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Abstract

In this short note, general formulations of the Toupin—Mindlin strain gradient theory in orthogonal curvilinear coor-
dinate systems are derived, and are then specified for the cases of cylindrical coordinates and spherical coordinates. Expres-
sions convenient for practical use are presented for the corresponding equilibrium equations, boundary conditions, and the
physical components for strains and strain gradients in the two coordinate systems. The results obtained in this paper are
general and complete, and can be useful for a wide range of applications, such as asymptotic crack tip field analysis, cylin-
drical and spherical cavity expansion problems, and the interpretation of micro/nano indentation tests and bending/twist-
ing tests on small scales.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In early 1960s, Toupin (1962) and Mindlin (1964) proposed a strain gradient theory in which the strain
energy function is assumed to depend on both the strain and strain gradient. Numerous early extensions of
this theory have since been developed and used for various applications (see, e.g., Toupin, 1964; Mindlin,
1965; Mindlin and Eshel, 1968; Bleustein, 1966; Bleustein, 1967; Eringen, 1968; Eshel and Rosenfeld, 1970,
1975; Germain, 1973). The past two decades witness a revived interest in this theory from the broad commu-
nity of mechanics and material science. Based on this theory, a variety of new models have been developed to
investigate such problems as strain localisation and size effects in materials and challenging issues on the
micro/nano scales. Conventional continuum theories fail to handle these problems due to the lack of intrinsic
length scales that represent the measures of microstructure in their constitutive relations (see, e.g., Fleck and
Hutchinson, 1993, 1997, 2001; Chambon et al., 1996, 1998, 2001, 2004; Georgiadis et al., 2000; Georgiadis and
Grentzelou, 2006; Zhao et al., 2005, 2006, 2007a,b; Zhao and Sheng, 2006, and references cited therein).
Therefore, being one of the most complete linear generalised continuum theories as commented by Georgiadis
et al. (2000), the Toupin—Mindlin strain gradient theory has evidently enjoyed great success so far, and will be
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chosen for the study in this paper. Meanwhile, it is noteworthy that there are many other gradient theories that
have also received much attention from many engineering ficlds. Amongst them, the gradient plasticity theory
pioneered by Aifantis and co-workers (Aifantis, 1984; Zbib and Aifantis, 1988; Vardoulakis and Aifantis,
1991) is one of the most widely used. The Aifantis theory considers the Laplacian of plastic strain or other
internal variables in the consistency conditions and/or flow rule, which marks its key difference with the Tou-
pin—Mindlin theory. In this note, however, we do not attempt to make a comprehensive comparison among
the various gradient theories, for which purpose the readers are referred to more recent papers such as that by
Chambon et al. (2004).

The original Toupin—-Mindlin Strain Gradient Theory (abbreviated hereafter as SGT) and most models
based on it have been formulated in general tensor forms, which, in theory, can be recast to any specific for-
mulations if necessary. In dealing with applications where rectangular cartesian coordinates are appropriate,
one may find it straightforward and trivial to obtain the specific formulations in terms of rectangular coordi-
nates. However, when strain gradient theories are to be used in cases where curvilinear coordinates are suit-
able, the corresponding formulations regarding the equilibrium equations and boundary conditions can not be
obtained automatically, and the course of derivation is always exceedingly complicated yet tedious and pain-
ful. Meanwhile, formulations of strain gradient theories under orthogonal curvilinear coordinates such as
cylindrical or spherical coordinates are particularly useful for a wide range of applications, such as the analysis
of crack-tip field, cylindrical and spherical cavity expansion in solids, and simulation and interpretation of
experiments on the microscale, such as the twisting of thin copper wires and the micro-indentation tests on
various metallic materials (see Fleck et al., 1994; Nix and Gao, 1998). Limited results are available in the lit-
erature in this regard, and are mostly application-specified and thus of restricted use. For example, Bleustein
(1966) have derived formulations of the SGT in spherical coordinates in a study of the stress concentration at
a spherical cavity. His results, however, are confined to the axi-symmetric case. Eshel and Rosenfeld (1970,
1975) have obtained formulations of the SGT for the cylindrical tube and cavity problems, but their discus-
sions are limited to the plane strain case only. The formulations used by Chen et al. (1999) in an investigation
of the asymptotic crack-tip field by strain gradient plasticity theory apply to plane strain case only. In a recent
study of the torsional surface waves in a half space, following the approach of tensor analysis outlined in Mal-
vern (1969), Georgiadis et al. (2000) have obtained formulations of the SGT with micro inertia in terms of
cylindrical coordinates. The results, however, remain limited to the special case where only one component
of displacements (uy therein) exists. While practical problems are often complex such that simplifications
are not always achievable, it is highly desirable to have a set of general formulations of SGT in terms of cur-
vilinear coordinates that are general and complete enough to cover most cases and may therefore lend great
convenience of immediate use for future use. To the authors’ knowledge, however, such formulations are still
absent, and will thus be pursued in this note.

In view of the popularity of the Toupin—Mindlin strain gradient theory as discussed above, general formu-
lations for this theory in orthogonal curvilinear coordinates will be derived, and will then be specified for two
typical systems—cylindrical coordinates and spherical coordinates. It will be demonstrated that results in
many existing studies can be covered as special cases by our formulations. In the subsequent derivation,
the approach and the notation used by Eringen (1967) for the translation of conventional elasticity theories
from rectangular coordinates to orthogonal curvilinear coordinates are closely followed. Wherever necessary,
detailed explanations will be given on uncommonly used symbols and operations. To facilitate easy compre-
hension, the notation used in the paper is summarized as follows:

Uu; Displacement (components)

& Strain tensor

Nijke Strain-gradient tensor

o Cauchy stress tensor

Tjjk Higher-order stress tensor

Aot Lamé constants

& Elastic constants associated with gradient terms
/ Internal material length scale

Ty Surface tractions
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Higher-order surface tractions
Surface gradient operator

U, Displacements at the kinematic surface boundary

€ Normal gradient of T;

n; Unit-normal vector

il Covariant components of the Euclidean metric tensor

g Contravariant components of the Euclidean metric tensor
2% or g1k The diagonal component of g’ or g;; (no sum on k)

det(-) Determinant of a tensor

(,) at subscript
(;) at subscript

Partial differentiation (e.g.,0;x)
The covariant differentiation symbol (e.g.,0;x)

aj. and 7}/ Mixed form of Cauchy stress and Higher-order stress
Fj and r/g ) Mixed components of strain and strain gradient
¥ =0, — T, ; A generalised mixed-form second-order tensor
o;; and T Generalised stress and higher-order stress
{ :n } The Christoffel symbols of the second kind

0o (k : i
u®, 8(0)), nE[))O) The physical components of u*, &, nJ;
u®, 08)), 183)0) The physical components of u*, o', 7/
d; and & Covariant and mixed form of Kronecker delta
(r,0,2) Cylindrical coordinates
(7,0,0) Spherical coordinates
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2. Strain gradient theory in rectangular coordinates

The strain gradient theory to be treated here is based on Toupin’s (1962) Couple stress theory and Mindlin’s
(1964) elasticity theory with microstructure by enforcing the relative deformation defined therein (the difference
between the macro-displacement gradient and the micro deformation) to be zero. This theory can also be
obtained by reducing the second-order strain gradient theory (or grade-three elasticity) proposed by Mindlin
(1965) to the first order. In parallel with Mindlin’s (1965) second-order strain gradient theory (or grade-three
elasticity), the Toupin—Mindlin theory is sometimes also called the first strain gradient theory or the linear the-
ory of solids of grade two (see, e.g., Toupin, 1964; Mindlin and Eshel, 1968; Eshel and Rosenfeld, 1970, 1975),
where the term “grade” indicates the order of the space gradients operating on the displacement. In this the-
ory, it is assumed that other than the conventional Eulerian strains ¢; and Cauchy stresses o, strain gradients
;% and their work-conjugate higher-order stresses 7, are also present in the material body, where the strains
and strain gradients are respectively defined by:

ey = (i +uia) /2, Ny = iy (1)

where both &; and #;; are symmetric with respect to the indices i and j. Accordingly, the Cauchy stress ¢;; and
higher-order stress 7 are also assumed to be symmetric about i and j. Consequently, under any small pertur-
bations of strains and strain gradients, d¢; and o, the work deviation may be obtained by the two pairs of
work-conjugates: 6 W = a;; dg;; + 1,401, In addition, within the framework of linear elasticity, the following
generalised Hooke’s law between ¢ and ¢; and between 7, and 7 are, respectively, assumed (c.f., e.g., Mind-
lin, 1964, 1965; Eshel and Rosenfeld, 1975):

gij = jvgkkéij + 2,“&‘/
Tijk = 51 lz(nippéjk + njppéik) + 5212(1717171'5‘% + anppéij + nppjéik) (2)
&3P, 05 + Ealnyy + &SP (Mg + i)
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where 1 and p are conventional Lamé constants, while &; (i = 1,5) are elastic constants associated with gradient
terms in a material. / denotes an internal length scale resulted by the introduction of strain gradients, and is
related to the dimension of microstructure in the material.

The governing equations and the associated boundary conditions for a gradient-dependent problem in rect-
angular coordinates can be obtained via variational principles (see Mindlin, 1964; Bleustein, 1966; Bleustein,
1967; Mindlin and Eshel, 1968; Germain, 1973). Consider a gradient-dependent material body with volume V'
and surface S. The following equilibrium equations are obtained for the gradient-dependent material body:

Oik,i — Tijk,ji +fk =0 (3)

where f;. denotes the body force, and here we neglect the higher-order body forces for simplicity. As for the
corresponding boundary conditions, the external surface S may further be divided into two parts: the surface
boundary S, for static forces, and the other is S, for displacements. On the static force boundary S,, the fol-
lowing boundary conditions apply:

Ty = ni(on — Ojtip) — Dj(miwi) + min;(Ding)Tig (4)

Ry = ninjtip (5)

where, T; and R; are the surface tractions and higher-order surface tractions (or alternatively double traction),
respectively. D; = (3, — nmny)0y, denoting the surface gradient operator. n; is the normal vector in a local coor-
dinate system. Egs. (4) and (5), respectively, represent the conventional traction and higher-order traction con-
ditions for a gradient-dependent material body.

In addition, on the kinematic surface S,, let U; denote the displacements. Note that only the normal gradi-
ents of 11; are independent of 1, while for known 1, its surface gradients are always known. Hence, totally six
independent displacement boundary conditions are generally required for appropriately addressing a partic-
ular problem, e.g., the displacements 1;i = 1,2,3 as well as their normal gradients along S, should be initial-
ized, which results in the following kinematic conditions for a gradient-dependent material body:

U = Uy and n,@,uk = ¢, on Su (6)

where €, is the normal gradients of ti,. Note that a rigorous derivation of the kinematic conditions in (6) has
been given by Georgiadis and Grentzelou (2006) by using the principle of complementary virtual work and a
Hellinger—Reissner-type variational principle.

3. Strain gradient theory in orthogonal curvilinear coordinates

In this section, general formulations of the aforementioned strain gradient elasticity in orthogonal curvilin-
ear coordinates will be derived. The procedure closely follows that outlined in Eringen (1967) (pp. 204-210). A
set of orthogonal curvilinear coordinates x*(k = 1,3) are used to express the equilibrium equations and bound-
ary conditions as presented in Eqgs. (3)~(6). Let gx(x)' be the metric tensor in the curvilinear coordinates x*.
The square of the element of arc length ds is now given by

(ds)2 = gkldxkdxl (7)
For the case of orthogonal curvilinear coordinates, we always have g;; = 0 when k # /, and thus
(ds)? = gy (dx")” + g3 (dx?)? + g5 (dx®)? (8)
And
_ w1
g=detgy =g 808y, & =_— )
8k

! gy are the covariant components of the Euclidean metric tensor which is defined by: g;=e; - ¢; where e{i = 1,3) denote right-handed
base vectors. The contravariant components of the Euclidean metric tensor are denoted by g” and defined by g’ = e’ - ¢ where €'(i = 1,3)
denote the reciprocal left-handed base vectors of e;. See p. 420 of Eringen (1967) for more detailed definitions.
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where g is the determinant of gz, g€ denotes an individual diagonal contravariant component of the Euclid-
ean metric tensor, and gy, a diagonal covariant component. The underscores are placed under the indices to
temporarily suspend the Einstein summation. This convention is used throughout the paper.

Eringen (1967) suggested that the translation from rectangular coordinates to any curvilinear coordinates
follows the following two rules: (a) The partial differentiation symbol (,) must be replaced by the covariant differ-
entiation symbol (;), (b) The repeated indices must be on diagonal positions. Following these rules, the gradient-
dependent equilibrium equations in curvilinear coordinates now have the following form instead of Eq. (3):

(aik—rijk;j):i—ﬁ{:() (10)

where o', and 1Y, are, respectively, the mixed components of the stress tensor and higher-order stress tensor
(see p. 462 of Eringen (1967) for definitions). For convenience of further manipulation, the following second-
order tensor is introduced:

=0 - Tijk;j (11)

where an index following a semi-colon for a third-order tensor indicates the covariant partial differentiation as
following, e.g. for 7,:

/ m k
Im _ Im km Ik Im
e "‘q+{kq}r ”+{kq}f "_{qn}T ¢ (12

where { licn } = % %k are the Christoffel symbols of the second kind where z” denote rectangular coordi-

nates. In orthogonal curvilinear coordinates, they have the following expression

k 1 @gﬁ ag@ agg
{ Im } = gﬁ (@51{1 +—©x’ Opm — a—xkfslm) (13)

where g has been explained in Eq. (9). 6y, is the Kronecker delta. Note that the Christoffel symbols are not

l]:n} = {n];l} (see Page 205 of Eringen (1967)). In

analogy to Eq. (12), the covariant partial differentiation for a second-order tensor is:

k
tklgf — tkl,r + { }tml _ { m }tkm (14)
mr rl

Then we have

Z[k'iziki+{ l.}znk{ n }Ein (15)
' ’ ni ik

i i i n n i
O-k:izo-kj—i_ ni 0 — ik 0, (16)

Thus the gradient-dependent equilibrium equations in curvilinear coordinates now present the following form:

. i n .
E‘,”.Jr{ ,}E”k{. }E’nfko (17)
’ ni ik
By using Egs. (12), (15) and (16), the equilibrium equations in Eq. (17) turn to be:

i ij z mj J im m ij l n nj n mj J nm
O ki = Ulkji — (T ki T T Ty (T T\ T T Ty T (kT Tk
k J mj k mj ’ Jjk " ni J mj mj
m . n . - i . J . my\ ..
+9 et =9 . g, -1 . — e — et e ) =i =0 (18)
Jjk ik J mj mj jn

In practical applications, the above equations are often conveniently expressed in terms of the physical com-
ponents of the vectors and tensors involved. The physical components ¢/ ,, 7" and u® of ¢*,, 7" and u*
are, respectively, related to each other by the following relations:

tensors, and are symmetric about / and m, such that {
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o, = a(k)a)\/gﬂ/g@» ™, = T(k)(l)(m) Eum/ (&) ' = ”(k)/\/g@ (19)

Upon substituting Eq. (19) into (18) and using (13), we can find the gradient-dependent equilibrium equations
in orthogonal curvilinear coordinates in terms of the physical components. The final form of these equations
using both cylindrical coordinates and spherical coordinates explicitly, if given, will be very convenient for
direct use. They are hereby presented in the following two sections.

It is also useful to express the strains and strain gradients defined in Eq. (1) in terms of the physical com-
ponents of the displacement vector. To this end, the strain tensor and strain gradient tensor are first expressed
as:

i 1 i im, n
=3 (' + gg™",,), 1y =1t (20)
where
uk _ _km k _ k k m 21
=g Uy, u,=u,;+ i u (21)

(R P CO P LR ) o (P2 o P O O

Using (19) and (20), the physical components of strain tensor and strain gradient tensor in orthogonal curvi-
linear coordinates can be expressed in terms of the physical components of u as follows:

(i) i V8 1 /& u’ i u™ i 1wt n u?
€)= ¢ =3 +9 . + 8,8 + (23)
gj_/ V gj_j \% gﬂ J mj \% gm V gﬂ m gm A /gﬂ
W ok VB 1 Bk
oo =0 = (u Lt u ) (24)
QI0) i \/gz_z—g/_j 2 \/gETJJ i Ji
where

v () () Ao () () ()
LN ()

The corresponding boundary conditions presented in (4)—(6) take the following component forms in orthog-
onal curvilinear coordinates:
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. * . o i . J X m o
0\ =gl _ |00 m)0) W _ 00)
(“ (k)) =" [T '(k»@*{mj}f '(k)*{mj}f * {jk}f w}

It is also easy to verify, the constitutive relations presented in Eq. (2) remain the same as for orthogonal cur-
vilinear coordinates:

o) = 26 )0 + 20
OO — P05 n® 5 el (n® 5 B s g
W =Gl (’7 @9kt </><p>5k>+§21 (’7 R L (p)(p)ék) (29)
g 12 (k i 2 (k) 2 i )
+EENY )0+ Gl ) + &l (’7(><k>u> +nY <k><i>)

It is noted that all the equilibrium equations, boundary conditions, strains and strain gradients will hereafter
be expressed in component forms of vectors and tensors. And for the convenience of writing, we use the con-
ventional component terms in place of the proceeding expressions for the physical components of all tensors
and vectors, e.g., for cylindrical coordinates, using the common expression a,, in place of the component form
e () Tro: for (1) (o) €0z for g0 )2 My fOT nv (> and u, for u", etc.

4. Strain gradient theory in cylindrical coordinates
The cylindrical coordinates (r,0,z) as shown in Fig. 1 can be related to rectangular coordinates (x, y, z) by:
x=rcosl, y=vrsinl, z=z (30)
In cylindrical coordinates, the metric tensor gi; has the following components:
gn=1 gn=r, gun=1 g =0 (k#1) (31)

Consequently, the Christoffel symbols of the second kind in Eq. (13) have the following values in cylindrical
coordinates:

2 2 1 1
= =—, = —r, all others are zero (32)
12 21 r 22

In conjunction with Egs. (18), (19), (31) and (32), the following gradient-dependent equilibrium equations in
component form are obtained for cylindrical coordinates:

Fig. 1. Cylindrical coordinates in relation with rectangular coordinates.
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do* [elep «
ar” i 30 az' +5 v (07, —0p) =0
el «
oLyt a— +1 (o,o +0;,) =0 (33)
0y | 199, 1y
or + 7 o0 + r iz - O
where
a‘L-rr) 1 a‘L-r()r aTrzr 1
s ( o0 T o Ty T T "’9"))
. 0to0 1 Otgpy  Otg0 1
Opy = 0o or + =20 oz + ;(TOrO + Tr00 + Toor)

x a’L'zrz_i_l 61—202_'_6’[222_'_1
T== % \or Tr o0 e

P
_— 0ty 1 O0tggr  Otg 1
Og = Ogr — ( o 7 a0 + oz ;(Terr + Tr0 — Tooo)
_ arr‘rﬁ 1 aT@r@ atzr@ 1
G, =0 ( or +r 20 + Py +r(Trr(?+Tr€r Toon)

or r 00 Oz

x _ arrrz_’_lafl)rz_’_%_’_l( N )
— o= o r 00 0z e T e

% a‘Czrr 1 a‘Cz()r a’L-zzr 1
O-zr = 0z — + - + + ; (Tzrr - TZOG)

x arr9z 1 aTﬁ(?z a‘L-zﬁz 1
Oy, = 09z — ( or + 7 00 + oz + - (‘Cer + T@rz))
0t.9 10799 Otmp 1
=0 — ( ar() + p 6?90 + 620 + P (Tr0 + Tzr())>

For the special case where all components of stresses and higher order stresses in the z direction vanish (e.g.,
Chen et al., 1999, for a plane strain crack tip field), which may be named as a generalised plane stress state in
strain gradient theory, the above equilibrium equations are simplified to be the following two:

Lt (o~ ) O
0

,0+)1 a‘a’go+ ( +o )

(34)

Note that Equations in (34) are exactly the polar coordinates results obtained by Chen et al. (1999) for the
plane crack tip field (Eqgs. (37a) and (37b) therein). In the case of plain strain cylindrical cavity expansion,
Eq. (34) can be further simplified as:

a_;r"';(a,*r ap9) =0 (35)

which has been used in Zhao et al. (2007b) to solve the gradient-dependent stress and deformation field for the
cavity expansion problem. It is easy to verify that in the case where the problem can be defined as an axi-sym-
metric plane strain problem such that there are only two nonzero displacements u, and u exist both of which
depend only on r and 0, the formulations obtained in this section can be reduced to those as presented in Eshel
and Rosenfeld (1975).

It is also useful to provide the expressions of physical components for strain tensor and strain gradient ten-
sor in terms of the physical components of displacements in cylindrical coordinates. In view of Egs. (23), (31)
and (32), the following forms of physical components for strains in cylindrical coordinates are obtained:
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&y = Epop = — — & Ep =8 == | — - — —
T o’ ror r’ " T2\ro0  or r

B _l au,.+6uz B _l %+lauz
be=tm =\ "o ) T T\ T 00

which, are the same as for conventional mechanics without considering gradient effects. Furthermore, by using
Egs. (24)—(32), the following 27 physical components of strain gradients in cylindrical coordinates are obtained:

Ou, 10uy wu, _ Ou. 1 (1 Ou, Ouy u9>
(36)

du, 1 (%u, ) Oug . Ou,
= —— =— —2—+r —u, |,
Ny o’ Noor 72 a02 20 or u
du 10, 1 0u 10uy 3uy

=R - = T F

P, 1 (®u,
Moy = Nz = @r@z’ Nozr = Nz0r =  \ 9200 oz )

62u0 Uy 1/1 azu() 2 6ur 6u0 Uy
n"r9:©r2+r2’ %%r(r o0? Jr; 00 arr)’

0%y 1 (Quy 10uy Ou, u,
flas = g2+ Moo = Tow i(mt%*a‘ﬁ

B B % B B l azug L Ou,
M0 = Nz = 61’627 Moo = No00 = 000z Oz

r
Q*u, 1 /1% ou
M= = 32 ’70022;(; o7 + 6r>’
0%u. 1 /%, 10u
szzzga ’M:’?M;(W?@),
u 1 0%u.

Myzz = Nz = @7 Nozz = N20: = ; aZaH . (37)

To obtain the corresponding boundary conditions in component form for cylindrical coordinates, we substi-
tute Egs. (31) and (32) into (26)—(28). The following are the obtained traction boundary conditions:

T, = n,0,, — (Org — MgN)NpTpgry — % (00q — ngng)NyTpgrg — (02 — Bghz)NpTpgr

+%np(n;2«’5prr + (1 - n%)(rp(?e - ’Eprr) + NN Ty — Mg Tprg — n(?nzrpzﬁ)

_ ’ 1
Ty =nyo,y — (g — gl )y Tpg0, — 5 (Sog — Mgno)MpTpgo0 — (Ozg — Mgh)MpTpgo

11, (100 — (1= 15) (Tpro + Tpor) + 1:10Tprr + NPTy + 11T pp) (38)
T: = nyo,, — (Org = Mgy )1y Tpgey — % (O0g = 1gno)npTpgz — (8zg — Nghz)NyTpge 2
(0] + 15— 1)ty + non1,0)
R, = n,n,Tpyry, Ry =npn Tpp, R, =n,n,Tpy, (39)

where the repeated subscript p and ¢ imply, respectively, an Einstein summation over r, 0 and z. The displace-
ment boundary conditions are obtained as follows:

U, = ﬁry Uy = il(h u. = uz
Uy + rnO(ur,O - uO) + nu,, = e

) on S, (40)
neug, + rno(uog + uy) + natg; = &

nyuz + rngu; g + nu;, = éz



3516 J. Zhao, D. Pedroso | International Journal of Solids and Structures 45 (2008) 3507-3520

The constitutive relations may also be written with cylindrical coordinates directly according to Eq. (29):
Opg = A€iOpg + 2UEpy
Tpgs = éllz(npkkéqf + Mg Sps) + &2 lz(nkkpéqf + 2140pg + MisgOps) (41)
+&3 lz”kksépq + 5412’1qu? + fslz(ﬂsqp + Nypg)

where p, ¢ and s can be any of the three indices r, 0 and z. The repeated index k denotes an Einstein summation
over the three indices.

5. Strain gradient theory in spherical coordinates

Spherical coordinates(r,0,¢) are related to rectangular coordinates (x,y,z) by (see Fig. 2):
x=rsinfcosp, y=rsinfsing, z=rcosl (42)
The corresponding metric tensor g, (g") for spherical coordinates have the following components:

1 1 .
gn=g"=1, gzz=é§=r2, gsﬁgﬁ:rzsmzf), gu=0(k#1) (43)

The Christoffel symbols of the second kind in Eq. (13) have the following values in spherical coordinates:

1 1 .5 2 2 1 2 .
==-n = —rsin” 0, = =-, = —sinfcos b,
22 33 12 21 r 33
3 3 1 3 3
= =-, = =cot@, all others are zero. (44)
13 31 r 23 32

By using Egs. (18), (19), (43), (44), the gradient-dependent equilibrium equations in spherical coordinates in
terms of the physical components of the covariant tensors are obtained as follows:

" *
1 o, 00y,

(el 1 1 S * o _
o + r 00 + rsinf d¢ + r (26rr Ooo O-qw + O, cot 0) fV =0

low [l dc*

0 1 %% 1 00 4 1 * * * * _ _ 45
ot e+ (2o + 0p, + (04 + 03,,) cot0) — f5=10 (45)
ot da), dot

ro 1 0p 1 0@ 1 * * * _ _

o Ty 70 tirsno a0 T (2an + 0y, + 20, cot 0)—f,=0

z
z
N~
“N\P
0 ,
=/
r .,z
|
o . y Y
x L9 s

Fig. 2. Spherical coordinates in relation with rectangular coordinates.
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where
ar,,, 1 61,9, 1 Ot 1
=0p — ( ; 30 I"Sin 0 a(; ; (ZTWV — To0r — Tr00 — Tpor — Troep =+ 7,9, COt 9))
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The physical components of strain tensor and strain gradient tensor in terms of the physical components of
displacements in spherical coordinates will also be given here. The physical components for strains remain the

same as in conventional theories:
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The following 27 physical components for strain gradients in spherical coordinates are obtained by manipu-

lating Egs. (24)—(32):
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Again, substitution of (43) and (44) into (26)—(28) will result in the corresponding component-form boundary
conditions for cylindrical coordinates, which are outlined as follows:
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Ry = mphyTpgrs  Ro = nphyTpgo, Ry = MphyTpge (49)
where the repeated subscript p and g imply, respectively, an Einstein summation over r, 0 and ¢. The displace-
ment boundary conditions are obtained as follows:

U = Uy, Up = Up, Uy = Uy
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ey, + rng(uge + u,) + rng sin 0(ug , — cos Ou,) = &g

Myl + Pty + rng sin 0(u, , + sin Ou, + cos Ouy) = ¢,

on S, (50)

The constitutive relations may be obtained for spherical coordinates by rewriting Eq. (29).
Opg = AepOpg + 21y,
Tpgs = 5112(’7pkk5qs + ’1qkk5ps) + 6212(’11{1([)5‘15 + 214 0pg + nkkqél’S) (51)
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where p, ¢ and s can be any of the three indices r, 0 and ¢. The repeated index k denotes an Einstein summa-
tion over the three indices.
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We note that for a radially symmetric (centro-symmetric) problem where there is only one displacement u,
which is a function of r only, the formulations derived in this section can be readily simplified to those
obtained by Bleustein (1966).

6. Conclusions

The Toupin—-Mindlin strain gradient theory has been reformulated and expressed in orthogonal curvilinear
coordinates. Specific forms for cylindrical and spherical coordinates have been derived. Component form for-
mulations for the corresponding equilibrium equations, boundary conditions, strains and strain gradients and
constitutive relations have been given for the two typical curvilinear coordinate systems. These results have
been shown to be general and complete and can be conveniently applied to a wide range of problems where
orthogonal curvilinear coordinate descriptions are necessary in conjunction with the strain gradient theory,
such as the analysis of crack-tip field in crystal materials, and the investigation of cylindrical cavity expansion
and spherical void expansion in various solids, the interpretation of micro/nano indentation tests and bending
or twisting tests of circular cylinder at small scales. Note that if further assumptions are made regarding the
decomposition of strains and strain gradients and inelastic stress-strain relations (see, e.g., Fleck and Hutch-
inson, 1993, 1997, 2001; Chambon et al., 1996; Chambon et al., 1998, 2001, 2004; Zhao et al., 2005, 2006,
2007a,b; Zhao and Sheng, 2006), the current formulations can be extended to strain gradient plasticity without
difficulty.
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