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Artificially cemented sand has been widely used in practical applications relevant to soil improvement
and liquefaction mitigation. It has also been frequently used in laboratory tests to simulate the cemen-
tation and bonding formed in naturally structured sand. Known to be difficult to characterize, the behav-
ior of artificially cemented sand is typically affected by its internal structure consisting of both bonding
and fabric. In this study, a novel constitutive model is proposed to describe the effect of bonding and fab-
ric anisotropy on the behavior of artificially cemented sand. We choose the triaxial tensile strength as a
macroscopic representation of the inter-particle bonding, and a fabric tensor to characterize the fabric in
sand. The yield function adopted in the model is an extension of a recently developed anisotropic failure
criterion, with the frictional parameter therein being replaced by a proper hardening parameter. A de-
bonding law is proposed by assuming the de-bonding process is driven by the development of plastic
deformation. The soil fabric is kept constant in the study to account for inherent anisotropy. Relevant
model parameters can be conveniently calibrated by conventional laboratory tests. The model is
employed to predict the behavior of cemented Ottawa sand and multiple-sieving-pluviated Toyoura
sand, and the predictions compare well with the experimental data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent engineering practice witnesses an increasing interest in
using artificial cementation to increase the stiffness and strength of
problematic soils, for the purpose of controlling excessive displace-
ment/settlement and/or liquefaction mitigation on relevant geo-
structures [16,20,27,32,49,53]. Artificially cemented sand has also
been widely used in laboratory testing to approximately reproduce
the naturally formed structured sands [9,11,58]. The overall behav-
ior of cemented sand thus depends crucially on the internal struc-
ture formed by cementation as well as particle/void arrangements
in the sand. Proper characterization of the sand structure is key to
effective modeling of cemented sand. It has been recognized that
there are two controlling factors that contribute towards the
important features of internal structure in sand, bonding and fabric
[6,12,35].

The effect of bonding on artificially cemented sand has histori-
cally been a focus of numerous experimental studies. It has been
found that bonding can help to stabilize the internal structure in
sand and to increase its overall stiffness and peak strength
[14,15,25,27,29,30]. Through artificial cementation, this feature of
bonding has been widely exploited in practice to reduce the
settlement in soft soils and to enhance the resistance of loose sand
to liquefaction [20,41,53]. Meanwhile, it is also observed that the
ll rights reserved.
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post-peak behavior in cemented sand is much more brittle than
clean sand and exhibits considerable stiffness degradation, due
typically to the breakage of bonding [1,6,58]. Indeed, recent exper-
iments have demonstrated that initiation of yielding of cemented
granular materials is commonly accompanied by high rate of
de-bonding [58]. The numerical simulations based on Discrete Ele-
ment Method (DEM) have provided further support of the observa-
tions [58]. In addition, the bonding in sand may also have
significant influence on the behavior of sand dilatancy as well. Tri-
axial compression tests [2,14,40,58] and torsional simple shear
tests [32] show that sand cementation appears to be more dilative
(or less contractive) than its untreated counterpart (clean sand)
under otherwise identical loading conditions. Under undrained
condition, greater dilation (or less contraction) implies that lower
excess pore water pressure is caused by shear, and the sand is less
vulnerable to liquefaction. From the perspective of volumetric
change, this may help to explain why bonding can increase the
liquefaction resistance of sand.

There have been numerous attempts in the past towards mod-
eling the behavior of bonding in cemented sand. For example,
based on the double-hardening concept, Hirai et al. [24] developed
a two-yield-surface model with a modified Cam-clay plastic poten-
tial to describe bonding in cemented sand. Sun and Matsuoka [55]
developed a model with the SMP criterion to model the bonding ef-
fect. In both models a cohesion parameter similar to the triaxial
tensile strength [33] has been introduced to characterize the bond-
ing. Sand structure in both models, however, has been assumed to
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Nomenclature

A anisotropic variable
b intermediate principal stress ratio
dij deviatoric fabric tensor
e void ratio
eij, ee

ij and ep
ij deviatoric strain, elastic and plastic strains respec-

tively
Fij fabric tensor characterizing the initial fabric anisot-

ropy
H hardening parameter
I1, I2, I3 invariants of the stress tensor
�I1; �I2; �I3 invariants of the transformed stress tensor
p and �p mean stress and transformed mean stress
pr reference pressure
q and �q deviatoric stress and transformed deviatoric stress
sij and �sij deviatoric stress tensor and transformed deviatoric

stress tensor
a parameter for the yield function
dij Kronecker delta
D parameter characterizing the degree of inherent

fabric anisotropy

e1, e2, e3 major, intermediate and minor principal strain
respectively

eq, ee
q and ep

q total, elastic and plastic deviatoric strain in triaxial
space

ev, ee
v and ep

v total, elastic and plastic volumetric strain
h angle between the current stress state and the ver-

tical stress axes in the deviatoric plane (see Fig. 1)
n angle between the major principal stress and direc-

tion of deposition
r0 triaxial tensile strength
r1, r2, r3 major, intermediate and minor principal stress

respectively
�r1, �r2, �r3

transformed major, intermediate and minor princi-
pal stress respectively

rc confining pressure in triaxial compression tests
rij and �rij

stress tensor and transformed stress tensor
rx, ry, rz stresses in the x, y and z directions respectively
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remain intact during the deformation of the soil, which prevents
them from adequately describing the post-peak degradation of
shear modulus that is believed to be caused mainly by de-bonding
[1,58]. To tackle this issue, various de-bonding laws have been pro-
posed thereafter [34,45]. A common way in these studies is to as-
sume that both the size and location of the yield surface are
dependent on the degree of bonding and the evolution of the yield
surface naturally involves the effect of de-bonding. A variety of
other approaches and concepts have also been developed to de-
scribe de-bonding in cemented sand, e.g., the concept of disturbed
state by Desai and Toth [15], the damage-based approaches [28]
followed by Chazallon and Hicher [8], Yu et al. [60] and Namikawa
and Mihira [43], the multi-phase models [1,56] as well as the mul-
ti-scale approach [23].

Apart from bonding, fabric is another important factor influenc-
ing the sand response. Fabric is formed in soil during its deposition
and compaction processes and may collectively reflect the grain
gradation, density, interlocking and anisotropy (e.g., particle shape
and orientation, void distribution, contact normal distribution etc.)
[7,37,38,46,59]. In particular, fabric anisotropy has long been
regarded an important factor attributable to many complicated
macroscopic behavior in sand [39,47]. Under the influence of either
compaction or gravitational force which is typically one-
dimensional, sand particles deposits and forms typical fabric struc-
ture with cross-anisotropy (or transverse-isotropy) which is
characterized by one direction with distinctive anisotropy perpen-
dicular to a bedding or lamination plane wherein it is largely isotro-
pic. This perpendicular direction, normally coincident with the
direction of deposition, is referred to as the axis of anisotropy.
The effect of fabric on sand behavior (stiffness, strength and dilat-
ancy) has long been recognized in clean sand [42,57,59] and natural
clay [44]. Less attention, however, has been paid to the character-
ization and modeling of fabric anisotropy in cemented sand. Indeed,
the impact of fabric anisotropy on the overall behavior of cemented
sand is equally important as in clean sand. This is proved by a recent
series of tests carried out by Saebimoghaddam [52] who found from
triaxial compression tests (the major principal stress is applied in
the direction of deposition) and triaxial extension tests (the major
principal stress direction aligns in the deposition plane) on a ce-
mented paste backfill that the material shows less contractive
and stiffer response in triaxial compression. The observed
discrepancy under the two loading conditions is evidently caused
by fabric anisotropy. There have been numerous studies in the liter-
ature focusing on the effect of fabric anisotropy in sand, such as the
models based on yield surface rotation [54], bounding surface mod-
els [13,37,38] and many others. We shall not attempt herein a
lengthy literature survey on this topic. A relatively detailed review
on fabric anisotropy can be found in Gao et al. [21].

Apparently, both bonding and fabric anisotropy contribute to
important characteristics of the strength and deformation of ce-
mented sand. Failure to fully account for either of them may result
in serious consequences in the design and construction of geo-
structures relevant to naturally or artificially cemented sand, such
as foundation and engineered slopes [1,2,12,27]. Frequently, the
two aspects of soil structure cannot completely be separated. They
combine to affect the behavior of sand as a whole. It is hence desir-
able to have a constitutive model to consider them comprehen-
sively in modeling the behavior of cemented sand. Unfortunately,
most existing constitutive models are concerned either with the ef-
fect of bonding only, or are devoted to the anisotropic effect alone
(e.g., for clean sand). One exception might be the bounding surface
model recently proposed by Belokas and Kavvadas [4] which was
developed to simulate the general structural effect on both sand
and clay. Its performance on simulating the behavior of cemented
sand, however, has not been verified. We also notice that there are
a great number of investigations on modeling the effect of struc-
ture in natural clay [3,18,19,31,61]. While we are concerned with
cemented sand here only, a comprehensive review and comparison
of these studies are beyond the scope of this paper.

In view of the unsatisfactory status quo on the modeling of ce-
mented sand, a simple and novel elasto-plastic model will be pro-
posed in this paper. This has indeed been motivated by a previous
work by the authors on anisotropic failure criterion for geomateri-
als [22]. This failure criterion has been proved to be versatile and
general and have been used to characterize the strength anisotropy
for a wide range of materials, including sands, clays and rocks. We
have found that through replacing the constant frictional parame-
ter in the criterion by a properly chosen hardening parameter, this
criterion can be easily adapted to a good yield function to describe
the effects of both bonding and fabric anisotropy, which is hence
suitable for the modeling of cemented sand. The bonding effect
can be easily described by the triaxial tensile strength in this
criterion together with a newly proposed evolution law for deb-
onding. Meanwhile, the anisotropic effect may be still conveniently
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characterized by an anisotropic variable defined by a joint invari-
ant of the stress tensor rij and the fabric tensor Fij. With some fur-
ther additions of incremental elastic relation and hardening laws, a
new yet simple constitutive model for artificially cemented sand is
developed. We further use test results on cemented Ottawa sand
[58] and Multiple-sieving-pluviated (MSP) Toyoura sand [42] to
verify the predictive capability of the model. The comparisons ap-
pear to be encouragingly good. Towards the end of the paper, we
also discuss some limitations and potential improvements of the
model.

2. Characterization of bonding and fabric in cemented sand

Soil structure comprises of fabric and inter-particle force sys-
tem that reflect all facets of the soil composition, history, present
state, and environment, and therefore is complex in nature. Inter-
particle bonding in artificially cemented sand is related to the
properties of cementing agent and cement content [2,5,9,10,58].
It is found that stronger cementing agent with higher unit weight
may lead to stronger bonding strength [58]. Quantitative measure-
ment of the true interparticle bonding at the particle level in soils
proves to be difficult. However, some macroscopic observable
quantities can be used as alternatives to characterize the bonding
in soils. For instance, experimental observations show that for
the strong bonding case [12,51], cemented soil has a gross yield
stress greater than that of its un-cemented/reconstituted counter-
part in one-dimensional or isotropic compression tests. The differ-
ence between the gross yield stresses can hence be used as an
index to quantify the bonding. For soils with weak bonding [12],
however, the difference is normally insignificant. As such, this
difference is not always a suitable quantity to measure bonding.
Nevertheless, for both the weak and strong bonding cases, experi-
mental studies have observed an obvious peak strength state when
a sample is subjected to triaxial compression at low confining pres-
sure, which is due primarily to the contribution of interparticle
bonding [12,40,58]. We hereby employ the triaxial tensile strength
of a material, r0 [33], as a macroscopic counterpart to the particle-
scale bonding, to account for its contribution to the peak strength
of a soil. Its value can be determined indirectly, e.g., via back
calculation from experimental data on the peak strength of a soil
[22,33].

To describe the behavior of fabric in naturally/artificially
cemented sand, we shall employ a symmetric second-order fabric
tensor originally proposed by Oda and Nakayama [47]. In view of
the fact that most soils are cross-anisotropic, we assume that the
principal axes of soil fabric is aligned with a reference coordinate
system (x1, x2, x3), wherein the x2 � x3 plane defines the isotropic
plane of the fabric, and the x1 axis points to the direction of anisot-
ropy. Consequently, the following simplified form of fabric tensor
may be adopted for the description of cross-anisotropy in the soil

Fij ¼
F1 0 0
0 F2 0
0 0 F3

2
64

3
75 ¼ 1

3þ D

1� D 0 0
0 1þ D 0
0 0 1þ D

2
64

3
75 ð1Þ

where D is a scalar that characterizes the magnitude of the cross-
anisotropy [47]. Its value ranges from zero when the material is
absolutely isotropic, to unity when the degree of anisotropy is the
maximum. If the observation coordinate or material has been ro-
tated, the fabric tensor expressed in Eq. (1) may be subjected to
orthogonal transformation.

3. Model description

The model will be developed within the framework of classic
plasticity. Essential components of an elasto-plastic model as
required by a standard plasticity theory, such as the yield function,
dilatancy, flow rule as well as the elastic relation, will be specified.

3.1. Yield function

It has long been recognized that the yielding and strength of
sand is dependent not only on the current stress state and the load-
ing history, but also on the internal structure as well as the loading
direction relative to the internal structure. Meanwhile, a yield
function should satisfy the requirement of objectivity and needs
to be independent of the choice of coordinate system. In this con-
nection, it is assumed the yielding behavior of a sand with struc-
ture can be expressed as a general isotropic function of the stress
tensor rij, the fabric tensor Fij, the triaxial tensile strength r0 and
some other internal variables fn as follows,

f ¼ f ðrij; Fij;r0; fnÞ ¼ 0 ð2Þ

Specific forms of the stress tensor and fabric tensor, and/or the
internal variables need to be expressed in forms of invariants to
guarantee the objectivity condition. In this paper, we propose the
following yield function to describe the yielding of sand which
considers both bonding and fabric

f ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I2

1 � 3�I2

q
þ 2ð1� aÞ�I1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I1

�I2 ��I3Þ=ð�I1
�I2 � 9�I3Þ

q
� 1
� 1

3
HgðAÞ�I1

¼ 0 ð3Þ

The above yield function is indeed modified from a general
anisotropic failure criterion recently proposed by the authors
[22] wherein we simply replace the originally constant frictional
coefficient Mf with a hardening parameter H. In Eq. (3), a is a model
parameter. �I1 (¼ �r1 þ �r2 þ �r3), �I2 (¼ �r1 �r2 þ �r2 �r3 þ �r1 �r3) and �I3

(¼ �r1 �r2 �r3) are invariants of a transformed stress tensor �rij defined
below [22,33]

�rij ¼ rij þ r0dij ð4Þ

where dij is the Kronecker delta with dij = 1 when i = j and dij = 0
when i – j. Note that the curvature of the yield curve in the merid-
ian plane is neglected by setting the parameter n used in Gao et al.
[22] to be unity. Key to the yield function in Eq. (3) is the anisotropic
function defined as

gðAÞ ¼ expfd½ðAþ 1Þ2 þ bðAþ 1Þ�g ð5Þ

where d and b are two constants and A is an anisotropic variable
describing the relative orientation of the loading direction to the
fabric which is defined by

A ¼ sijdijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

dpqdpq

p ð6Þ

where sij (= rij � rkkdij/3) and dij (= Fij � Fkkdij/3) denote the devia-
toric stress tensor and deviatoric fabric tensor, respectively. Note
that due to normalization, the value of D does not affect the value
of A. For more discussion on the variation of A under typical loading
conditions, please refer to Gao et al. [22]. In essence, d plays a role of
measuring the degree of strength anisotropy for a material. When
d = 0, we see that g(A) � 1, irrespective of the loading direction. In
this case, the yield function defined in Eq. (3) is isotropic in the
stress space. Notably, the anisotropic yield function is identical to
the isotropic one in conventional triaxial compression state wherein
the major principal stress direction is perpendicular to the deposi-
tion plane, since A � 1 at this state. With the involvement of fabric
tensor, however, the anisotropic yield locus usually cannot be di-
rectly visualized in the conventional deviatoric plane as conven-
tional (isotropic) yield functions do. Nevertheless, under some
special conditions this is still possible. For example, in true triaxial
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Fig. 1. (a) Definition of the angle h and partition of the deviatoric plane under the
true triaxial test condition (after [46]); (b) the yield surface in the three-
dimensional space and (c) the yield loci in the deviatoric plane.
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tests if both the stress direction and the fabric orientation are set to
align in the same fixed coordinate, such as the cases shown in
Fig. 1a, the yield surface can be plotted as shown in Fig. 1b (the yield
surfaces do not cross the origin of the coordinate system due to the
existence of bonding) and Fig. 1c (yield loci in the deviatoric plane
with different values of hardening parameter). The isotropic failure
surface is shown in the deviatoric plane in comparison with the
anisotropic one. Note that in Fig. 1a we denote the angle between
the current stress state with the vertical stress axes in the deviatoric
plane by h, and the deviatoric plane is partitioned into three zones
as shown in Fig. 1a. The same convention will be followed in the
subsequent sections.
3.2. Hardening law

The following evolution law for H is proposed:

dH ¼ hdLirH ¼ hdLiGchf
Hpr
ðMf � HÞ ð7Þ

where rH denotes the evolution direction of H and is always greater
than or equal to zero; dL is a loading index and hxi denotes the
Macauley bracket with hxi = 0 when x 6 0 and hxi = x when x > 0;
ch is a positive constant. Following Li and Dafalias [37] and Dafalias
et al. [13], we introduce the following f as a scaling factor to account
for the effect of fabric anisotropy on the soil stiffness

f ¼ exp½�kðAþ 1Þ� ð8Þ

where k is a positive model parameter. Evidently, f in form of Eq. (8)
is a decreasing function of A. This is supported by experimental
observations that, under otherwise identical conditions, the re-
sponse of a soil becomes softer as the major principal stress direc-
tion deviates away from the direction of deposition (A decreases
with this change) [42,59]. Note that in case of conventional triaxial
compression with the axis of deposition co-axial with the axial
compression direction, A = �1, such that f � 1. The special feature
of this shear mode makes it suitable to be used as a reference for
model calibration, which will be discussed in a later section.

Experimental observations [1,58] show that the bonding of soils
is gradually weakened due to the development of plastic deforma-
tion, which leads to significant degradation in shear modulus dur-
ing the post peak stage. In the present model, a simple linear
relation between the rate of de-bonding and the plastic deviatoric
strain increment is assumed,

dr0 ¼ hdLir0 ð9Þ

where

r0 ¼
�mðH=Mf Þ2000r0 for r0 > 0
0 for r0 6 0

(
ð10Þ

where r0 denotes the current triaxial tensile strength of the mate-
rial and m is a non-negative model parameter. The above evolution
law ensures that r0 is always less than or equal to zero and the pro-
cess of de-bonding proceeds steadily with plastic straining until r0

reaches zero. It is assumed that elastic deformation does not cause
de-bonding in this evolution law. Since the initial value of the triax-
ial tensile strength r0i is determined based on the peak strength
state of cemented sand (see the case for cemented Ottawa sand
shown in Fig. 2), the term (H/Mf)2000 is used to force the de-bonding
rate to become very small before the peak strength state.

3.3. Dilatancy and flow rule

Dilatancy relation is the cornerstone of a constitutive model for
sand. To incorporate the effect of bonding and fabric anisotropy
into the dilatancy of sand, we propose the following dilatancy rela-
tion based on the work by Li and Dafalias [37],

D ¼ dep
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3dep
ijdep

ij

q ¼ d1

expð
R
hdLiÞ ðMpdCdF � HÞ ð11Þ

where dep
v is the plastic volumetric strain increment; dep

ij

(¼ dep
ij �dep

vdij=3) is the plastic deviatoric strain increment; d1 is a
positive model parameter; Mp is the phase transformation stress ra-
tio measured in conventional triaxial compression tests on remol-
ded samples. The role of the denominator in Eq. (11) is to control
the volume change, especially when the strain level is high. As
the sample is sheared to the critical state, the increment of plastic
deviatoric strain will not be limited. As such the denominator term



Fig. 2. Peak strength of cemented Ottawa sand [58] and the fitting curves with the same slope measured from the results on un-cemented samples.
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will reach infinity with unlimited flow, which makes the value of D
approach 0. The two scaling factors dC and dF are used to character-
ize the bonding and anisotropic effects, respectively,

dC ¼ exp �c0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=pr

p� �
ð12Þ

dF ¼ exp½kðAþ 1Þ� ¼ 1
f

ð13Þ

where c0 is a positive model constant and k is the same one as in the
expression of f in Eq. (8). By this dilatancy relation in Eq. (11), as the
value of r0 increases, dC decreases such that D becomes smaller. The
soil response is hence less contractive and the liquefaction resis-
tance potentially increases [14,20,53]. dF is indeed a reciprocal form
of f defined in Eq. (8) which describes the dilatancy anisotropy of
sand (see also [13,37]). Under otherwise identical conditions, dF in-
creases with A (the major principal stress direction deviates more
away from the direction of deposition), which in turn leads to big-
ger value of D and more contractive soil response [42,59].

Meanwhile, based on the yield function in Eq. (3), we propose
the following associated flow rule

dep
ij ¼ hdLinij ð14Þ

where nij is a unit tensor defined by
Table 1
Model parameters for cemented Ottawa sand [58], multiple-sievin

Parameter Cemented Ottawa sand

Failure Mf 1.15
a 0
d 0
b 0

Elastic moduli G0 123
m 0.01

Hardening law ch 0.1
k 0
m 3.5

Dilatancy d1 1.1
Mp 1.15
c0 0.15
nij ¼
1
B

@f
@rij
� 1

3
@f
@rmn

dmndij

� �
ð15Þ

where B is the norm of the quantity in the parentheses in Eq. (15).
Note that a similar flow rule has also been used by Pietruszczak
[48].

3.4. Elastic moduli

The elastic response of sand typically exhibits a dependence on
pressure and density, which leads to a nonlinear elastic behavior.
Richart et al. [50] have proposed an empirical relation to describe
this nonlinear behavior for the elastic shear modulus, G, of sand
which has been proved suitable for a variety of sands [13,37–39].
Based on the expression proposed by Richart et al. [50], with fur-
ther postulate that the de-bonding process also affects the elastic
behavior of sand, the following modified nonlinear form of G is as-
sumed in this paper

G ¼ G0 exp
ffiffiffiffiffiffi
r0

pr

r� �
ð2:97� eÞ2

1þ e
pr

ffiffiffiffiffi
�p
pr

s
ð16Þ

where G0 denotes a material constant; pr is a reference pressure
which is normally chosen to be the atmospheric pressure
g pluviated (MSP) Toyoura sand [42] and model illustration.

MSP Toyoura sand Model illustration

1.55 1.15
0.51 0
�0.16 �0.05
�0.42 0

125 123
0.2 0.01

0.35 0.1
0.25 0.04
0 3.5

1.0 1.1
1.0 1.15
0 0.15



(a) (b)

(d)(c)
Fig. 3. Comparison between the model predictions and tested results on cemented Ottawa sand in drained triaxial compression with the confining pressure of 80 kPa (a and
b) and 100 kPa (c and d).
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(101 kPa); �p is the transformed mean stress; expð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=pr

p
Þ is a new

term introduced to the original form of Richart et al. [50] to account
for the influence of bonding to the elastic response of sand [17,25].
The elastic bulk modulus, K, is assumed to depend on G and the
Poisson’s ratio m according to

K ¼ G
2ð1þ mÞ

3ð1� 2mÞ ð17Þ

where m is assumed to be a constant here.
4. Model calibration and verification

4.1. Calibration of model parameters

To begin with, it is instructive to discuss the calibration of mod-
el parameters. The determination of relevant parameters involved
in the original anisotropic failure criterion has been discussed in
detail in Gao et al. [22] which will not be repeated here. Neverthe-
less, we emphasize that the initial value of the triaxial tensile
strength r0i must be specified in order for the de-bonding process
to be properly considered. For each case of cement content, it is ob-
tained from the intersection of the peak strength fitting curve with
the hydrostatic axis (Fig. 2). The other parameters to be calibrated
can be roughly classified into three groups, those parameters rele-
vant to the elastic moduli, the parameters for the hardening law
and the parameters for the dilatancy relation. All of them can be
readily calibrated from the conventional triaxial compression and
extension tests, by following the procedure outlined below.

(a) G0: Based on the expression for the elastic shear modulus,
the parameter G0 can be calibrated using the small strain
stiffness tests on un-bonded (clean cohesionless) sand.
Alternatively, it can be determined by fitting the q � eq curve
at the initial elastic range under either drained or undrained

conditions, where eq (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3dep

ijdep
ij

q
) is the magnitude of the

deviatoric strain.
(b) Mp: The phase transformation stress ratio Mp can be readily

obtained from the conventional triaxial compression tests
on un-bonded clean soil samples.

(c) d1: Neglecting the small elastic deformation, one has the fol-
lowing relation under the drained triaxial compression con-
dition for un-bonded sand samples,



(a) (b)

(c)
Fig. 4. Model simulations for the response of cemented Ottawa sand in undrained triaxial compression: (a) ea � q relation; (b) p � q relation and (c) ea � u relation.
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where �g ¼ q=�p and �p ¼ pþ r0. For un-bonded samples (r0 = 0
and A = �1), only d1 has an influence on the model response.
It can thus be calibrated by fitting the corresponding eq � ev
curves in the tests.
(d) ch and m: Under drained triaxial compression condition, one
has the following relation with the small elastic deformation
being neglected1
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The variable a is equal to 0 for constant-mean-stress tests
and 1/3 for conventional triaxial compression tests [36]. As
for un-bonded samples, ch is the only parameter left in Eq.
(19) and can be calibrated by fitting to the eq � q curves.
e that the exponent to g=Mf has been adopted at a value of 2000 to make this
se to zero before the peak, but stay at 1 after the peak.
The parameter m can then be determined based on the tested
eq � q relations on a cemented sand sample.
(e) c0: Once all above parameters are determined, c0 can be
determined by fitting the eq � ev curves for bonded samples
under drained triaxial compression tests based on Eq. (18).

(f) k: The parameter k characterizes the stiffness anisotropy of a
soil, and hence can be calibrated based on testing results of
eq � q on soils with the major principal stress direction hav-
ing a deviation with the direction of deposition, according to
Eq. (19). The conventional triaxial extension tests, where the
major principal stress direction is perpendicular to deposi-
tion direction, is a good choice. Since k also enters the
expression of D, it should be tuned based on the eq � ev rela-
tions in conventional triaxial extension according to Eq. (18).

(g) m: For undrained triaxial compression tests on un-bonded
sand, one has,
ffiffiffir

dq
dp
¼ �g� 3

2
Kp

KD
ð20Þ

With all the other parameters being determined already, m
can then be determined by fitting the effective stress paths
in undrained triaxial compression tests. Results of eq � q in
undrained triaxial compression tests can be further used to
fine tune all parameters.



(a) (b)

(c) (d)
Fig. 5. Comparison between the model simulations and test results on MSP Toyoura sand in true triaxial tests. Tests and simulations have been conducted at h = 0� and 120�

with b = 0 (a and b), h = 90� at b = 0.5 (c) and h = 180� at b = 1 (d) (see Fig. 1a for reference).
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4.2. Model verification by cemented Ottawa sand

A series of tests have been conducted by Wang and Leung [58]
on cemented Ottawa sand. Since no reference has been made to the
sand fabric in these tests, it is difficult for us to consider the effect
of fabric anisotropy in this sand. We hereby neglect the influence of
anisotropy in the following study of cemented Ottawa sand by set-
ting the anisotropy-relevant parameters d, b and k to zero. All other
related parameters have been calibrated according to the proce-
dures outlined above. The calibrated results for the model param-
eters are summarized in Table 1. In particular, the initial value of
bonding r0i has been calibrated with the peak strength lines of
the testing data as demonstrated in Fig. 2.

Model simulations of cemented Ottawa sand samples with differ-
ent cement contents under drained triaxial compression conditions
and at different confining pressures are presented in Fig. 3, in com-
parison with the testing results as obtained by Wang and
Leung [58]. As is shown in Figs. 3a and c, the predicted ea � q relation
by our model well captures the overall trend of the deformation pro-
cess observed in the tests. The increases in peak strength and stiffness
with increased cement content and increased confining pressure in
the tests are clearly reproduced by our model. Nevertheless, it is ob-
served that the simulations tend to underestimate slightly the peak
strength of the samples, especially for cases with the cement content
at 1% and 2% and at a confining pressure of 100 kPa. This may have
been caused by certain underestimations in the regression of peak
strength. Meanwhile, it is found that the simulated ea � e relations
are in good agreement with the testing results for the case of confin-
ing pressure of 80 kPa. In the case of confining pressure at 100 kPa,
the model predictions are reasonably good for the two cases of ce-
ment content at 0% and 3%, but slightly underestimate the volume
expansion for the other two cases. In general, the effect of bonding
on cemented Ottawa sand under drained shear can be captured by
the proposed model with reasonable satisfaction.

As mentioned in the introduction, bonding may help to stabilize
the overall structure of sand and reduce its susceptibility to lique-



(a) (b)
Fig. 6. Model simulations on MSP Toyoura sand under undrained loading conditions.

(a) (b)

(d)(c)
Fig. 7. Model simulations for the combined effect of bonding and fabric on sand response in drained shear (a and b) and undrained shear (c and d).
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faction [9,20,32,53]. The proposed model can be employed to verify
this case with undrained simulation on cemented sand. To this end,
we still use cemented Ottawa sand with the model parameters
listed in Table 1. In the undrained modeling, it is assumed that
the samples have been compacted in the major principal stress
direction before shear. The simulated results are shown in Fig. 4.
As can be seen, the un-cemented sample (CC = 0%) reaches static
liquefaction in the modeling, while the cemented samples are all
able to pull their strength back at some phase transformation
points and reach the critical state. Essentially, these cemented
samples show typical response similar to medium-to-dense sand
samples under triaxial compression (see e.g., [59]). As evidenced
in Fig. 4c, the increase of cement content in sand may significantly
reduce the maximum excess pore water pressure generated in a
sample. Intuitively, the bonding created by cementation may help
the soil skeleton to form a more stable structure to sustain more
external shear rather than letting the pore water to share more,
which may help to reduce excess pore pressure and consequently
improve the resistance of sand to liquefaction. Indeed, cementation
has been increasingly used as an effective means in geotechnical
engineering on the stabilization of foundation soils for existing
structures and for engineered slopes as well, to enhance the
strength and to mitigate risks relevant to liquefaction [32].

4.3. Multiple-sieving pluviated Toyoura sand

The proposed model has also been used to predict the behavior of
multiple-sieving pluviated Toyoura sand for which a number of true
triaxial tests have been carried out by Miura and Toki [42]. The tests
have been focused on investigating the effect of fabric on clean sand,
so there is no bonding effect involved. All tests have been conducted
at a constant mean stress of 196 kPa on samples with an initial rel-
ative density of Dr = 53%. The model parameters are calibrated
according to the drained true triaxial testing date reported in Miura
and Toki [42] and are summarized in Table 1. The deposition direc-
tion is in the direction of rz. Without considering the effect of bond-
ing, we simply set the relevant parameters m and c0 to zero. The
model simulations are compared against experimental data in
Fig. 5. In this figure, we use b = (r2 � r3)/(r1 � r3) to denote the
intermediate principal stress ratio, and its relation with h has been
shown by Ochiai and Lade [46]. The model predictions appear to
compare well with the experimental data in general, only with some
slight discrepancies in certain cases. The simulated c � q/p relation
marginally overestimates the stress ratio for the case h = 120� and
b = 0. The maximum difference is about 11% of the measured value
at around 2% deviatoric strain. The predicted ez for the case h = 90�

and b = 0.5 appears to be at odds with the measured data at high
stress ratio. While it is uncertain what causes this discrepancy, it
is noticed that the magnitude of tested ez remains very small during
the entire loading course. We hence suspect the boundary con-
straints may have introduced some uncertainties to the experimen-
tal data on ez. Also notably, all tests appear to have been terminated
at relatively small strain levels (e.g., around 3% of axial strain) due
probably to the instrumentation restriction. Nevertheless, this
may still help to justify our model simulations since constant inher-
ent fabric anisotropy has been assumed in the model. At relative low
strain level there will not be significant plastic deformation such
that the fabric change that may be caused is negligible.

Likewise in the Ottawa sand case, the model simulation can be
easily extended to predict the undrained response of MSP Toyoura
sand. Though no testing data are available for benchmarking, the
simulation may still help to understand some of the fundamental
behavior of sand. Three typical loading conditions, triaxial
compression, simple shear and triaxial extension are chosen for
demonstration. The modeling has been performed by assuming
that the initial relative density of sand samples is Dr = 53% and
the deposition plane is horizontal. The stress is applied following
the procedures used by Yoshimine et al. [59]. The modeling results
are shown in Fig. 6. In the figure, r1 and r3 denote the major and
minor principal stress respectively; e1 and e3 denote the major and
minor principal strain respectively. Stiffer and more dilative re-
sponse is generally observed in the triaxial compression simula-
tions; while more contractive and softer response is found in the
triaxial extension case (static liquefaction occurs indeed in this
case). The sand response under simple shear is in between the
above two cases. These results are consistent with the typical phe-
nomena observed by Yoshimine et al. [59]. On a side note, from the
study it is indicative that if the evaluation of the resistance to liq-
uefaction of sand for relevant geostructures is purely based on con-
ventional triaxial compression tests, the strength of the soil may be
overestimated, which may lead to unsafe design.

4.4. Combined effect of bonding and fabric

The current model can describe the combined effect of bonding
and fabric on sand behavior. However, there are very rare relevant
data in this regard. We are hence unable to perform direct compar-
ison between the model simulations and test results. Nevertheless,
a number of predictions have been made by our model on the com-
bined effect and are shown in Fig. 7. In particular, the Ottawa sand
with cement content of 3% has been used by setting d and k to be
zero, as listed in the parameters for ‘‘Model illustration’’ in Table 1.
The stress is applied following the test set-up by Yoshimine et al.
[59] in hollow cylinder torsion shear apparatus, with n denoting
the angle between the major principal stress and the direction of
deposition. In all tests, the samples are initially consolidated to a
confining pressure of 300 kPa. As can be seen from the drained re-
sponse in Figs. 7a and b, peak strength states are observed for all
three cases, which is evidently a result of bonding. At smaller n val-
ues, the predicted sand behavior is stiffer and more dilative under
both the drained and undrained conditions (Figs. 7c and d), which
reflects the effect of fabric.
5. Conclusions and discussion

An elasto-plastic constitutive model has been proposed in this
paper to characterize the effect of bonding and fabric anisotropy
on artificially cemented sand. The yield function employed is based
on an anisotropic failure criterion for geomaterials recently pro-
posed by the authors [22], with proper inclusion of hardening
and de-bonding. The bonding is described by the triaxial tensile
strength r0 of the material, and the fabric is characterized by a
second-order fabric tensor Fij originally proposed by Oda and
Nakayama [47]. An anisotropic variable A, expressed by a joint
invariant of the stress tensor and the fabric tensor, is employed
to describe the relative orientation between the loading direction
and soil fabric. All model parameters can be conveniently
calibrated based on the conventional laboratory tests. Comparisons
between the model simulations and test results on cemented
Ottawa sand [58] as well as MSP Toyoura sand [42] are made. It
is demonstrated that the model is able to capture the effect of
bonding and fabric anisotropy reasonably well.

The proposed model offers a compact framework for modeling
the effect of structure on sand in a comprehensive way, including
both bonding and soil fabric. Admittedly, it still needs further
improvements, particularly in the following respects:

(a) In the current model, the plastic deformation of sand is influ-
enced by the fabric, and therefore, the de-bonding process is
dependent on the fabric. However, it is postulated that the
presence of fabric does not make the triaxial tensile strength
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anisotropic. Such simplification appears to be sufficient for the
cemented (grouted) sand and clean sand (no bonding). How-
ever, experimental observations on fiber-reinforced sand
show that the measured cohesion is also affected by the
applied loading direction [26]. In order for this model to be
applicable for the fiber-reinforced sand case, proper modifica-
tion of the triaxial tensile strength and its evolution with
involvement of the anisotropic variable A may be an option.

(b) Notice that the bonding in the current model is assumed to
be damaged due to plastic deformation. In reality, it may be
weakened by elastic strain as well, similar as the damaging
process of elastic degradation in micro-cracked rocks. It
has also been observed that the bonding in fiber-reinforced
sand may survive at large strain levels [26] (owing mainly
to the fiber actually). The evolution law of de-bonding has
to be carefully re-considered, e.g., by employing nonlinear
relations instead of the linear ones used here, if the above
situations are to be addressed.

(c) In the current model, only inherent anisotropy is considered
and the soil fabric is assumed to stay unchanged during the
deformation of sand. Induced anisotropy in sand can some-
times become more important in shaping the soil behavior,
especially when the shear strain is high. In this case, it is
mandatory to consider the evolution of soil fabric. Indeed,
some preliminary attempts have been made in this regard,
see, e.g., Li and Dafalias [39] and Gao et al. [21], which
may likely help to open up an exciting new field for consti-
tutive study on sand. The current model can as well be
improved if the above aspects are carefully considered.

(d) The current model is proposed for artificially cemented sand
with strong particles (such as silica sand or quartz sand). It
may not be applicable to naturally cemented sand such as
carbonate soils [12] and sandstone [5]. These latter two
sands usually have high void ratio and fragile grains, and
are known to exhibit high compressibility and plastic hard-
ening predominately controlled by coupled processes of par-
ticle crushing and de-bonding. It is difficult to differentiate
the two processes in laboratory conditions [5,11,12].

(e) De-bonding may be significant under isotropic compression.
Indeed, as observed by Cuccovillo and Coop [12] as well as
by Lo et al. [40], the behavior of weakly cemented sand with
strong particles is cohesive at lower confining pressure, and
becomes purely frictional when the confining pressure is
very high. A plausible explanation of this would be that
the bonding is damaged during the isotropic compression
process before shear. While the current model is not yet able
to address the de-bonding due to isotropic compression, the
issue can be resolved by incorporating some existing tech-
niques in treating the isotropic compression of structured
clays into the current model, which will be pursued in a
future work.
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Appendix A. Details on the model derivation

Application of the condition of consistency to the general form
of yield function presented in Eq. (3) results in

df ¼ @f
@rij

drij þ
@f
@H

dH þ @f
@r0

dr0 þ
@f
@Fij

dFij ¼ 0 ðA:1Þ
Since the evolution of Fij is not considered in this model, one has
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where Kp is defined as the plastic modulus,
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Classical plasticity theory can then be followed to derive the
complete constitutive relations. For the deviatoric and volumetric
elastic strain increments, dee

ij and dee
v , an isotropic hypoelastic rela-

tion is postulated in the present model as follows

dee
ij ¼

dsij

2G
ðA:4Þ

and

dee
v ¼

dp
K

ðA:5Þ

wherein we employ expressions in Eqs. (16) and (17) for the elastic
moduli K and G. For the corresponding plastic strain increments, the
following relations can be obtained based on the dilatancy equation
and flow rule

dep
ij ¼ hdLinij ðA:6Þ

and
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v ¼ D
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where nij is defined in Eq. (15). The above equations can be used to
calculate the incremental stress–strain relation. Consider the fol-
lowing expression

drij ¼ dsij þ dpdij ¼ 2Gdee
ij þ Kdee

vdij

¼ 2Gðdeij � dep
ijÞ þ Kðdev � dep

vÞdij
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p
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where an additive decomposition of the total strain increment has
been assumed deij ¼ dee

ij þ dep
ij. According to Eqs. (A.2)–(A.8), the

expression for the loading index can be obtained as,
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Combining Eqs. (A.8) and (A.9), one can get the following incre-
mental form constitutive relation which is ready for numerical
computations,

drij ¼ Kijkldekl ðA:10Þ

where

Kijkl ¼ Gðdikdjl þ dildjkÞ þ ðK � 2G=3Þdijdkl � hðdLÞð2Gnij

þ
ffiffiffiffiffiffiffiffi
2=3

p
KDdijÞHkl ðA:11Þ

where h(dL) is the Heaviside step function, with h(dL > 0) = 1 and
hðdL 6 0Þ ¼ 0.

Appendix B. Partial derivatives

For the reader’s convenience of further reference, we also derive
and provide the results for all the partial derivatives used in the
proposed model. According to the chain rule, one can get the
following
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By combining Eqs. (B.1)–(B.9), @f
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can be calculated. Finally, the
following two expressions are also needed in formulating the con-
stitutive relations
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