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Abstract

In this short note, general formulations of the Toupin–Mindlin strain gradient theory in orthogonal curvilinear coor-
dinate systems are derived, and are then specified for the cases of cylindrical coordinates and spherical coordinates. Expres-
sions convenient for practical use are presented for the corresponding equilibrium equations, boundary conditions, and the
physical components for strains and strain gradients in the two coordinate systems. The results obtained in this paper are
general and complete, and can be useful for a wide range of applications, such as asymptotic crack tip field analysis, cylin-
drical and spherical cavity expansion problems, and the interpretation of micro/nano indentation tests and bending/twist-
ing tests on small scales.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In early 1960s, Toupin (1962) and Mindlin (1964) proposed a strain gradient theory in which the strain
energy function is assumed to depend on both the strain and strain gradient. Numerous early extensions of
this theory have since been developed and used for various applications (see, e.g., Toupin, 1964; Mindlin,
1965; Mindlin and Eshel, 1968; Bleustein, 1966; Bleustein, 1967; Eringen, 1968; Eshel and Rosenfeld, 1970,
1975; Germain, 1973). The past two decades witness a revived interest in this theory from the broad commu-
nity of mechanics and material science. Based on this theory, a variety of new models have been developed to
investigate such problems as strain localisation and size effects in materials and challenging issues on the
micro/nano scales. Conventional continuum theories fail to handle these problems due to the lack of intrinsic
length scales that represent the measures of microstructure in their constitutive relations (see, e.g., Fleck and
Hutchinson, 1993, 1997, 2001; Chambon et al., 1996, 1998, 2001, 2004; Georgiadis et al., 2000; Georgiadis and
Grentzelou, 2006; Zhao et al., 2005, 2006, 2007a,b; Zhao and Sheng, 2006, and references cited therein).
Therefore, being one of the most complete linear generalised continuum theories as commented by Georgiadis
et al. (2000), the Toupin–Mindlin strain gradient theory has evidently enjoyed great success so far, and will be
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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chosen for the study in this paper. Meanwhile, it is noteworthy that there are many other gradient theories that
have also received much attention from many engineering fields. Amongst them, the gradient plasticity theory
pioneered by Aifantis and co-workers (Aifantis, 1984; Zbib and Aifantis, 1988; Vardoulakis and Aifantis,
1991) is one of the most widely used. The Aifantis theory considers the Laplacian of plastic strain or other
internal variables in the consistency conditions and/or flow rule, which marks its key difference with the Tou-
pin–Mindlin theory. In this note, however, we do not attempt to make a comprehensive comparison among
the various gradient theories, for which purpose the readers are referred to more recent papers such as that by
Chambon et al. (2004).

The original Toupin–Mindlin Strain Gradient Theory (abbreviated hereafter as SGT) and most models
based on it have been formulated in general tensor forms, which, in theory, can be recast to any specific for-
mulations if necessary. In dealing with applications where rectangular cartesian coordinates are appropriate,
one may find it straightforward and trivial to obtain the specific formulations in terms of rectangular coordi-
nates. However, when strain gradient theories are to be used in cases where curvilinear coordinates are suit-
able, the corresponding formulations regarding the equilibrium equations and boundary conditions can not be
obtained automatically, and the course of derivation is always exceedingly complicated yet tedious and pain-
ful. Meanwhile, formulations of strain gradient theories under orthogonal curvilinear coordinates such as
cylindrical or spherical coordinates are particularly useful for a wide range of applications, such as the analysis
of crack-tip field, cylindrical and spherical cavity expansion in solids, and simulation and interpretation of
experiments on the microscale, such as the twisting of thin copper wires and the micro-indentation tests on
various metallic materials (see Fleck et al., 1994; Nix and Gao, 1998). Limited results are available in the lit-
erature in this regard, and are mostly application-specified and thus of restricted use. For example, Bleustein
(1966) have derived formulations of the SGT in spherical coordinates in a study of the stress concentration at
a spherical cavity. His results, however, are confined to the axi-symmetric case. Eshel and Rosenfeld (1970,
1975) have obtained formulations of the SGT for the cylindrical tube and cavity problems, but their discus-
sions are limited to the plane strain case only. The formulations used by Chen et al. (1999) in an investigation
of the asymptotic crack-tip field by strain gradient plasticity theory apply to plane strain case only. In a recent
study of the torsional surface waves in a half space, following the approach of tensor analysis outlined in Mal-
vern (1969), Georgiadis et al. (2000) have obtained formulations of the SGT with micro inertia in terms of
cylindrical coordinates. The results, however, remain limited to the special case where only one component
of displacements (uh therein) exists. While practical problems are often complex such that simplifications
are not always achievable, it is highly desirable to have a set of general formulations of SGT in terms of cur-
vilinear coordinates that are general and complete enough to cover most cases and may therefore lend great
convenience of immediate use for future use. To the authors’ knowledge, however, such formulations are still
absent, and will thus be pursued in this note.

In view of the popularity of the Toupin–Mindlin strain gradient theory as discussed above, general formu-
lations for this theory in orthogonal curvilinear coordinates will be derived, and will then be specified for two
typical systems—cylindrical coordinates and spherical coordinates. It will be demonstrated that results in
many existing studies can be covered as special cases by our formulations. In the subsequent derivation,
the approach and the notation used by Eringen (1967) for the translation of conventional elasticity theories
from rectangular coordinates to orthogonal curvilinear coordinates are closely followed. Wherever necessary,
detailed explanations will be given on uncommonly used symbols and operations. To facilitate easy compre-
hension, the notation used in the paper is summarized as follows:

ui Displacement (components)
eij Strain tensor
gijk Strain-gradient tensor
rij Cauchy stress tensor
sijk Higher-order stress tensor
k,l Lamé constants
ni Elastic constants associated with gradient terms
l Internal material length scale
Tk Surface tractions
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Rk Higher-order surface tractions
Di = (dik � nink)ok Surface gradient operator
�ui Displacements at the kinematic surface boundary
ēi Normal gradient of �ui

ni Unit-normal vector
gkl Covariant components of the Euclidean metric tensor

gkl Contravariant components of the Euclidean metric tensor
gkk or gkk The diagonal component of gij or gij (no sum on k)

det(�) Determinant of a tensor
(,) at subscript Partial differentiation (e.g.,rij,k)

(;) at subscript The covariant differentiation symbol (e.g.,rij;k)
ri

j and sij
k Mixed form of Cauchy stress and Higher-order stress

ei
j and gk

ij Mixed components of strain and strain gradient
Ri

k ¼ ri
k � sij

k;j A generalised mixed-form second-order tensor
r�ij and s�ijk Generalised stress and higher-order stress

k
lm

� �
The Christoffel symbols of the second kind

uðkÞ; eðiÞðjÞ; g
ðkÞ
ðiÞðjÞ The physical components of uk; ei

j; g
k
ij

uðkÞ; rðiÞðjÞ; s
ðiÞðjÞ
ðkÞ The physical components of uk; ri

j; s
ij
k

dij and di
j Covariant and mixed form of Kronecker delta

(r,h,z) Cylindrical coordinates
(r,h,u) Spherical coordinates

2. Strain gradient theory in rectangular coordinates

The strain gradient theory to be treated here is based on Toupin’s (1962) Couple stress theory and Mindlin’s
(1964) elasticity theory with microstructure by enforcing the relative deformation defined therein (the difference
between the macro-displacement gradient and the micro deformation) to be zero. This theory can also be
obtained by reducing the second-order strain gradient theory (or grade-three elasticity) proposed by Mindlin
(1965) to the first order. In parallel with Mindlin’s (1965) second-order strain gradient theory (or grade-three
elasticity), the Toupin–Mindlin theory is sometimes also called the first strain gradient theory or the linear the-

ory of solids of grade two (see, e.g., Toupin, 1964; Mindlin and Eshel, 1968; Eshel and Rosenfeld, 1970, 1975),
where the term ‘‘grade” indicates the order of the space gradients operating on the displacement. In this the-
ory, it is assumed that other than the conventional Eulerian strains eij and Cauchy stresses rij, strain gradients
gijk and their work-conjugate higher-order stresses sijk are also present in the material body, where the strains
and strain gradients are respectively defined by:
eij ¼ ðui;j þ uj;iÞ=2; gijk ¼ uk;ij ð1Þ
where both eij and gijk are symmetric with respect to the indices i and j. Accordingly, the Cauchy stress rij and
higher-order stress sijk are also assumed to be symmetric about i and j. Consequently, under any small pertur-
bations of strains and strain gradients, deij and dgijk, the work deviation may be obtained by the two pairs of
work-conjugates: dW = rij deij + sijkdgijk. In addition, within the framework of linear elasticity, the following
generalised Hooke’s law between rij and eij and between sijk and gijk are, respectively, assumed (c.f., e.g., Mind-
lin, 1964, 1965; Eshel and Rosenfeld, 1975):
rij ¼ kekkdij þ 2leij

sijk ¼ n1l2ðgippdjk þ gjppdikÞ þ n2l2ðgppidjk þ 2gkppdij þ gppjdikÞ
þn3l2gppkdij þ n4l2gijk þ n5l2ðgkji þ gkijÞ

8><
>: ð2Þ
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where k and l are conventional Lamé constants, while ni (i = 1,5) are elastic constants associated with gradient
terms in a material. l denotes an internal length scale resulted by the introduction of strain gradients, and is
related to the dimension of microstructure in the material.

The governing equations and the associated boundary conditions for a gradient-dependent problem in rect-
angular coordinates can be obtained via variational principles (see Mindlin, 1964; Bleustein, 1966; Bleustein,
1967; Mindlin and Eshel, 1968; Germain, 1973). Consider a gradient-dependent material body with volume V

and surface S. The following equilibrium equations are obtained for the gradient-dependent material body:
1 gij

base v
denote
rik;i � sijk;ji þ fk ¼ 0 ð3Þ
where fk denotes the body force, and here we neglect the higher-order body forces for simplicity. As for the
corresponding boundary conditions, the external surface S may further be divided into two parts: the surface
boundary Sr for static forces, and the other is Su for displacements. On the static force boundary Sr, the fol-
lowing boundary conditions apply:
T k ¼ niðrik � ojsijkÞ � DjðnisijkÞ þ ninjðDlnlÞsijk ð4Þ
Rk ¼ ninjsijk ð5Þ
where, Ti and Ri are the surface tractions and higher-order surface tractions (or alternatively double traction),
respectively. Di = (dik � nink)ok, denoting the surface gradient operator. nk is the normal vector in a local coor-
dinate system. Eqs. (4) and (5), respectively, represent the conventional traction and higher-order traction con-
ditions for a gradient-dependent material body.

In addition, on the kinematic surface Su, let �ui denote the displacements. Note that only the normal gradi-
ents of �ui are independent of �ui, while for known �ui, its surface gradients are always known. Hence, totally six
independent displacement boundary conditions are generally required for appropriately addressing a partic-
ular problem, e.g., the displacements �ui,i = 1,2,3 as well as their normal gradients along Su should be initial-
ized, which results in the following kinematic conditions for a gradient-dependent material body:
uk ¼ �uk and nloluk ¼ �ek on Su ð6Þ
where ēk is the normal gradients of �uk. Note that a rigorous derivation of the kinematic conditions in (6) has
been given by Georgiadis and Grentzelou (2006) by using the principle of complementary virtual work and a
Hellinger–Reissner-type variational principle.
3. Strain gradient theory in orthogonal curvilinear coordinates

In this section, general formulations of the aforementioned strain gradient elasticity in orthogonal curvilin-
ear coordinates will be derived. The procedure closely follows that outlined in Eringen (1967) (pp. 204–210). A
set of orthogonal curvilinear coordinates xk(k = 1,3) are used to express the equilibrium equations and bound-
ary conditions as presented in Eqs. (3)–(6). Let gkl(x)1 be the metric tensor in the curvilinear coordinates xk.
The square of the element of arc length ds is now given by
ðdsÞ2 ¼ gkldxkdxl ð7Þ
For the case of orthogonal curvilinear coordinates, we always have gkl = 0 when k 6¼ l, and thus
ðdsÞ2 ¼ g11ðdx1Þ2 þ g22ðdx2Þ2 þ g33ðdx3Þ2 ð8Þ
And
g � det gkl ¼ g11g22g33; gkk ¼ 1

gkk
ð9Þ
are the covariant components of the Euclidean metric tensor which is defined by: gij = ei � ej where ei(i = 1,3) denote right-handed
ectors. The contravariant components of the Euclidean metric tensor are denoted by gij and defined by gij = ei � ej where ei(i = 1,3)

the reciprocal left-handed base vectors of ei. See p. 420 of Eringen (1967) for more detailed definitions.
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where g is the determinant of gkl. gkk denotes an individual diagonal contravariant component of the Euclid-
ean metric tensor, and gkk a diagonal covariant component. The underscores are placed under the indices to
temporarily suspend the Einstein summation. This convention is used throughout the paper.

Eringen (1967) suggested that the translation from rectangular coordinates to any curvilinear coordinates
follows the following two rules: (a) The partial differentiation symbol (,) must be replaced by the covariant differ-
entiation symbol (;), (b) The repeated indices must be on diagonal positions. Following these rules, the gradient-
dependent equilibrium equations in curvilinear coordinates now have the following form instead of Eq. (3):
ðri
k � sij

k;jÞ;i � fk ¼ 0 ð10Þ
where ri
k and sij

k are, respectively, the mixed components of the stress tensor and higher-order stress tensor
(see p. 462 of Eringen (1967) for definitions). For convenience of further manipulation, the following second-
order tensor is introduced:
Ri
k ¼ ri

k � sij
k;j ð11Þ
where an index following a semi-colon for a third-order tensor indicates the covariant partial differentiation as
following, e.g. for sij

k:
slm
n;q ¼ slm

n;q þ
l

kq

� �
skm

n þ
m

kq

� �
slk

n �
k

qn

� �
slm

k ð12Þ
where
k

lm

� �
� o2zn

oxloxm
oxk

ozn are the Christoffel symbols of the second kind where zn denote rectangular coordi-

nates. In orthogonal curvilinear coordinates, they have the following expression
k

lm

� �
¼ 1

2gkk

ogkk

oxm
dkl þ

ogmm

oxl
dkm �

ogll

oxk
dlm

� �
ð13Þ
where gkk has been explained in Eq. (9). dkl is the Kronecker delta. Note that the Christoffel symbols are not

tensors, and are symmetric about l and m, such that
k

lm

� �
¼ k

ml

� �
(see Page 205 of Eringen (1967)). In

analogy to Eq. (12), the covariant partial differentiation for a second-order tensor is:
tk
l;r ¼ tk

l;r þ
k

mr

� �
tm

l �
m

rl

� �
tk

m ð14Þ
Then we have
Ri
k;i ¼ Ri

k;i þ
i

ni

� �
Rn

k �
n

ik

� �
Ri

n ð15Þ

ri
k;i ¼ ri

k;i þ
i

ni

� �
rn

k �
n

ik

� �
ri

n ð16Þ
Thus the gradient-dependent equilibrium equations in curvilinear coordinates now present the following form:
Ri
k;i þ

i

ni

� �
Rn

k �
n

ik

� �
Ri

n � fk ¼ 0 ð17Þ
By using Eqs. (12), (15) and (16), the equilibrium equations in Eq. (17) turn to be:
ri
k;i � sij

k;ji �
i

mj

� �
smj

k;i �
j

mj

� �
sim

k;i þ
m

jk

� �
sij

m;i þ
i

ni

� �
rn

k � snj
k;j �

n

mj

� �
smj

k �
j

mj

� �
snm

k

�

þ
m

jk

� �
snj

m

�
�

n

ik

� �
ri

n � sij
n;j �

i

mj

� �
smj

n �
j

mj

� �
sim

n þ
m

jn

� �
sij

m

� �
� fk ¼ 0 ð18Þ
In practical applications, the above equations are often conveniently expressed in terms of the physical com-
ponents of the vectors and tensors involved. The physical components rðkÞðlÞ; s

ðkÞðlÞ
ðmÞ and u(k) of rk

l; s
kl

m and uk

are, respectively, related to each other by the following relations:
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rk
l ¼ rðkÞðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gll=gkk

q
; skl

m ¼ sðkÞðlÞðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmm=ðgkkgllÞ

q
; uk ¼ uðkÞ=

ffiffiffiffiffiffi
gkk

p ð19Þ
Upon substituting Eq. (19) into (18) and using (13), we can find the gradient-dependent equilibrium equations
in orthogonal curvilinear coordinates in terms of the physical components. The final form of these equations
using both cylindrical coordinates and spherical coordinates explicitly, if given, will be very convenient for
direct use. They are hereby presented in the following two sections.

It is also useful to express the strains and strain gradients defined in Eq. (1) in terms of the physical com-
ponents of the displacement vector. To this end, the strain tensor and strain gradient tensor are first expressed
as:
ei
j ¼

1

2
ðui

;j þ gnjg
imun

;mÞ; gk
ij ¼ uk

;ij ð20Þ
where
uk ¼ gkmum; uk
;l ¼ uk

;l þ
k

ml

� �
um ð21Þ

uk
;lm ¼ uk

;lm þ
k

ql

� �
uq

;m þ
k

qm

� �
uq

;l �
q

ml

� �
uk

;q þ
k

qm

� �
q

pl

� �
�

k

pq

� �
q

ml

� �� �
up ð22Þ
Using (19) and (20), the physical components of strain tensor and strain gradient tensor in orthogonal curvi-
linear coordinates can be expressed in terms of the physical components of u as follows:
eðiÞðjÞ ¼ ei
j

ffiffiffiffiffigii
pffiffiffiffiffiffigjj
p ¼ 1

2

ffiffiffiffiffigii
pffiffiffiffiffiffigjj
p uðiÞffiffiffiffiffigii

p

 !
;j

þ
i

mj

� �
uðmÞffiffiffiffiffiffiffiffigmm
p

0
@

1
Aþ gnjg

im uðnÞffiffiffiffiffiffignn
p

 !
;m

þ
n

qm

� �
uqffiffiffiffiffiffigqq
p

0
@

1
A

2
4

3
5 ð23Þ

gðkÞðiÞðjÞ ¼ gk
ij

ffiffiffiffiffiffigkk
pffiffiffiffiffiffiffiffiffiffigiigjj
p ¼ 1

2

ffiffiffiffiffiffigkk
pffiffiffiffiffiffiffiffiffiffigiigjj
p ðuk

;ij þ uk
;jiÞ ð24Þ
where
uk
;lm ¼

uðkÞffiffiffiffiffiffigkk
p

 !
;lm

þ
k

ql

� �
uðqÞffiffiffiffiffiffigqq
p

 !
;m

þ
k

qm

� �
uðqÞffiffiffiffiffiffigqq
p

 !
;l

�
q

ml

� �
uðkÞffiffiffiffiffiffigkk
p

 !
;q

þ
k

qm

� �
q

pl

� ��

�
k

pq

� �
q

ml

� ��
uðpÞffiffiffiffiffiffigpp
p
 !

ð25Þ
The corresponding boundary conditions presented in (4)–(6) take the following component forms in orthog-
onal curvilinear coordinates:
T ðkÞ ¼ nðiÞðrðiÞðkÞÞ
� �

ffiffiffiffiffiffigjj
p
ffiffiffiffiffiffigkk
p ffiffiffiffiffiffigpp

p ðdðpÞðjÞ � nðjÞnðpÞÞ

ffiffiffiffiffiffigkk
p ffiffiffiffiffiffigjj
p nðjÞsðiÞðjÞðkÞ

 !
;p

þ
j

mp

� � ffiffiffiffiffiffigkk
p
ffiffiffiffiffiffiffiffigmm
p nðjÞsðiÞðmÞðkÞ

 !
�

m

pk

� � ffiffiffiffiffiffiffiffigmm
p ffiffiffiffiffiffigjj
p nðiÞsðiÞðjÞðmÞ

 !2
4

3
5

þ nðiÞnðjÞ
ffiffiffiffiffiffigll
p ffiffiffiffiffiffigjj
p dðpÞðlÞ � nðlÞnðpÞ

� � nðlÞffiffiffiffiffiffigll
p

 !
;p

þ
l

mp

� �
nðmÞffiffiffiffiffiffiffiffigmm
p

0
@

1
A

0
@

1
AsðiÞðjÞðkÞ ð26Þ

RðkÞ ¼ nðiÞnðjÞsðiÞðjÞðkÞ ð27Þ

uðkÞ ¼ �uðkÞ and

ffiffiffiffiffiffigll
p
ffiffiffiffiffiffigkk
p nðlÞ

ffiffiffiffiffiffi
gkk

p
uðkÞ

� �
;l
�

m

kl

� � ffiffiffiffiffiffiffiffi
gmm

p
uðmÞ

� �	 

¼ �eðkÞ on Su ð28Þ
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where
rðiÞðkÞ

� ��
¼ rðiÞðkÞ � sðiÞðjÞðkÞ;ðjÞ þ

i

mj

� �
sðmÞðjÞðkÞ þ

j

mj

� �
sðiÞðmÞðkÞ �

m

jk

� �
sðiÞðjÞðmÞ

	 

:

It is also easy to verify, the constitutive relations presented in Eq. (2) remain the same as for orthogonal cur-
vilinear coordinates:
rðiÞðjÞ ¼ keðkÞðkÞd
i
j þ 2leðiÞðjÞ

sðiÞðjÞðkÞ ¼ n1l2 gðpÞðiÞðpÞd
j
k þ gðpÞðjÞðpÞd

i
k

� �
þ n2l2 gðiÞðpÞðpÞd

j
k þ 2gðpÞðkÞðpÞd

i
j þ gðiÞðpÞðpÞd

i
k

� �
þn3l2gðkÞðpÞðpÞd

i
j þ n4l2gðkÞðiÞðjÞ þ n5l2 gðiÞðkÞðjÞ þ gðjÞðkÞðiÞ

� �
8>>><
>>>:

ð29Þ
It is noted that all the equilibrium equations, boundary conditions, strains and strain gradients will hereafter
be expressed in component forms of vectors and tensors. And for the convenience of writing, we use the con-
ventional component terms in place of the proceeding expressions for the physical components of all tensors
and vectors, e.g., for cylindrical coordinates, using the common expression rrr in place of the component form
rðrÞðrÞ; srhz for sðrÞðhÞðzÞ; ehz for eðhÞðzÞ; grrr for gðrÞðrÞðrÞ, and ur for u(r), etc.
4. Strain gradient theory in cylindrical coordinates

The cylindrical coordinates (r,h,z) as shown in Fig. 1 can be related to rectangular coordinates (x,y,z) by:
x ¼ r cos h; y ¼ r sin h; z ¼ z ð30Þ
In cylindrical coordinates, the metric tensor gkl has the following components:
g11 ¼ 1; g22 ¼ r2; g33 ¼ 1; gkl ¼ 0 ðk 6¼ lÞ ð31Þ
Consequently, the Christoffel symbols of the second kind in Eq. (13) have the following values in cylindrical
coordinates:
2

12

� �
¼

2

21

� �
¼ 1

r
;

1

22

� �
¼ �r; all others are zero ð32Þ
In conjunction with Eqs. (18), (19), (31) and (32), the following gradient-dependent equilibrium equations in
component form are obtained for cylindrical coordinates:
o

z

p

x

y

θ
r

z

Fig. 1. Cylindrical coordinates in relation with rectangular coordinates.
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or�rr
or þ 1

r

or�
hr

oh þ
or�zr
oz þ 1

r ðr�rr � r�hhÞ ¼ 0
or�rh
or þ 1

r

or�
hh

oh þ
or�zh
oz þ 1

r ðr�rh þ r�hrÞ ¼ 0

or�rz
or þ 1

r

or�
hz

oh þ
or�zz
oz þ 1

r r�rz ¼ 0

8>><
>>: ð33Þ
where
r�rr ¼ rrr �
osrrr

or
þ 1

r
osrhr

oh
þ osrzr

oz
þ 1

r
ðsrrr � shhr � srhhÞ

� �

r�hh ¼ rhh �
oshrh

or
þ 1

r
oshhh

oh
þ oshzh

oz
þ 1

r
ðshrh þ srhh þ shhrÞ

� �

r�zz ¼ rzz �
oszrz

or
þ 1

r
oszhz

oh
þ oszzz

oz
þ 1

r
szrz

� �

r�hr ¼ rhr �
oshrr

or
þ 1

r
oshhr

oh
þ oshzr

oz
þ 1

r
ðshrr þ srhr � shhhÞ

� �

r�rh ¼ rrh �
osrrh

or
þ 1

r
oshrh

oh
þ oszrh

oz
þ 1

r
ðsrrh þ srhr � shhhÞ

� �

r�zr ¼ rzr �
oszrr

or
þ 1

r
oszhr

oh
þ oszzr

oz
þ 1

r
ðszrr � szhhÞ

� �

r�rz ¼ rrz �
osrrz

or
þ 1

r
oshrz

oh
þ oszrz

oz
þ 1

r
ðsrrz � shhzÞ

� �

r�hz ¼ rhz �
osrhz

or
þ 1

r
oshhz

oh
þ oszhz

oz
þ 1

r
ðsrhz þ shrzÞ

� �

r�zh ¼ rzh �
oszrh

or
þ 1

r
oshzh

oh
þ oszzh

oz
þ 1

r
ðsrzh þ szrhÞ

� �
For the special case where all components of stresses and higher order stresses in the z direction vanish (e.g.,
Chen et al., 1999, for a plane strain crack tip field), which may be named as a generalised plane stress state in
strain gradient theory, the above equilibrium equations are simplified to be the following two:
or�rr
or þ 1

r

or�
hr

oh þ 1
r r�rr � r�hh

� �
¼ 0

or�rh
or þ 1

r

or�
hh

oh þ 1
r ðr�rh þ r�hrÞ ¼ 0

(
ð34Þ
Note that Equations in (34) are exactly the polar coordinates results obtained by Chen et al. (1999) for the
plane crack tip field (Eqs. (37a) and (37b) therein). In the case of plain strain cylindrical cavity expansion,
Eq. (34) can be further simplified as:
or�rr

or
þ 1

r
ðr�rr � r�hhÞ ¼ 0 ð35Þ
which has been used in Zhao et al. (2007b) to solve the gradient-dependent stress and deformation field for the
cavity expansion problem. It is easy to verify that in the case where the problem can be defined as an axi-sym-
metric plane strain problem such that there are only two nonzero displacements ur and uh exist both of which
depend only on r and h, the formulations obtained in this section can be reduced to those as presented in Eshel
and Rosenfeld (1975).

It is also useful to provide the expressions of physical components for strain tensor and strain gradient ten-
sor in terms of the physical components of displacements in cylindrical coordinates. In view of Eqs. (23), (31)
and (32), the following forms of physical components for strains in cylindrical coordinates are obtained:
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err ¼
our

or
; ehh ¼

1

r
ouh

or
þ ur

r
; ezz ¼

ouz

oz
; erh ¼ ehr ¼

1

2

1

r
our

oh
þ ouh

or
� uh

r

� �
;

erz ¼ erz ¼
1

2

our

oz
þ ouz

or

� �
; ehz ¼ ezh ¼

1

2

ouh

oz
þ 1

r
ouz

oh

� � ð36Þ
which, are the same as for conventional mechanics without considering gradient effects. Furthermore, by using
Eqs. (24)–(32), the following 27 physical components of strain gradients in cylindrical coordinates are obtained:
grrr ¼
o2ur

or2
; ghhr ¼

1

r2

o2ur

oh2
� 2

ouh

oh
þ r

our

or
� ur

� �
;

gzzr ¼
o

2ur

oz2
; grhr ¼ ghrr ¼

1

r
o

2ur

oroh
� 1

r2

our

oh
� 1

r
ouh

or
þ 3uh

2r2
;

grzr ¼ gzrr ¼
o2ur

oroz
; ghzr ¼ gzhr ¼

1

r
o2ur

ozoh
� ouh

oz

� �
;

grrh ¼
o

2uh

or2
þ uh

r2
; ghhh ¼

1

r
1

r
o

2uh

oh2
þ 2

r
our

oh
þ ouh

or
� uh

r

� �
;

gzzh ¼
o2uh

oz2
; grhh ¼ ghrh ¼

1

r
o2uh

oroh
� 1

r
ouh

oh
þ our

or
� ur

2r

� �

grzh ¼ gzrh ¼
o

2uh

oroz
; ghzh ¼ gzhh ¼

1

r
o

2uh

ohoz
þ our

oz

� �

grrz ¼
o2uz

or2
; ghhz ¼

1

r
1

r
o2uz

oh2
þ ouz

or

� �
;

gzzz ¼
o2uz

oz2
; grhz ¼ ghrz ¼

1

r
o2uz

oroh
� 1

r
ouz

oh

� �
;

grzz ¼ gzrz ¼
o2uz

oroz
; ghzz ¼ gzhz ¼

1

r
o2uz

ozoh
: ð37Þ
To obtain the corresponding boundary conditions in component form for cylindrical coordinates, we substi-
tute Eqs. (31) and (32) into (26)–(28). The following are the obtained traction boundary conditions:
T r ¼ npr�pr � ðdrq � nqnrÞnpspqr;r � 1
r ðdhq � nqnhÞnpspqr;h � ðdzq � nqnzÞnpspqr;z

þ 1
r npðn2

r sprr þ ð1� n2
hÞðsphh � sprrÞ þ nrnzspzr � nrnhsprh � nhnzspzhÞ

T h ¼ npr�ph � ðdrq � nqnrÞnpspqh;r � 1
r ðdhq � nqnhÞnpspqh;h � ðdzq � nqnzÞnpspqh;z

þ 1
r npðn2

r sprh � ð1� n2
hÞðsprh þ sphrÞ þ nrnhsprr þ nznhspzr þ nrnzspzhÞ

T z ¼ npr�pz � ðdrq � nqnrÞnpspqz;r � 1
r ðdhq � nqnhÞnpspqz;h � ðdzq � nqnzÞnpspqz;z

þ 1
r npððn2

r þ n2
h � 1Þsprz þ nrnzspzzÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð38Þ

Rr ¼ npnqspqr; Rh ¼ npnqspqh; Rz ¼ npnqspqz ð39Þ
where the repeated subscript p and q imply, respectively, an Einstein summation over r, h and z. The displace-
ment boundary conditions are obtained as follows:
ur ¼ �ur; uh ¼ �uh; uz ¼ �uz

nrur;r þ rnhður;h � uhÞ þ nzur;z ¼ _er

nruh;r þ rnhðuh;h þ urÞ þ nzuh;z ¼ _eh

nruz;r þ rnhuz;h þ nzuz;z ¼ _ez

9>>>>=
>>>>;

on Su ð40Þ
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The constitutive relations may also be written with cylindrical coordinates directly according to Eq. (29):
rpq ¼ kekkdpq þ 2lepq

spqs ¼ n1l2ðgpkkdqs þ gqkkdpsÞ þ n2l2ðgkkpdqs þ 2gskkdpq þ gkkqdpsÞ
þn3l2gkksdpq þ n4l2gpqs þ n5l2ðgsqp þ gspqÞ

8><
>: ð41Þ
where p, q and s can be any of the three indices r, h and z. The repeated index k denotes an Einstein summation
over the three indices.

5. Strain gradient theory in spherical coordinates

Spherical coordinates(r,h,u) are related to rectangular coordinates (x,y,z) by (see Fig. 2):
x ¼ r sin h cos u; y ¼ r sin h sin u; z ¼ r cos h ð42Þ
The corresponding metric tensor gkl (gkl) for spherical coordinates have the following components:
g11 ¼ g11 ¼ 1; g22 ¼
1

g22
¼ r2; g33 ¼

1

g33
¼ r2 sin2 h; gkl ¼ 0 ðk 6¼ lÞ ð43Þ
The Christoffel symbols of the second kind in Eq. (13) have the following values in spherical coordinates:
1

22

� �
¼ � r;

1

33

� �
¼ �r sin2 h;

2

12

� �
¼

2

21

� �
¼ 1

r
;

2

33

� �
¼ � sin h cos h;

3

13

� �
¼

3

31

� �
¼ 1

r
;

3

23

� �
¼

3

32

� �
¼ cot h; all others are zero: ð44Þ
By using Eqs. (18), (19), (43), (44), the gradient-dependent equilibrium equations in spherical coordinates in
terms of the physical components of the covariant tensors are obtained as follows:
or�rr
or þ 1

r

or�hr
oh þ 1

r sin h

or�ur

ou þ 1
r 2r�rr � r�hh � r�uu þ r�hr cot h
� �

� fr ¼ 0

or�rh
or þ 1

r

or�hh
oh þ 1

r sin h

or�
uh

ou þ 1
r ð2r�rh þ r�hr þ ðr�hh þ r�uuÞ cot hÞ � fh ¼ 0

or�ru
or þ 1

r

or�
hu

oh þ 1
r sin h

or�uu

ou þ 1
r ð2r�ru þ r�ur þ 2r�uh cot hÞ � fu ¼ 0

8>>>>><
>>>>>:

ð45Þ
o

z

p

x

y

θ
r

z

z

y

x ϕ

Fig. 2. Spherical coordinates in relation with rectangular coordinates.
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where
r�rr ¼ rrr �
osrrr

or
þ 1

r
osrhr

oh
þ 1

r sin h
osrur

ou
þ 1

r
2srrr � shhr � srhh � suur � sruu þ srhr cot h
� �� �

r�hr ¼ rhr �
oshrr

or
þ 1

r
oshhr

oh
þ 1

r sin h
oshur

ou
þ 1

r
ð2shrr þ srhr � shhh � shuu þ ðshhr � suurÞ cot hÞ

� �

r�ur ¼ rur �
osurr

or
þ 1

r
osuhr

oh
þ 1

r sin h
osuur

ou
þ 1

r
ð3surr � suhh � suuu þ 2suhr cot hÞ

� �

r�hh ¼ rhh �
oshrh

or
þ 1

r
oshhh

oh
þ 1

r sin h
oshuh

ou
þ 1

r
ð3srhh þ shhr þ ðshhh � suuh � shuuÞ cot hÞ

� �

r�rh ¼ rrh �
osrrh

or
þ 1

r
osrhh

oh
þ 1

r sin h
osruh

ou
þ 1

r
ð2srrh þ srhr � shhh � suuh þ ðsrhh � sruuÞ cot hÞ

� �

r�uh ¼ ruh �
osurh

or
þ 1

r
osuhh

oh
þ 1

r sin h
osuuh

ou
þ 1

r
ð3sruh þ suhr þ ðshuh þ suhh � suuuÞ cot hÞ

� �

r�uu ¼ ruu �
osuru

or
þ 1

r
osuhu

oh
þ 1

r sin h
osuuu

ou
þ 1

r
ð3sruu þ suur þ ð2shuu þ suuhÞ cot hÞ

� �

r�ru ¼ rru �
osrru

or
þ 1

r
osrhu

oh
þ 1

r sin h
osruu

ou
þ 1

r
ð2srru þ srur � shhu � suuu þ ðsrhu þ sruhÞ cot hÞ

� �

r�hu ¼ rhu �
oshru

or
þ 1

r
oshhu

oh
þ 1

r sin h
oshuu

ou
þ 1

r
ð3srhu þ shur þ ðshuh þ shhu � suuuÞ cot hÞ

� �
The physical components of strain tensor and strain gradient tensor in terms of the physical components of
displacements in spherical coordinates will also be given here. The physical components for strains remain the
same as in conventional theories:
err ¼
our

or
; ehh ¼

1

r
ouh

or
þ ur

r
; euu ¼

1

r sin h
ouu

ou
þ ur

r
þ uh

r
cot h; erh ¼ ehr

¼ 1

2

1

r
our

oh
þ ouh

or
� uh

r

� �
; eru ¼ eur ¼

1

2

1

r sin h
our

ou
þ ouu

or
� uu

r

� �
; ehu ¼ euh

¼ 1

2

1

r
ouu

oh
þ 1

r sin h
ouh

ou
� uu cot h

r

� �
ð46Þ
The following 27 physical components for strain gradients in spherical coordinates are obtained by manipu-
lating Eqs. (24)–(32):
grrr ¼
o2ur

or2
; ghhr ¼

1

r2

o2ur

oh2
þ r

our

or
� 2

ouh

oh
� ur

� �
;

guur ¼
1

r2 sin2 h

o2ur

ou2
þ 1

r
our

or
þ 1

r2

our

oh
cot h� 2

r2 sin h
ouu

ou
� ur

r2
� 2uh

r2
cot h;

ghrr ¼ grhr ¼
1

r
o2ur

oroh
� 1

r
our

oh
� ouh

or
þ 3uh

2r

� �
;

gurr ¼ grur ¼
1

r sin h
o

2ur

orou
� 1

r
our

ou
� ouu

or
sin hþ 3uu

2r
sin h

� �
;

guhr ¼ ghur ¼
1

r2 sin h
o2ur

ohou
� our

ou
cot h� ouu

or
sin h� ouh

ou
þ 2uu cos h

� �
;

grrh ¼
o2uh

or2
þ uh

r2
; ghhh ¼

1

r
1

r
o2uh

oh2
þ 2

r
our

oh
þ ouh

or
� uh

r

� �
;

guuh ¼
1

r2 sin2 h

o
2uh

ou2
� cot h

r2 sin h
ouu

ou
þ 1

r2

ouh

oh
cot hþ 1

r
ouh

or
� uh

r2
cot2h;
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ghrh ¼ grhh ¼
1

r
o2uh

oroh
þ our

or
� 1

r
ouh

oh
� ur

2r

� �
;

gurh ¼ gruh ¼
1

r sin h
o

2uh

orou
� 1

r
ouh

ou
� ouu

or
� uu

2r

� �
cos h

� �
;

guhh ¼ ghuh ¼
1

r2 sin h
o2uh

ohou
þ our

ou
� ouh

ou
cot h� ouu

oh
cos hþ uu

2
ð3 cot h cos h� sin hÞ

� �
;

grru ¼
o

2uu

or2
; ghhu ¼

1

r
1

r
o

2uu

oh2
þ ouu

or
þ 1

r sin2 h
uu

� �
;

guuu ¼
1

r sin h
1

r sin h
o2uu

ou2
þ 2

r
our

ou
þ 2

r
ouh

ou
cot hþ ouu

or
sin hþ cos h

r
ouu

oh
� uu

r sin h

� �
;

ghru ¼ grhu ¼
1

r
o2uu

oroh
� 1

r
ouu

oh

� �
;

guru ¼ gruu ¼
1

r
1

sin h
o2uu

orou
� 1

r sin h
ouu

ou
þ our

or
þ ouh

or
� uh

r

� �
cot h� ur

2r

� �
;

guhu ¼ ghuu ¼
1

r2

1

sin h
o2uu

ohou
� cot h

sin h
our

ou
þ our

oh
þ ouh

oh
cot h� uh

2 sin2 h

� �
: ð47Þ
Again, substitution of (43) and (44) into (26)–(28) will result in the corresponding component-form boundary
conditions for cylindrical coordinates, which are outlined as follows:
T r ¼ npr�pr � ðdrq � nqnrÞnpspqr;r � 1
r ðdhq � nqnhÞnpspqr;h � 1

r sin h ðduq � nqnuÞnpspqr;u

þ 1
r ðn2

r þ n2
h þ n2

u � 3Þnpsprr þ 1
r npnqðnrspqr � nhspqh � nuspquÞ

þ 1
r npspqq þ 1

r nrnhnp cot hsprr þ 1
r ðn2

h þ n2
u � 1Þ cot hnpsphr

T h ¼ npr�ph � ðdrq � nqnrÞnpspqh;r � 1
r ðdhq � nqnhÞnpspqh;h � 1

r sin h ðduq � nqnuÞnpspqh;u

þ 1
r ðn2

r þ n2
h þ n2

u � 3Þnpsprh þ 1
r npnqðnhspqr þ nrspqh � nu cot hspquÞ

þ 1
r npðsprh � sphr þ cot hspuuÞ þ 1

r nrnhnp cot hsprh þ 1
r ðn2

h þ n2
u � 1Þ cot hnpsphh

T u ¼ npr�pu � ðdrq � nqnrÞnpspqu;r � 1
r ðdhq � nqnhÞnpspqu;h � 1

r sin h ðduq � nqnuÞnpspqu;u

þ 1
r ðn2

r þ n2
h þ n2

u � 3Þnpspru þ 1
r npnqðnuspqr þ nrspqu þ nu cot hspqhÞ

þ 1
r npðspru � spur � cot hspuhÞ þ 1

r nrnhnp cot hspru þ 1
r ðn2

h þ n2
u � 1Þ cot hnpsphu

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð48Þ

Rr ¼ npnqspqr; Rh ¼ npnqspqh; Ru ¼ npnqspqu ð49Þ
where the repeated subscript p and q imply, respectively, an Einstein summation over r, h and u. The displace-
ment boundary conditions are obtained as follows:
ur ¼ �ur; uh ¼ �uh; uu ¼ �uu

nrur;r þ rnhður;h � uhÞ þ rnu sin hður;u � sin huuÞ ¼ _er

nruh;r þ rnhðuh;h þ urÞ þ rnu sin hðuh;u � cos huuÞ ¼ _eh

nruu;r þ rnhuu;h þ rnu sin hðuu;u þ sin hur þ cos huhÞ ¼ _eu

9>>>=
>>>;

on Su ð50Þ
The constitutive relations may be obtained for spherical coordinates by rewriting Eq. (29).
rpq ¼ kekkdpq þ 2lepq

spqs ¼ n1l2ðgpkkdqs þ gqkkdpsÞ þ n2l2ðgkkpdqs þ 2gskkdpq þ gkkqdpsÞ
þn3l2gkksdpq þ n4l2gpqs þ n5l2ðgsqp þ gspqÞ

8><
>: ð51Þ
where p, q and s can be any of the three indices r, h and u. The repeated index k denotes an Einstein summa-
tion over the three indices.
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We note that for a radially symmetric (centro-symmetric) problem where there is only one displacement ur

which is a function of r only, the formulations derived in this section can be readily simplified to those
obtained by Bleustein (1966).

6. Conclusions

The Toupin–Mindlin strain gradient theory has been reformulated and expressed in orthogonal curvilinear
coordinates. Specific forms for cylindrical and spherical coordinates have been derived. Component form for-
mulations for the corresponding equilibrium equations, boundary conditions, strains and strain gradients and
constitutive relations have been given for the two typical curvilinear coordinate systems. These results have
been shown to be general and complete and can be conveniently applied to a wide range of problems where
orthogonal curvilinear coordinate descriptions are necessary in conjunction with the strain gradient theory,
such as the analysis of crack-tip field in crystal materials, and the investigation of cylindrical cavity expansion
and spherical void expansion in various solids, the interpretation of micro/nano indentation tests and bending
or twisting tests of circular cylinder at small scales. Note that if further assumptions are made regarding the
decomposition of strains and strain gradients and inelastic stress-strain relations (see, e.g., Fleck and Hutch-
inson, 1993, 1997, 2001; Chambon et al., 1996; Chambon et al., 1998, 2001, 2004; Zhao et al., 2005, 2006,
2007a,b; Zhao and Sheng, 2006), the current formulations can be extended to strain gradient plasticity without
difficulty.
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