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SUMMARY

In this paper, two complex critical-state models are implemented in a displacement finite element code. The
two models are used for structured clays and sands, and are characterized by multiple yield surfaces, plastic
yielding within the yield surface, and complex kinematic and isotropic hardening laws. The consistent
tangent operators}which lead to a quadratic convergence when used in a fully implicit algorithm}are
difficult to derive or may even not exist. The stress integration scheme used in this paper is based on the
explicit Euler method with automatic substepping and error control. This scheme employs the classical
elastoplastic stiffness matrix and requires only the first derivatives of the yield function and plastic
potential. This explicit scheme is used to integrate the two complex critical-state models}the sub/super-
loading surfaces model (SSLSM) and the kinematic hardening structure model (KHSM). Various
boundary-value problems are then analysed. The results for the two models are compared with each other,
as well with those from standard Cam-clay models. Accuracy and efficiency of the scheme used for the
complex models are also investigated. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Critical-state soil models were first developed by Roscoe and his colleagues at Cambridge 30
years ago [1–4]. Since then, such models have been widely used in various geotechnical
applications. Despite their popularity, the classic Cam-clay models are inadequate for
addressing soil characteristics such as structures, anisotropy, small-strain behaviour, stiffness
degradation during cyclic loading, and rate-dependent behaviour. Consequently, a variety of
complex elastoplastic models have been proposed and they contain various modifications to the
standard Cam-clay models to cover different soil types and loading behaviours [5–10]. In
particular, the kinematic hardening structure model (KHSM) developed by Rouainia and Muir
Wood [9] and the sub/super-loading surface model (SSLSM) proposed by Asaoka [10] are both
capable of addressing natural soils with initial structures, and can simulate complicated soil
response during cyclic loading. However, these models are mostly used to model the behaviour
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of one single soil element and their applications to boundary-value problems are rather limited.
The aim of the present study is to develop algorithmic and computational aspects of finite
element implementation of the two models using an explicit stress-integration scheme.

Existing approaches for integrating stress–strain laws at Gauss points can be classified as
‘explicit’ schemes or ‘implicit’ schemes. Implicit algorithms based on the concepts of operator
split and closest point projection or the so-called return mapping have been applied to a variety
of computational geomechanics applications [11–22], while explicit schemes with substepping
and error control have also been suggested in References [23–28] and applied to various
geotechnical problems [7,29,30]. The advantages and disadvantages of the two classes of
schemes are well-known and extensive comparisons between them have been made in literature
(see, e.g. References [27,30–33]).

While both implicit and explicit schemes have been developed for the classic critical-state
models [7,12,14–17,20], application of these schemes to more complex geomechanical models is
limited. It is generally fair to state that highly non-linear complex constitutive models favours an
explicit solution, because (i) the numerical solution to the local non-linear equations in an
implicit scheme may not converge, (ii) the consistent tangent operator may be very difficult to
derive so that the main advantage of the implicit schemes, i.e. the quadratic convergence of
Newton iteration, is not guaranteed. In addition, certain geomechanical models, as the two
model used in this paper, become so complex that it is very difficult to derive the second-order
derivative of the plastic potential. Some exceptions of using implicit schemes for complex
models include Bojar et al. [20] and Tamagnini et al. [21]. The former has used implicit scheme
to solve an anisotropic bounding surface model. A loading surface that is homologous to the
bounding surface in the strain space has to be introduced to handle the additional consistency
condition on the bounding surface. Tamagnini et al. [21] used an implicit generalized backward
Euler (GBE) method to treat an elastoplastic constitutive model for bonded geomaterials. Some
assumptions such as material isotropy and hyperelastic behaviour had to be made to partially
alleviate the drawbacks of implicit algorithms such as the requirement of computing the second-
order gradients of the plastic potential.

On the other hand, it is less cumbersome to use explicit integration schemes to solve complex
constitutive models. In particular, the accuracy of these schemes, which is perceived to be their
main drawback compared to the implicit schemes, can be overcome by using automatic
substepping and error control. In this paper, the explicit scheme presented in References [26,27]
is extended to solve two complex models. The two models KHSM and SSLSM both contain
multiple yield surfaces and combined kinematic and isotropic hardening, invoked by the
introduction of an initial structure and the bounding surfaces. The explicit scheme is
reformulated to accommodate additional internal variables and hardening laws. The
consistency conditions on the bounding surfaces are translated to the current loading surfaces.
No addition measure is required to treat the consistency associated with the bounding surface.
An automatic load stepping scheme is used to solve the global system of Equations [28,29],
which ensures that the small-strain non-linearity in the KHSM and SSLSM is captured with
accuracy and efficiency.

This paper is organized as follows. First, the KHSM and the SSLSM are briefly described and
compared. Secondly, a general procedure for integrating stress–strain laws with both kinematic
and isotropic hardening and more than one hardening parameters is presented. Thirdly, the two
constitutive models are used to analyse triaxial compression tests under drained and footing
conditions. The results of the two models are compared, as well as those from standard
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Cam-clay models. The performance of the explicit substepping integration scheme on KHSM
and SSLSM is evaluated. Finally, the conclusions of the study are summarized.

2. TWO COMPLEX SOIL MODELS

In this section, the KHSM (Rouainia and Muir Wood [9]) and the SSLSM (Asaoka [10]) are
briefly described. Slight modifications have been made to the formulation of each of the models
to facilitate comparison. Both the KHSM and SSLSM were developed to account for initial
structures, small strain stiffness, stiffness degradation with strain history, and hysteretic
response in cyclic loading. In the KHSM, this was done by adding a structural surface into the
kinematic hardening model developed by Al-Tabbaa and Muir Wood [34]; while in the SSLSM,
an extra superloading surface was introduced into the subloading surface model proposed by
Hashiguchi [35]. Concepts of bounding-surface plasticity [36] are used in both models. As a
result, there are three surfaces of elliptical shape as in the MCC model in both models}the
reference surface, the bubble surface, and the structural surface for the KHSM (see Figure 1(a)
in the plane of p0 � q) and the normal yield surface, the subloading surface, and the
superloading surface for the SSLSM (see Figure 1(b)). The small elastic region is confined by a
small kinematic hardening bubble in the KHSM and the subloading surface in the SSLSM,
respectively. The current stress state is always located within or on the bubble/subloading
surface. Any stress path moving beyond the initial boundary of the bubble/subloading surface
causes plastic deformation and evolution of all yield surfaces. The KHSM was initially
presented in a form that can account for the initial anisotropy in soils by presenting a structure
surface not passing through the origin. For simplicity, this feature is neglected here}with both
the structure surface and the reference surface being assumed to pass through the origin.
Consequently, it has a formulation similar to the model proposed by Muir Wood [6]. In the
SSLSM, the three yield surfaces are all supposed to pass through the origin.

In both models, associated flow is assumed. The yield functions and corresponding plastic
potentials for the yield surfaces in the two models are presented in Table I. In Table I, p0 and s

are the mean pressure and the deviatoric stress, respectively, given by p0 ¼ tr½r�=3; s ¼ r� pI;
where I is the second-order identity tensor and tr½�� is the trace operator of ½��: For SSLSM,
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Figure 1. Illustration of yield surfaces for KHSM and SSLSM in the p0–q plane:
(a) KHSM [9]; (b) SSLSM [10].
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ðp0; sÞ; ð%p0;%sÞ and ð*p0; *sÞ are the mean pressure and deviator stress at the subloading surface,
superloading surface and normal-loading surface, respectively. Relations among them will be
addressed afterwards. It should be noted that the slope of the critical state line (CSL)
(designated by M in the table) is expressed as a function of the Lode angle y; and determines the
shape of the failure surface in the deviatoric plane. The following expression for M is used in
this paper:

MðyÞ ¼Mmax
2a4

1þ a4 � ð1� a4Þsin 3y

� �1=4
ð1Þ

By setting the parameter a with a ¼ ð3� sin fÞ=ð3þ sin fÞ; this yield surface coincides with the
Mohr–Coulomb hexagon at all vertices in the deviatoric plane (where f is the friction angle of
the soil at critical state), while setting a ¼ 1; recovering the Drucker–Prager compression circle.
It should be noted that this surface is differentiable for all stress states and is convex (provided
a50:6). The variation of yield surface cone with respect to a in the deviatoric stress plane is
depicted in Figure 2.

Other parameters in Table I should be noted in conjunction with Figure 1. For the KHSM,
ðp0c; 0Þ; ðp

0
#a; 0Þ; and ðp

0
%a; s%aÞ (instead of ðp0%a; q%aÞÞ are the centres of the reference surface in a general

3D stress space, the structure surface, and the bubble surface in a general 3D stress space,
respectively. Rs ¼ p0#a=p

0
c is a parameter indicating the initial structure, whereas Rb is the size

ratio of the bubble surface over the reference surface (and is assumed to be constant during
loading). The KHSM uses the slopes of the normal compression line and swelling line, ln and
kn; in the plane of ln v� ln p0; which is slightly different from standard critical-state models. For
the SSLSM, ðp0c; 0Þ; ð*p

0
c; 0Þ; and ð%p

0
c; 0Þ are the respective centres of the three surfaces. Moreover,

ðp0; qÞ; ð*p0; *qÞ; and ð%p0; %qÞ are the corresponding stresses on the subloading, normal Cam-clay, and
superloading yield surfaces in the p0–q plane, respectively. The three stress states are related to

Table I. Yield functions and corresponding plastic potentials for KHSM and SSLSM.

Model Yield surface Yield function and plastic potential

KHSM [9] Reference surface fr ¼ gr ¼
s : s

ðMðyÞp0cÞ
2
þ

p0

p0c
� 1

� �2

�1

Bubble surface fb ¼ gb ¼
ðs� s%aÞ : ðs� s%aÞ

ðMðyÞp0cÞ
2

þ
p0 � p0%a

p0c

� �2

�R2
b

Structure surface fs ¼ gs ¼
s : s

ðMðyÞp0cÞ
2
þ

p0

p0%c
� Rs

� �2

�R2
s

SSLSM [10] Normal yield surface fnor ¼ gnor ¼
*s : *s

ðMðyÞ*p0cÞ
2
þ

*p0

*p0c
� 1

� �2

�1

Subloading surface fsub ¼ gsub ¼
s : s

ðMðyÞp0cÞ
2
þ

p0

p0c
� 1

� �2

�1

Superloading surface fsup ¼ gsup ¼
%s : %s

ðMðyÞ%p0cÞ
2
þ

%p0

%p0c
� 1

� �2

�1
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one another by the following radial mapping rule:

R ¼
p0

%p0
¼

q

%q
; Rn ¼

*p0

%p0
¼

*q

%q
ð2Þ

where R and Rn are similarity ratios for superloading/subloading surfaces and superloading/
normal surfaces, respectively. They act as constitutive hardening variables in the SSLSM. If
R ¼ Rn ¼ 1:0; the SSLSM will coincide with the modified Cam-clay model (MCCM). If in a
more general 3D stress place, ðp0; qÞ; ð*p0; *qÞ; and ð%p0; %qÞ may be replaced by ðp0; sÞ; ð%p0;%sÞ and ð*p0; *sÞ;
respectively, where s; %s and *s have a same principal direction and yield a similar relations in
norm form as (2) R ¼ jjsjj=jj%sjj; Rn ¼ jj*sjj=jj%sjj:

The elastic moduli present themselves in the KHSM and the SSLSM in the following form:

KHSM : K ¼
dp0

deev
¼

p0

kn

SSLSM : K ¼
dp0

deev
¼

vp0

k

; G ¼
3ð1� 2mÞ
2ð1þ mÞ

K ð3Þ

where K and G are the bulk modulus and the shear modulus, respectively. eev denotes the elastic
volumetric strain. m is Poisson’s ratio. v ¼ 1þ e is the specific volume, and e is the void ratio.

The evolution of the plastic strain in the KHSM and the SSLSM is the same as in the
standard Cam-clay model:

depij ¼ dg
@g

@s0ij
ð4Þ

where depij denotes the plastic strain increment, dg denotes the plastic multiplier. The following
generalized form of hardening laws is supposed for both models:

dj ¼ dgB ð5Þ

where j denotes a vector of hardening variables and B is an intermediate vector used in the
finite element formulation. In the KHSM the size of the bubble with respect to the reference
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Figure 2. Variation of the yield surface with respect to a in the deviatoric stress plane.
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surface can be assumed to be constant, so that rb ¼ const: In this case the KHSM has four
hardening parameters: p0c; rs; and the bubble centre ðp0%a; s%aÞ: In the SSLSM, there are three
hardening parameters: p0c; R; and Rn: Thus the vectors j and B in the two models have the
following expressions:

KHSM : j ¼ fk1;k2;k3;k4g
T ¼ fp0c;Rs; p0%a; s%ag

T; B ¼ fB1;B2;B3;B4g
T

SSLSM : j ¼ fk1;k2;k3g
T ¼ fp0c;R;R

ngT; B ¼ fB1;B2;B3g
T

ð6Þ

Detailed expressions for the elements of B in the KHSM and the SSLSM may be referred to in
Appendix A.

In the KHSM, the following geometric kinematic hardening mapping rule is used to ensure
the movement of the bubble in a direction parallel to the line joining the current stress and the
conjugate point on the bounding surface:

%rc

Rs
¼

%r
Rb

ð7Þ

where %rc ¼ rc � #a; %r ¼ r� %a; r and rc denotes the current stress on the bubble and its
conjugate stress point (image stress) on the structure surface, respectively. In addition, the
plastic modulus H in the KHSM is assumed to depend on the Euclidean distance b between the
current stress and the conjugate stress (as illustrated in Figure 3).

It should be noted that both models can degenerate to the standard Cam-clay model by
appropriate selection of model parameters. The MCC model will be recovered by the KHSM
with Rb ¼ Rs ¼ 1:0; and by the SSLSM with R ¼ Rn ¼ 1:0: In addition, both models use the
same the destructuration laws Rn ¼ 1=Rs; given k ¼Ma; ln ¼ l=v; kn ¼ k=v and under the same
plastic deformation index (for example, ed in this paper), where Rs and Rn are the
destructuration index in the KHSM and SSLSM, respectively. However, the two models also
exhibit obvious differences, in such aspects as the anisotropic nature of the model itself, the
mapping rule, and the description of the reconsolidation process for soils. Details may be
referred to in [9,10].
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Figure 3. Illustration of the translation rule and normalized distance for KHSM.
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3. EXPLICIT STRESS INTEGRATION

3.1. General formulation for finite element implementation

During a typical elastoplastic finite element analysis, the following system of ordinary
differential equations is to be solved:

’r ¼ Dep’e

’j ¼ ’gB
ð8Þ

where ’r and ’e are the rate of the stress and strain, respectively. ’j ¼ f’k1; ’k2; . . . ; ’kng
T denotes the

rate of the hardening parameter vector, and BT ¼ f@k1=@g; @k2=@g; . . . ; @kn=@gg: The elasto-
plastic stiffness matrix and plastic multiplier are defined through

Dep ¼ De �
Deba

TDe

Aþ aTDeb
; ’g ¼

aTDe’e
Aþ aTDeb

ð9Þ

where De is the elastic stiffness matrix. For the two models to be implemented, expressions in
Equation (3) are used for K and G: The generalized hardening modulus A and the gradients of
yield surface and plastic potential are defined by

A ¼ �
@f

@j

� �T
’j
’g
; a ¼

@f

@r
; b ¼

@g

@r
ð10Þ

The generalized hardening modulus A in the KHSM has the following form:

A ¼ �
@fb
@p0c

@p0

@epv

@fb
@p0
¼

@fb
@p0%a

@p0%a
@ed
þ
@fb
@q%a

@q%a
@ed

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� AdÞ

@fb
@p0

� �2
þAd

@fb
@q

� �2s
ð11Þ

whereas in the SSLSM, it can be expressed as

A ¼ �
@fsub
@p0c

@p0c
@*p0c

@*p0c
@epv

@fsub
@p0
�
@fsub
@p0c

@p0c
@R

@R

@ed
þ
@p0c
@Rn

@Rn

@ed

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� AdÞ

@fsub
@p0

� �2
þAd

@fsub
@q

� �2s
ð12Þ

The following pseudo-time, T ; is defined to facilitate the integration of (8)

T ¼ ðt� t0Þ=Dt ð13Þ

where t0 is the time at the start of the load increment, t0 þ Dt is the time at the end of load
increment, and 04T41: Since dT=dt ¼ 1=Dt; (9) may then be rewritten as

dr
dT
¼ DepDe ¼ Dr� DgDeb

dj
dT
¼ ’gDtB ¼ DgB

ð14Þ
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where Dg ¼ aTDreðAþ aTDebÞ: Equations (13) and (14) define a classical initial value problem
to be integrated over the pseudo-time interval T ¼ 0 to 1.

3.2. Explicit stress integration

The explicit integration scheme with automatic substepping and error control [26,27] is used
here to integrate the rate form of the stress–strain relations for the two models. A general
procedure of this scheme include: (a) locating the yield surface intersection with the elastic trial
stress path; (b) integrating the stress–strain relations using the modified Euler scheme with
substepping and error control; and (c) correcting the yield surface drift if any. The procedures
for implementing the KHSM and SSLSM closely follow that described in Reference [27] and
only the necessary modifications are given below.

3.2.1. Yield surface intersection. An elastic trial stress increment Dre is first computed upon the
imposed strain increments De:

Dre ¼ DeDe ð15Þ

For both the KHSM and SSLSM, the elastic part of the constitutive relation is non-linear.
However, the incremental relation between the mean stress and the elastic volumetric strain can
be integrated analytically to give the following secant elastic moduli:

KHSM : %K ¼
p00
Deev
ðexpðDeev=k

nÞ � 1Þ

SSLS : %K ¼
p00
Deev
ðexpðvDeev=kÞ � 1Þ

; %G ¼
3ð1� 2mÞ
2ð1þ mÞ

%K ð16Þ

where p00 is the effective mean stress at the start of the strain increment Deev: Poisson’s ratio is
assumed to be constant when deriving the secant shear modulus %G: Accordingly, the secant
elastic stiffness matrix %De may be computed by %K and %G; and (15) may be replaced by

D%re ¼ %DeDe ð17Þ

where %K and %G; and thus %De are evaluated by the initial stress state r0 and the total volumetric
strain increments Dev: The obtained elastic trial stress increment D%re can then be used to check
if plastic yielding occurs. The exact yield condition, f ðr; jÞ ¼ 0 ( fb for the KHSM and fsub
for the SSLSM, respectively), is approximated by an appropriate small tolerance FTOL
(typically ranged from 10�9 to 10�12) via: j f ðr; jj4FTOL: If f ðr0;j0Þ5� FTOL and
f ðr0 þ D%re;j0Þ > þFTOL; an elastoplastic transition occurs, and an efficient and accurate
algorithm such as the Pegasus intersection method as present in Reference [27] may be used to
ascertain the fraction of De that moves the stresses from r0 to the stress state rint on the yield
surface ( fb for the KHSM and fsub for the SSLSM, respectively). The extra internal variables
introduced by the bounding surface in the KHSM and the SSLSM will not evolve during this
elastic trial process, as they are all assumed to be related with plastic deformation only (referred
in Appendix A).

For every stress point on the current yield surface, there is an image (conjugate) stress
point on the bounding surface. We further exam the change of the image stress point after
locating the yield surface intersection. As an illustration, we choose the simple triaxial cases
ðp0; qÞ to be examined here, and it is easy to extend them to general 3D cases where the
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Lode angle is also considered. For the KHSM, once the yield surface intersection rint is found,
the elastic incremental stress Dre ¼ rintr0 can be found exactly, using the secant elastic moduli
and the portion of the strain increment. The stress state rint satisfies fbðr0 þ Dre; j0Þ4FTOL;
which is

fb ¼
ðq0 þ Dqe � q%a0 Þ : ðq0 þ Dqe � q%a0 Þ

Mp0c0

� �2
þ

p00 þ Dp0e � p0%a0
p0c0

� �2
�R2

b4FTOL ð18Þ

In view of Equation (7), the image stress point on the structural surface is now

rc ¼
Rb

Rs
ðr0 þ Dre � %a0Þ þ #a0 ð19Þ

Substitution of (19) into the yield function of structural surface in Table I leads to

fs ¼
½Rbðq0 þ Dqe � q%a0

Þ=Rs�
MðyÞp0c0

� �2
þ

Rbðp00 þ Dp0e � p0%a0
Þ=Rs þ p0#a0

p0c0
� Rs0

� �2
�R2

s0 ð20Þ

Note that Rs0 ¼ p0#a0
=p0c0: Rearranging Equation (20) leads to

fs ¼
Rb

Rs0
ð fb þ R2

bÞ � R2
s0 ¼

Rb

Rs0
fb þ

R3
b � R3

s0

Rs0
ð21Þ

Recall that Rb=Rs041: We find that fs4FTOL; or alternatively

fsðr
ðsÞ
0 þ DrðsÞe ;j0Þ4FTOL ð22Þ

Equation (22) indicates that the image stress point of rint is consistently within or on the
structural surface. Following the same procedure, we can arrive at the same conclusion for
SSLSM.

3.2.2. Modified Euler scheme with substepping. Once the portion of the given strain increment
that causes plastic yielding is known, a set of stress increments and a set of increments of the
hardening parameters can be computed using the forward Euler method, with all stress-
dependent quantities estimated at the current stress state. We then can update the stress state
and hardening parameters according to the forward Euler solution. Using the updated stress
state and the updated hardening parameter to estimate elastic stiffness and gradients of the yield
surface and plastic potential, we can obtain another set of stress increments and hardening
parameter increments, i.e. the modified Euler solution. The difference between the two sets of
solutions can then be used as an error measure. The strain increment is subdivided if the error is
larger than a prescribed tolerance. If the error is within the tolerance, the stress state and
hardening parameters are then updated according to the modified Euler method. The
substepping scheme used here largely follows that presented in Reference [27] for critical state
models. The relative error in the stress solutions follows exactly that in Reference [27]. However,
the relative error in the hardening parameters is computed as follows for the KHSM and
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SSLSM, respectively:

KHSM : ERRðkÞn

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDp0c2 � Dp0c1Þ

2

ðp0cÞ
2

þ
ðDp0%a2 � Dp0%a1Þ

2

ðp0%aÞ
2

þ
ðDRs2 � DRs1Þ

2

ðRsÞ
2

þ
ðDs%a2 � Ds%a1Þ : ðDs%a2 � Ds%a1Þ

s%a : s%a

s

SSLSM : ERRðkÞn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDp0c2 � Dp0c1Þ

2

ðp0cÞ
2

þ
ðDR2 � DR1Þ

2

ðRÞ2
þ
ðDRn

2 � DRn
1Þ

2

ðRnÞ2

s ð23Þ

where the subscript 2 stands for the second-order accurate solution obtained by the modified
Euler method, the subscript 1 stands for the first-order accurate solution obtained by the
forward Euler method, and all the denominators use the second-order accurate solutions. In
Equation (23), we include the error in each hardening parameter, even though some parameters
(such as Rs for the KHSM) do not explicitly appear in the current yield surface. The larger value
between the stress error and the hardening parameter error is then used to subincrement the
strain increment.

In the KHSM, the translation law in Equation (A1) should theoretically guarantee that
the bubble is always inside the structure surface. In numerical computation, however, this is
not always the case and the bubble might have drifted slightly outside the structure surface.
Test runs show that this drift is sensitive to the parameters b and bmax used in the translation
law as well as the material parameters B; k; and c: This drift, if left uncorrected, can lead
to some numerical instability. The correction of this drift is discussed below. The SSLSM
is more robust in the sense that the subloading surface always lies within the superloading
surface.

3.2.3. Correction of yield surface drift. The stress state at the end of a successful subincrement
may slightly drift away from the current yield surface. It is generally recommended to correct
this drift, using for example a consistent scheme as described in Reference [27]. Supposing that
the uncorrected stresses and hardening parameters, denoted by r0 and j0; violate the current
yield condition so that j f ðr0; j0Þj > FTOL; we can impose a small change dr and a small stress
change dj to bring the stress point back to the yield function. One condition is that such changes
should not cause any strain. From Equation (14), we have

dr ¼ �dgDeb0; dj ¼ dgB0 ð24Þ

where De; b0 and B0 are computed at r0 and j0: Our goal is now to find the scalar dg: We can
expand the yield function around r0 and j0 using the first-order terms in the Taylor series:

f ðr0 þ dr; j0 þ djÞ ¼ f0 þ aT0 drþ
@f

@j
dj ¼ 0 ð25Þ

where f0 ¼ f ðr0;j0Þ; and a0 is evaluated at r0: Substituting (24) into (25) leads to

dg ¼ f0=ðA0 þ aT0Deb0Þ ð26Þ
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where A0 is evaluated by Equations (11) and (12) for the KHSM and SSLSM, respectively, using
r0 and j0 for the current yield surface. Once dg is obtained, corrections to r and j are readily
computed by (24) and the stresses and hardening parameters are updated as follows:

r ¼ r0 þ dr; j ¼ j0 þ dj ð27Þ

This consistent correction scheme may be applied repeatedly until j f ðr;jÞj4FTOL:
For the SSLSM, the yielding condition of the current yield surface ( fsub), i.e. Equation (26),

contains all the hardening parameters. Therefore, the bounding surface ( fsup) is updated
accordingly. For the KHSM, the current yield surface ( fb) does not contain the hardening
parameter Rs: Therefore, we can either leave Rs unchanged, or update it using the same scalar dg
given by (26). In this study, we use the latter option when the bubble surface is inside the structural
surface, to be consistent with other hardening parameters. If the bubble surface is slightly drifted
outside the structural surface at the end of a subincrement, the structural surface is then corrected by
adjusting Rs so that the current stress point is identical to the image point, i.e. fsðr;jÞ ¼ 0:

3.3. Global stiffness equation solver

The global stiffness equations are solved by the load stepping scheme with automatic
subincrementation and error control as presented in References [28,29]. Such a scheme is
similar to the stress integration method. We first compute the tangential stiffness based on the
current stresses and solve the stiffness equation to obtain the forward Euler solution of nodal
displacements. We then update the stresses, recompute the stiffness and resolve the stiffness
equation to obtain the modified Euler solution. The two sets of displacements naturally construct
an error measure, which is then used to subdivide the load step if it is larger than a prescribed
tolerance. The displacement tolerance is typically set to 10�3–10�5 and is set to 10�4 in this paper.

The automatic load stepping scheme represents a linear incremental procedure to
approximate the load-deformation behaviour of the system of ordinary differential equations,
in contrast with the iterative procedures as typically represented by the Newton–Raphson
method or the modified Newton–Raphson method. The iterative procedures present an
advantage of satisfying equilibrium equations at the end of each converged time step. Quadratic
convergence may be achieved if the consistent tangent stiffness operators are used. However, in
case of strongly non-linear material behaviour, as here for the KHSM and SSLSM, the
iterations may not converge and the algorithmic consistent tangent operators may even not
exist. The load stepping scheme with automatic subincrementation and error control retain the
advantage of using small load increment for incremental procedure when necessary, and at the
same time, is capable of minimizing the drift from equilibrium by computing the residual forces
at the end of each load increment and adding these to the applied forces for the next increment.
These features make the automatic load stepping scheme suitable for solving the governing
equations at the global level for soils characterized by models with complex mechanical
behaviours as in the KHSM and SSLSM.

4. VERIFICATION AND APPLICATION

In this section, the two soil models and standard critical-state models are used to analyse
drained triaxial compression tests and a rigid footing problem. Accuracy, efficiency and
robustness of the explicit schemes used for the two models are also examined.
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4.1. Drained triaxial compression tests

For the following triaxial compression tests, a quarter of the cylindrical specimen of 0.5 unit in
diameter and 1.0 unit in length is discretized into eight triangular six-noded elements. The
loading process resembles that in a conventional triaxial compression test in that the radial
stress is kept constant while a prescribed axial strain is imposed gradually. The units of soil and
geometric parameters are not important as long as they are consistent with each other. Quasi-
static displacement analysis is used for the computation. An initial isotropic stress field with
s0r0 ¼ s0a0 ¼ 34:5 is applied to the soil specimen. An axial strain of 50% is imposed in 100 coarse
increments. Sensitivity studies of the over-consolidation ratio and the initial structure ratio are
first conducted for both the KHSM and the SSLSM. The two models are then used to simulate
the mechanical responses of two types of soils. Examination of the consistency of accuracy and
efficiency of the schemes used is then carried out for the KHSM.

4.1.1. Sensitivity studies of OCR and initial structure ratio. Model parameters for the KHSM
and SSLSM used in the sensitivity study are as presented in Table II. A lightly structured soil
with OCR varying between 1.5 and 9 is modelled by the KHSM and the SSLSM, respectively,
and the predicted stress–strain curves are presented in Figure 4(a) and (b). The initial structures
in the KHSM and the SSLSM are set by Rs ¼ 1:5 and Rn ¼ 0:67; respectively. Note that Rs in
the KHSM is equivalent to 1=Rn in the SSLSM. The effects of initial structure on the model
response are investigated by considering normally consolidated soils. As can be seen, the shape
of the stress–strain curves obtained by the two models is similar with each other. Both models
predict higher peak strength with a larger OCR, and a flatter curve with a smaller OCR. The
peak shear strengths for the KHSM appear at about 2.5–4.5% axial strain, with a larger OCR
causing a slightly lagged peak response. For the SSLSM, the peak strengths occur at axial
strains between 3 and 5%, with a smaller OCR causing a slightly lagged response.

Three different initial structures are assumed for both models (in the KHSM Rs ¼ 1; 5; 10 and
in the SSLSM Rn ¼ 1:0; 0:2; 0:1; respectively), and the predicted stress–strain curves are shown
in Figure 4(c) and (d). As is shown, the KHSM generally predicts that the soil with an initial
structure can generally sustain a larger shear stress, and the stress–strain curves for Rs ¼ 5 and
10 actually display a peak shear strength. In contrast to the KHSM, the SSLSM predicts that
the soil with an initial structure shows a smaller shear stress than the remoulded soil, and there is
no obvious peak shear strength in the strain–stress curves with a large initial structure.
However, this does not necessarily imply that the existence of initial structure will degrade the
strength of the soil. On the contrary, according to Asaoka et al. [37], for the same soil, the higher

Table II. Model parameter selection for KHSM and SSLSM
for the sensitivity studies.

Models KHSM SSLSM

Compression index ln ¼ 0:05 l ¼ 0:05
Swelling index kn ¼ 0:035 kn ¼ 0:035
Poisson’s ratio m ¼ 0:3
Frictional angle f ¼ 35:38
Slope of CSL Mmax ¼ 1:43
Other specific o ¼ 4:0; B ¼ 1:98;c ¼ 1:5; m ¼ 0:127; a ¼ 0:092
parameters Rb ¼ 0:1;Ad ¼ 0:95 Ad ¼ 0:95; e0 ¼ 0:82
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the state of structure the higher the peak shear stress obtained. The reason for this difference in
the SSLSM lies in that, even for the same soil, different initial structures imply different initial
conditions (such as initial stress field and initial void ratio). In general, the compression line for
structured soils is higher than the NCL for reconstituted soils. Thus, if the initial stresses are
kept the same, larger initial void ratio is required for higher initial structure. Various approaches
(such as curve fitting of the real stress–strain relation) are recommended by Asaoka et al. [37] to
attain these initial conditions. However, it is difficult to do so due to the lack of experimental
data. Therefore, in the computations for the SSLSM, the initial conditions for all structured
soils are assumed to be the same for the sake of simplicity. Nevertheless, the simulations clearly
show the initial structure does have a significant influence on the mechanic response of both the
KHSM and SSLSM.

4.1.2. Numerical performance. The numerical performance of the stress integration scheme is
studied here using the KHSM with initial conditions and material properties given in Table II
(Rs ¼ 5:0 and OCR ¼ 4:0). The influence of the prescribed error tolerance is first investigated.
Here, we assumed the yield surface tolerance (FTOL) is fixed at 10�9 and the displacement error
tolerance is fixed at 10�4: The stress tolerance (STOL) varies from 10�3 to 10�9: The load is
applied in form of prescribed axial strain and a total axial strain of 10% is imposed in 20 coarse
increments. The obtained stress–strain curves are shown in Figure 5, which confirms that the
variation of the tolerance does not cause any significant difference in the predicted local stress–
strain results. Figure 5(b) plots the relative error in the vertical stress against the axial strain.
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Figure 4. Sensitivity study to overconsolidation ratio and initial structure for the KHSM and SSLSM: (a)
KHSM to OCR; (b) SSLSM to OCR; (c) KHSM to initial structure; and (d) SSLSM to initial structure.
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The reference vertical stress srefv is obtained using a STOL ¼ 10�9 and 10 000 load increments.
As may be observed, the relative error is well controlled under each prescribed tolerance.
Figure 5(c) and (d) show the total and the maximum subincrements used at each load increment,
respectively. An increase of the stress error tolerance by two orders (100) results in a decrease in
the number of subincrements roughly by 10 times. Therefore, the increase of subincrements in
cases of smaller tolerance is affordable for the computation. Actually, this is further confirmed
by the CPU times used for each case. The total CPU times used for the four cases of STOL ¼
10�3; 10�5; 10�7; 10�9; are 3, 7, 16 and 45 s, respectively. Only a marginal increase in CPU times
is resulted in when the stress tolerance is tightened. In Figure 5(c) and (d), we also note a
significant number of subincrements have been used in the first load increment, whereas the
stress error (Figure 5(b)) is relatively small. This type of behaviour implies that the
subincrementation is actually controlled by the error in the hardening parameters, which is
not shown here. For the KHSM model, the elastic region is very small and plastic yielding starts
right after loading. Because the centre of the bubble yield surface is initially located on the p0

axis and q%a ¼ 0; the relative error in the hardening parameter defined by Equation (23) is then
very large, even the absolute error is very small. This type of behaviour always occurs when the
denominator in the relative error is zero (for example a problem with a zero initial stress), and
can be avoided by using a combined error measure where the absolute error replaces the relative
error when the denominator is too small.
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Figure 5. Models response and subincrements for KHSM under different prescribed tolerances: (a) stress–
strain curves; (b) stress errors; (c) total subincrements per step; and (d) maximal subincrements per step.
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4.2. Rigid strip footing

Analysis of a rigid strip footing can be a difficult numerical exercise due to the singularity at the
edge of the footing and the strong rotation of the principal stresses. The KHSM and the
SSLSM, as well as the MCC model, are used to simulate the soil behaviour. Material parameters
for these models are listed in Table III. Note that these parameters are selected so that the model
responses from both the KHSM and the SSLSM coincide with that from the MCC model when
there is no initial structure in the soil. The critical state void ratio at p0 ¼ 1 is assumed to have a
homogeneous value of 1.8 over the soil depth. The soil is assumed to be overconsolidated
to 15 kPa at ground surface. The footing geometry and the finite element mesh are shown in
Figure 6, with L=2 ¼ 1: The domain is divided into 288 triangular six-noded elements with a
total of 1143 degrees of freedom. The left and right boundaries are fixed in the horizontal
direction but allowed to move in the vertical direction, whereas the bottom boundary is locked
in both directions. A prescribed displacement of 0.2B is applied to the nodes under the footing
in 50 coarse increments, and an equivalent footing load is found by summing the appropriate
nodal reactions. Initial structures are attributed to the KHSM and SSLSM. The displacement
tolerance (DTOL) is set to 10�3; while the stress integration tolerance (STOL) and the yield
surface tolerance (FTOL) are set to 10�6 and 10�9; respectively.

Figure 7 illustrates the load–displacement curves obtained by the KHSM and the SSLSM in
comparison with the MCC model. The effects of the initial structure of the soil on the load–
displacement curves are apparent for both two structure models (Figure 7(a)). As may be
observed, curves from both KHSM and SSLSM exhibit an obvious peak before they fall into
the curve of MCCM’s. This peak occurs at around 0.93 footing displacement for the SSLSM
and 0.19 for the KHSM. Figure 7(b) and (c) further depict the evolution of structural index at
reference point a; b; c and d (as shown in Figure 6) for the KHSM and SSLSM. It is readily to
find the shallower the point is, the quicker the initial structure decays, which is a direct
consequence of the plastic strain development in the simulated domain. It can also be noted that
the destructuration in the KHSM starts at the beginning of the loading (Figure 7(b)), the
destructuration in the SSLSM is somewhat delayed (Figure 7(c)). It is further noted that
the destructuration at point a in the SSLSM roughly coincides with the peak footing load in
Figure 7(a). With the adopted model parameters, the elastic region of the KHSM is so small (as rb)
that plastic yielding immediately starts upon loading, and thus the impact of destructuration on

Table III. Model parameter selection for footing problem.

Models KHSM SSLSM MCC

Compression index ln ¼ 0:11 l ¼ 0:25 l ¼ 0:25
Swelling index kn ¼ 0:0131 k ¼ 0:052 k ¼ 0:052
Poisson’s ratio m ¼ 0:3 m ¼ 0:3 m ¼ 0:3
Density g ¼ 6 kN=m3 g ¼ 6 kN=m3 g ¼ 6 kN=m3

Frictional angle f ¼ 238 f ¼ 238 f ¼ 238
Slope of CSL Mmax ¼ 0:9 Mmax ¼ 0:9 Mmax ¼ 0:9
Other specific o ¼ 3:96; B ¼ 3:52; m ¼ 9:64; a ¼ 0:51 e0 ¼ 1:6
parameters c ¼ 1:53; rb ¼ 0:05; Ad ¼ 0:45; a ¼ 0:77;

Ad ¼ 0:55; a ¼ 0:77; Rn ¼ 0:6; e0 ¼ 2:35
Rs ¼ 5:4; e0 ¼ 1:6
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the overall mechanical response is also reflected from the beginning. In the SSLSM, the elastic
region is relatively large, and the material behaves elastically until roughly the peak load.
However, once plastic yielding occurs, the initial structural will decay rapidly and its influence
on the overall mechanical response then becomes visible.

The numerical performance of the implementation of the two complex models is further
investigated for this boundary value problem. The displacement tolerance (DTOL) is fixed at
10�3; and the yield surface tolerance at 10�9: The stress tolerance (STOL) varies between 10�4

and 10�7: Table IV presents the overall CPU times, the total successful subincrements at all
integration points per load increment, the maximum successful subincrements amongst the
integration points per load increment, and the relative stress error for the three models of
MCCM, KHSM and SSLSM. The overall CPU times do not increase significantly as the STOL
becomes more stringent. The total numbers of successful subincrements and the numbers of
maximum subincrements increase roughly by a factor of

ffiffiffiffiffi
10

p
when the stress tolerance is

tightened by a factor of 10. The relative stress errors for the three models are all controlled
under the stress tolerance. In computing the relative stress error, a reference solution obtained
with a STOL ¼ 10�9 is used. Another observation is that the KHSM uses most subincrements
among the three models. The reason for this is that the KHSM has the most number of
hardening parameters.

Figure 8 depicts the total number of successful subincrements used in each load increment for
the three models. As is shown, a higher resolution of the stress tolerance will always invoke a
larger number of successful subincrements during each loading step for all the three models. The
number of the successful subincrements increases again roughly

ffiffiffiffiffi
10

p
times as the stress

tolerance is tightened by a factor of 10. As is observed from Figure 8(a) and (c), the MCCM and

Figure 6. Mesh for rigid strip footing: 288 triangular six-noded elements with 625 nodes
and 1143 degrees of freedom.
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SSLSM do not require any subincrement initially, because of the elastic regions in the model.
For the KHSM, the elastic region is very small and plastic yielding occurs very early, and thus
subincrementation is required right from the beginning.
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Figure 7. The rigid footing problem analysed by the MCCM, KHSM and SSLSM: (a)
footing displacement vs footing load; (b) footing displacement vs structural index Rs

evolution in KHSM at reference points; and (c) footing displacement vs structural index
Rn evolution in SSLSM at reference points.

Table IV. Rigid footing on KHSM by explicit Euler substepping integration.

CPU Total successful Max. successful Relative
Model Stress tolerance time (s) subincrements subincrements stress error

MCC STOL ¼ 1:0E� 4 19 8118 17 3.890E-05
STOL ¼ 1:0E� 5 19 21 019 44 9.205E-06
STOL ¼ 1:0E� 6 21 61 823 120 6.845E-07
STOL ¼ 1:0E� 7 31 190 824 437 }

KHSM STOL ¼ 1:0E� 4 23 28 827 71 7.860E-05
STOL ¼ 1:0E� 5 24 64 101 126 1.780E-06
STOL ¼ 1:0E� 6 30 178 601 244 2.729E-07
STOL ¼ 1:0E� 7 48 542 249 608 }

SSLSM STOL ¼ 1:0E� 4 19 9654 18 8.200E-05
STOL ¼ 1:0E� 5 19 24 589 50 5.520E-06
STOL ¼ 1:0E� 6 21 68 181 154 5.783E-07
STOL ¼ 1:0E� 7 37 210 311 484 }
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5. CONCLUSIONS

Some key conclusions from this study are as follows.

(1) The explicit stress integration scheme with automatic substepping and error control can
be used to integrate advanced soil models with multiple yield surfaces and complex
hardening laws. This has been tested with two critical-state models}the KHSM and the
SSLSM}that take into account the effects of the initial structure and destructuration.
This scheme is particularly effective in handling multiple hardening parameters along with
complicated hardening laws. No specific measure is required to handle the bounding surface.
When the stress integration scheme is used in association with an automatic load stepping
scheme, the small-strain non-linearity in the KHSM and SSLSM can be well simulated. No
numerical problems were encountered with the automatic substepping scheme and load
stepping schemes for both drained triaxial compression tests and a rigid strip footing problem.

(2) It is illustrated the explicit integration scheme remains to be efficient, accurate and robust.
For both the drained triaxial problem and the rigid footing problem, the increase in the
computational effort is relatively affordable when the tolerance is substantially tightened.
The number of the successful subincrements increases roughly

ffiffiffiffiffi
10

p
times as the stress

tolerance is tightened by a factor of 10. The presence of additional hardening parameters in
the complex models may result in larger relative error when some of hardening parameters
are initially zero, which may in turn lead to a larger number of subincrements.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 0.1 0.2 0.3 0.4

Footing displacement/(L/2)

S
u

cc
es

sf
u

l s
u

b
in

cr
em

en
ts

STOL=1.0E-7

STOL=1.0E-6

STOL=1.0E-5

STOL=1.0E-4

(a)

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 0.1 0.2 0.3 0.4

Footing displacement/(L/2) 

S
u

cc
es

sf
u

l s
u

b
in

cr
em

en
ts STOL=1.0E-7 STOL=1.0E-6

STOL=1.0E-5 STOL=1.0E-4

(b)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Footing displacement/(L/2)

S
u

cc
es

sf
u

l s
u

b
in

cr
em

en
ts STOL=1.0E-7

STOL=1.0E-6

STOL=1.0E-4

STOL=1.0E-5

(c)

Figure 8. Total number of successful subincrements used during the loading course:
(a) MCC; (b) KHSM; and (c) SSLSM.
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(3) The implementation of these complex soil models into finite element codes facilitates their
application into boundary-value problems. Modelling of overconsolidated soils under
drained triaxial compression shows that both the KHSM and the SSLSM predict a
smoother stress–strain curve than those from standard Cam-clay models. Simulation of
structured soils under drained triaxial compression indicates that the initial structure has a
significant effect on the predictions of both the KHSM and the SSLSM. Both models
predict that a soil with an initial structure can sustain a larger shear stress than the
remoulded soil. However, to attain this by the SSLSM, special attention must be paid to
ensure that the initial void ratio corresponds to the initial structure. Modelling of the rigid
strip footing by the KHSM and the SSLSM illustrates that implemented complex soil
models can be applied to solve boundary-value problems. The effects of the initial
structure on the load–displacement response are noticeable when the predictions of these
models are compared that of the modified Cam-clay model.

APPENDIX A

For the KHSM, the following expressions for B can be obtained:

B1 ¼
p0c

ln � kn

@fb
@p0

B2 ¼
oð1� RsÞ
ln � kn

ded

ðB3;B4Þ
T ¼ %a

B2

Rs
þ

B2

p0c

� �
þ Bmðrc � rÞ

ðA1Þ

where

Bm ¼ H � n : r
dp0

p0c
þ %a

dRs

Rs

� ��� �
b; n ¼

@fb
@p0
;
@fb
@q

� �T
; r ¼ ðp0; qÞT

ded ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� AdÞ

@fb
@p0

� �2
þAd

@fb
@q

� �2s
; %a ¼ ðp0%a; q%aÞ

T; b ¼ n � ðrc � rÞ

rc ¼ Rsp
0
c þ

Rs

Rb
ðp0 � p0%aÞ;

Rs

Rb
ðq� q%aÞ

� �T
; bmax ¼ 2

ðRs � RbÞ
Rb

n � ðr� %aÞ

H ¼
Bpc

ðln � knÞRb

b

bmax

� �c
þHc; Hc ¼

Rsp
0
cfx½ðp

0 � p0%aÞ þ Rbp
0
c�g

ðln � knÞ ðp0 � p0%aÞ
2 þ ððq� q%aÞ=M2Þ2

	 

x ¼ ðp0 � p0%aÞ þ

oð1� RsÞ
Rs

ded

and o; Ad; B; and c are additional model parameters.
In the SSLSM, B has the following elements:

B1 ¼
v*p0c
l� k

@fsub
@p0

; B2 ¼ �
vM

l� k
m lnR ded; B3 ¼

vMa

l� k
Rnð1� RnÞ ded ðA2Þ
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where

ded ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� AdÞ

@fsub
@p0

� �2
þAd

@fsub
@q

� �2s

and m; a; and Ad are additional model parameters. l and k are the slopes of the normal
compression line and swelling line in the plane of v� ln p0; respectively.
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2. Roscoe KH, Schofield AN. Mechanical behaviour of an idealised ‘wet’ clay. Proceeding of 2nd European Conference

on Soil Mechanics and Foundation Engineering, vol. 1, Wiesbaden, 1963; 47–54.
3. Schofield AN, Wroth CP. Critical State Soil Mechanics. McGraw-Hill: London, 1968.
4. Roscoe KH, Burland JB. On the generalised stress–strain behaviour of ‘wet’ clay. Engineering Plasticity. Cambridge

University Press: Cambridge, 1968; 535–560.
5. Carter JP, Booker JR, Wroth CP. A critical state soil model for cyclic loading. In Soil Mechanics}Transient and

Cyclic Loads, Pande GN, Zienkiewicz OC (eds). Wiley: New York, 1982; 219–252.
6. Muir Wood D. Kinematic hardening model for structured soil. In Numerical Models in Geomechanics, Pande NV,

Pietruszczak S (eds). Balkema: Rotterdam, 1995; 83–88.
7. Sheng DC, Sloan SW, Yu HS. Aspects of finite element implementation of critical state models. Computational

Mechanics 2000; 26:185–196.
8. Liu MD, Carter JP. On the volumetric deformation of reconstituted soils. International Journal for Numerical and

Analytical Methods in Geomechanics 2000; 24:101–133.
9. Rouainia M, Muir Wood D. A kinematic hardening constitutive model for natural clays with loss of structure.
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