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Abstract: Strength anisotropy in soils needs to be characterized by proper anisotropic failure criterion. This paper presents a novel yet simple
methodology to generalize an isotropic failure criterion to account for strength anisotropy in soils. A salient ingredient of the method involves
the introduction of the degree of cross anisotropy and an anisotropic variable, defined by the joint invariant of the deviatoric stress tensor and
the deviatoric fabric tensor, into the frictional characteristic of the isotropic criterion. The well-received Lade’s failure criterion is taken as an
example to demonstrate the generalization. Predictions using the newly generalized Lade’s criterion for a number of soils, including completely
decomposed granite, glass beads (virtual sand), natural clays, sand, as well as silty sand, show good agreement with test data. The proposed
approach has proved to be simple and generic, and can be effortlessly applied to many existing isotropic failure criteria to adapt them to account
for strength anisotropy. The treatment also requires very few parameters, which can be conveniently calibrated from conventional laboratory
tests in most cases. DOI: 10.1061/(ASCE)EM.1943-7889.0000451. © 2012 American Society of Civil Engineers.
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Introduction

Most natural soils are inherently cross-anisotropic because of the
depositional processes (Oda and Nakayama 1989; Mitchell and
Soga 2005). The isotropic plane frequently coincides with the de-
position plane, and its perpendicular direction is often called the axis
of anisotropy (Whittle et al. 1994; Abelev and Lade 2004; Callisto
and Calabresi 1998). Fabric anisotropy has long been recognized to
significantly affect the peak strength of both sands and clays
(Casagrande and Carillo 1944). A prominent example is the bearing
capacity test of a strip footing on sand examined byOda et al. (1978)
and more recently by Azami et al. (2010), wherein the bearing
capacity measured with the loading direction perpendicular to the
deposition plane was around 25e34% higher than that with
a loading case parallel to the plane. Similar observations have been
found on the strength of clays. For example, Yong and Silvestri
(1979) have found that the unconfined compression strength of
sensitive St. Louis clay varies continuously with loading direc-
tions, with the minimum strength observed being around 60e75%
of the maximum. Strength anisotropy has also been observed in
natural/remolded clays by direct shear tests (O’Neill 1985), true
triaxial tests (Callisto and Calabresi 1998; Kurukulasuriya et al.
1999; Callisto and Rampello 2002), as well as torsional shear
tests (Nishimura et al. 2007; Kumruzzaman and Yin 2010). In
practical design of such geostructures as engineered slopes and
foundations, the principal stress direction may rotate significantly
along a potential slip surface. Proper consideration of strength

anisotropy in these cases becomes necessary for safe assessment
of the performance of these structures (Uthayakumar andVaid 1998).
Indeed, Zdravkovi�c et al. (2002) have employed a finite-element
simulation on a model embankment to demonstrate that more ac-
curate predictions can be achieved if the stress rotation and strength
anisotropy of clay are taken into account.

To properly evaluate the anisotropic strength in soil, suitable
anisotropic failure criteria need to be developed. In this regard,
a variety of approaches have been attempted for different materi-
als. Hill (1950) is among the first to develop an anisotropic yield
criterion for general orthotropic materials. By assuming the
principal axes of anisotropy to be the reference Cartesian co-
ordinate, Hill (1950) expressed his anisotropic failure criterion in
a quadratic form of the Cartesian stress components, which can be
reduced to the von Mises criterion when anisotropy is not con-
sidered. The criterion however requires proper stress transfor-
mation inmany cases, which renders it not particularly convenient.
A technique by rotating an isotropic yield surface according to
the initially anisotropic stress state was later widely adopted to
model strength anisotropy of clays (Sekiguchi and Ohta 1977;
Anandarajah and Dafalias 1986; Whittle et al. 1994). Because the
direction and magnitude of such rotation are typically dependent
on the initial stress state, it cannot adequately account for the fabric
structure of a soil, for example those features related to particle
orientation and void distribution in sand (Kaliakin 2003). To
overcome this drawback, attempts have recently been made to
characterize the strength of inherently cross-anisotropic soils
under true triaxial loading conditions wherein the principal
stresses and material fabric are arranged to be coaxial. Abelev and
Lade (2004), for example, have developed a failure criterion for
cross-anisotropic soils by rotating the isotropic Lade’s (1977)
failure surface around the origin of the stress space. Another
example is the one proposed by Mortara (2010), who introduced
a special function of the Lode’s angle to expand/shrink the failure
curves of an isotropic one in the deviatoric plane. Because these
two criteria have been developed for coaxial stress and fabric
conditions, the formulations require considerable revision if
the material fabric is noncoaxial with the applied stress axes. In
addition to the preceding approaches, there is also a class of
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anisotropic failure criteria being developed based on the concept of
potential failure plane. Liu and Indraratna (2011), as well as Yao
and Kong (2011), for example, have based their developments on
the spatial mobilized plane concept (Matsuoka and Nakai 1974) to
generalize some existing isotropic criteria to account for anisot-
ropy, by assuming that the peak strength of soils depend on the
angle between the spatial mobilized plane and the weak plane
of soils (which typically corresponds to the bedding plane). However,
these models may become tedious to manipulate in cases of con-
tinuous stress rotation, because it would be difficult to determine the
angle between the spatial mobilized plane and the weak plane.

More recently, a particularly popular and effective way of for-
mulating an anisotropic failure criterion is through the use of fabric
tensor. Soil anisotropy is closely related to the fabric structure
formed in a soil. The fabric structure in sand, for instance, may be
attributable to the spatial distribution of particles, void space, and
contact normal (Oda and Nakayama 1989; Muhunthan et al. 1996;
Guo and Stolle 2005). Different forms of fabric tensors have thus
been proposed to characterize the internal structure in soils, and have
been incorporated in characterizing the constitutive behavior and
strength of soils under various loading conditions (Pietruszczak and
Mroz 2000, 2001; Li andDafalias 2002; Azami et al. 2010;Gao et al.
2010). Based on the work by Pietruszczak and Mroz (2000, 2001),
Lade (2007, 2008) has recently extended his isotropic criterion
(Lade 1977) to account for anisotropy by assuming the frictional
parameter h varies with the loading direction. A similar method has
also been followed by Schweiger et al. (2009) based on the Mohr-
Coulomb failure criterion.

The authors propose a general approach to extend an isotropic
failure criterion to an anisotropic one in order to characterize the
strength anisotropy in soils. This method is based on the use of
a fabric tensor as well. Pivotal in this method is the introduction of
an anisotropic variableA (Dafalias et al. 2004), defined by the joint
invariant of the deviatoric stress tensor and deviatoric fabric
tensor, along with the degree of anisotropy, into the frictional
descriptor of the isotropic soil criterion. The authors demonstrate
that this strategy can be easily applied to any popular isotropic
failure criteria for frictional materials, such as theMatsuoka-Nakai
failure criterion (Matsuoka and Nakai 1974), the Mohr-Coulomb
failure criterion, and the Lade’s failure criterion (Lade 1977). The
well-received Lade’s (1977) isotropic criterion is employed as an
illustrative example for generalization using the proposed method.
Indeed, a similar previous attempt has been made by the authors on
a relatively more complicated failure criterion (Gao et al. 2010).
However, by removing the unnecessary procedures and extracting
only the essence, the present study aims to put forward a general-
purpose methodology rather than a specific treatment for an in-
dividual failure criterion. It will also be shown that with the current
approach, an anisotropic failure criterion of elegant form with fewer
additional parameters can be easily formulated.

Fabric Tensor and Anisotropic Variable

A fabric tensor has been frequently used to quantify the anisotropic
internal structure formed in soils (Brewer 1964; Oda and Nakayama
1989; Pietruszczak and Mroz 2000, 2001). Fabric anisotropy in
granular sands or gravels, for example, is typically governed by the
nonspherical particle orientation, contact normal, and void space
distributions, whereas for clays, it may represent collectively the
preferred orientation of clay platelet and the aggregated/flocculated
assemblages. For a soil with cross anisotropy, if the principal axes
of the material fabric are aligned with the reference coordinates
ðx; y; zÞ, with the x2 y plane being the isotropic plane, and z the axis

of anisotropy, the following fabric tensor Fij has been widely em-
ployed to describe the cross anisotropy (Oda and Nakayama 1989)

Fij ¼

2
64
Fz 0 0

0 Fx 0

0 0 Fy

3
75¼ 1

3 þ D

2
64
12D 0 0

0 1 þ D 0

0 0 1 þ D

3
75

¼ 1
3

2
64
1 0 0

0 1 0

0 0 1

3
75þ 2D

9 þ 3D

2
64
2 2 0 0

0 1 0

0 0 1

3
75 ð1Þ

D in Eq. (1) was originally employed by Oda and Nakayama (1989)
as a measure of anisotropy distribution of nonspherical particles in
granular sand. It indeed in a wider sense can be used to denote the
degree of fabric anisotropy for a general class of geomaterials.
including clays and rocks as well. Its value typically varies from
0when the fabric is isotropic, to unity when the degree of anisotropy
is the maximum. For most soils, 0,D, 1 is the typical range. The
fabric tensor expressed in Eq. (1) may be subjected to orthogonal
transformation if the reference frame changes or the material fabric
plane is rotated.

As previously mentioned, the strength of soil depends on how
the loading is applied relative to the bedding plane of the soil. To
predict the behavior of strength anisotropy, it is therefore important to
properly quantify the relative orientation between the stress direction
and material fabric in the three-dimensional space. According to
representation theory of tensors (Wang 1970), the relative orientation
between the (second-order) fabric tensor and the (second-order) stress
tensor can be represented by the following four joint invariants be-
tween the deviatoric part of the fabric tensor and the deviatoric stress
tensors, as follows:

A ¼ sijdijffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p ð2Þ

B ¼ sijdjkdkiffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p �2 ð3Þ

C ¼ sijsjkdki� ffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn

p �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p ð4Þ

D ¼ sijsjkdkldli� ffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn

p �2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p �2 ð5Þ

where sijð5sij 2 pdijÞ and dijð5Fij 2Fkkdij=3Þ are the deviatoric
parts of the stress tensor sij and fabric tensor Fij, respectively; and
pð5skk=3Þ is the mean stress and dijð5 1 for i5 j and 5 0 for
i� jÞ is the Kronecker delta.

A torsional shear test on cross anisotropic soil is taken as an
example to illustrate the feature of the four joint invariants. If the soil
is cross anisotropic and can be characterized by a fabric tensor in
form of Eq. (1), the variations of the four normalized joint invariants
with the angle between the major principal stress direction with
respect to the bedding axis (vertical), a, and the intermediate
principal stress ratio b½5 ðs2 2s3Þ=ðs1 2s3Þ�, are shown in
Figs. 1(bee). Here, s1, s2, and s3 are the major, intermediate, and
minor principal stress, respectively. As for the expression for the
material fabric (dij) and applied stress condition (sij) under such
loading conditions, please refer to the Appendix. From Fig. 1, A
increasesmonotonically witha at constant b values, while decreases

1448 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2012

J. Eng. Mech. 2012.138:1447-1456.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
on

g 
K

on
g 

U
ni

v 
O

f 
Sc

ie
nc

e 
&

 o
n 

12
/1

1/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



with b at the samea.B varies in an opposite trend ofA. Also,C andD
do not vary with a and b in a similar way as A and B, for example,
they are not simply monotonically. For example,C decreases with a
at b5 0, while increases with a at b5 1. The monotonic feature of
A or B makes them easy to manipulate and suitable to be used for
constitutive characterization of soils. Indeed, the first joint invariant
A, in its relative simpler form as compared with the other three, has
been employed to characterize the strength anisotropy of geo-
materials (Gao et al. 2010) and to describe the effect of inherent
anisotropy on sand behavior as well (Dafalias et al. 2004). Com-
paratively, neither C nor D can be employed to describe the soil
anisotropy independently. For instance, C or D is a constant at
b5 0:5, which renders them inappropriate to describe the anisotropic
behavior in a soil, unless they are used in conjunction with A and B.

In addition to the degree of anisotropyD, the first joint invariant
A, which is also termed as the anisotropic variable, will be
employed in formulating the anisotropic failure criterion for soils.
To facilitate the criterion description and parameter calibration,
the expression for A under some typical loading conditions (torsional
shear and true triaxial tests) will be given (a detailed calibration
procedure is shown in the Appendix). Under a typical torsional shear
test condition, as shown in Fig. 1(a), the expression for A is

A ¼ 23 cos2a þ ðb þ 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 b þ 1

p ð6Þ

Furthermore, when the pressures inside and outside the cylinder are
kept the same in the torsional shear apparatus [pi 5 po in Fig. 1(a)],
we get b5 sin2a (Lade et al. 2008), and Eq. (6) can be further
simplified as

A ¼ 2b2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 b þ 1

p ð7Þ

In typical true triaxial tests, as shown in Fig. 2, A can be collectively
expressed as follows:

A ¼

8>>>>>>>>><
>>>>>>>>>:

3ðb2 1Þcos2j þ ð12 2bÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 b þ 1

p Sector I ð0 # u # 60�Þ
3ð12 bÞcos2j þ ðb2 2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 b þ 1

p Sector II ð60 # u # 120�Þ
3 cos2j þ ðb2 2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 b þ 1

p Sector III ð120 # u # 180�Þ

ð8Þ

where j5 angle between the vertical direction and the material axis
of anisotropy. For a detailed discussion on the variation of A, please

Fig.1. (a) Stress state in torsional shear tests (modified fromYoshimine et al. 1998); (b)e(e) variations of the four joint invariantswith the change ofa at
different constant b values

Fig. 2. Illustration of true triaxial tests on cross-anisotropic soils (from
Ochiai and Lade 1983)

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2012 / 1449

J. Eng. Mech. 2012.138:1447-1456.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
on

g 
K

on
g 

U
ni

v 
O

f 
Sc

ie
nc

e 
&

 o
n 

12
/1

1/
12

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



refer to Gao et al. (2010). In addition to A, strength anisotropy of
a soil is apparently dependent on the degree of fabric anisotropy
characterized by D as well. Both D and A will hence be used to
formulate the subsequent anisotropic failure criterion for soils.

General Approach to Characterize Strength
Anisotropy

Generalization of Isotropic Failure Criterion to Account
for Cross Anisotropy

It is assumed that the failure criterion for an isotropic material (e.g.,
the Mohr-Coulomb failure criterion, the Drucker-Prager failure
criterion, the Matsuoka-Nakai failure criterion, and Lade’s failure
criterion) can be expressed in the following functional form:

fI ¼ f̂ I
�
sij; xr

� ð9Þ

where fI 5 general expression of isotropic failure criterion for clay,
sand, or rock, and xr 5 set of relevant strength parameters (e.g.,
cohesion and internal friction angle in the Mohr-Coulomb failure
criterion). Our approach to generalize it to a cross anisotropic one is
straightforward. As previously mentioned, the influence of material
fabric anisotropy on strength may be reflected by two variables, A
andD, and both can be considered through their effects on the model
parameters, for example

fA ¼ f̂ A
�
sij; xn

� ¼ f̂ A
�
sij; x̂rðA;DÞ

� ð10Þ

where fA 5 general expression of anisotropic failure criteria for soils.
xn 5 x̂rðA;DÞ, and x̂r denotes a functional form of xr involving A
and D (Pietruszczak and Mroz 2000). While any proper functional
form of x̂r may serve a good purpose for the generalization, the
following specific expression for xn is proposed:

xn ¼ xr exp½gðA;DÞ� ð11Þ

wherexr takes the original form in the base isotropic failure criterion,
and gðAÞ is an anisotropic (interpolation) function of the following
general form (Pietruszczak and Mroz 2000, 2001):

gðA;DÞ ¼ D
h
c1ð1 þ AÞ þ c2ð1 þ AÞ2þ . . . cnð1 þ AÞn

i
ð12Þ

where ciði5 1; . . . ; nÞ denote a set of material parameters. The
following observations can be made from Eqs. (11) and (12):
1. If the soil is isotropic, we have D5 0, gðA;DÞ [ 0, and

xn [ xr [Eqs. (11) and (12)]. The anisotropic failure criterion
will readily recover the reference isotropic one as a special case.

2. For cross-anisotropic soils with 0,D # 1, with nonzero
ciði5 1; . . . ; nÞ, gðA;DÞ generally varies with the loading
direction characterized by A, as well as degree of anisotropy
characterized by D. In the conventional triaxial compression
shear mode with the major principal stress direction being
perpendicular to the isotropic plane (e.g., the shear mode
corresponding to a5 0� at b5 0 in Fig. 1(a) or u5 0� with
j5 0� in Fig. 2), one always has A5 21 [Eqs. (6) and (8)],
gðA;DÞ [ 0, and xn [ xr [Eqs. (11) and (12)]. This implies
that the expression for the anisotropic failure criterion is
identical to that of the reference isotropic one under such
special loading conditions, and the corresponding test results
can be used to determine xr. In other shear modes with

A� 21, the values of xn would generally be different from
xr for cross-anisotropic soils, and the test results can be
employed to calibrate ciði5 1; . . . ; nÞ.

3. In most applications, the orientation of the isotropic planes is
easily known a priori (A can be calibrated), whereas the degree
of fabric anisotropy D may not be conveniently measured. In
dealing with this difficulty, one may treat the combined terms
ciD as a single material parameter ci 5 ciD, and calibrate ci
instead of determining the exact value of D. This method will
be followed in the subsequent sections.

Generalization of Lade’s (1977) Failure Criterion

As an illustrative example, the well-received isotropic failure cri-
terion proposed by Lade (1977) will be extended using the pre-
viously mentioned approach to characterize strength anisotropy. As
evidenced by many experimental investigations, fabric anisotropy
mainly affects the frictional characteristics of soils (Lade 2008;
Kumruzzaman 2008; Kumruzzaman and Yin 2010). Following the
generalization approach outlined in last section, the following
generalized Lade’s failure criterion is proposed:

f ¼
�
I
3
1

I3
2 27

��
I1
pa

�m

¼ h ¼ hr exp½gðA;DÞ� ð13Þ

where m 5 nonnegative parameter of Lade’s (1977) isotropic
criterion controlling the curvature of the failure curve in the
meridian plane. pa is the atmospheric pressure (101 kPa); hr is a
parameter characterizing the frictional property of soils; I1ð5s1 1
s2 1s3Þ, I3ð5s1s2s3Þ are the first and third invariants of the
transformed stress tensor sij (Lade 1997) expressed as

sij ¼ sij þ s0dij ð14Þ

where s0 5 triaxial tensile strength of a soil. While the anisotropic
function in form of Eq. (12) is general, it is normally sufficient to
consider only the first term for most soils, for example, gðA;DÞ5
c1Dð11AÞ. Nevertheless, for some natural clays, the minimum peak
strength is not observable when the major principal stress direction is
parallel to the deposition plane at the same b value (Nishimura et al.
2007). In this case, including the c2 term may lead to better pre-
dictions. Depending on the applied soil type, the following two forms
of anisotropic interpolation function for Eq. (13) are employed:

gðA;DÞ ¼ c1Dð1 þ AÞ ¼ c1ð1 þ AÞ ð15aÞ

gðA;DÞ ¼ D
h
c1ð1 þ AÞ þ c2ð1 þ AÞ2

i

¼ c1ð1 þ AÞ þ c2ð1 þ AÞ2 ð15bÞ

Calibration of the Failure Criterion

An essential step to make the proposed failure criterion useful is the
calibration of relevant parameters. A general principle for model
calibration is to use easily performed (or accessible) tests (either in
the laboratory or in the field) as much as possible, such as conven-
tional triaxial tests or simple shear tests. To this end, the completely
decomposed granite in Hong Kong (HK-CDG) is employed as an
illustrative example. The HK-CDG has been investigated exten-
sively by Kumruzzaman (2008) through conventional triaxial tests,
plane strain tests, true triaxial tests, as well as torsional shear tests.
Though these tests cover the whole range of b and a (or j), the
triaxial compression and extension tests will be used to calibrate
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a failure criterion in the formof Eq. (13), while leaving other test data
for the purpose of verification. The following summarize the cali-
bration procedures:
1. Determination of the triaxial tensile strength parameters0. For

reconstituted soils, such as the HK-CDG, s0 can be set to 0,
because the interparticle cohesion is normally negligible. As
for natural clays and cemented soils, there may be interparticle
adhesion because of chemical bonding formed by cementation
of carbonates, silica alumina, iron oxide, and organic com-
pounds (Mitchell and Soga 2005). In this case, s0 . 0. Reli-
able value of s0 should be obtained by triaxial testing data at
relatively low effective stresses.

2. Determination of m and hr in Eq. (13). They both can be
calibrated based on test data from conventional triaxial com-
pression tests by plotting lnðpa=I1Þ versus lnðI31=I3 2 27Þ at
failure and locating the best fit straight line. The intersection of
this fitting line with the vertical axis at lnðpa=I1Þ5 0.
(pa=I1 5 1) is lnðhrÞ and its slope is m (Lade 1997, 2008).
Fig. 3(a) illustrates the calibration of m5 0 and hr 5 23:8 for
HK-CDG according to the solid regression line. Actual pre-
diction of our failure criterion in triaxial compression is
compared against the original test data in Fig. 3(b). In the
shear model of triaxial compression, A5 2 1, gðA;DÞ5 0,
such that the predictions of the isotropic and anisotropic
criteria are identical [Eqs. (13) and (15a)].

3. Calibration of parameters ciði5 1; . . . ; nÞ. They can be cali-
brated based on the value of h in other shear modes where
A� 21. In most cases, such as for HK-CDG, only the first
term is sufficient and the anisotropic interpolation function
in Eq. (15a) is adopted. For HK-CDG, according to the dash
regression line in Fig. 3(b) for triaxial extension obtained by
using the same m value previously determined [the variation
of m with loading direction is neglected here as shown in Eq.
(13)], one can gethe 5 expð2:43Þ5 11:36 [Fig. 3(a)]. Because
A5Ae 5 1 in this shear mode [a5 90� at b5 1 in Fig. 1(a)],
onehashe 5 hr expð2c1DÞ5 hr expð2c1Þ [Eqs. (13) and (15a)].
Hence, c1 5 c1D5 20:37 can be obtained based on the pre-
determined value for hr .

Verification of the Anisotropic Failure Criterion

The proposed anisotropic failure criterion in Eq. (13) will be further
verified by a wide range of different soils. In addition to HK-CDG,
the authors shall also employ test results on glass beads (virtual
sand), natural clays (Pietrafitta clay and Pisa clay), Toyoura sand, as
well as silty sand for this purpose.

Hong Kong Completely Decomposed Granite

Fig. 3 shows the predictions of the isotropic and anisotropic criteria
for the failure of HK-CDG. The predictions of the Lade’s (1997)
isotropic criterion are obtained by setting gðA;DÞ5 0 and h5hr,
according to Eq. (13). While relevant parameters have been cali-
brated by conventional triaxial testing data, as previously shown, the
data obtained from torsional shear tests and true triaxial tests will be
employed for verification of this soil. The torsional shear tests on
HK-CDG by Kumruzzaman (2008) cover the whole range of b and
a, while the true triaxial tests are conducted only in Sector I with
constant mean stress under drained conditions (see Fig. 2 for the
sector partition). As shown in Fig. 3, the anisotropic criterion offers
overall satisfactory predictions, but appears to overestimate the
tested friction angle w ð5 arc sin½ðs1 2s3Þ=ðs1 1s3Þ�Þ at around
b5 0:5 and a5 45� [Fig. 3(c)], b5 0:5 and a5 2� [Fig. 3(d)], and
b5 0:06 and a5 45� [Fig. 3(e)]. The maximum overestimation is

no greater than 10%. In contrast, the isotropic criterion appears to
overestimate the strength of the soil in most cases, as compared with
the test results. It nevertheless gives slightly better prediction for the
true triaxial test data in Sector I [Fig. 3(f) and (g)] than the anisotropic
criterion. Indeed, as remarked by Abelev and Lade (2004), the
anisotropic effect in this range of Section I is not significant, and an
isotropic criterion may suffice for strength characterization on most
occasions.

Glass Beads (virtual sand)

Haruyama (1981) has conducted a group of true triaxial tests on
spherical glass beads, of which the peak strength has been found to
be strongly anisotropic. The test setup is identical to that shown in
Fig. 2, with j5 0� and the mean stress p kept constant at 294 kPa
in all the tests. Because there is no interparticle cohesion for this
material, s0 5 0 is adopted. The parameter m was also set to 0,
because there was no sufficient data to calibrate the curvature of the
failure curve in the meridian plane. hr 5 12:9 is determined accord-
ing to the friction angle wc 5 28:6� at u5 0� [Fig. 4(b)]. Meanwhile,
at u5 180�, he 5 7:79, and Ae 5 1, it is readily obtained that
c1 5 c1D5 20:25, based on the anisotropic function in Eq. (15a).

With these parameters, the criterion predictions are compara-
tively presented in Fig. 4 with the test data. The anisotropic criterion
gives reasonable predictions on the shear strength of the glass bead in
the deviatoric plane, whereas the isotropic criterion generally
overpredicts the material strength in the range of 90 # u # 180�
[Fig. 4(a)]. Fig. 4(b) shows the predicted variation of friction angles
in the three sectors. The isotropic criterion predicts one single b2w
relationship, which is obviously inconsistent with the tests data,
while the anisotropic criterion gives three different b2w rela-
tionships, which are close to the test data in the three sectors.
Notably, however, at b5 0:25 and b5 0:5 in Sector II as well as
b5 0:25 in Sector III, the prediction by the anisotropic criterion is
about 7% higher than the measured one [Fig. 4(b)]. In the deviatoric
plane, the distance of the stress point from the center is set to

ffiffiffiffiffiffiffiffi
2=3

p
q,

where (q5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 sijsij=2

p
) is the deviatoric stress.

Natural Pietrafitta Clay

A series of conventional triaxial compression tests and true triaxial
tests were performed by Callisto and Rampello (2002) on natural
Pietrafitta clay to investigate its strength anisotropy. All the true
triaxial tests were conducted at the same mean stress p5 250 kPa
under drained conditions. Because no test data of triaxial tests at
very low confining pressure are available for Pietrafitta clay, it is not
possible to calibrate reliable value for its triaxial cohesion. The
authors hereby assume s0 5 0. The two parameters, hr 5 34:7 and
m5 0:68, are calibrated based on the regressed straight line shown
in Fig. 5(a), by following the same procedure previously discussed
for HK-CDG. The parameter c1 5 c1D5 0:4 is determined based on
the test data at u5 180� (he 5 76:6; A5 1) and Eq. (15a). The
corresponding criterion predictions are shown in Figs. 5(b and c) in
comparison with the test data. Notable underestimations can be ob-
served by the predictions compared with the test data in Section I in
the deviatoric plane. This might be caused by the fact that hr is de-
termined according to the whole test data in conventional triaxial
compression [Fig. 5(b)].

Natural Pisa Clay

Stress path-controlled triaxial and true triaxial tests have been car-
ried out by Callisto and Calabresi (1998) on natural soft clay, Pisa
clay. The soil tested was sampled from the upper clayey deposit
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Fig. 3. (a) Illustration on calibrating the parametersm, hr , and c1Dð5 c1Þ for Hong Kong completely decomposed granite; (b) comparison between the
anisotropic criterion simulation and test results in triaxial compression and extension, and comparison of the predictions of the anisotropic and the
isotropic criteria for failure of Hong Kong completely decomposed granite with data in torsional shear tests with (c) b5 sin2a, (d) b5 0:5, and
(e) a5 45�, as well as in (f) and (g) true triaxial tests [test data from Kumruzzaman (2008)]
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found below the Tower of Pisa. All the samples were reconsolidated
to the in situ stress state and were then sheared to failure with
a constant mean stress of 88:2 kPa under drained conditions. Be-
cause there are no sufficient data to determine the curvature of the
failure curves in the meridian plane as well as the triaxial tensile
strength, m5 0 and s0 5 0 are assumed. hr 5 18:2 is determined
according to the failure stress at u5 0 (Fig. 6). The two-term form
anisotropic function inEq. (15b) is employed to describe the strength
variation. In particular, two shear modes, S1 and S2, as shown in
Fig. 6, are employed to determine c1Dðor c1Þ and c2Dðor c2Þ. At
shear mode S1, h1 5 19:05 and A1 5 0:2, and at shear mode S2,
h2 5 14:56 and A2 5 0:75. In conjunction with Eqs. (13) and (15b),
we obtain c1 5 c1D5 0:4 and c2 5 c2D5 20:3, respectively. The
same procedure may be followed to calibrate an expression of the
anisotropic function with more terms to get more accurate results
(Pietruszczak and Mroz 2000, 2001; Azami et al. 2010). Fig. 6
indicates that the anisotropic criterion gives better predictions than
the isotropic one, despite certain underestimations around u5 60�.

Toyoura Sand

A series of true triaxial tests and plane strain tests were carried out on
Toyoura sand by Lam and Tatsuoka (1988) and Tatsuoka et al.
(1990) to investigate its strength anisotropy. Relevant strength
parameters in the form of Eq. (13) for Toyoura sand are determined
as follows. First, hr 5 38:7 is calculated according to the friction
angle wc 5 41� at u5 0� by setting s0 5m5 0. By using the one-

term expression in Eq. (15a), c1 5 c1D5 2 0:2 is then calibrated
based on the stress state at u5 180� following the same procedure
previously discussed for HK-CDG. Because the measured b value
in the plane strain tests is between 0.2 and 0.3 (Tatsuoka et al.
1990), the predictions by the isotropic and anisotropic criteria are
obtained by considering these two b values [Fig. 7(c)]. Because the
intermediate principal stress s2 is always along the zero-strain
direction, the stress state in plane strain tests is similar to that in
torsional shear tests, as shown in Fig. 1(a). Therefore, the expression
for A can be calculated using Eq. (6). The predictions by the failure
criteria are presented in Fig. 7. Evidently, the anisotropic criterion
can capture the strength variation of Toyoura sand in true triaxial
tests [Fig. 7(a)] and triaxial compression tests [Fig. 7(b)] satisfac-
torily, but overestimates the friction angle in plane strain tests [Fig.
7(c)]. The following reasons may account for the observed dis-
crepancies. First, the predicted friction angle by both the isotropic and
anisotropic criteria is higher than the measured value at a5 0�. This
test condition corresponds to a shear mode between u5 11�ðb5 0:2Þ

Fig. 4. Verifications of the isotropic and anisotropic criteria for test
results on glass beads in (a) the deviatoric plane; (b) the b2w plane [test
data from Haruyama (1981)]

Fig. 5. Verification of the anisotropic failure criterion for test data on
natural Pietrafitta clay [test data fromCallisto and Rampello (2002)]: (a)
calibration of parameters hr and m; (b) comparison of test results in
conventional triaxial compression with the criterion predictions; (c) com-
parison between the true triaxial test results and predictions by the isotropic
and anisotropic criteria
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and u5 17�ðb5 0:3Þ, shown in Fig. 7(a), and both of the isotropic
and the anisotropic criteria overestimate the tested peak strength in this
range from the true triaxial tests. Second, the minimum friction angle
is observed around a5 602 70�, but the anisotropic criterion gives
a minimum value at a5 90�. This may be attributable to different
formations of shear band in true triaxial tests and in plane strain tests
(Lam and Tatsuoka 1988; Tatsuoka et al. 1990). In addition to the
fabric anisotropy, the strength of the soilmay also be affected by shear
band formation, as observed by Lade et al. (2008).

Nevada II/ATC Silty Sand

Shapiro and Yamamuro (2003) performed a group of true triaxial
tests onNevada II sandwith 20%ATC silt byweight. The strength of
this sand has been found to be anisotropic. In calibrating the related
parameters, m5 0:071 and hr 5 22:9 are directly obtained from the
data provided by Shapiro and Yamamuro (2003), and s0 5 0 is
adopted, because the material is cohesionless. Eq. (15a) is used for
the anisotropic interpolation function, and c1 5 c1D5 20:32 is
calculated according to the failure stress state in conventional triaxial
extension with u5 180� (he 5 12:1 andAe 5 1) in Fig. 8(a). As seen
from the predicted results in Fig. 8, the anisotropic criterion can
capture the strength anisotropy of this sand reasonably well, but
somehowoverestimates the strength in the range of b5 0:22 0:8, as
compared with the test results. Also noticed by Abelev and Lade
(2004) and Lade (2007, 2008) is the occurrence of shear band before
the peak strength state may reduce the strength measured from the
boundary of the samples in this range. Shear banding may account
for the observed discrepancy in Fig. 8.

Conclusions

A general and efficient approach has been proposed to develop an
anisotropic failure criterion for soils with cross anisotropy. In essence,
two variables relevant to fabric anisotropy were considered. One is
the degree of cross anisotropy of a soil, and the other is the first joint
invariant of the deviatoric stress tensor and the deviatoric fabric ten-
sor, which physically represents the relative orientation between

stress direction and material fabric in the three-dimensional space.
By modifying the parameters relevant to cohesion and frictional
characteristics of an isotropic failure criterion to be a function of the
anisotropic variable and the degree of anisotropy, the effect of fabric
anisotropy may be properly taken into account. As an illustrative
example, the well-received Lade’s (1977) isotropic failure criterion
has been employed to demonstrate the generalization procedure. The
conventional triaxial compression shear mode where the major
principal stress direction is perpendicular to the isotropic plane is
used as a convenient reference state for calibration of the new
criterion. The usefulness of the new failure criterion in characterizing
the strength anisotropy in soils was validated with a wide range of
sands and clays. The current general method was motivated by
a previous attempt by the authors (Gao et al. 2010), which can be
regarded as a specific implementation of the proposed approach
in this paper. With a couple of more parameters involved, the un-
derlying isotropic failure criterion used is also more complex

Fig. 6. Characterization of the failure of Pisa clay by the isotropic and
anisotropic criteria compared with the test data [test data from Callisto
and Calabresi (1998)]; two-term equation in Eq. (15b) is used for the
anisotropic interpolation function

Fig. 7. Prediction of the failure of Toyoura sand by the isotropic and
anisotropic criterion in (a) true triaxial tests; (b) triaxial compression
tests; (c) plan strain tests [test data from Lam and Tatsuoka (1988) and
Tatsuoka et al. (1990)]
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than the Lade’s criterion used. Also, the present generalized Lade
criterion has also been applied to all the sands and clays discussed in
Gao et al. (2010). Though not presented, the predictions were good
when compared with the test data.

Appendix. Calculation of the Anisotropic Variable A

Calculation of A in Torsional Shear Tests

For the representative element in the torsional shear tests shown in
Fig. 1(a), the deviatoric fabric tensor can be expressed as

dij ¼
2
4 dz 0 0

0 du 0

0 0 dr

3
5 ¼ 2D

9 þ 3D

2
4 2 2 0 0

0 1 0

0 0 1

3
5 ð16Þ

The deviatoric stress components applied on the representative el-
ement is

sij ¼
2
4 sz szu 0

suz su 0

0 0 sr

3
5

¼ s3
1 þ b

2
64
1 þ b2 3 cos2a 23 sina cosa 0

23 sina cosa 3 cos2a þ b2 2 0

0 0 12 2b

3
75
ð17Þ

where s3ð#0Þ5minor deviatoric principal stress. According to the
definition of A expressed by Eq. (2), one can get Eq. (6) in con-
junction with Eqs. (16) and (17). Eqs. (16) and (17) can also be used
to calculate the expressions for B,C, and D [Eqs. (3)e(5)]. Because
the expressions are relatively complex, only the numerical results are
shown in Figs. 1(cee).

Calculation of A True Triaxial Tests

As for the true triaxial test condition shown in Fig. 2, the deviatoric
fabric tensor for the sample is the same for all the three sectors

dij ¼
2
4 dz 0 dzy

0 dx 0

dyz 0 Fy

3
5

¼ 2D
9 þ 3D

2
64

123 cos2a 0 23 sina cosa

0 1 0

23 sina cosa 0 3 cos2a2 2

3
75 ð18Þ

and the applied deviatoric stress system can be expressed as the
following:
1. Sector I

sij ¼
2
4 sz 0 0

0 sx 0

0 0 sy

3
5 ¼ s3

1 þ b

2
4 b2 2 0 0

0 1 þ b 0

0 0 12 2b

3
5

ð19Þ

2. Sector II

sij ¼
2
4 sz 0 0

0 sx 0

0 0 sy

3
5 ¼ s3

1 þ b

2
4 12 2b 0 0

0 1 þ b 0

0 0 b2 2

3
5

ð20Þ

3. Sector III

sij ¼
2
4 sz 0 0

0 sx 0

0 0 sy

3
5 ¼ s3

1 þ b

2
4 1 þ b 0 0

0 12 2b 0

0 0 b2 2

3
5

ð21Þ

According toEqs. (2) and (18)e (21), the expression for A in true
triaxial tests shown in Fig. 2 can be obtained [Eq. (8)].
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