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Abstract
Large deformation soil behavior underpins the operation and performance for a wide range of

key geotechnical structures and needs to be properly considered in their modeling, analysis and

design. The Material Point Method (MPM) has gained increasing popularity recently over con-

ventional numerical methods such as Finite Element Method (FEM) in tackling large deformation

problems. In this study, we present a novel hierarchical coupling scheme to integrate MPM with

DEM (Discrete Element Method) for multiscale modelling of large deformation in geomechan-

ics. The MPM is employed to treat a typical boundary value problem that may experience large

deformation, and the DEM is used to derive the nonlinear material response from small strain to

finite strain required by MPM for each of its material points. The proposed coupling framework

not only inherits the advantages ofMPM in tackling large deformation engineering problems over

the use of FEM (e.g. , no need for re-meshing to avoid mesh distortion in FEM), but it helps avoid

the need for complicated, phenomenological assumptions on constitutive material models for soil

exhibiting high nonlinearity at finite strain. The proposed framework lends great convenience for

us to relate rich grain-scale information and key micromechanical mechanisms to macroscopic

observations of granular soils over all deformation levels, from initial small-strain stage en route

to large deformation regime before failure. Several classic geomechanics examples are used to

demonstrate the key features the newMPM/DEM framework can offer on large deformation sim-

ulations, including biaxial compression tests, rigid footing, soil-pipe interactions and soil column

collapse.
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1 INTRODUCTION1

Large deformation in soils may significantly affect the operation and serviceability for a wide range of geotechnical structures and applications,2

including footing foundation on soft soils, slope creep and failure, pile penetration and sea-bed pipeline installation and maintenance. Safe design3

and analysis of these structures need to properly consider soil behavior at large deformation. Numerical modelling of large deformation in soils4

has long been known challenging, due mainly to two major difficulties commonly encountered. (a) Large deformation may likely induce changes in5

boundary conditions and how soil interacts with the surrounding structures; (b) The behavior of soil is highly nonlinear and is loading history and6

state dependent, especially at large deformation. To tackle both geometric nonlinearity and material nonlinearity has become the major concerns7

on large deformation modeling of soils.8

Being one of the most successful numerical methods for the past half century, Finite Element Method (FEM) has been widely used in all areas in9

geotechnical engineering. Conventional FEM based on updated lagrangian formulation, however, cannot be readily applied for large deformation10

problems, as it may suffer issues such as severe mesh distortion, inaccurate and inefficient computation and possible nonconvergent solutions.11
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2 W. Liang and J. Zhao

Remedy measures such as remeshing or adaptive mesh 1,2,3,4,5,6,7 may help partially alleviate these issues, but cannot always guarantee conver-12

gence and may often cause considerable increase in computational cost 8. The new millennium has witnessed the burgeoning of a variety of13

mesh-free methods with great potential to effectively address the large deformation problems. Representative ones include Particle Finite Ele-14

ment Methods(PFEM) 9, Smooth Particle Hydrodynamics (SPH) 10,11, Reproducing Kernel Particle Method (RKPM) 12,13 and Material Point Method15

(MPM) 14,15,16. These methods share a common feature to discretize a continuum domain by a set of points instead of elements. In so doing the16

mesh distortion problem suffered by mesh-based methods such as FEM can be avoided. Among them, the material point method (MPM) proposed17

20 years ago 14,15,16 has enjoyed a particular popularity recently in geomechanics. Similar to general mesh-free methods, MPM discretizes a con-18

tinuum body with a set of Lagrangian material points (or particles). Carrying essential information of the state parameters, these points are tracked19

throughout the computation ofMPM. It departs from other mesh-free methods in that theMPMparticles do not interact with one another directly,20

and the momentum equations are not solved on particles either. Rather, the momentum equations are resolved on a fixed Eulerian background21

mesh wherein the material particles are placed. As such, MPM presents a robust combination of Lagrangian (particles) and Eulerian (background22

mesh) descriptions, making it an ideal tool for modelling large deformation problems with complex boundaries. Moreover, MPM expedites the23

tracking of contacts in contact problems by allowing multiple velocity fields at mesh nodes. This is an amiable feature for modeling practical prob-24

lems where contacts are important. MPM has been successfully applied in simulating a wide range of geotechnical problems, including foundation25

settlement 17, pile installation 18,19, column collapse 20,22,17, silo discharge 23 and landslide or landslide induced flow 24,22,25. More recently, MPM26

has also been extended to considering pore water pressure to simulate hydro-mechanical coupling problems. Examples reported in the literature27

include levee 26,27,28 and slope failures 37 (see a recent review on MPM by Soga et al. 28)28

Same as any continuum approaches, MPM needs constitutive models to describe the mechanical material response at its material particles.29

Granular soils are typical frictional materials showing high nonlinearity and history/loading path dependency. Continuum constitutive descriptions30

for the small-strain behavior of granular soils already prove to be laborious and complex, routinely requiring quite a few phenomenological model31

parameters that do not bear clear physical meanings. When more complicated material features such as strain localisation 29, anisotropy 30,31,32,32

cyclic behavior, liquefaction and critical state 33,34,35 have to be accounted for in a model, both the needed model parameters and the necessary33

model complexity quick increase, to such an extent that themodel can hardly be comprehended by non-specialists, let along to be used by practising34

engineers. As mentioned before, the situation may be further grievingly exacerbated in case of large deformation. Simple models applicable to small35

strain regimes may no longer be serviceable for large deformation conditions or regimes. Typically, a practical boundary value problem may involve36

amajority of its domain experiencing small strains, while only a small portion exhibiting large deformation (such as the footing problem to be treated37

in this paper). The Discrete Element Method (DEM) 38 provides a paradigm-shifting weapon for constitutive modelers to investigate soil behav-38

iors through all deformation regimes and under variable loading conditions, without having to resort to complex phenomenological assumptions.39

Based on relatively simple granular physics for an assembly of particles, DEM can faithfully reproduce the complex mechanical behavior of granular40

materials observed in laboratory tests. It may also offer rich microscopic information such as the evolution of fabric anisotropy and force chain net-41

work 39. The particle-scale information derived from DEM is widely conceived inspirational and insightful for constitutive modelers to understand42

perplexing macroscopic phenomena in granular materials which otherwise are hard to attain through phenomenological models. Notwithstanding43

the benefit it may bring forth, DEM in its current stage remains unrealistic to provide any meaningful predictions for an engineering-scale problem.44

Its predictive capabilities are largely limited by the total number of particles it can model and the needed computational cost, the extent how nat-45

ural sand grain morphology and surface characteristics are approximated and how reliable the grain-scale parameters are determined. As a view46

well shared by many, DEM remains at the moment a small-scale simulation tool (or “virtual sand box”), with a potential to replace many routine47

element tests in soil lab 39,40,41,42,43.48

A recent campaign, initiated by both DEM users and constitutive modelers, has been to push a marriage between continuum approaches with49

discretemethods to establish a hierarchically or concurrently coupled framework for geotechnical modeling. Amongmany attempts, the hierarchical50

multiscale approach based on coupled FEM/DEM 44,45,46 has drawn particular attentions. This approach takes advantage of the predictive power51

of FEM in handling complex boundary value problems and the capacity of DEM in reproducing nonlinear material response of granular soils. It52

embeds a Representative Volume Element (RVE) consisting of an assembly of discrete particles at each of the FEMGauss integration points, passes53

on macro information of displacement/deformation to the RVE as boundary conditions and exploits the DEM to derive a solution for homogenized54

material responses (i.e., stress and stiffness) to feed the macro FEM computation. The strategic marriage creates a win-win situation for both55

FEM and DEM. FEM no longer needs the assumption of complex phenomenological constitutive models, while DEM may now be connected56

to solving engineering-scale problems without being bothered by the excessive particle number and associated computational cost. Hierarchical57

FEM/DEM coupling has gained certain success in geomechanics applications, including the prediction of strain localisations in various boundary58

conditions 51,36,47,48,49,50, geotechnical failures in footing and retaining walls 51 and more recently the compaction bands in sandstone 52. However,59

the coupled FEM/DEM approach is not without pitfalls. Though it may somehow handle problems with relatively large rotation with consideration60

of the DEM part (see discussion in 47), FEM cannot escape its doom on mesh distortion when the coupled approach is to tackle large deformation61

problems. With all its merits, MPM stands out to be a good candidate to replace FEM in tackling such challenges.62
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W. Liang and J. Zhao 3

We herein propose a new multiscale modeling approach based on hierarchical coupling of MPM and DEM, conceptually following a similar63

methodology outlined by Guo and Zhao 45,49, to address large deformation in geomechanics.While tentative attempts have beenmade 53,55,54 along64

this line of research, the present one furnishes a first complete study on hierarchical coupling of MPM with DEM, providing detailed, innovative65

formulation, benchmarking and demonstrative examples. We will demonstrate that the MPM and DEM are a perfect match to work together to66

capture both geometric and material nonlinearities arising in large deformation problems in a geotechnical setting. This approach has the potential67

to push a big step forward our cross-scale understanding of large deformation behavior pertaining to geotechnical failures.68

This paper is organized as follows: Section 2 presents a minimal essential on formulations of MPM and DEM, with a detailed description on69

hierarchical coupling between them and the solution procedure. Benchmarking and demonstrative geomechanics examples, including biaxial shear70

tests, footing, pipe settling in sea-bed soil and soil column collapse, are given in Section 3, with detailed cross-scale analyses and discussion. We71

then conclude the paper with some major conclusions and future outlooks.72

2 HIERARCHICAL COUPLING OF MPM & DEM: FORMULATION ANDMETHODOLOGY73

2.1 Material Point Method (MPM)74

MPM was originally proposed by Sulsky and co-workers 14,15, and was further generalized by Bardenhagen and Kober 16. Similar to many other75

mesh-free methods, the continuum domain is discretized in MPM by a set of material points, each associated with essential state variables such76

as mass, velocity, strain, stress. These material points move in a Lagrangian frame and their movement represents the motion and deformation77

of the continuum body. Diverging from other mesh-free methods, MPM uses a background mesh to provide a Eulerian frame for calculation of78

spatial gradients and solving the discretized momentum equation. At each time step, the state variables are firstly mapped from the material points79

to the background grid nodes to establish the momentum equations. After the momentum equation is solved at the background mesh, the nodal80

solutions are mapped back to the material points to update their velocities and positions. As the background mesh is fixed and does not move with81

the material points, MPM can avoid the issue of mesh distortion or entanglement and therefore handle large deformation effectively.82

2.1.1 Governing Equations & Domain Discretization83

In MPM, the continuum body is represented by a set of material points with lumped mass. As the mass carried by each material point is assumed84

unchanged throughout the computation, the conservation of mass is implicitly satisfied. The motion and deformation are assumed to be governed85

by the momentum equations, and its weak form can be written as 16,17:86

∫
Ω

ρa · δvdx +

∫
Ω

σ : ∇δvdx =

∫
Ω

ρb · δvdx +

∫
∂Ω

τ · δvdS (1)

where “·” denotes first-order vector contraction, “ : ” represents second order tensor contraction, “∇” denotes the gradient operator, ρ is current87

mass density, a is the acceleration, δv is an admissible velocity field, σ is the Cauchy stress, b is the body force, τ is the boundary traction and Ω88

and ∂Ω represent the entire current domain of continuum and its boundary, respectively.89

The continuum domain is first discretized into a set of material points defined by the characteristic function χp(x). This function represents the90

volume fraction of material point p at position x of the macro scale domain and it satisfies the partition of unity in the initial configuration 16, i.e.,91

∑
p

χip(x) = 1 ∀x (2)

where the superscript i indicates the initial state. With the characteristic functions χp(x), each material point can be assigned its relevant state
properties, including initial volume Vi

p, mass mi
p, momentum pi

p and Cauchy stress σi
p, according to:

Vi
p =

∫
Ωi

χi
p(x)dx (3)

mi
p =

∫
Ωi

ρi(x)χi
p(x)dx (4)

pi
p =

∫
Ωi

ρi(x)vi(x)χi
p(x)dx (5)

σi
p =

∫
Ωi

σi(x)

Vi
p

χi
p(x)dx (6)
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4 W. Liang and J. Zhao

where Ωi is the initial domain of the continuum to be discretized, ρi(x) denotes initial mass density of the continuum, vi(x) and σi(x) are the initial92

velocity field and stress field, respectively.93

After the initial discretization, any property f(x) of the continuum body can be expanded on a material point basis:

f(x) =
∑
p

fpχp(x) (7)

where fp represents a material point property. Substituting Equation 7 into 1, the weak formulation of momentum conservation can be rewritten
in the form of summation over material points:∑

p

∫
Ωp∩Ω

ṗp

Vp
χp · δvdx +

∑
p

∫
Ωp∩Ω

σpχp : ∇δvdx =
∑
p

∫
Ωp∩Ω

mp

Vp
χpb · δvdx +

∫
∂Ω

τ · δvdS (8)

where Ωp is current support of the characteristic function χp, and ṗp is the material time derivative of the material point momentum.94

Owing to the presence of the background mesh, the admissible velocity field δv can be expanded in terms of the grid-based shape function by:

δv =
∑
I

δvINI(x) (9)

where δvI is the value of admissible velocity taken at the node I and NI(x) is the standard finite element shape function. Substituting Equation 9
into 8 and considering the arbitrariness of the admissible velocity field, the discrete momentum conservation is revised as:

ṗI = fintI + fextI (10)

where:

ṗI =
∑

p

ṗpSIp (11)

f int
I =−

∑
p

σp · ∇SIpVp (12)

fext
I =

∑
p

mpbSIp +

∫
∂Ω

NIτdS (13)

and, SIp is the weighting function whereas∇SIp is the gradient weighting function:

SIp =
1

Vp

∫
Ωp∩Ω

χp(x)NI(x)dx (14)

∇SIp =
1

Vp

∫
Ωp∩Ω

χp(x)∇NI(x)dx (15)

As can be seen in Equations 10 to 15, the momentum equation is solved on the background mesh which serves as a scratch pad for computing.95

Once the total force acting on the nodes of background mesh is computed, the momentum increment at each node can be obtained explicitly96

and further used to update the properties of material points, such as position and velocity. The update scheme and the complete computational97

procedure will be detailed in Section 2.1.2 and 2.3, respectively.98

2.1.2 Velocity Update Schemes: FLIP v.s. PIC99

At the end of each calculation step, the updated nodal information is transferred back to the material points to update their positions and velocities.
The material point positions xp are updated using the nodal velocity so that the numerical diffusion can be reduced 56

xn+1
p = xnp + ∆t

∑
I

vn+1
I SIp (16)

where vn+1
I is the updated velocity at node I, ∆t is the time step and SIp is the weighting function mentioned in Equation14.100

Pertaining to velocity update, there are two conventional update schemes, i.e., Particle In Cell (PIC) 57 and FLuid Implicit Particle (FLIP) 58, with
the following expressions, respectively:

vn+1
p,PIC =

∑
I

vn+1
I SIp (17)

vn+1
p,FLIP =vn

p + ∆t
∑

I

an+1
I SIp (18)

where vn+1
p,PIC and vn+1

p,FLIP are the updated particle velocities based on PIC and FLIP, respectively. vn
p represents the material point velocity at the101

previous step and an+1
I is the acceleration at node I. PIC directly uses the velocity extrapolated from nodes to overwrite current velocity. It can102

filter the velocities and helps the global computation to be more stable 59. However, it may also suffer the issue of excessive energy dissipation103
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W. Liang and J. Zhao 5

which is unacceptable for modelling dynamic problems (such as column collapse to be discussed later). In contrast, FLIP updates the material point104

velocity by a velocity increment computed from nodal acceleration. The issue of excessive energy dissipation can be avoided in FLIP, at a cost of105

introducing some noise and reduced stability 59.106

For quasi-static problems, a proper combination of these two velocity update schemes may significantly improve the performance of MPM
simulations 60,61, such as a linear combination:

vn+1
p = αPICv

n+1
p,PIC + (1− αPIC)vn+1

p,FLIP (19)

where vn+1
p denotes the updated particle velocity based on a linear combination of PIC and FLIP, αPIC is the PIC fraction in the particle velocity107

update: αPIC = 1 represents the purely PIC velocity update, whilst αPIC = 0 implies the FLIP velocity update. This fraction can be also interpreted108

as a kind of artificial damping to damp out any non-physical or numerical oscillations 60. In this study, a linear combination of PIC and FLIP with109

αPIC = 0.1 is adopted for the velocity update in all the following numerical examples unless otherwise stated. This adopted PIC fraction value110

is in consistent with that in 61,60 which show a great improvement in simulations with this value. More advanced velocity update schemes, such111

XPIC 59 and APIC 62, can also be applied in proposed multiscale approach to achieve better performance. For simplicity, they are not considered in112

the present study.113

2.2 Discrete Element Method (DEM)114

2.2.1 Contact Model115

In a standard DEM it is essential to determine the resultant acting on each particle via a contact model. Once a contact between two particles is
established, the contact forces (normal contact force fc

n and tangential contact force fc
t ) can be calculated according to:

fc
n = − kc

nδn (20)

fc
t = −min(kc

t ut, |fc
n tanϕ|)t (21)

where n is the unit normal vector of the contact (see Figure 1 ), t is the unit tangential vector, δ is the overlap between two particles in contact, ut

is the relative tangential displacement, ϕ is the interparticle friction angle controlling the maximum magnitude of tangential contact force, and kc
n

and kc
t are the normal contact stiffness and tangential (shear) contact stiffness, respectively. Two contact models, linear force-displacement contact

model and nonlinear Hertz-Mindlin contact model 63, are commonly used to determine the contact stiffnesses. The former considers contact
stiffnesses (kc

n and kc
t ) as constants whereas the nonlinear Hertz-Mindlin model assumes these two parameters vary with the contact overlap. In

the paper, the linear force-displacement contact model is adopted:

kc
n =

2(Eiri)(Ejrj)

Eiri + Ejrj
(22)

kc
t =

2(Eiriνi)(Ejrjνj)

Eiriνi + Ejrjνj
(23)

where i and j denote the two particles in contact, E,r and ν denote respectively the Young’s modulus, the radius and the Poisson’s ratio of the116

contacting particle i or j.117

Particle shape may be a pivotal feature for realistically reproducing the behavior of granular materials. Using idealized spheres/circular discs118

(3D/2D) in DEM simulationmay potentially lead to the following discrepancies between the prediction and reality: (a) themacroscopic friction angle119

of a DEM packing may be found smaller than experimental result, (b) the energy loss due to rolling resistance is neglected in simulations, resulting120

in underestimated energy dissipation 64, and (c) particle interlocking broadly existed in nature cannot be properly replicated by DEM simulations.121

Though reproducing realistic particle shapes in DEM simulations may help to mitigate the above issues 65, it is tremendously challenging to find
a perfect solution for both rigorous morphological characterization and affordable computational efficiency. We hereby elect to choose a relatively
simple and efficient alternative, by introducing rolling resistances between two contacting spheres/discs to partially remedy aforementioned issues.
Similar to the tangential force, the resistant rolling moment Mc

r can be determined via:

Mc
r = −min(|kcrθr|, |fcnrminη|)θr/|θr| (24)

where θr is the accumulated relative rotation angle between two contacting particles, rmin = min(ri, rj) is the radius of the smaller particle, η
is a dimensionless parameter defining the upper-bond limit of the resistant rolling moment and kc

r is the rolling stiffness which is related to the
tangential contact stiffness kc

t though a dimensionless coefficient β for the contacting particle :

kcr = kct rirj
2βiβj

βi + βj
(25)
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6 W. Liang and J. Zhao

In case that two contacting particles are made of the same material (and thus have the same E, ν, β and η), Equations (22)(23)(25) can be
simplified in terms of the harmonic mean of radii of the contacting particles r∗ = 2rirj/(ri + rj):

kc
n = Er∗ (26)

kc
t = Eνr∗ (27)

kc
r = kc

t rirjβ (28)

To dissipate undesired unbalance force funbal and achieve quasi-static state in DEM, a numerical damping force fdamp is applied to each particle :

fdamp = −α|funbal|vp/|vp| (29)

where α is the damping ratio and vp is the velocity of the considered particle.122

2.2.2 Homogenization of Material Responses123

Stress tensor σ, mean and deviatoric stresses p and q124

A typical RVE in DEM is prepared by generating several number of discs (2D) or several thousand spheres (3D) in a cell with a periodic boundary, and
is then consolidated to a desired initial state with specified pressure and void ratio 47,49. It is then attached to each material point in the continuum
MPM domain with prescribed deformation received from MPM solver as boundary conditions. Upon loading and reaching a quasi-static state in
the DEM computation, a homogenized Cauchy stress σ can be extracted using the Love-Weber formula 66,67 and then passed to the MPM solver:

σ =
1

V

∑
N

d⊗ fc (30)

where “⊗”denotes the dyadic product between two vectors, V is volume of the RVE, N is the total number of all contacts inside the RVE, d is the125

branch vector joining the centers of contacting particles, and fc is the contact force.126

Based on the average Cauchy stress, it is convenient to calculate two quantities commonly used in geomechanics, i.e., , the mean effective stress
p and the deviatoric stress q (for 2D):

p =
1

2
tr(σ) (31)

s =σ − pI (32)

q =

√
1

2
s : s (33)

where “tr” indicates the trace of a tensor, s is the deviatoric stress tensor, and I is an identity tensor.127

In addition, it is also instructive to derive the volumetric strain εv and deviatoric strain εq, the rotation angle θ iand fabric anisotropy Fa for a128

RVE. These quantities could help to better understand the macroscopic behavior of the continuum.129

Volumetric and deviatoric strains εv & εq130

The volumetric and deviatoric strains, εv and εq, can be respectively computed according to:

εv =tr([) (34)

εq =
√

2e : e (35)

where [ is the strain tensor, and e = [− tr([)I is the deviatoric strain tensor.131

Rotation angle θ132

We consider the following decomposition of the deformation gradient F:133

F = R · U (36)

iThe rotation angle here refers to the cumulative rotation which can be obtained via two means, one by directly calculating the cumulative rigid rotation
of a MPMmaterial point from the macro domain, and the other by extracting the average particle rotation of the RVE attached to the material point, as used
in 45,52 based on θavg = 1

Np

∑Np
p=1 θp (where Np is the number of particles in a RVE and θp is the accumulated rotation angle of each particle). Our numerical

experience indicates both rotation quantities offer similar trends and can be used as indicative variables for local analysis. For convenience, the first definition
is adopted in the study in the following discussion.

Acc
ep

te
d 

M
an

us
cr

ipt



W. Liang and J. Zhao 7

where U denotes the right stretch tensor which is symmetric and positive definite, and R is the orthogonal rotation tensor which can be related to
the rotation angle θ according to:

R =

[
cos θ − sin θ

sin θ cos θ

]
(37)

Considering the following relationship:

FT · F = (R · U)T · (R · U) = UT · RT · R · U = UT · U = U · U (38)

we can firstly determine U and R by the following equations, and then use Equation 37 to obtain the rotation angle θ.

U = (FT · F)1/2 (39)

R = F · U−1 (40)

Fabric anisotropy Fa134

Fabric anisotropy has been widely used to characterize the microstructure within an assembly of DEM particles during the loading process. In this135

study, we follow the contact-normal definition of fabric tensor proposed by Satake 68 and Oda 69 and determine the anisotropy intensity (for 2D):136

φ =
1

N

∑
N

n⊗ n (41)

Fa = 4
(
φ−

1

2
I
)

(42)

Fa =

√
1

2
Fa : Fa (43)

where φ is the fabric tensor, Fa is the deviatoric fabric tensor and Fa is a scalar value used to measure anisotropy intensity. n denotes the unit137

contact normal vector as shown in Figure 1 .138

n
t

d

f
c

t
f c
n

M
c
r

j

i

η

k t

kn

kc
r

φ

ji

c

c

FIGURE 1 Schematic of interparticle contact and contact model used in the DEM. A linear contact model with Coulomb’s friction for normal and
tangential contact directions in conjunction with a rolling resistance model on the contact moment is considered.

2.3 Hierarchical Multiscale Coupling Between MPM and DEM139

Figure 2 presents the flowchart of hierarchical multiscale coupling betweenMPM and DEM. A sequential interactive coupling scheme is followed.140

The macroscopic continuum domain is first discretized by MPM by a set of material points. Assemblies of granular particles with prescribed initial141

density and confining pressure are generated and are assigned to theMPMmaterial points as RVEs. Depending on the specific problem, identical or142

variable RVE assemblies can be assigned to thematerial points, leading to a homogeneous or inhomogeneous continuum domain. A typical coupling143

cycle comprises the following steps: (a) MPM is first employed to derive the motion and deformation for each material point under the prescribed144

boundary conditions. (b) The deformation information (typically the incremental displacement gradient dH consisting of the incremental strain ∆[145

and incremental rotation ∆ω) at each material point is transferred to its corresponding RVE serving as boundary conditions. (c) DEM is invoked to146

solve the RVE at the prescribed boundary conditions. (d) An updated Cauchy stress is homogenized over the deformed RVE configuration and is147

transferred back to its attached MPMmaterial point for continuous computation. Note that after each loading step, the deformed packing of each148

RVE is recorded as the initial state for the subsequent loading step. As such, the multiscale modeling may keep a memory of its past loading history149
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8 W. Liang and J. Zhao

over the whole domain. It is also noticed that the DEM computation for each RVE of the domain is independent, therefore it is straightforward to150

implement parallel computing to improve the computational efficiency of the multiscale modeling scheme.

Rotation ω

Strain ε

St
re

ss
 σ

Apply Deformation

in DEM

RVE PackingRVE Packing

Material Point in 
Background Mesh

FIGURE 2 Illustration of the hierarchical multiscale coupling scheme of MPM and DEM.

151

Two open-source codes —NairnMPM 70 (MPM solver) and YADE 71 (DEM solver) have been rigorously coupled for implementation of theMPM/-152

DEM multiscale approach. The following summarizes a complete solution procedure of the proposed scheme:153

154

Computation solution procedure for hierarchical coupling of MPM/DEM multiscale approach.155

156

1. Discretize the continuum domain with material points and assign these points relevant quantities such as mass, volume, initial stress using157

Equation 3 to 6. Attach a RVE with specified initial state to each material point.158

2. Solution phase from step n to n + 1:159

(a) Map from material points to nodes:160

i. Compute nodal mass: mn
I =

∑
p SIpmp161

ii. Compute nodal momentum: pn
I =

∑
p SIpp

n
p162

iii. Compute nodal velocity: vn
I = pn

I /mn
I163

(b) Update deformation and stress of material points:164

i. Compute material point incremental displacement gradient: dHn+1
p = ∆t

∑
I∇SIpv

n
I165

ii. Update material point strain: [n+1
p = [n

p + 1
2

(
dHn+1

p +
(
dHn+1

p

)T
)

166

iii. Transfer dHn+1 to corresponding RVE and apply deformation in DEM solver167

iv. Compute the homogenized Cauchy stress σ in DEM solver using Equation 30.168

v. Transfer σ back to MPM and update particle stress: σn+1
p = σ169

(c) Solve momentum Equation:170

i. Compute internal force f int
I , external force fext

I using Equation 12 and 13171

ii. Compute total nodal force: f I = f int
I + fext

I172

iii. Update nodal momentum: pn+1
I = pn

I + f I∆t173

(d) Map from nodes to material points:174

i. Update particle velocity using Equation 19.175
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W. Liang and J. Zhao 9

ii. Update particle position using Equation 16.176

3. Go to next step n + 1.177

178

There are four noteworthy aspects about the coupled MPM/DEM multiscale approach:179

• The MPM employs an explicit time integration scheme. The strain and stress at each material point are updated before the total nodal force180

is calculated, as this update strain first (USF) scheme has been argued to yield better energy conservation over the update strain last (USL)181

scheme 72.182

• Conventional continuum modeling of large deformation (and large rotation) needs the consideration of objective stress rate (e.g. Jaumann183

stress rate) in constitutive formulations to ensure the objectiveness of the mechanical response. In the proposed MPM/DEM multiscale184

approach (see Step 2b), a RVE receives the incremental displacement gradient dH instead of pure strain increment ∆[ from the MPM,185

and thus the rotation is reflected in the RVE configuration. Moreover, the (total) updated stress σ is homogenized from the deformed RVE186

packing which may experience large rotation (as will be shown by examples in next section) and hence has implicitly incorporated the effect187

of rigid rotation. As such, the objectiveness of the local material response extracted from the RVE is retained in each step.188

• In the current MPM/DEM coupling scheme, the only information that needs to be derived from a RVE is the Cauchy stress σ (not the stress189

increment), while in previous FEM/DEM approaches, the tangent operator is also needed in addition to stress 45. Nevertheless, in possible190

future extension of the proposedMPM/DEM approach to hydro-mechanical coupling, more updated information may need to be extracted191

and passed on to the macro MPM computation, such as void ratio, fabric anisotropy, permeability (c.f. Guo & Zhao 21).192

• Although a variety of remeshing or adaptivemeshing techniques 4,5,6,7,1,73,2,8,74 have been proposed to enhance the capability of conventional193

FEM for tackling large deformation problems or strong discontinuity , they rarely work within the multiscale modeling framework for two194

reasons. The first and foremost important one is when applying these remeshing technique to multiscale modeling, we not only need to195

interpolate states variables (e.g. stress, strain, void ratio) from the old distorted mesh to the new one, but also have to map back the history196

of the microstructures (RVE history), and such attempt would ruin the physical basis for the multiscale framework. Secondly, a considerable197

number of specific RVE (whose stress states have to be compatible with local stress field) have to be generated and attached to additional198

Gauss interpolation points after each mesh refinement, this process is time-consuming and also substantially increases total elapse time for199

DEM solver (as more RVEs have to be solved). In contrast to FEM, the background mesh of MPM only serves as a “scratch pad" for solving200

the momentum equation which will not distort during the computation, therefore there is no need for refinement or remapping, and the201

microstructures (RVE history) at a material point can be memorized throughout the simulation.202

3 MULTISCALE MODELING OF GEOMECHANICS PROBLEMS203

In this section, the proposed hierarchical multiscale modeling approach based on coupled MPM and DEM is first benchmarked on single element204

test. It is then applied to predicting several classic geomechanics problems to showcase its predictive capability. The examples chosen here include205

strain localization in sand subjected to biaxial shear, failure of rigid footing foundation, soil-pile interaction and collapse of soil column. The biaxial206

shear example is also used to examine the sensitivity of multiscale predictions of strain localisation to various model properties (e.g. mesh sensitiv-207

ity). Both the footing and the soil-pipe interaction problems featuremultiscale predictions of quasi-static large deformation. The soil column collapse208

problem involves dynamic flow of soil to large deformation. Note that two dimensional simulations are considered for all examples in this study209

for demonstration purposes, though the formulations (and implementation) have been developed based on full three dimensional consideration.210

3.1 Single Element Test211

Single element test has been widely used for numerical model validations 45,50. It is used here to benchmark the multiscale modeling approach. The212

single element is set up with prescribed boundary conditions as shown in Figure 3 . A constant confining pressure (σxx =100 kPa) is applied to the213

right side of the element, and a vertical displacement is applied on the top surface. The left and bottom surfaces of the element are constrained by214

their horizontal and vertical degrees of freedom, respectively. A RVE with properties listed in Table 1 is generated and is isotropically consolidated215

to an initial mean stress p0 =100 kPa and an initial void ratio e0=0.177 (which can be regarded as a dense packing). The single element domain216

is discretized by four material points in the MPM. An identical RVE is attached to each of the four points. Gravity is ignored in this simulation.217

As single element test is expected to generate homogeneous mechanical responses across the element, the global response measured from the218
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10 W. Liang and J. Zhao

element should match the local responses extracted from the pure DEM simulations under the same boundary conditions. Figure 4 depicts the219

global stress-strain relation and dilatancy curve from multiscale modeling and pure DEM modeling, showing that the multiscale predictions can220

accurately reproduce the complex, non-linear response of granular materials up to large strain.221

Smooth Loading Plate

σx
x=

10
0k

P
a

x

y

FIGURE 3 Model setup for single element test.

Particle Number r (mm) ρ (kg/m3) E (MPa) ν ϕ (◦) α e0

400 3-7 2650 600 0.8 28.6 0.1 0.177

TABLE 1 Parameters for RVEs used in single element test.
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FIGURE 4 Comparison of global stress-strain relation between MPM/DEM multiscale predictions and pure DEM simulations on the same RVE in
a single element test: (a) stress-strain relation, (b)dilatancy curve.

3.2 Biaxial Compression Test222

The proposed multiscale approach is further employed to simulate biaxial compression tests on a dense sand. Particular emphases are placed on223

the occurrence and evolution of the strain localization pertaining to the underpinning grain-scale material response. The sample also serves to224

explore the sensitivity of multiscale modeling to the choice of multiple model parameters, including mesh density and particle density. The model225
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W. Liang and J. Zhao 11

set-up for the biaxial compression test is depicted in Figure 5 , where we consider a sand sample with dimensions of 1 m by 2 m. Both lateral226

boundaries of the sample are subjected to a constant confining pressure σxx =100 kPa, while the bottom is totally fixed. A rough plate (with227

constrained movement in x and y direction) is attached to the top boundary of the sample and moves monotonically downward with a constant228

vertical velocity v =0.02 m/ sec (the loading rate is equal to 1 %/ sec). The loading velocity of the rough plate is increased linearly from zero to229

the prescribed magnitude at the beginning to reduce the stress oscillation. To study the sensitivity of mesh density and particle per cell (PPC) 75,70230

iiof MPM on the global responses, we consider the following five comparison cases: C4,M1,M4,M9 and F4 (the capital letter denotes the mesh231

density: Coarse = (16× 8 elements),Medium = (20× 10 elements) and Fine = (30× 15 elements); the number after each letter denotes the number232

of particles per cell used). The same RVE used in the single element test has been employed for the following biaxial compression tests. Gravity is233

ignored in the simulation.234

Rough Plate

σx
x=

10
0 

kP
a

x

y

1 m

2 
m

    C4    M1    M4  M9    F4

 Pt.A

 Pt.B

 Pt.C

FIGURE 5 Model setup for biaxial compression test.In each name of the five different cases, the capital letter denotes the mesh density: Coarse
(16× 8 elements) ,Medium (20× 10 elements) and Fine (30× 15 elements), whereas the second number denotes particles per cell (PPC). Pt. A, B
& C marked by red cross are locations chosen for the following meso-scale analysis.

3.2.1 Global Responses235

The global stress-strain relations for all five cases are presented together with the pure DEM simulation on the RVE in Figure 6 . The vertical stress236

σyy and the shear stress σyx are obtained by the vertical and horizontal reaction forces acting on the loading plate normalized by the plate area.237

We take the case ofM4 as an example on discussion, while leaving the comparison with other cases to the subsequent subsection on sensitivity238

study. For CaseM4 (blue curves), it is apparent the global responses of the sample compare well with the pure DEM simulation (denoted by empty239

circles in Figure 6 ). Indeed, the pre-peak responses of σyy from the multiscale modeling are almost identical with the pure DEM simulation, both240

showing a peak of about 280 kPa. Case M4 reaches a peak at around εyy =1.6 %, slightly earlier than that of the DEM (εyy =1.7 %). The post-241

peak response by multiscale modeling is relatively smooth while that from pure DEM shows some fluctuations due primarily to the limited number242

of particles (400) used. A steady state of σyy ≈220 kPa at εyy = 8% is predicted by M4. The sample again offers compelling evidence that the243

multiscale modeling is feasible in producing realistic sand responses. The horizontal (shear) stress σxy acting on the plate is highly fluctuating over244

the loading process, albeit its magnitude is much smaller compared to the vertical stress. Nevertheless, the fluctuations shown by σxy are found245

bearing high relevance to the formation and development of shear bands in the sample, as will be discussed in the sequel.246

iiNote that PPC stands as Particles Per Cell and is a historical name used in MPM, but indeed refers to the number of material points (RVEs) per grid
element here to avoid confusion with the particles in a RVE.
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FIGURE 6 Global stress-strain responses of sand sample subjected to biaxial compression predicted by the multiscale modeling approach for
cases with different mesh density and particles per cell (PPC), in comparison with the pure DEM simulation on the RVE under identical boundary
conditions (denoted as empty circles). The vertical and horizontal stresses are calculated by diving the reaction forces acting on the loading plate
with the plate area.

3.2.2 Mesh and Particle Per Cell (PPC) Dependency247

The multiscale MPM/DEM approach cannot escape a similar curse of mesh dependency as suffered by most mesh-based methods such as FEM.248

To explore how sensitive the multiscale predictions are to the mesh size and PPC number, Figure 6 presents the global responses for all five cases249

in comparison with the pure DEM simulations. Evidently, samples with different mesh size or PPC show almost identical pre-peak responses that250

are consistent with the DEM simulations. The predicted peak σyy values are close in all cases too. However, their post-peak responses show certain251

significant divergence. For the three cases with identical PPC but different meshes (M4,C4 and F4), the finer mesh case generally leads to more252

softening post-peak responses with smaller steady state stress. For the three cases with mediummesh but different PPC (M1,M4 andM9), the case253

with a larger PPC number appears to render relatively less softening responses than those with a smaller PPC number. The responses in all three254

cases are between those of C4 and F4, indicating that the influence of PPC on the global responses is less significant than that of the mesh density.255

As pointed out by Steffen et al. 75, adopting a higher PPC is beneficial as it helps reduce the upper bound of the error and increase the computational256

stability. However, a higher PPC may also result in substantial increase in computational cost. Therefore, both effectiveness and accuracy should257

be taken into consideration in selecting a proper value for PPC. Figure 7 further compares the final strain localization patterns observed in all258

five cases at a final state εyy =15 %. In all cases, the strain is found localised in symmetric cross-shape shear bands in the sample. The band width259

appears to be dependent on the mesh size, with narrower bands in cases of finer mesh. However, PPC does not show an obvious influence on260

the band width. A possible way to resolve the mesh dependency issue for the coupled MPM/DEM approach may follow similar techniques having261

been used in continuum modeling approaches, e.g. by invoking non-local formulations 50 or introducing certain regularization schemes 76. This is262

however beyond the scope of the present study and will not discuss here. The observed differences in the five cases, nevertheless, are considered263

insignificant. For the rest of this subsection, CaseM4 is chosen for detailed analysis and discussion.264

C4 M1 M4 M9 F4
εq

2.00

1.50

1.00

0.50

0.00

FIGURE 7 Contour of deviatoric strain εq for samples with different meshes and/or PPC at a final state εyy =15 % under biaxial compression.
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3.2.3 Shear Band Evolution265

Strain localization has been well reproduced in our multiscale simulation of biaxial compression. To analyze the onset and development of strain266

localization, we identify four representative quantities of the material responses at the three study points (Pt. A, B & C), namely, the deviatoric267

strain εq, void ratio e, the rotation angle θ and the displacement field u, and examine their evolutions at four stages of deformation (axial strain268

εyy =1.5 %, 2.0 %, 3.0 % and 15 %). The results are plotted in Figure 9 .The global stress-strain relations of Case M4 has also been replotted in269

Figure 8 , for better explanation of the evolution of shear band in the sample.270

As can be seen from Figure 9 , the overall occurrence and development of the cross-shape shear bands in the sample resemble largely those271

observed from case with random bedding plane and rough boundary in 48. A dominant rightwards-tilting shear band, with an angle about 60◦ to the272

horizontal, is observed to develop prior to the peak normal stress at εyy =1.5 % and the resisting shear stress due to constraint by the rough top273

plate points to the left (negative in value) (Figure 8 ). The shear deformation and anti-clockwise rotations in the rightward-tilting band are apparently274

larger than the rest of the sample. When the peak normal stress state is reached, the shear stress exerted by the plate dramatically changes from275

negative (pointing to the left) to a positive (pointing to the right) peak at around εyy =2.0 %, which further enhances the development of the first276

band and brings the second shear band (leftward-tilting) to be more intensive. After εyy =2.0 %, both normal and shear stresses gradually drop,277

while both shear bands continue to develop until the final state. Notably, the leftward-tilting band develops clockwise rotations which gradually278

cancel out the positive rotations by the rightward-tilting band at the center of the sample, leading to the final rotation negligibly small at the sample279

center. However, both the shear strain and dilatant volumetric strain are greatly enhanced at the center due to development of both bands. The280

observations are consistent with the FEM/DEM simulations in 48. When the loading approaches the final state at εyy =15 %, the cross-shape shear281

bands develop in their full. The displacement field of the sample can be divided into four distinctive portions by the cross-shape shear bands: the282

two side triangle parts moving down and laterally, the upper pentagon part moving downwards and the lower pentagon part with only negligible283

movements. The contour of void ratio clearly showed the dilative deformation of material within shear band (note that the initial void ratio is 0.177).284

The final rotation inside the shear bands can reach as large as 58◦. Under this circumstance, severe mesh distortion would have been inevitable285

for conventional FEM and thus accuracy and effectiveness cannot be guaranteed.286
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FIGURE 8 Global stress-strain relation for caseM4 (Medium mesh, 4 PPC) in biaxial compression test.

3.2.4 Meso-scale Analysis287

The proposedmultiscalemodeling approach enables us to probe the underlyingmicrostructural mechanisms formacroscopic observations, through288

the RVEs employed as a meso-scale structure bridging the micro and macro scales of a problem. Herein we chose three points inside the sample289

to conduct a meso-scale analysis (their positions are shown in Figure 5 and 9 ), whereby Point A is located at the bottom part of the sample and290

is far away from the shear bands, Point B is located at the center of the sample and also the interception of the two shear bands and Point C is at291

the upper part of the sample and is inside the rightward-tilting shear band (see also the left figure in Figure 9 (d)). The local responses for these292

three points and their microstructures at final state are shown in Figure 10 and Figure 11 , respectively.293
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FIGURE 9 Shear band evolution for caseM4 in biaxial compression test.

Point A294

Point A is outside the shear bands at the bottom part of the sample. Apparently, it only develops a small peak deviatoric stress at (εq ≈1 %) before295

undergoing unloading. Rather low fabric anisotropy (Fa ≈ 0.075) has been induced at this point. The effective stress path in Figure 10 (b) clearly296

confirms that Point A undergoes a perfect loading and unloading process. Being outside the shear bands, this point experiences marginally small297

rotation (θ =−0.1◦) and relatively small volume change. The above observation is further confirmed by the contact force chain network shown in298

Figure11 (a) which shows the deformation of RVE at Point A is almost negligible and its initial isotropic structure is well preserved.299

Point B300

Point B is located at the lower center of the cross-shape shear bands. Its behavior is significantly influenced by the evolution of both bands. Point B301

first shows a monotonic increase in stress before strain localization occurs at a global vertical strain at εyy =1.5 % (peak normal stress state), from302

which its deviatoric stress q drops rapidly due to the development of the first dominant shear band which induces strain softening. The stress drop303

is reversed when the second shear band starts to develop before the global shear stress reaches its peak at εyy ≈2.0 %. Later, the sample domain304

is restored to an approximately symmetric field in terms of shear deformation. The symmetry in deformation pattern together with the rough305

boundary apparently help the center point sustain a large stress state (ppeak ≈420 kPa, qpeak ≈150 kPa) until this symmetry breaks at εyy ≈8.5 %.306

After the breakage of symmetry, both p and q gradually decrease and Point B rotates clockwise by a mild rotation angle (θ =10◦). The fabric307

anisotropy Fa exhibits an increase to a double-peak evolution with much fluctuations, but its range of fluctuation remains between 0.2 ∼ 0.3. As308

can be seen in Figure 10 (f), the initial contraction at elastic stage, dilation because of occurrence of shear bands, and second contraction/dilation309
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before/after the breakage of symmetry are well recorded, reflecting complex loading Point B has undergone. The strong force chain and apparently310

deformed RVE with a mild rotation shown in Figure 11 (b) is consistent with the observation from Figure 10 (d-f).311

Point C312

Point C is located inside the rightward tilting shear band in the upper right part of the sample. The stresses at Point C shows a rapid increase to313

a peak and then drops (with fluctuations) with the continuous development of the shear band. The evolution of fabric anisotropy Fa at Point C is314

similar to that of Point B, reaching a peak first then dropping with fluctuations. The final force chain network of the RVE at Point C (Figure 11 )315

indicates considerable shear deformation occurs at this point. Point C begins to experience a steady rotation right after the peak stress state until316

the final state, amounting to final rotation of 38◦. The large rotation it undergoes is further confirmed by the observation of force chain network317

in Figure 11 (c).318
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FIGURE 10 Local responses for selected material points in biaxial compression test: (a-c) Point A, (d-f) Point B, (g-i) Point C.
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(a)   (b) (c) 

FIGURE 11 Force chain for selected material points in biaxial compression test: (a) Point A, (b) Point B, (c) Point C. The dashed line indicates their
undeformed shape.

3.3 Rigid Footing319

We further consider a classic geotechnical problem — a strip rigid footing penetrating into a weightless soil foundation. Modeling of rigid footing320

problem is widely considered challenging as it may involve large deformation of soil when the penetration is deep. It is difficult for conventional321

Updated Lagrangian FEM to handle as the soil elements at the bottom edge of the footing, commonly regarded as a singular plasticity point 77,322

may be severely distorted during the FEM calculation which frequently gives rise to convergence issue (readers can refer to Figure 13 in 78 for323

deformed mesh in footing problem). It will demonstrate in the following that the proposed MPM/DEM approach can readily handle this situation.324

Moreover, we demonstrate that multiple failure modes observed in rigid footing, namely, general failure, local failure and punching failure modes,325

can be captured by the MPM/DEM simulations.326

3.3.1 Packing Preparation and Model Setup327

To model the three failure modes, three RVEs, dense, medium dense and soft packing iii, are generated based on the parameters listed in Table 2 .328

The dense and medium dense packings differ only in their initial void ratios e0 to represent dense and medium dense foundation soils, respectively.329

In order to model a soft soil foundation where punching failure may occur, the soft packing uses reduced Young′ modulus E, interparticle friction330

angle ϕ and dimensionless parameter η compared to the dense packing case to have a reduced contact stiffness. It is noteworthy that the rolling331

resistance mentioned in Section 2.2.1 is taken into account to generate RVEs with more realistic strengths.332

Name Particle Num. r(mm) ρ(kg/m3) E (MPa) ν ϕ (◦) β η α e0

Dense 400 3-7 2650 800 0.5 23 1.0 0.05 0.1 0.1874
Medium Dense 400 3-7 2650 800 0.5 23 1.0 0.05 0.1 0.2314

Soft 400 3-7 2650 80 0.5 20 1.0 0.02 0.1 0.2299

TABLE 2 Model parameters for three different RVEs used in multiscale modeling of rigid footing problem on dense, medium dense and soft soil
foundations.

Macroscopic effective friction angles of the generated RVEs are needed for computing the analytical bearing capacity, in order for comparison333

with the multiscale modeling. To this end, biaxial compression tests are carried out on each RVE under five confining pressures, 10 kPa, 15 kPa,334

20 kPa, 25 kPa and 30 kPa. From the corresponding stress-strain responses ( insets of Figure12 ), the Mohr circles of the peak stress states are335

plotted in Figure12 . The corresponding macroscopic effective friction angles for Dense, Medium Dense and Soft packing are then estimated as336

28.1◦, 20.8◦ and 18.2◦, respectively. The three RVEs are assigned to the material points in three identical MPM domains shown in Figure 13 for337

the following simulations and modeling.338

The geometry, boundary conditions and loading scheme for the rigid footing problem are shown in Figure 13 . The soil domain is 12 m wide and339

8 m deepwhile the rigid footing foundation has a dimension (width× height) of 1 m×2 m. The whole soil domain is discretized into 108×72 = 7776340

iiiIn DEM, it is difficult to generate extremely loose, stable packings without special techniques such as those used in 52. Alternatively, we elect to prepare
a packing with lower overall stiffness and strength to represents soft soils in this study. This soft packing is complementary to the dense and medium dense
packings to generate a comprehensive spectrum of failure modes observed in footing foundation.
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FIGURE 12 Estimation of the macroscopic friction angle for each case of RVE used in the footing problem: (a) Dense, (b) Medium Dense and (c)
Soft soils.

elements with an element size of 0.11 m. In order to improve the mesh resolution without significantly increasing the computational cost, an initial341

value of PPC of 1 is adopted. Note that the whole domain includes a total of 7776 RVEs and each of them contains 400 particles, which amounts to342

a total of 3 110 400 particles to be handled in each loading step. A smooth wall is placed at the right boundary of the soil to constrain its horizontal343

movement. The left boundary is a symmetric plane while the bottom is totally fixed. The surface of the rigid footing is rough. A constant, uniform344

surcharge q =20 kPa is applied to the ground surface except the resting area of the footing. The settlement of the footing is modeled by prescribing345

a constant downward velocity 0.1 m/ sec on it. A simulation is terminated when a maximum settlement d/B = 1.5 is reached. Gravity is neglected346

here.347

3.3.2 Failure Patterns348

Three distinctive failure patterns are observed in our multiscale modeling of the soil foundations under rigid footing penetration. They resemble the349

modes of general shear failure, local shear failure and punching failure, respectively. The contours of deviatoric strain εq, displacement u, void ratio350

e and cumulative rotation θ at the final failure state for all three cases, are plotted in Figure14 and Figure 15 . In analyzing the failure patterns, we351

wish to highlight the competition between two array of curvilinear slip line caused by the footing penetration in the soil. The first array (hereafter352

referred to as Array A) of slip lines emanate from the outer edge and bottom corner of the footing, pointing right-downwards. The second array353

of slip lines (Array B) originate from the tip and surface of the triangle wedge underneath the footing, pointing right and upwards. The curvilinear354

slip lines in the two arrays are orthogonal, as can be clearly seen from the shear strain contours in Figure14 .355

General shear failure356

Our multiscale simulation on the footing with the dense packing shows a general shear failure mode, as shown in Figures 14 (a) and (b) and Figures357

15 (a) and (b). The failure pattern can be defined by four primary slip lines clearly identifiable from Figure 14 (a). Three of them, emanating from358

the outer edge of the footing and pointing downwards to the left, vertical and right, respectively, belong to Array A. The downward left-tilting slip359

line and the footing bottom form an approximate rigid triangular wedge (or active Rankine zone as termed by 79). The fourthmajor slip line originates360
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FIGURE 13 Model setup for the footing problem where the footing has a rough surface and the right-side wall is rigid and smooth to allow only
vertical movements of soil in contact.

from the tip of this wedge and extends curvilinearly right and upwards, belonging to Array B. Apparently, this Array B slip line is the most dominant361

one, intercepting all previous three in Array A and defines the failure mode. It partners with the wedge-edge shear band and the downward right-362

tilting one in Array A form a radial shear zone, the bottom of which presents approximately a log-spiral curve. Immediate next to the right, the363

extended long part of this dominant Array B slip line and the right Array A slip line form a major failure zone of the largest volume extending to the364

ground surface. This last failure zone is commonly termed as Rankine passive zone in the literature 79. The overall failure configuration is indeed365

consistent with the Terzaghi’s description on the failure mode. The middle Array A slip line does not appear to play a major role in the zonation,366

but simply sub-dividing the radial shear zone into two portions. From the contour of displacement vector in Figure14 (b), one can clearly observe367

that the soil immediately under the footing foundation is pushed downward acting as if it were a part the foundation while the surrounding soil368

is dispelled alongside. The dense packing of the soil renders the deformation and mobilization of soil far reaching, forming an apparent heave as369

wide as around 2.5 times of the footing width at the ground surface.370

Indeed, rather consistent characteristic of failure modes is also captured by the contour of void ratio e and rotation angle θ shown in Figure 15 .371

The void ratio of soil within all slip lines shows an apparent increase due to shear dilation (note that in Figure 15 (a)(c)(e), white represents initial372

void ratio e0 whereas red and blue represent dilation and contraction, respectively). Moreover, the particles inside the dominant Array B shear band373

show clockwise rotations, while those within three Array A slip line rotate anticlockwise (note that in Figure 15 (b)(d)(f)white represents no rotation374

whereas red and blue represent rotating anticlockwise and clockwise accordingly). This observations are consistent with those from experiments 80375

and other numerical simulations 51.376

According to Prandtl’s solution, the lower boundary between the triangular wedge and the active Rankine zone inclines at π
4

+ ϕ′

2
= 59.05◦377

to the horizontal plane. As shown in Figure 14 (a), the corresponding angle obtained from our simulation is 54.8◦, which is slightly smaller than378

the analytical prediction. This discrepancy is probably due to the friction between the rough footing and soil which prevents the soil within the379

triangular wedge spreading horizontally 79. Notably, Prandtl’s solution assumes the footing bottom is smooth.380

Also, in general shear failure, the log-spiral slip line can be described by following equation:381

r = r0e
ψ tanϕ′

(44)

where r is length of line connecting the center of log-spiral curve which is the bottom corner of the footing with the points on the curve, r0 is382

the length of lower boundary of the triangular wedge, ψ measures the direction from r0 to r. The log-spiral slip surface with an effective friction383

angle ϕ′ = 28.1◦, which is obtained in Section 3.3.1, is also plotted in Figure 15 (b). As can be seen, the simulation result agrees perfectly well384

with the analytical prediction.385
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Local shear failure386

The footing case with medium dense packing gives rise to a local shear failure mode. The local shear failure also exhibit a smaller triangular rigid387

wedge formed immediately under the footing foundation, a curved shear failure zone and small heaved ground surface. The major failure zone is388

the radial shear zone which is confined not far from the footing, which is considered “locally”. Unlike the general shear failure, only one major Array389

A slip line is formed along the wedge surface, with two other under-developed Array A bands appearing next to it on the right. No mature Array390

B slip lines are found, but orthogonal curvilinear slip lines from both arrays are apparent in the soil foundation. The slip lines in Array B are mostly391

intercepted and confined by the three Array A slip lines, thus no apparent failure surface is extended to the ground surface. The intensities of both392

shear strain and rotations are smaller than in the general shear failure case, and the heaving hight is smaller too. Dilatant zones are scattered in the393

mobilized soil but do not form apparent dilatant shear bands. The rotation zone is much less concentrated than the general failure case.394

Punching failure395

Punching failure is found in the footing case using the soft packing. In contrast to aforementioned two failure modes, no Array B slip lines are396

developed at all. All major slip lines observed belong to Array A, which extend downward far-reaching deeper to the soil than the previous two397

cases. The influence zone by the footing is largely confined within a relative small region under the footing foundation. The soil immediately under398

the footing experiences pure compression (note that contraction of soil is shown in blue in Figure 15 (e)) while the soil close to the wedge and399

footing edge exhibit large shear deformation. The slip lines that can potentially develop into Array B are all intercepted by Array A slip lines. The400

displacement field in Figures 14 (f) clearly depicts the locally occurred failure. The ground surface hardly feels the failure except slight settling401

adjacent to the footing. Only slight anticlockwise rotations along the wedge surface and footing edge are recorded in Figure 15 (f).402

3.3.3 Analytical Bearing Capacity403

The bearing capacity is a key design index for foundations. Prandtl 81 82 proposed the following analytical solution to calculate the ultimate bearing
capacity pu for a shallow footing seated on a weightless cohesionless soil in the case of general shear failure:

pu = qsNq (45)

where Nq is the bearing capacity coefficient due to surcharge, and can be determined from the effective friction angle ϕ′:

Nq = tan2
(π

4
+
ϕ′

2

)
eπ tanϕ′

(46)

Although there is no available analytical solution for local shear failure and punching failure, Terzaghi 79suggested using the same equation but404

with a reduced friction angle ϕ′r to find the approximated bearing capacity coefficient N′q:405

ϕ′r = arctan
(2

3
tanϕ′

)
(47)

Figure 16 shows the variation of normalized settlement with normalized ultimate loads for three cases, in comparison with the corresponding406

analytical solutions. The general shear failuremode shows a clear peak followed by softening load-settlement curve, while general hardening curves407

are observed in the other two failure modes. As indicated in Figure 16 , the analytical bearing capacity coefficients, based on macroscopic friction408

angles estimated from Figure 12 , are 14.8, 3.7 and 3.1 for general shear failure, local shear failure and punching failure, respectively. The predicted409

values by our MPM/DEM multiscale approach are 14.4, 4.8 and 3.7, respectively, for the three cases. The analytical and numerical predictions410

are close, except in the case of local shear failure. The local shear failure mode observed in this study may actually be a transitional failure mode411

between the general shear failure model and true local shear failure mode, resulting in a relatively bigger value for the predicted bearing capacity412

than the analytical one.413

3.3.4 Meso-scale Analysis414

To analyze the local behavior for the above three cases, a reference point from the same location is chosen for all three case (the location of415

the chosen point is marked as a cross in Figure 13 and Figure 14 ). The evolutions of the deviatoric strain εq, fabric anisotropy Fa, void ratio416

e and rotation angle θ against the normalized settlement d/B are presented in Figure 17 . In all three cases, the deviatoric strain εq increases417

monotonically with the footing penetration, where the general shear failure mode shows a power law increase before it reaches a final value of 1.6418

at the end of the penetration, indicating an uncontrollable speeding shear failure of the foundation. In both the local and punching shear failure419

modes, the increase of εq with footing settlement is almost linear, leading to much smaller final deviatoric strains of 0.4 and 0.22, respectively, than420

the general shear failure mode. The evolutions of both void ratio e and rotation θ are consistent with the observation on εq for the three cases. The421

above observation is consistent with the fact that the chosen material point lies in the main slip surface for the general shear failure case, whereas422
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FIGURE 14 Contour of deviatoric strain εq and displacement field u for cases using different RVEs at final stage d/B = 1.5 in footing problem.

it is located close to a partially developed failure surface for the local shear failure case and outside the failure zone at all for the punching failure423

mode. Indeed, for the punching failure mode, the representative material point lies outside the punching shear wedge and undergoes contraction424

only, evidenced by the smaller deviatoric strain and decreased void ratio during the penetration of the footing in Figure 17 . The fabric anisotropy425

at the chosen point experience an initial increase to peak followed by a softening to relatively steady state for both general and local shear failure426

modes, whereas it remains a rather small value for the punching failure.427

Figure 18 further compares the force chain networks of the selected material point at the final state in the three cases. Evidently, a combined428

shear-compression deformation is found for the point in the general shear failure case, resulting strong loading bearing structure approximately429

along the horizontal direction and large clockwise rotations. Both shear deformation and rotations shown by the contact force network are much430

less in the local shear failuremode. As for the punching failure case, thematerial point experience negligibly small deformation and rotation, resulting431

in an almost isotropic contact force network, which confirms early observation of low fabric anisotropy for this case. Overall, the observations from432

the contact force network are consistent with those from 17 as well as the global behavior of the footing problem.433
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FIGURE 15 Contour of void ratio e and rotation θ for cases using different RVEs at final stage d/B = 1.5 in footing problem. White represents
corresponding initial void ratio in void ratio contour (a)(c)(e), and denotes zero rotation angle in rotation contour (b)(d)(f).

3.4 Pipe-Soil Interaction434

This subsection presents a more complex example where large deformation analysis is essential. The installation and maintenance of pipelines435

are of significant engineering importance to offshore energy extraction and transport and seabed communication fiber cables 83. Under various436

working loads (e.g., gravity, wave and earthquake), an offshore seabed pipeline may experience significant vertical and lateral displacement during437

and after its installation, causing complicated soil-pipe interactions involving large deformation. For safe design and reliable maintenance, it is438

critical to assess the large deformation behavior of the supporting soil interacting with the pipeline.439

The soil-pipe interaction problem to be considered in this study is shown in Figure 19 . We consider a soil domain of 9 m wide and 2.5 m deep.440

The bottom of the soil domain is fixed in both directions while the side edges are only constrained horizontally. A rough pipe of a diameter of 1 m441

is released to settle from above the center line of the soil domain and penetrate into the soil vertically for 0.8 m (measured by bottom of the pipe)442

first, and is then moved horizontally to the left for 0.7 m. The loading scheme is depicted by the velocity profile and coordinate change of the pipe443

bottom (inset) in Figure 20 . The loading scheme has considered a balance of accuracy and efficiency: the velocity is chosen small enough to ensure444

the quasi-static condition can be loosely satisfied, while it is chosen as large as possible to shorten the computational time. A smaller horizontal445

velocity is adopted to ensure there is sufficient time for the soil behind the pipe to rearrange. Adding the accelerating/decelerating ramps in the446

loading scheme helps to alleviate the stress oscillations during the computations. The entire soil domain is discretized with 9800 elements, with one447

particle (1 PPC) considered in each element. In this problem, we adopt the same dense packing used in footing problem (Section 3.3) to serve as448

the RVE. Before applying any pipe-induced deformation, the soil is considered to be loaded by gravity and the RVEs to be assigned are isotropically449

compacted in the DEM solver to their corresponding geostatic pressure: p = ρgh, where g is gravity and h is the depth of each material point.450
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FIGURE 17 Local response for material points chosen from different cases in footing problem.

3.4.1 Global Response451

The reaction force of soil acting on the pipe is plotted in Figure 21 . To facilitate explanation, the whole loading process is divided into two parts452

to discuss: the (vertical) penetration stage and the lateral movement stage. In the penetration stage, the horizontal reaction remain low, while the453

vertical reaction force gradually increases to a peak of 250 kN towards the end of the penetration stage. Moderate fluctuations are observed in454

the curve, possibly due to the stress wave reflection. The depth of soil domain adopted here is 2.5 times of the pipe diameter which is relatively455

shallow. The stress wave induced by penetration may not be fully dissipated in such short propagation distance. Special treatments, such as using456

an absorbed boundary at the bottom 78 or averaging the results over certain period 17, could help to obtain a smoother reaction-time curve. At457

the end of the vertical penetration, the pipe experiences a sudden drop in vertical reaction force from its peak. When the pipe starts to move458

horizontally, the vertical reaction gradually drops and stays to a steady value of 25 kN, while the horizontal reaction force rapidly increases to 50 kN459

and maintains a slight increase thereafter. This mild increase is largely attributed to the growth of soil berm accumulated ahead of the pipe. Our460

simulation results agree qualitatively with that reported in 9.461
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FIGURE 18 Force chain for material points chosen from difference cases in footing problem: (a) General shear failure, (b) Local shear failure and (c)
Punching failure. The dashed line indicates their undeformed shape.
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FIGURE 19 Model setup for the soil-pipe interaction problem. Selected particles for meso-scale analysis is marked as red cross.

Apart from the reaction force, we have also examined the deformation pattern of the soil. Figure 22 shows the soil responses with the pipe462

movement in the soil, in terms of deviatoric strain and displacement.When the pipe penetrates to a depth of 0.4 m (Figure 22 (c)(d)), two clear shear463

bands originated from the bottom of the pipe extend laterally to both sides and propagate towards the ground surfaces, forming two branches of464

shear zones. The soil within these shear zones is mobilized and pushed aside of the pathway of the pipe. It is interesting to observe that the two465

branches of shear bands are not symmetry although the loading and boundary conditions are totally symmetry. Possible factors accounting for the466

phenomenon may include the intrinsic non-coaxiality of the RVE 45 and the spontaneous occurrence of strain localization as a bifurcation problem.467

As the pipe continues to move downward, the soil is pushed laterally and upward along the shear bands, leading to the formation of heaves at468

the ground surface (Figure 22 (f)). Notably, from Figures 22 (c) to (e), the occurrence of shear band pairs around the pipe are interlayered by469

relatively less deformed pair zones during the vertical penetration. The heave surface on the ground surface also show changed curvatures due to470

the interlayer structure. It is worth noting that the shear bands on the left of pipe is lower in intensity but larger in amount. The displacement field471

exhibits a roughly symmetric butterfly shape pattern during the vertical penetration process.472

Once the pipe begins to move left, the relatively symmetric displacement field is broken (Figure 22 (h)). The laterally moving pile pushes the473

soil in front and further intensifies the already formed shear bands in the penetration stage, leading to wider, more concentrated shear zones on474

the left of the pipe. The existing shear bands are also further widened while the interlayered elastic zones are greatly reduced, forming a higher475
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FIGURE 20 Prescribed velocity for the pipe in soil-pipe interaction problem.
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FIGURE 21 Reaction force acting on the pipe in soil-pipe interaction problem.

soil berm pushed up by the pipe. Meanwhile, the soil on the right side of the pipe exhibits reversed displacement due to the pipe moving left. This476

cause unloading and reverse loading for soils immediately on the right of the pipe, causing the decay of partial disappearing of the middle shear477

band. The ground heave formed during the first stage is gradually reduced. Meanwhile, the top shear band is developed deeper to occupy part of478

the original middle shear band, while the bottom shear band remains largely the same during the horizontal movement of the pile.479

3.4.2 Meso-scale Analysis480

We again chose three points (labeled D, E and F) to examine the local responses, where Point D/F is located inside the left/right dominant shear481

band and Point E is underneath the pipe (Figure 22 (e)). Their initial position, evolution of displacement together with trajectories are depicted in482

23 , whilst their local responses are plotted in Figure 24 .483

Vertical Penetration Stage484

In the vertical penetration stage, Point D and Point F show a similar response. Both points are pushed laterally upward by a comparable magnitude485

( ≈ 0.08
√

2 m). Since both points are inside a shear band, they exhibit an increase in both εq and rigid rotation |θ|. In particular, Point D rotates486

anticlockwise while Point F rotates clockwise. However, both εq and |θ| for Point D are smaller than Point F as the intensity for the left shear band487
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FIGURE 22 Contour of deviatoric strain εq and displacement field u in soil-pipe interaction problem.

is relatively lower (note that the pentagram in Figure 24 indicates the onset of lateral movement of pipe. At this time instance, εq = 0.5, |θ| =10◦488

for Point D and εq = 1.2, |θ| =30◦ for Point F), which is consistent with Figure 22 (e). The stress responses at both points show a softening stress489

drop, notwithstanding certain fluctuations.490

Different from Points D and F which are largely of shearing characteristics, Point E exhibits typical compression responses (note that the slope491

of the stress path of penetration state, which colored in blue in Figure 24 (e), is smaller than 1). Note that Point E is not perfectly located at the492

bottom of the pipe, it is pushed downward with slight deviation to the right (Figure 23 ). The continuous compression by the pipe pushes up the493

mean stress p, up to an order higher magnitude of 700 kPa than that of Point D and F, before dropping. The deviatoric strain εq for Point E rises494

rapidly to a large value which can be mainly attributed to the increasing difference between εxx and εyy induced by compression.The rotation θ at495

Point E remains nearly zero despite some fluctuations, indicating no apparent shearing is pertinent to this point.496
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Lateral Movement Stage497

When the pipe begins to displace laterally, Point D and Point F show rather different responses. Since the shear band on the left where Point D is498

located in is enhanced by the lateral movement of the pipe, both deviatoric strain εq and rotation θ at Point D increase significantly (from 0.5 to499

2.6 for εq and from 15◦ to 58◦ for θ). The trajectory of Point D shows a continuous laterally upward trend following the vertical penetration stage500

(Figure 23 ). The stress path of Point D in Figure 24 (b) shows strong fluctuations, apparently complicated by the fact of the rough surface of the501

pipe and the possible change of principal stress directions in the passive zone pushed by the pipe as well as the shear band evolution. In contrast502

to Point D, the stress responses shown by Point F during the lateral movement of pipe is rather different. Located on the right of the pipe, Point F503

is in the active zone when the pipe moves left. As the pipe moves to the left, the soil behind the pile close to the middle shear band formed in the504

penetration stage (see Figure 22 (g)) slips down to fill the gap, but the main shear band at the bottom, in where Point F is located, is not significantly505

affected. Therefore, the position, the deviatoric strain εq and rotation θ for Point F do not experience marked changes (e.g. εq only increases from506

1.3 to 1.4). Although its movement and deformation do not show apparent change, Point F does show apparent changes in the stress state. When507

the soil slides down along the shear bands, the confining pressure at Point F is low and therefore, leading to a reversed stress path heading toward508

the origin. When the soil becomes settled down, the confining pressure is gradually recovered and thus, both p and q rebound back to low but509

non-zero values (p ≈15 kPa, q ≈4 kPa). Unlike in the penetration stage, Point E suffered significant shearing rather than compression during the510

lateral pipe movement. Its stress path during lateral movement state, which is plotted in red in Figure 24 (h), shows strong fluctuations and a slope511

larger than 1. The mean stress p for Point E generally maintains at a relatively low value throughout the lateral pipe movement because most of512

soil originally above the Point E is pushed to the left, mobilizing Point E to the left together with a anticlockwise rolling. This processing lead to a513

continue increase in deviatoric strain εq and rotation θ.514
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FIGURE 23 Displacement evolution of Point D, E and F (a-c) and their trajectory (d) in soil-pipe interaction problem.

3.5 Column Collapse515

The final example chosen for demonstration is coupled MPM/DEM modeling of a dynamic problem. We consider the collapse of a soil column516

onto level ground, a classical dynamic problem having received extensive experimental investigations 84,85,86,87.517

The geometry and the boundary conditions of the soil column are chosen according to Figure 25 . The soil column is 1 m in both width and518

height. A smooth gate is placed at its right side to control the collapse. The base is also modeled using a rigid material to provide bottom frictions519

for the soil during collapse. The friction coefficient between the base and the soil adopts a value of 0.4. This value plays a minor role for the entire520

collapse process since the main body of soil indeed flows over a thin layer adhering to the base 86 20. A symmetry boundary is assumed for the left521
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FIGURE 24 Local response of selected material points in soil-pipe interaction problem. (a-c) Point D, (d-f) Point E, (g-i) Point F.

side of the soil column. The whole soil column was divided by 16 × 16 elements with 4 material points per cell (4 PPC). The RVEs are prepared522

using the parameters listed in Table 3 . 1000 particles have been used in each RVE. Again, each RVE is isotropically consolidated by the DEM solver523

to its corresponding geostatic pressure before assigning to the material point in MPM. To speed up the simulation, rolling resistance has not been524

considered. Meanwhile, a relatively small value of PIC, 5.0× 10−4, has been adopted to provide necessary stability without altering the energy525

conservation 62.526

Particle Num. r(mm) ρ(kg/m3) E (MPa) ν ϕ (◦) α e0

1000 3-7 2650 600 0.8 28.6 0.1 0.197-0.226

TABLE 3 DEM parameters for RVEs used in column collapse problem.
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FIGURE 25 Model setup for the column collapse problem. Selected particles for meso-scale analysis is marked as red cross.

3.5.1 Flow Pattern527

The collapsing process of the soil column is demonstrated in Figure 26 .We choose the deviatoric strain εq and the velocity profile v to demonstrate528

the collapse and settling process. The two quantities offer a complementary picture in characterizing the collapsing process: εq describes the529

cumulative deformation during the collapse, whilst v provides a transient characterization of the kinematic field of the soil. The collapse is initiated530

instantly with the removal of the smooth gate. Notably, the initial failure occurs at bottom right corner of of the soil column and further propagates531

vertically towards the top surface and inward to the column along an approximate circular surface (better seen from the velocity profile). The circular532

interface (shown as a white dash line) marks the boundary between mobilized collapsing zone and the temporal static zone. During T =0.2 ∼ 0.7 s,533

the collapsing soil touches the fictional base and is gradually slowed down, whilst top left portion of the soil column is mobilizing to collapse and534

flow down over a thin stationary layer close to the base. The inset in Figure 26 (f) magnifies the composition of middle part of the main flow535

consisting of: (a) an upper steady fast flowing layer, (b) middle layer with large velocity gradient and (c) a lower layer lying adjacent to the static zone536

over which the flow velocity descends gradually to zero. The other inset in Figure 26 (f) shows the significant effect of shearing at the flow front537

imposed by the stationary soil or based immediate in contact. During T =0.7 ∼ 1.3 s, the frontal part ceases to move at about 3 m from the origin,538

while the stationary layer in contact with the base continues to build up, resulting in a rising mobilized-static interface. Only a shallow portion of539

the surface soil located in the middle still remains with certain velocity. This stage is termed as avalanching stage by some researchers 86 20. At the540

final stage (T =1.6 s) when all soil settles down and become immobilized, the observed deposition profile is consistent with experimental result541

reported in 86. The perpetual dead zone of the soil column that has never been mobilized throughout the whole collapse process forms a triangular542

wedge (marked as blue in Figure 26 (i)), with a angle to the ground surface of 39◦.543

The normalized run out distance can be calculated using:

d∗ = (df − d0)/d0 (48)

where df is the distance between the farthest point and the origin (after removing the scatter points which is not in contact with the main deposit)544

and d0 is the initial width of the column. In present study, the normalized runout distance is calculated as d∗ = 1.8, which is slightly larger than545

the experimental observations of 1.6 86. This discrepancy may be due to two reasons: (1) The DEM employs cylinder rods to simulate the granular546

particles, leading to a plane strain approximation. This may underestimate the interparticle frictions out of the plane direction and hence less energy547

dissipation. (2) In reality, a considerable part of soil fell down with intensive rolling and sliding (resistance) which cause intensive energy dissipation,548

whilst the present study considers free-rolling DEM model (the reader can refer to 64 for the effect of rolling resistance on column collapse).549

3.5.2 Energy Evolution and Local Response550

The evolution of energy during the collapse of column is further explored. The energies normalized by the initial potential energy are plotted in551

Figure 27 , where the initial potential energy E0
p, the potential energy Et

p, the kinematic energy Et
k and the dissipated energy Et

d are respectively552

calculated according to: E0
p =

∑
p mpgz0

p, Et
p =

∑
p mpgzt

p, Et
k =

∑
p

1
2

mp
(
vt

p

)2 and Et
d = E0

p − Et
p − Et

k. As can be seen, since the onset of the553

collapse, the potential energy of the soil column steadily drops, fueling energy that is transformed into kinematic energy and dissipated energy,554

before becoming steady when all soils settle down. The kinematic energy of the soil column increase to reach a peak (Et
d/E0

p = 0.1) at around 0.4 s,555

before gradually decreasing to zero. The normalized total energy dissipated during the collapse increases steadily and reaches a final steady value556
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FIGURE 26 Contour of deviatoric strain εq and velocity field v in column collapse problem. The white dashed line indicates the interface between
current static and mobilizing zone.

of 0.55, which is smaller than the semi-empirical prediction Et
d/E0

p = 1−0.74/2a = 0.63 according to 84. The attributable reasons to the difference557

have been discussed in last subsection.558

To compare the difference in local material response, several material points are chosen (see Figure 25 for their positions) for monitoring559

throughout the collapse process. Figure 28 shows the evolution of displacement and the flow path of each monitored point. Apparently, the560

horizontal and vertical displacements at different locations evolve in a different manner. For horizontal displacement, the two points at the right561

surface (I & K) evolve faster, followed by Point J on the top surface and Point H in the column center. For vertical displacement, the top right corner562

Point K evolves the fastest. Point I shows an initial faster vertical displacement than Point J, but latter the former is overtaken by Point J at around563

0.75 s. The bottom Point G is totally immobilized at all. In terms of flow trajectory, the four upper points (J, K, H, I) travel similarly along a concave564

path.565

4 CONCLUSIONS566

A coupled MPM/DEM approach has been presented for multiscale modelling of large deformation problems in geomechanics. A hierarchical cou-567

pling scheme is employed to model a boundary value problem by MPM and to derive the necessary constitutive response from DEM solution568

to the RVE assembly embedded in each material point of the MPM. The two-way information passing scheme between MPM and DEM enables569

highly non-linear, state and load dependent material responses of granular materials to be rigorously captured, which is critical for large deforma-570

tion geomechanics problems, and meanwhile conveniently avoids the necessity of phenomenological constitutive assumptions that are essential571

in conventional MPM approaches. The multiscale method retains the predictive capability of MPM in tackling large deformation problems and572

further furnishes advantageous features of direct relating macro observations to underlying microstructural origins and physical mechanisms. The573
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FIGURE 27 Energy evolution during the column collapse.
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FIGURE 28 Evolution of displacement (a-b) and flow trajectory (c) for the five selected material points during the column collapse.

proposedmultiscale approach has been validated by a single element test and has further been employed tomodel four typical geomechanics prob-574

lems involving large deformation, including biaxial compression, rigid footing, soil-pipe interaction and soil column collapse. The detailed coupling575

procedure and some key findings from the numerical examples are summarized as follows:576

1. In hierarchical coupling of MPM and DEM, the incremental displacement gradient at each material point in MPM is passed to its corre-577

sponding RVE as boundary conditions to solve the RVE using the DEM solver. A Cauchy stress homogenized over the deformed DEM578

assembly is extracted and transfered back to theMPM for the subsequent computation. In such a sequential coupling scheme, conventional579

phenomenological constitutive models are no longer needed.580
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2. Simulation of biaxial compression test and the observation of cross-shape shear bands in the sample demonstrates that the proposed581

approach is able to faithfully reproduce complex mechanical behavior of granular materials such as strain localization. Examination of the582

influence of mesh density and Particle Per Cell (PPC) number indicates that the MPM/DEM multiscale approach remains mesh dependent583

and the influence of mesh density is more apparent than that of the PPC number.584

3. The robustness and flexibility of themultiscale modeling approach in dealing with various granular materials aremanifested in the simulation585

of the footing problem. Three RVEs are generated to represent different soils: dense, medium dense and soft soil. Three typical foundation586

failure modes are observed, including general shear failure for dense soil, local shear failure for medium dense soil and punching failure587

for the soft soil. In the general shear failure, a continuous slip surface is fully developed and extends to the ground surface with apparent588

ground heave. This slip surface does not extend to ground surface for the local failure. For punching failure, the influence zone is constrained589

closely under the footing and no log-spiral slip surface is formed.590

4. Modeling of the soil-pile interaction problem further highlights the true advantages MPM/DEM multiscale approach can offer in dealing591

with large deformation. In the simulation, the pipe first penetrates into the soil vertically and then moves laterally with a large amplitude of592

displacement. During the penetration stage, the soil is pushed aside and multiple unsymmetric, interlayered shear bands emerge progres-593

sively.When the lateral movement commences, the soil ahead of the pipe is gradually pushed, which intensifies the previously formed shear594

bands and forms higher heave, while the soil behind the pipe experiences certain stress reversals. Further local analyses of the material595

response at chosen points confirm the macro observations.596

5. The proposed approach has also been applied to modeling of a dynamic problem: the collapse of soil column. The simulated collapsing and597

flow behaviors are found consistent with experimental observations 86. Due to ignoring of 3D effect of interparticle frictions and rolling598

resistance, our multiscale modeling overestimates the run-out distance than empirical predictions.599

Some modeling details and challenges are noteworthy. Due to excessive large deformation, it is entirely possible in certain extreme cases of600

multiscale simulations that the attached RVE may deform severely to end up with a rather thin DEM configuration (i.e., the depth of packing601

along the thinnest direction is only 3-4 times of the particle size). Under this circumstance, whether the accuracy of the extracted Cauchy stress602

is preserved or not needs further study. Since the overall MPM computation follows explicit schemes, care should be taken to choose sufficiently603

small loading steps to ensure the accuracy of the simulation results. Further studies are needed to find more efficient solutions schemes, i.e.,604

adaptive multiscale homogenization 88, to mitigate the computational cost of the multiscale modeling. It is also desired to enrich the functionalities605

of current multiscale approach by considering grain morphology 89,90,91,65, particle breakage 92,41 or hydro-mechanical coupling 27,93. Although all606

cases discussed in this paper have been based on 2D simulations, it is straightforward to further implement the code in 3D as the multiscale607

framework is proposed in generalized form and, both the adopted MPM solver (NairnMPM) and DEM solver (YADE) have built-in 3D capabilities.608
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