative error)

Table 2
Maximum angular velocity of a simple pendulum (Fig. 3).

Direction of motion Method CV RE (%)

Left-to-right DDA0 −1.413895 −0.0226
DDA1 −1.415474 0.0891
SRDDAvp −1.415475 0.0892

Right-to-left DDA0 1.413342 −0.0617
DDA1 1.418137 0.2774
SRDDAvp 1.416118 0.1346

Analytical solution: ω = ∓ 1.414214 s−1.(CV: calculation value, RE: relative error)

A
L=10.00

C

h=0.10

B

Fig. 5. Configuration of a slender rod.
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υ=0.25, the stiffness of springs k=200 MN/m, the penalty parameter
P=200 MN/m, and the spectral radius of the generalized-α method
55ρ = 1∞ . The total number of calculation steps is 900. Moreover, the

weights of bars are ignored and point B is always fixed in the horizontal
direction during simulation. The following displacement is assigned to
point A.

( )
u
v n

= 0
= 0.25 sin ,π2

300 (71)

where n is the current calculation step. Eq. (71) indicates that the
amplitude A =0.25 and the period T=300 CS of the sine wave. Some
results are shown in Figs. 8–10.

At CS =300, see Fig. 8, DDA0, DDA1 and SRDDAvp all can obtain
the accurate period T=300 CS; while at CS =600, see Fig. 9, only
SRDDAvp can give the accurate period, namely, T1=299 CS for the first
period and T2=302 CS for the second period. For DDA0 and DDA1, the
total number of calculation steps corresponding to two periods is
shortened to about 573 CS. At CS =900, see Fig. 10, the distinction
becomes clearer between the periods given by DDA0, DDA1 and
SRDDA. Especially for the first period, the periods obtained by
DDA0, DDA1 and SRDDAvp are T1=270 CS, 275 CS and 301 CS,
respectively. In general, only for the third period, DDA0 and DDA1 can
obtain the acceptable period T3=301 CS and 304 CS, respectively.

a

b

c

Offset of the trajectory

Fig. 6. Trajectories of points B and C given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp.

Table 3
Area of a slender rod (Fig. 5).

CS DDA0 DDA1 SRDDAvp

CV RE (%) CV RE (%) CV RE (%)

500 1.000093 0.0093 1.000000 0.0000 1.000001 0.0001
1000 1.000716 0.0716 1.000000 0.0000 1.000002 0.0002
2000 1.003383 0.3383 1.000000 0.0000 1.000002 0.0002
5000 1.007500 0.7500 1.000000 0.0000 1.000002 0.0002

Analytical solution: Area = 1.00 m2. (CS: calculation step, CV: calculation value, RE:
relative error)

Table 4
Maximum angular velocity of a slender rod (Fig. 5).

Direction of motion Method CV RE (%)

Left-to-right DDA0 −1.731942 −0.0063
DDA1 −1.733668 0.0934
SRDDAvp −1.732869 0.0472

Right-to-left DDA0 1.731777 −0.0158
DDA1 1.736959 0.2834
SRDDAvp 1.734837 0.1608

Analytical solution: ω=± 1.732051 s–1. (CV: calculation value, RE: relative error)

A
L=10.00

l=0.25

h=0.10

B

Fig. 7. Configuration of a bar-spring structure.

a

b

c

T = 300

Fig. 8. One period of a sine wave given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp.

a

b

c 

T1 = 277

T1 = 299 T2 = 302

T2 = 296

T1 = 276 T2 = 297

Fig. 9. Two periods of a sine wave given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp.

a

b

c

T1 = 301 T2 = 302 T3 = 301

T1 = 275 T2 = 281 T3 = 304

T1 = 270 T2 = 281 T3 = 301

Fig. 10. Three periods of a sine wave given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp.
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While, for the all three periods, SRDDAvp can always give the
satisfactory period, namely T1=301 CS, T2=302 CS and T3=301 CS.
The shorter period means the faster velocity, thus, the velocity of
propagation of the sine wave is increased by DDA0 and DDA1.

4.4. Wiggle of a nunchaku

A nunchaku is consisted of two sticks AB1 and B2C, and for each
stick the length is L =1.00 m and the high is h =0.10 m, respectively, as
shown in Fig. 11. Point A is always fixed in double directions and the
stiffness of fixed springs is given by k=0.20×1015 N/m. Points B1, B2

and C are chosen as the three checking points. Moreover, Young's
modulus E =0.20×1011 Pa, Poisson's ratio υ =0.45, the density of
material ρ =2500 kg/m3, and the acceleration of gravity g =−10 m/s2,
and the spectral radius of the generalized-α method 55ρ = 1∞ . Let the
time step length to be Δ=0.002 s, and the total calculation step is 1800.
Under the action of gravity the nunchaku falls from a horizontal
position.

In this example, during the course of the simulation, we want to
achieve a scenario that points B1 and B2 are always coincide with each
other at any instant. Namely, there is the following constrain between
points B1 and B2 at each calculation step.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

Δu
Δu

Δu
Δu x y Δ x y ΔT d T d− = ( , ) − ( , ) = 0

0 ,
x

y

x

y
B

B

B

B
AB B B AB B C B B B C

1

1

2

2
1 1 1 1 2 2 2 2

(72)

where Δu Δu( , )x y
B B1 1 and Δu Δu( , )x y

B B2 2 the increment displacements of
points B1 and B2, respectively. And ΔdAB1 and ΔdB C2 are the generalized
displacement vectors of the sticks AB1 and B1C, respectively.
Additionally, x yT ( , )AB B B1 1 1 and x yT ( , )B C B B2 2 2 are the shape functions
corresponding to the sticks AB1 and B1C, respectively (refer to Eq.
(52)). Introduction of the Lagrange multipliers λ 1 and λ 2 yields

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
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⎤
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T 0

d
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0
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∼ ∼∼
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12×1
2×1

12×1
2×1 (73)

where

λ λT T T λ= [ , − ], = [ , ] ,∼
AB B C 1 2 T

1 2 (74)

and

⎡
⎣⎢

⎤
⎦⎥Δ Δ

Δd d
d= ,∼ AB

B C
1

2 (75)

As for the matrixes A 12×12 and F∼ 12×1 one can be refer to Eq. (70).
Some results are shown in Fig. 12.

From the zoomed view in Fig. 12(a), it is apparent that the
trajectories of points B1 (the blue solid line) and B2 (the red solid line)
are coincidence; while there is an offset between two trajectories
corresponding to the to-and-fro movement of the nunchaku. Now, let
us see Fig. 12(b), for point B1 there is not an offset; however, the
trajectories of points B1 (the blue solid line) and B2 (the red solid line)
do not overlap, this phenomenon is against the control equation Eq.
(73). On the other hand, in Fig. 12(c) it cannot be observed that the
separation and offset associated with points B1 and B2.

The some distances between points B1 and B2 obtained by DDA0,
DDA1 and SRDDAvp are list in Table 5.

From Table 5, as we can see, for DDA0 and SRDDAvp the distance

between points B1 and B2 are always equal to zero, this fully complies
with the governing equation Eq. (73). However, for DDA1 the distance
is lengthening gradually even though that the angular velocity of the
nunchaku is fluctuant and completely regardless of the constraint of
Lagrange multipliers on them.

Fig. 13 shows further the trajectories of point C obtained by DDA0,
DDA1 and SRDDAvp. The difference between them is easily observed.

4.5. Simulation of rockfall

A model test example, which is to be conducted, is designed to
demonstrate the capability of SRDDAvp to treat large rotation. The
model configuration is shown in Fig. 14. On a portion of a rocky slope,
a stone, with an initial velocity V0=(2.50 m/s, 0)and angular velocity
ω =0 -1.00 s–1, is falling under the action of gravity. The first length
L1=1.00 m, the second length L2=2.00 m, the third length L3=3.00 m
and the forth length L4=5.00 m. The three slope angles are α = 60°,
β = 45° and γ = 15°, respectively.

Points P3, P4, and P5 are fixed in double directions. Points P1 and P2

are the centroid and a vertex of the stone, respectively. Let the
maximum allowable step displacement ratio to be 0.001, the time step
size Δ=0.0005 s, Young's modulus E =0.10×108 MPa, Poisson's ratio
υ=0.35, the acceleration of gravity g =–10 m/s2, the spectral radius of
the generalized-α method 55ρ = 1∞ and the penalty parameter is 50E.
The total calculation step is 4000. Considering the fact that the volume
expansion is mainly caused by the large rotation, thus, we will pay more
attention to the angular velocity. Some data are listed Tables 6 and 7,
while the trajectories of points P1 and P2 are shown in Fig. 15.

From Table 6, we conclude that before CS=1382 (see Fig. 15), at
which the first contact occurs between the slope and the stone, the
angular velocities given by DDA0 and DDA1 are nearly equal. By
comparison, the angular velocities by SRDDAvp are more accurate. For
example, at CS =1000, the relative errors are 0.000203% (DDA0),
0.000203% (DDA1) and 0.000040% (SRDDAvp), respectively.

At CS =1382, the stone touches the slope for the first time (see
Fig. 15). Then, at the following calculation step (CS =1383), the angular
velocities by DDA0, DDA1 and SRDDA are different, with
−10.25734346 s–1, −8.85281450 s–1 and −8.85595077 s–1, respec-
tively. Moreover, due to the issue of volume expansion, the second
contact by DDA0 can be observed at CS =1973 (see Fig. 15); while for
DDA1 and SRDDAvp, the second contact occurs at CS =2005.
Whereafter, the third contact appears at CS =2912, 2593 and 2821
corresponding to DDA0, DDA1 and SRDDAvp, respectively.

From Table 7, for DDA1 and SRDDAvp, the moments of the second
contact (CS =2005) is the same. However, at the next calculation step
(CS =2006), the angular velocities by DDA1 and SRDDAvp are different,
namely −18.34628241 s–1 and −18.55805717 s–1, respectively. While,
following the third contact, namely at CS =2913, 2594 and 2822,
respectively. The angular velocities by DDA0, DDA1 and SRDDAvp are
2.77335470 s–1, −23.45725286 s–1 and 14.49043619 s–1, respectively.

In Fig. 15, the blue line denotes the trajectory of point P1, the red
line denotes the trajectory of point P2. Due to the volume expansion, as
shown in Fig. 15(a), we observe that the trajectory by DDA0 is
distorted. By comparing Fig. 15(b) and (c), we can see, the times of
contact between the stone and the slope (β = 45°) are once and twice
for DDA1 and SRDDAvp, respectively. Moreover, for the sliding
distance of the stone, the results by DDA1 are longer than that by
SRDDAvp. In addition, from the zoomed views (zoom1, zoom2 and
zoom3) in Fig. 15, several turning points of the trajectories can be
observed. The corresponding angular velocities can found in Table 7.
The potential of SRDDAvp is accordingly demonstrated by the simple
example.

5. Conclusions

The S-R decomposition theorem is an important result in the theory

A C

L=1.00 L=1.00

H=0.10 GG

B1 B2

Fig. 11. Configuration of a nunchaku.
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of geometric nonlinearity. It has an ability to capture strain compo-
nents and rotation components at the same time. By utilizing this
feature, a dynamics formulation was first deduced through the
principle of virtual power. Moreover, the update process for the co-
moving coordinate, which is closely related to the S-R decomposition
theorem, was proposed. The new formulation is independent of the
specific numerical methods. Then, in the setting of DDA, an S-R-D-
based DDA, abbreviated as SRDDAvp, was established. Compared with
the conventional DDA, the slightly modified basic unknown variables
were adopted in SRDDAvp. Some examples have illustrated that
SRDDAvp can naturally overcome the issue of volume expansion,
effectively improve the calculation accuracy and also equip DDA with
the potential to treat large deformation and large rotation.

Fig. 12. Angular velocity of a nunchaku given by DDA1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Distance between points B1 and B2.

CS DDA0 DDA1 SRDDAvp

15 0.000000 0.000001 0.000000
100 0.000000 0.000219 0.000000
500 0.000000 0.009848 0.000000
1000 0.000000 0.021701 0.000000
1500 0.000000 0.025308 0.000000
1800 0.000000 0.035775 0.000000

Analytical solution: 0 m. (CS: calculation step)

Trajectory of points C given by SRDDA

Trajectory of points C given by DDA

Trajectory of points C given by DDA

Fig. 13. Trajectories of point C given by DDA0, DDA1 and SRDDAvp.

Fig. 14. Configuration of simulation of rockfall.
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Appendix

SRDDAvp for three-dimensional case.
For arbitrary shape three-dimensional block, the shape function becomes

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

x y z
z z y y x x z z y y

z z x x y y z z x x
y y x x z z y y x x

T( , , ) =
1 0 0 0 − − − 0 0 0 ( − )/2 ( − )/2
0 1 0 − 0 − 0 − 0 ( − )/2 0 ( − )/2
0 0 1 − − 0 0 0 − ( − )/2 ( − )/2 0

,
c c c c c

c c c c c

c c c c c (A1)

the increment displacement Δu at any point x y z( , , ) can be given by

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟Δ x y z

Δu x y z
Δu x y z
Δu x y z

x y z Δu T d( , , ) =
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= ( , , ) ,
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y
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(A2)

where Δ Δu Δv Δw Δr Δr Δr Δε Δε Δε Δγ Δγ Δγd = { , , , , , , , , , , , }b x y z x y z yz zx xy
Tis the generalized increment displacement vector. Δrx, Δry and Δrz represent the

rigid-body rotation angle increments corresponding to x-, y- and z-axis respectively. Moreover, Δε Δε Δε Δγ Δγ Δγ, , , , ,x y z yz zx xy is the six increments
strain components. The strain rate increment vector can be chosen as

{ }Δ x y z ΔS ΔS ΔS ΔS ΔS ΔS ΔS B V̇ ( , , ) = ̇ , ̇ , ̇ , 2 ̇ , 2 ̇ , 2 ̇ = ,b b1
1
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3
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(A3)

where

⎡
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⎤

⎦

⎥⎥⎥⎥⎥⎥

B =

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

.b

(A4)

Similarly, the velocity V reads

Table 6
Angular velocity before the first touch (CS =1382) (Fig. 15).

CS CV (s–1) RE (%)

DDA0 DDA1 SRDDAvp DDA0 DDA1 SRDDAvp

100 −1.00000146 −1.00000146 −1.00000033 0.000146 0.000146 0.000033
200 −1.00000271 −1.00000271 −1.00000064 0.000272 0.000272 0.000062
500 −1.00000229 −1.00000229 −1.00000055 0.000229 0.000229 0.000055
800 −1.00000217 −1.00000217 −1.00000043 0.000217 0.000217 0.000043
1000 −1.00000203 −1.00000203 −1.00000040 0.000203 0.000203 0.000040

CS: calculation step; CV: calculation value; RE: relative error.

Table 7
Angular velocity at some CS (Fig. 15).
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the acceleration A is
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A x y z
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b

(A6)

where u v w r r r ε ε ε γ γ γV = { ,̇ ,̇ ̇, ̇ , ̇ , ̇ , ̇ , ̇ , ̇ , ̇ , ̇ , ̇ }b x y z x y z yz zx xy
Tand u v w r r r ε ε ε γ γ γV = { ,̈ ,̈ ̈, ⃛ , ̈ , ̈ , ̈ , ̈ , ̈ , ̈ , ̈ , ̈ }b x y z x y z yz zx xy

T are the generalized velocity vector and accelera-
tion vector, respectively. And the penalty matrix k should be

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

k
k

k
k =

0 0
0 0
0 0

.
x

y
z (A7)

Then, the governing equation for three-dimensional case can be easily constructed. And the increment strain is obtained by Eqs. (12), (14) and
(15) only need to replace Sj

i, u i j and θ by ΔSj
i, Δu i j and Δθ, respectively, reads

a

b

c
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Fig. 15. Trajectories of points P1 and P2 given by: (a) DDA0; (b) DDA1 and (c) SRDDAvp. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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where
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and
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