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Abstract

This paper presents an elasto-plastic analysis for cavity expansion in a solid cylinder. The solid is modelled using a
strain gradient plasticity model to account for the influence of microstructures on the macroscopic mechanical behaviour.
A numerical shooting method, together with Broyden’s iteration procedure, is developed to solve the resulting fourth-order
ordinary differential equation with two-point boundary conditions for the gradient-dependent problem. Fully elastic-plas-
tic solutions to the cavity expansion are obtained and they are compared with conventional results for a number of exam-
ples. The effects of microstructure on macroscopic behaviour for the cavity expansion problem are analysed. It is
demonstrated that, with consideration of microstructural effects, the deformation and stress distributions in the cylinder
are highly inhomogeneous during both the initial loading and the subsequent elastic and plastic expansion stages. The
gradient effects can result in a stiffer response in the elastic regime (as compared with the corresponding conventional
prediction), but a weaker response in the plastic regime. As expected, the overall elasto-plastic behaviour of the gradi-
ent-dependent cylinder depends on the material parameters as well as the cylinder thickness. It is shown that the strain
gradient theory solutions reduce to the conventional ones as a special case when the dimension of the microstructures
is negligible compared with the cylinder size. The results in this paper can be used as a benchmark for further numerical
investigations of the cavity expansion problem.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The expansion of spherical or cylindrical cavities in finite or infinite media has attracted much attention
from researchers in both mechanics and material science. One appealing feature of cavity expansion problems
is the simplicity of their geometry, which makes it possible to obtain closed-form solutions for a wide range of
applications. Metal indentation tests, for example, have been investigated by Hill (1950) using elasto-plastic
cavity expansion theory. A variety of practical geotechnical problems, such as pile installation, cone penetra-
tion tests (CPT) and pressuremeter tests (PMT), have also been extensively investigated by cavity expansion
analysis (e.g., Gibson and Anderson, 1961). Cavity expansion solutions not only provide valuable predictions
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for the deformation and pressure-expansion behaviour of these applications, but also furnish benchmarks for
comparison with experimental data. Numerous sophisticated constitutive models have been used to obtain
cavity expansion solutions which take into account the frictional, cohesive and dilatant behaviour of geoma-
terials (see e.g., Carter et al., 1986; Yu and Houlsby, 1991; Yu, 1992; Collins et al., 1992; Salgado et al., 1997;
Ladanyi and Foriero, 1998). Moreover, cavity expansion theory including both small and large deformations
has also been presented (see e.g. Yu (2000) for a review of the topic).

One important feature of geomaterials that has been largely neglected in previous cavity expansion studies
is the influence of microstructure. Microstructures exist in many solid materials like soils and rocks in the form
of fundamental material grains, microvoids, micro pores and microcracks. Along with the deformation of a
material, the microstructural behaviour evolves progressively under load and has a significant influence on
the overall macroscopic behaviour of the material. For example, the initial microstructure in a natural soil
may cause it to exhibit ‘stiffer’ mechanical behaviour than the corresponding reconstituted soil (Burland
et al., 1996). The neglect of initial microstructure may, therefore, lead to significant discrepancies between
observed material behaviour and theoretical predictions from constitutive models. Indeed, conventional con-
tinuum theory, on which most existing cavity expansion analyses have been based, does not attempt to address
key geomaterial phenomena such as scale effects, strain localisation and catastrophic failure. To resolve these
issues, it is now generally accepted that extra terms in the constitutive descriptions are needed to account for
microstructural effects. To this end, various high-order theories have been proposed which incorporate gradi-
ents of appropriate physical state variables (such as strain or damage), along with one or more intrinsic length
scales, in their constitutive formulations. Amongst these strain gradient models, those stemming from gener-
alised Cosserat continua (Cosserat and Cosserat, 1909; Toupin, 1962; Mindlin, 1964, 1965; Germain, 1973)
and extended to plasticity theory (Fleck and Hutchinson, 1997), have many potential applications. In strain
gradient theory, strain gradients and their work-conjugate forces are considered in addition to the convention-
al stresses and strains when formulating the constitutive relations. One or more length scales are naturally
included when considering the dimension balance for the gradient terms in the governing equations. These
length scales represent the influence of microstructure on the macroscopic behaviour of the material. Success-
ful applications of this type of strain gradient theory to practical problems can be found in Zhao et al. (2005,
2007). This paper employs the same theory to re-examine the cavity expansion problem in a solid cylinder, and
investigates the effect of microstructure on the deformation-stress and pressure-expansion relations .

There are two major difficulties in applying strain gradient theory to the cylindrical cavity expansion prob-
lem. The first is associated with the solvability of the resultant differential governing equations. As will be
shown in Section 3, even for the purely elastic model, a fourth-order ordinary differential equation (ODE) with
complex boundary conditions needs to be solved for the gradient-dependent case. In this instance, it is difficult
to achieve an elegant closed-form analytical solution (as in conventional theory) and we are forced to seek a
numerical solution. The finite element method (FEM) has proved to be a powerful tool in many applications
and could serve as a good option for the problem. Its key drawbacks for this application, however, are that
complex elements with higher-order continuity and delicate plastic flow rules have to be used to accommodate
the gradient terms. In view of its axi-symmetric nature, the cylindrical cavity expansion problem can be sim-
plified to a one-dimensional one which can then be solved by other numerical approaches that are simpler than
the FEM. In this paper, we employ a numerical shooting approach, together with Broyden’s iteration proce-
dure, to solve the governing fourth-order ODE for the elastic regime in the expanding cylinder. To obtain the
solution in the plastic regime, the second difficulty arises. For conventional cavity expansion analyses, such as
those developed by Hill (1950) and Yu (1992), the plastic regime is assumed to propagate progressively from
the inner surface toward the outer surface until it reaches the latter. For the gradient-dependent case to be
treated here, this type of plastic expansion behaviour cannot be assumed a priori, as inhomogeneous deforma-
tions and stresses in the cylinder need to be examined. In our analysis, we first use the purely elastic case to find
the point of initial yielding in the cylinder. Assumptions for the subsequent elasto-plastic cavity expansion
behaviour are then made and examined using the numerical algorithms developed for the plastic solution.

This paper is organised as follows. Section 2 presents the specific form of strain gradient plasticity model
used to study the cylindrical cavity expansion problem. A generalised Tresca yield criterion is proposed to
describe the gradient-dependent plastic behaviour in the cylinder. In Section 3, numerical procedures are
designed to solve the purely elastic case for the cylindrical expansion. Based on the elastic analysis, the initial
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yielding, partly plastic, and fully plastic phases of the problem are then investigated in Section 4. Extensive
comparisons between the gradient-dependent solutions and the corresponding conventional ones are made
in both Sections 3 and 4. Section 5 gives a summary of the paper and some additional discussions.
2. Constitutive relations and problem description

The solid material is assumed to be homogeneous, isotropic and weightless, with its mechanical behaviour
being characterised by a gradient-dependent elastic perfectly-plastic constitutive model. The strain gradient
plasticity theory employed here is a generalisation of the linear elasticity strain gradient theory proposed
by Toupin (1962), Mindlin (1964, 1965) and Germain (1973) and the extended J2 plasticity theory of Fleck
and Hutchinson (1993, 1997). Whilst finite strain deformation might be more realistic for some applications,
the case of small strain deformation is adopted here for the sake of simplicity. Note that it is also possible to
extend the subsequent analysis to the case of finite strain, using the formulations presented by Chambon et al.
(2004). In addition to the conventional Eulerian strains eij and Cauchy stresses rij, the strain gradients gijk and
their work-conjugate higher-order stresses sijk are also assumed to be present in the material. The strains and
strain gradients are, respectively, defined by:
Fig. 1.
throug
elastic
eij ¼ 1
2
ðui;j þ uj;iÞ; gijk ¼ 1

2
ðuk;ij þ uk;jiÞ ð1Þ
where both eij and gijk exhibit a symmetry about the indices i and j. Accordingly, the Cauchy stresses rij and
higher-order stresses sijk are also assumed to be symmetric about i and j. Note that in the above, the names of
Eulerian strain and Cauchy stress are used merely to distinguish these quantities from the strain gradient and
higher-order stress terms. Detailed descriptions of the governing equations and boundary conditions for the
strain gradient theory used here can be found in Zhao et al. (2005, 2007), while the corresponding forms in
terms of cylindrical coordinates are presented in Appendix A. In what follows, we present only the specific
form for the cylindrical cavity expansion problem.
2.1. Cavity expansion in gradient-dependent solid cylinder: problem description

The solid cylinder is assumed to be initially free of stress. From this initial state, the hydrostatic pressure is
slowly increased from zero to p0 throughout the body, as shown in Fig. 1(a). The pressure p0 is sufficiently
small so as not to cause any plastic deformation in the cylinder. As shown in Fig. 1, a cylindrical polar coor-
dinate system (r,h,z) is adopted, with the hydrostatic pressure p0 being taken as the initial state for the anal-
ysis. From this initial state, the inner surface pressure is gradually increased from p0 to p, which leads to an
interim elastic state as illustrated in Fig. 1(b). This loading process is sufficiently slow so that it may be
assumed to be quasi-static. The initial inner and external radii of the cylinder are respectively denoted by a

and b and, since small strains are assumed, these values do not change throughout the loading range. At some
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Illustration of cavity expansion in a gradient-dependent solid cylinder: (a) Initial state with homogeneous hydrostatic pressure p0

hout the solid, with the initial radii of the inner cavity wall and exterior wall being denoted by a and b, respectively; (b) An interim
state with increased pressure on the inner cavity wall: p = p0 + Dp.
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interim state, shown in Fig. 1(b), a total increment of pressure Dp = p � p0 is supposed to have been applied to
the inner cavity wall.

Upon loading, the cylinder first experiences isotropic elastic deformation and then subsequently plastic
yielding when the yield condition is met at any point in the cylinder. Initial yielding is said to occur when
any point in the cylinder first reaches the plastic state. The corresponding cavity pressure at this stage is called
the initial yielding pressure and is denoted by pci. After this loading stage, the cylinder is supposed to be in a
partly plastic state until the entire cylinder body enters the plastic state. The pressure at which the entire body
first enters the fully plastic state is called the critical yield pressure, and is denoted by pcr.

2.2. Gradient-dependent constitutive relations in cylindrical coordinates

The length of the cylinder along the z direction, L, is assumed to be much larger than the cylinder thickness,
so that generalised plane strain conditions apply and all the components of the strains and strain gradients
associated with the z-coordinate are zero. Due to the axi-symmetry of the problem, the displacement u at a
point A of the cylinder (see, Fig. 1(b)) can be reasonably assumed to be a function of r only. Consequently,
there are only two non-zero strains components, err and ehh, and four non-zero strain gradients: grrr, ghhr, grhh,
and ghrh where grhh = ghrh. These non-zero components are related to u through the following relations:
err ¼ u;r; ehh ¼
u
r
; grrr ¼ u;rr; ghhr ¼

1

r2
ðru;r � uÞ; grhh ¼ ghrh ¼

1

r
u;r �

u
2r

� �
: ð2Þ
A generalised form of Hooke’s law first proposed by Mindlin (1965) is used to describe the isotropic linear
elastic behavior of the gradient-dependent solid (see also, Zhao et al. (2007), Appendix A there in). Adopting
the notation of tension positive, and considering Eq. (2), the following elastic constitutive relations for the
conventional and gradient terms are obtained, respectively, as:
rrr ¼ ðkþ 2lÞu;r þ k
r u

rhh ¼ ku;r þ kþ2l
r u

rzz ¼ k u;r þ u
r

� �
8><
>: ð3Þ

srrr ¼ cl2 5u;rr þ 4
r u;r � 13

4r2 u
� �

srhh ¼ shrh ¼ cl2 3
4
u;rr þ 11

4r u;r � 7
4r2 u

� �
srzz ¼ szrz ¼ cl2 3

4
u;rr þ 3

4r u;r � 1
2r2 u

� �
shhr ¼ cl2 3

2
u;rr þ 7

2r u;r � 11
4r2 u

� �
szzr ¼ cl2 3

2
u;rr þ 3

2r u;r � 5
4r2 u

� �

8>>>>>>><
>>>>>>>:

ð4Þ
where k and l are the conventional Lamé constants. In these equations, l denotes an internal length scale
resulting from the introduction of strain gradients and is related to the dimension of the microstructure in
the material. The quantity c denotes a single gradient-dependent elastic parameter, and the five strain gradient
combinations (gippdjk + gjpp dik), (gppidjk + 2gkpp dij + gppjdik), gppkdij, gijk and (gkji + gkij) are assumed to be
equally important in the determination of the higher-order stress sijk (see Mindlin (1965) and Zhao et al.,
2007). In the subsequent numerical computations, a value relative to l will be assigned to the quantity c.
The magnitude of this relative value, c/l, can be used as an index to evaluate the influence of the gradient
terms on the overall mechanical behaviour compared to that of the conventional terms.

By neglecting body forces and considering the generalised plane strain condition, Eq. (a.2) of Appendix A
gives the following equilibrium equation for the radial direction of the cavity:
or�rr

or
þ 1

r
ðr�rr � r�hhÞ ¼ 0 ð5Þ
where r�rr and r�hh, respectively, have the following forms:
r�rr ¼ rrr �
osrrr

or
þ 1

r
ðsrrr � shhr � srhhÞ

� �
ð6Þ
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r�hh ¼ rhh �
oshrh

or
þ 1

r
ðshrh þ srhh þ shhrÞ

� �
ð7Þ
There is also another generalised stress that will be frequently used in the subsequent sections:
r�zz ¼ rzz ð8Þ
For the cavity expansion problem, it is readily verified that, in terms of the generalised stresses defined in Eqs.
(a.3)–(a.11), only r�hh, r�rr and r�zz, are non-zero. In the following, we treat these three stresses as the generalised
principal stresses for the analyses.

If the aforementioned three principal stresses satisfy the inequalities r�min 6 r�int 6 r�max, the following gen-
eralised Tresca criterion is assumed to govern the yield behaviour of the material in the cylinder:
f ¼ r�max � r�min � j ¼ 0 ð9Þ
where j denotes a cohesion parameter of the material. The relative magnitudes of r�hh, r�rr and r�zz will be
checked in the computations to determine which one corresponds to the maximum or minimum generalised
principle stress.

For the cavity expansion problem, the boundary conditions on the inner and outer radii of the cylinder take
the following form, respectively:
T rðaÞ ¼ �r�rr þ 1
r ðsrhh � 2srrrÞ

� ���
r¼a
¼ p

RrðaÞ ¼ srrrjr¼a ¼ 0

(
ð10Þ

T rðbÞ ¼ r�rr þ 1
r srhh

� ���
r¼b
¼ �p0

RrðbÞ ¼ srrrjr¼b ¼ 0

(
ð11Þ
where T and R denote the surface traction and high-order surface traction (see Eqs. (a.12) and (a.13) in
Appendix A). Note that the tractability and uniqueness of solution to the above gradient-dependent axi-sym-
metric boundary values problem can be proved using the procedure proposed by Chambon and Moullet
(2004).

3. Gradient-dependent elastic solutions

3.1. Mathematical manipulation of the governing equation

Substitution of Eqs. (6) and (7) into Eq. (5) results in the following equilibrium equation:
orrr

or
þ rrr � rhh

r
� o

2srrr

or2
þ 1

r
oðsrhh þ shrh þ shhr � 2srrrÞ

or
þ srhh þ shrh þ shhr

r2
¼ 0 ð12Þ
When the stresses at all points in the cylinder satisfy f < 0 in Eq. (9), the body is in an elastic state. In this case,
one can apply the gradient-dependent elastic relations, Eqs. (3) and (4), to any point in the cylinder. For a
point A in an elastic state as shown in Fig. 1(b), the equilibrium equation in the radial direction is obtained
by applying Eqs. (3) and (4) to Eq. (12), which leads to the following fourth-order differential equation:
_u;rrrr �
11

5r
_u;rrr �

61

20r2
þ ðkþ 2lÞ

5cl2

� �
_u;rr þ

51

20r3
� ðkþ 2lÞ

5crl2

� �
_u;r �

51

20r4
� ðkþ 2lÞ

5cr2l2

� �
_u ¼ 0 ð13Þ
Eq. (13) and the related boundary conditions, defined by Eqs. (10) and (11), constitute a two-point boundary
value problem with a fourth-order homogeneous ordinary differential equation (ODE). It is convenient to re-
write the fourth-order homogeneous ODE in Eq. (13) using the following auxiliary variables
y1ðrÞ ¼ _u;
dy1

dr
¼ y2ðrÞ;

dy2

dr
¼ y3ðrÞ;

dy3

dr
¼ y4ðrÞ ð14Þ
To give the first-order ODE system
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dY

dr
¼ d

dr

y1

y2

y3

y4

0
BBB@

1
CCCA ¼

y2

y3

y4

g1y4 þ g2y3 þ g3y2 þ g4y1

0
BBB@

1
CCCA ¼ f ðY; rÞ ð15Þ
where: g1ðrÞ ¼ 11
5r ; g2ðrÞ ¼ 61

20r2 þ ðkþ2lÞ
5cl2 ; g3ðrÞ ¼ �ð 51

20r3 � ðkþ2lÞ
5crl2 Þ and g4ðrÞ ¼ 51

20r4 � ðkþ2lÞ
5cr2l2 .

In view of Eqs. (3), (4), (10) and (11), the boundary conditions can now be expressed as:
T rðaÞ ¼ 5cl2y4 � 5cl2

2r y3 � ððkþ 2lÞ þ 59cl2

4r2 Þy2 þ 25cl2

2r3 � k
r

� �
y1

� ����
r¼a
¼ p

RrðaÞ ¼ cl2 5y3 þ 4
r y2 � 13

4r2 y1

� ���
r¼a
¼ 0

8<
: ð16Þ

T rðbÞ ¼ �5cl2y4 � 6cl2

r y3 þ ððkþ 2lÞ þ 49cl2

4r2 Þy2 þ k
r � 19cl2

2r3

� �
y1

� ����
r¼b
¼ �p0

RrðbÞ ¼ cl2 5y3 þ 4
r y2 � 13

4r2 y1

� ���
r¼b
¼ 0

8<
: ð17Þ
3.2. Numerical solution procedure

Using the procedure proposed by Keller (1968), the existence and uniqueness of a solution to the boundary
value problem (BVP) defined by Eqs. (15)–(17) can be easily verified (see also, Chambon and Moullet, 2004;
for BVPs with second order gradient models). It is difficult, however, to derive a closed-form solution and
some type of numerical method, such as a shooting method or a relaxation technique, is necessary. In this
paper we use the shooting method to solve the problem. Such a method first uses an initial estimation for
the solution on one boundary to solve the differential equations as a one-point initial value problem. By com-
paring the computed results with the boundary conditions on the other end, a feedback iteration mechanism is
then built to adjust the initial guess on the first end. The whole procedure is then repeated until an accurate
solution is found that satisfies both boundary conditions. For a conventional cavity expansion problem, we
have verified that a simple shooting method, together with a fourth-order explicit Runge–Kutta approach
for solving the ODE (see, e.g., Stoer and Bulirsch, 1980), gives a sufficiently accurate approximation of the
exact analytical solution. In the gradient-dependent case, the shooting procedure is more complicated, since
there are now two boundary conditions on each face of the cylinder and the simple bisection iteration method
is no longer applicable. To overcome this complication, we adopt a version of Broyden iteration during the
shooting step, as discussed below.

For a certain pressure level, the shooting method is used to solve the first-order differential equation system
(15), subject to the two-point boundary conditions imposed by Eqs. (16) and (17) over the range r 2 [a,b]. The
initial estimation of the solution at one end, as well as the round-off errors generated during the iterations, can
greatly influence the accuracy of the results obtained from the shooting method and, in some cases, can even
result in divergence of the shooting process. In this paper, we use the analytical solution for the conventional
theory to give an initial guess for y1 and y2 at r = a, so that y1 = Aa + (B/a), and y2 = A � (B/a2) where A and
B are defined in Appendix B. These values are then used to compute the corresponding initial values for y3 and
y4 at r = a from Eq. (16). The obtained ‘initial guess’ vector Y ¼ ð y1 y2 y3 y4 Þ

T at r = a, together with Eq.
(15), constitute a one-point initial value problem which is solved by an explicit fourth-order Runge–Kutta
approach. To construct the feedback iteration mechanism, the results at the outer boundary r = b are comput-
ed and a small perturbation (equal to

ffiffiffiffiffiffiffi
eps
p

where eps is the machine precision) is applied to the initial guess for
Y at r = a and the one-point boundary value problem is then solved another time. This pair of solutions pro-
vides all the necessary components that an iteration procedure needs to adjust the initial values at r = a to
make the solution satisfy the boundary conditions at r = b. To avoid the complications that may be caused
by singularity of the Jacobian matrix in Newton’s method, the iteration procedure in this paper is based on
Broyden’s (Quasi-newton) approach. Moreover, to accelerate the convergence of these iterations, a simple
mixing scheme with a coefficient v is used. As there is no analytical solution available to check the accuracy
of the numerical solution, the consistency and stability of the proposed shooting procedure needs to be
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carefully examined. The shooting procedure for elastic cavity expansion at a given pressure level is summa-
rised in Appendix C.1.

During conventional cavity expansion, the cylinder will experience three distinct phases of deformation: an
elastic stage, a partially plastic stage, and a fully plastic yielding stage. The situation is the same for the gra-
dient-dependent case. As mentioned previously, however, we do not know where and when initial yielding will
occur a priori, which in turn marks the termination of the elastic computation. Therefore, it is necessary to
examine the yield condition for all points in the cylinder during the loading process. Once the yield condition
at any point in the cylinder is reached, the expansion enters the initial yielding stage and the elastic solution
procedure is stopped. To determine the initial yielding pressure accurately, an appropriate load-stepping pro-
cedure needs to be developed. In the first step the hydrostatic pressure is increased throughout the cylinder
from zero to p0 without difficulty, since this stress will not lead to yielding with the generalised Tresca crite-
rion. In the next step, the pressure on the outer wall is kept at p0, while the pressure on the inner wall is pro-
gressively increased. Since isotropic linear elastic relations are employed in the elastic range, we can in theory
apply the entire pressure difference Dp = (pci � p0) in a single step to complete the elastic computation. This
cannot be done in practice, however, since the initial yielding pressure pci is not known a priori. To circumvent
this problem, we employ the corresponding analytical value from conventional analysis as a rough estimate for
pci. In practice, we avoid applying this load difference Dp in a single step, and divide it into a number of small
substeps, e.g., Dps = Dp/10. Each time we increase the cavity pressure by Dps and solve the problem by the
shooting procedure outlined above. Upon obtaining the solution for each load step, the yield condition is
checked for each point in the cylinder. Eventually, the initial yielding stage is passed and the corresponding
load step ‘overshoots’ the solution in the sense that more than one point in the radial direction of the cylinder
enters a plastic state (the number of points characterising the cylinder depends on a solver tolerance that will
be specified). In this case, a bisection procedure has been designed to reduce the load step to the exact pressure
that causes initial yielding and is summarised in Appendix C.2.

3.3. Numerical results and discussions

The above algorithms have been implemented in a MATLAB (Ver. 6.5) code. It is convenient to use the
explicit Runge–Kutta routine ODE45 in the MATLAB package to solve the initial value problems in Steps
5 and 11 of the shooting procedure (Appendix C.1). Using this code, the elastic solutions for the gradient-de-
pendent cavity expansion problem are investigated. In the subsequent computations, we choose the following
parameters for the elastic analysis of the cavity expansion:
a ¼ 1:0;
b
a
¼ 2:0;

k
l
¼ 2:0;

p0

l
¼ 0:2;

Dps

p0

¼ 0:1;
c
l
¼ 1:0;

l
a
¼ 0:1;

j
p0

¼ 3:0:
Note that, except at the inner cavity radius a, all the parameters are assumed to be dimensionless. The relative
error and absolute error for the ODE45 solution are controlled to a prescribed tolerance TOL, which at the
same time controls the number of the radial points in the cylinder. The smaller TOL is set, the more points
there are in the solution. In the Broyden iteration procedure, the perturbation to the initial guess of Ya is
set to be

ffiffiffiffiffiffiffi
eps
p

times its current value. For the computer used in the simulations
ffiffiffiffiffiffiffi
eps
p ¼ 1:4901E � 8. The per-

formance of the Broyden iteration procedure is also controlled by the specified tolerance TOL (as shown in
Step 18 in the shooting algorithm, Appendix C.1).

3.3.1. Consistency and stability study

To examine the consistency and stability of the proposed solution procedure, various tolerances were spec-
ified with TOL chosen to be 10�2, 10�4, 10�6, 10�7, 10�8 and 10�10. The computational results for the relative
displacements (u/a) at r = a and r = b are presented in Table 1 (at a pressure level of p/p0 = 1.25 under which
the cylinder is still in a purely elastic state). The relative errors of u/a at various tolerances, with respect to the
‘‘reference’’ values for TOL = 10�10, are also computed. As expected, the solutions obtained converge to the
reference values in a stable and consistent manner as the prescribed tolerance is tightened. Indeed, once
the prescribed tolerance is smaller than about 10�8, the solution for the problem is identical to that with
TOL = 10�10. Besides the above examination of the tolerance effects, we also tried different initial guesses



Table 1
Consistency of the numerical algorithm to specified tolerance

TOL Inner surface displacement (r = a) Exterior surface displacement (r = b)

(u/a)|r=a Relative error (%) (u/a)|r=b Relative error (%)

10�2 �0.0090291299 7.42e�E5 �0.2375814956 6.25e�E3
10�4 �0.0090291226 6.65e�E6 �0.2375665146 6.08e�E5
10�6 �0.0090291233 1.11e�E6 �0.2375666585 2.10e�E7
10�7 �0.0090291232 0 �0.2375666592 8.42e�E8
10�8 �0.0090291232 0 �0.2375666590 0
10�10 �0.0090291232 – �0.2375666590 –
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for y1 and y2 at r = a to test the stability of the proposed algorithms. Arbitrary values ranging over
[�1000,1000] for both y1 and y2 were employed, and no divergence was detected. The solutions obtained
for these cases were consistent with those found by initialising y1 and y2 to the corresponding conventional
results (as suggested in the algorithms). Nevertheless, we observed that the latter values generally gave much
faster convergence than the rest. In view of the above, the proposed algorithms appear to give stable and con-
sistent solutions. In all subsequent analyses, the tolerance is fixed at a value of TOL = 10�10.
3.3.2. Stress distributions in the cylinder at the hydrostatic pressure p0

In this part, the stress distribution in the cylinder is investigated for the initial loading state where the
hydrostatic pressure is increased from zero to p0. The Cauchy stresses and generalised principal stresses in
the cylinder for the gradient-dependent case are plotted against those for the conventional case in Fig. 2.
For convenience, we hereafter denote the results computed from conventional theory by the term ‘convention-
al theory results’, while those obtained using the strain gradient theory will be denoted by the term ‘gradient
theory results’. As depicted in Fig. 2, the conventional results for both rrr and rhh are homogeneous through-
out the cylinder for the initial state of uniform hydrostatic pressure, whereas the gradient theory values are
not. The gradient-dependent stresses rrr and rhh are both slightly larger in absolute magnitude than the cor-
responding conventional ones in the vicinity of the inner wall, but are slightly smaller near the outer wall. Nev-
ertheless, the discrepancy between the two distributions is quite small, with the largest difference for rrr and rhh

being 0.76% and 0.99%, respectively. The distributions for the generalised principal stresses, r�hh and r�rr, are
also shown in Fig. 2 by dotted lines. These quantities are not homogeneous across the cylinder section either.
Fig. 2. Normalized conventional stresses, normalized Cauchy stresses and normalized generalized principal stresses in gradient-dependent
solid cylinder under a homogeneous hydrostatic pressure p0.



4350 J. Zhao et al. / International Journal of Solids and Structures 44 (2007) 4342–4368
To account for the higher-order stress terms, the distribution of r�rr is slightly flattened between the conven-
tional curve for rrr and the corresponding gradient-dependent one. Similar behaviour is observed for the dis-
tribution of r�hh. The absolute magnitude of rzz is much smaller than either rrr or rhh at this pressure level, and
is not shown here.

3.3.3. Parametric sensitivity study (p/p0 = 1.25)

It is interesting to investigate the sensitivity of the model response to some of the key parameters. We
choose an expansion pressure of p/p0 = 1.25, at which the cylinder is found to be still in a purely elastic
state. The parameters chosen for the study are the ratio of the high-order elastic modulus to the conven-
tional one c/l and the internal length scale ratio l/a. Keeping l/a at 0.1, we first chose six groups of c/l
for the study: c/l = 0, 0.2, 1, 2, 4 and 10. It is noted that a smaller value of c/l implies the gradient effects
are weaker compared with the conventional behaviour, and vice versa. The obtained results are presented in
Fig. 3.

From Fig. 3(a) we see that larger values of c/l lead to the gradient stress distribution rrr being above the
conventional one. When c/l is as smaller than about 0.2, the gradient theory stress distribution is very close to
that the conventional one, except in the vicinity of the inner wall. As expected, when c/l = 0, the gradient-de-
pendent curve for rrr is identical to the conventional one. The influence of c/l on the stresses srrr and shhr is
more pronounced, as shown in Figs. 3(b) and (c), respectively. When c/l = 0, the gradient effects vanish and
both srrr and shhr are identically zero across the cylinder radius, so that the conventional results are immedi-
ately recovered. The strain gradient theory may thus be viewed as a more general framework which includes
the conventional theory as a special case.

The influence of the internal length scale on the mechanical response was studied using six different length
scales: l/a = 0, 0.05, 0.08, 0.1, 0.2, and 0.5. The normalised stresses rrr and srrr for these cases are shown in
Figs. 4(a) and (b), respectively. Compared with its conventional counterpart, the gradient-dependent stress
rrr is always larger and the difference increases with increasing l/a. As expected, when l/a is quite small (less
than about 0.05), there is little disparity between the two distributions. In a like manner, larger values of l/a
change the response for srrr dramatically, with this component vanishing for l/a = 0. When the length scale is
small compared to the dimension of the problem, the microstructural influence is negligible and the conven-
tional theory is expected to give similar results to the gradient theory. When this scale is comparable to the
problem size, however, the effects of microstructures will become significant and large differences in the
response may be expected.

3.3.4. Variation of deformations and stresses in the cylinder at p/p0 = 2

Using the same parameters as in the beginning of Section 3.3, we now investigate the stress and deformation
distributions when the cavity pressure is at a higher level of p/p0 = 2.0. No yielding occurs at this pressure, and
the distributions shown in Figs. 5 and 6 are still in the elastic range.

Fig. 5 depicts the radial displacement and its gradients obtained from both the conventional theory and
gradient theory. The gradient-dependent curves for the displacement and its gradients lie below the corre-
sponding conventional ones, with the largest differences between the three variables all occurring at the inner
wall of the cavity. For purely elastic cavity expansion with the current choice of model parameters, the intro-
duction of the gradient terms thus leads to a slightly stiffer response for the material.

At this pressure level, a further investigation of the normalised Cauchy stresses, generalised stresses and
higher-order stresses is presented in Fig. 6. From Fig. 6(a) we see that, at this pressure, the magnitudes of
the gradient-dependent rzz and rhh are slightly smaller than those from conventional theory. As forrrr, the
gradient-dependent results are smaller than the corresponding conventional ones over the inner half of the
radius, but become greater in the outer half. This figure also shows the generalised stress r�hh is quite close
to the gradient-dependent stress rhh, but smaller than the conventional one. The generalized stress r�zz is iden-
tical with the gradient-dependent quantity rzz. Fig. 6(b) shows that srrr is the largest high-order stress at any
point in the cylinder, with the stresses shhr, srhh and shrh being substantially smaller than the other ones. The
high-order stresses srrr, szzr, srzz and szrz all reach a peak near the inner wall, while shhr, srhh and shrh have a
monotonically increasing distribution with a maximum value at the outer wall. srrr vanishes at both the inner
and outer radii due to the high-order boundary conditions imposed by Eqs. (16) and (17).



Fig. 3. Sensitivity of normalized Cauchy stresses and higher stresses to c/l at p/p0 = 1.25. (a) Normalised stress rrr across the cylinder wall
as a function of c/l. (b) Normalised srrr across the cylinder wall as a function of c/l. (c) Normalised shhr across the cylinder wall as a
function of c/l.
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It is of particular interest to see from Fig. 6(a) that, under the current cavity pressure, r�zz is the intermediate
generalised principal stress, with r�hh and r�rr being, respectively, the maximum and minimum ones. During the
computations at other pressure levels in the elastic range, it was also found that the maximum value for



Fig. 4. Sensitivity of normalized rrr and srrr to l/a at p/p0 = 1.25. (a) Normalised rrr across the cylinder wall as a function of l/a. (b)
Normalised srrr across the cylinder wall as a function of l/a.
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K ¼ ðr�max � r�minÞ always occur at the inner cavity wall. Therefore, the initial yielding will occur first at this sur-
face. We also investigated the development of the three generalised principal stresses at r = a during various elas-
tic loading levels. The results, shown in Fig. 7, reveal that r�zz is not always the intermediate generalised principal
stress as we have expected. During the initial hydrostatic loading stage the compressive stresses r�hh and r�rr

increase proportionally from zero, with r�zz being the maximum one. When the inner expansion pressure begins
to increase, r�rr increases at the same rate, while r�hh and r�zz reduce in their compressive value. Prior to the cavity
pressure reaching p = 0.13l, r�zz is the maximum principal stress and r�rr is the minimum principal stress. Once this
pressure level is exceeded, r�zz becomes the intermediate principal stress and r�hh is the maximum principal stress.
This behaviour is maintained until initial yielding occurs. Therefore, when the pressure level is large enough (p/
l > 0.13 for this case), it is safe to use the following yield function in place of Eq. (9):
r�hh � r�rr ¼ j ð18Þ
In practical applications, the displacement at the outer surface is a convenient quantity to measure. Fig. 8
shows the pressure-expansion curve during elastic cavity expansion in terms of the displacement at the outer
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wall. The conventional results are also depicted in comparison. As can be seen from the figure, during the ini-
tial hydrostatic loading stage, the exterior cylinder wall is compressively deformed and thus moves inwards.
When the cavity pressure is increased from the initial state, the overall deformation is still in compression;
however, when the pressure is high enough, the exterior cylinder wall begins to move outwards. The elastic
gradient-dependent curve again exhibits a ‘stiffer’ response than the conventional one.
4. Gradient-dependent plastic solutions

According to the preceding analyses for the purely elastic case, we may conclude that: (1) when the cavity
pressure is large enough, the maximum and minimum generalised stresses are r�hh and r�rr, respectively; and (2)
initial yielding occurs at the inner cavity surface. At this stage, we cannot predict the behaviour under loading
beyond initial yielding; nevertheless, we will make some assumptions which we will examine a posteriori. In
analogue to the conventional case it is assumed that, upon further loading, yielding will develop from the inner
wall and spread outwards to the exterior wall in a progressive manner. At any intermediate state of this pro-
cess, the solid cylinder is said to be partly plastic. Once the plastic zone reaches the exterior surface, collapse
occurs and the cylinder is fully plastic.

In this section, we investigate the initial yielding behaviour and then seek the partly plastic and fully plastic
solutions. We will restrict the plastic analysis of cavity expansion at the point a fully plastic state is first entered
in the cylinder. Once entering the fully plastic state, the solid will experience unlimited plastic flow at a con-
stant rate as dictated by the elasto-perfectly-plastic flow rule. In the partly plastic case, we suppose the outer
extent of the plastic zone is defined by the radius q, which lies between the inner and outer walls of the cylinder
(Fig. 9).
4.1. Theoretical investigation of the plastic expansion behaviour

4.1.1. Initial yielding

Using the condition that initial yielding occurs at the inner cavity surface, we can accurately compute the
initial yielding pressure pci as defined before. Upon initial yielding, the cylinder is still in an elastic state except
at the inner cavity surface. Hence we can still use the numerical shooting method, presented in Section 3, to



Fig. 6. Variation of normalised Cauchy stresses, generalised stresses and high-order stresses across the cylinder for p/p0 = 2. (a)
Normalised Cauchy stresses and generalised stresses. (b) Normalised high-order stresses.
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solve the problem. The only difference now is that the boundary conditions at the inner cavity wall are chan-
ged to:
ðr�hh � r�rrÞ
��
r¼a
¼ j

srrrjr¼a ¼ 0

(
ð19Þ
The first equation denotes the yielding condition at r = a, while the second one defines the high-order traction
at r = a. Substituting the elastic relations (3) and (4) into (19), and using Eq. (14), we obtain the left boundary
conditions for the numerical shooting procedure. The right boundary conditions at r = b remain the same as
those presented in Eq. (17). Hence, the ODE presented in Eq. (15), together with these two new end boundary
conditions, is now solvable by the shooting method presented in Section 3.2 and the displacement and stress
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field in the cylinder can be completely determined. On determining the stress field, the initial yielding pressure
can also be obtained by the traction condition at r = a:
pci ¼ T rðaÞ ¼ �rrr þ srrr;r �
1

r
ðsrrr þ shhrÞ


 �����
r¼a

¼ �r�rr þ
1

r
srhh


 �����
r¼a

ð20Þ
where the high-order traction condition srrrjr=a = 0 has been used. Note that the pressure pci so obtained can
be used to check the results of the previous purely elastic stage.
4.1.2. Partly plastic solutions

The solution procedures for the partly and fully plastically deformed cylinder are complicated. In conven-
tional mechanics, the assumptions of small strain and a Tresca yield criterion render the stress field in the
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cylinder statically determinate, and it is possible to derive the Cauchy stresses merely by knowing q and the
cavity pressure p without needing to calculate the deformation in the plastic region (e.g., Hill, 1950). For the
Mohr-Coulomb criterion, Yu (1992) found the partly plastic solution after computing the deformation field in
the plastic region first. For the gradient-dependent model treated here, the problem is too complicated to be
analytically solvable, even though we have assumed small strains and a simple generalisation of the Tresca
yield criterion. The key difficulty is that the stress field in the plastic region is not statically determinate because
of the number of unknown state variables and the nature of the boundary conditions. As a result, we are
unable to derive a relation between the stresses, the plastic boundary q, and the cavity pressure p. Moreover,
the deformation in the plastic region cannot be easily obtained due to the intricate plastic flow rules that have
to be assumed for both the plastic strain rates and plastic strain gradient rates. Some form of numerical pro-
cedure is the only option, and this is described below.

As shown in the previous section, it is appropriate to use r�hh and r�rr as the maximum and minimum gen-
eralised principal stresses, respectively, provided the cavity is still in an elastic state. When yielding occurs, we
further assume that r�hh and r�rr remain the two extreme generalised stresses in the plastic region a 6 r < q. This
implies that Eq. (18) still governs. In view of Eqs. (11) and (18), the following relation is thus assumed to hold
in the plastic regime:
or�rr

or
¼ r�hh � r�rr

r
¼ j

r
ð21Þ
The boundary conditions for the plastic regime at r = a remain the same as those in the elastic state
T rðaÞ ¼ �r�rr þ 1
r srhh

��
r¼a
¼ p

RrðaÞ ¼ srrrjr¼a ¼ 0

(
ð22Þ
while the boundary conditions for the plastic regime at r = q need to satisfy the continuity conditions for the
stresses and high-order stresses. It is noted that q and p are not independent of each other so that, given a
plastic regime radius q, the corresponding cavity pressure p should be determined. To this end, we seek the
solution to the elastic regime over the domain q 6 r 6 b first, and assume that the plastic boundary q increases
progressively from a to b. In the following, q is taken as known before solving the entire problem, and the
current plastic radius is denoted as qi, where the subscript i denotes the ith incremental step for q with q1 = a.

To solve the ODE (15) for the displacements in the elastic regime we need two boundary conditions at
r = qi. We have already another two at r = b, defined by Eqs. (17), that are identical to the purely elastic case.
We now focus on seeking the boundary conditions at r = qi. These two boundary conditions should be
expressed without any explicit reference to the cavity pressure p. The yield condition and the governing equa-
tions for the stresses at r = qi are as follows:
r�hh � r�rr ¼ j
or�rr
or ¼

r�hh�r�rr

r ¼ j
r

(
ð23Þ
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Note that similar conditions have also be stated by Chambon et al. (1998, 2001) for localisation studies of
geomaterials with second gradient theories. After substituting the elastic relations in Eqs. (3) and (4), and
inserting Eqs. (6) and (7) into the above conditions, and using the substitutions (14), we obtain the following
expressions for the elastic regime at r = qi:
17
4

cl2y4 þ cl2

r y3 � 14cl2

r2 þ 2l
� �

y2 þ 2l
r þ 21cl2

2r3

� �
y1

���
r¼q
¼ j

� 3
4
cl2 dy4

dr � 23
4r cl2y4 þ kþ 5cl2

4r2

� �
y3 þ kþ2l

r þ 47cl2

4r3

� �
y2 � kþ2l

r2 þ 33cl2

4r4

� �
y1

���
r¼q
¼ j

q

8><
>: ð24Þ
The numerical shooting procedure described in Section 3 works by first making an initial guess for y1 and y2,
and then solving for y3 and y4 from the boundary conditions at r = a. For this partly plastic case, we need to
start the shooting process at r = qi. However, there is an extra unknown term, dy4/dr, in the second equation
of Eq. (24), which prevents us from solving for y3 and y4, even if we have initial estimates for y1 and y2 at
r = qi. To seek and approximate value for dy4/dr, we first assume that the incremental step for q is sufficiently
small, such that the value of dy4/dr can be estimated from the previous incremental step. Using the last equa-
tion in the ODE system in Eq. (15) we obtain:
ui�1 ¼
dy4

dr

����
qi

¼ ðg1y4 þ g2y3 þ g3y2 þ g4y1Þjqi�1
ð25Þ
where qi�1 and qi are, respectively, the last and current plastic regime boundary radii. Substituting Eq. (25)
into (24) and combining the initial guess for y1 and y2 at r = qi, we can then solve for y3 and y4 at r = qi.
On obtaining y1 to y4 at r = qi, the numerical shooting procedure as presented in Section 3 can then be used
to compute the solution for the elastic regime. This solution is an approximate one, as the value for dy4/dr was
estimated from the previous step. To compute a more accurate solution, the values ~y1, ~y2, ~y3 and ~y4 at r = qi

are re-substituted into the last equation in Eq. (15) to give a new value for dy4/dr:
~ui ¼
dy4

dr

����
qi

¼ ðg1~y4 þ g2~y3 þ g3~y2 þ g4~y1Þjqi
ð26Þ
This process is then repeated until the difference between two successive iterations for ~ui becomes sufficient
small. The final solution is then taken as the solution for the elastic regime qi 6 r 6 b.

Upon obtaining the elastic regime solution, we can find r�ðqÞrr and r�ðqÞhh at r = qi for the plastic regime by
using the stress continuity conditions at r = qi. Using Eq. (21) this gives:
r�ðqiÞ
rr � r�rr

j
¼ ln

qi

r
;

r�hh � r�ðqiÞ
rr

j
¼ ln

qi

r
� 1 ð27Þ
Letting r = a we obtain the generalised stresses at the inner surface as:
r�ðaÞrr ¼ r�ðqiÞ
rr � j ln

qi

a
; r�ðaÞhh ¼ j ln

qi

a
� 1

� �
þ r�ðqiÞ

rr ð28Þ
Now the traction boundary condition at r = a is:
�r�rr þ
1

r
srhh

� �����
r¼a

¼ p ð29Þ
The value of r�rr at r = a can be calculated from Eq. (28), but we cannot derive the value of srhh directly, which
prevents us from evaluating the cavity pressure from Eq. (29). The value of srhh at r = a, however, can be esti-
mated approximately using the analysis of Section 4.1, which shows that r�rr and srhh at initial yielding can be
obtained analytically. Numerical computations show that, compared to r�rr, srhh is very small and is therefore
not significant in calculating the cavity pressure from Eq. (29). Nevertheless, since we can obtain the value of
srhh at r = a for the initial yielding state, we will use this value of srhh but assume that it does not vary signif-
icantly during the partly and fully plastic loading stages. Using this approach will give a better approximation
for p than one obtained by totally neglecting the effects of srhh in Eq. (29). Therefore, the cavity pressure during
the partly plastic stage is assumed to be:
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p ffi �r�ðaÞrr þ
1

a
ŝðaÞrhh ð30Þ
where ŝðaÞrhh denotes the value of srhh at r = a for the initial yielding state. Note that the above approximation
only affects the predicted cavity pressure.

To determine the displacements in the plastic regimes, additional assumptions regarding the plastic flow
rule are required. The implications of these assumptions are beyond the scope of this paper, and will not
be pursued here. We therefore do not intend to investigate the deformation behaviour in the plastic regime.
Since we can derive the cavity pressure-outer wall displacement curve, as well as the generalised stress distri-
butions in the cylinder, these results will be sufficient for the comparison with conventional results.
4.1.3. Fully plastic state

When qi reaches a value of b the plastic zone has reached the outer boundary and the cylinder is said to be
in a fully plastic state. In this case, the numerical shooting procedure will be no longer appropriate as the com-
putational domain is now zero. Nevertheless, for any point on the outer surface of the cylinder at the critical
cavity pressure pcr, the elastic relations still apply and the stresses must satisfy the yield condition. Therefore,
there are now four equations for any point on the outer surface: two from Eq. (17) and two from Eq. (23).
Using the value for dy4/dr from the previous incremental step as an initial guess, the displacements at the outer
surface can be analytically determined. The values for y1 to y4 so obtained can then be substituted into the last
equation in Eq. (15) to obtain another value for dy4/dr. This process can then be repeated until dy4/dr remains
constant within a prescribed tolerance. The final results for y1 to y4 give the displacement and its gradients at
the outer surface, and the stresses and higher-order stresses can then be determined using the elastic relations
(3) and (4). Employing Eqs. (28)–(30), the generalised stresses and cavity pressure for the onset of fully plastic
flow can also be obtained.
4.2. Numerical results and discussions

We now summarise the plastic solution procedures for cavity expansion outlined in Section 4.1 and present
them in terms of a numerical algorithm in Appendix C.3. This algorithm is then used to predict the expansion
of a gradient-dependent cavity in the plastic range. The same example as in the elastic case will be considered.
The number of increments used for the development of the plastic regime, Nq, is set to 100 but numerical expe-
rience suggests that the results are somewhat insensitive to this value. Larger increments cause an increase in
the iterations, though the final solutions are approximately the same.
4.2.1. Variation in generalised principal stresses during plastic expansion
Fig. 10 illustrates the variation in the normalised stresses r�rr and r�hh across the cylinder wall as a function of

the plastic radiusq. The conventional results for rrr and rhh are also presented in the figures for comparison,
and data are given for the five steps where q/a = 1, 1.25, 1.5, 1.75 and 2. In Figs. 10(a) and (b), the conven-
tional elastic results are denoted by green dashes lines, with the plastic results being shown by black dashed
lines. The gradient-dependent elastic and plastic results for r�rr are indicated by solid blue and red lines,
respectively.

Fig. 10(a) shows that the elastic and plastic curves for r�rr are smoothly continuous at the plastic regime
boundary q and, before the fully plastic stage is reached, are smaller than the corresponding conventional
stress rrr at any point of the cylinder. At the onset of fully plastic deformation, however, r�rr is slightly larger
than rrr. Fig. 10(b) shows that the stress r�hh in the elastic and plastic regimes is still continuous at the plastic
radius q but nonsmooth. This mirrors the behaviour from conventional theory for rhh. It is also evident that,
prior to the onset of any plastic deformation, the generalised stress r�hh is always smaller than its conventional
counterpart rhh. At the onset of fully plastic deformation, however, r�hh and the conventional stress rhh are
quite similar, with r�hh being slightly greater than rhh.

As an a posteriori check, we also investigated the relative magnitudes of r�hh, r�rr and r�zz during various stag-
es of plastic expansion. Typical results for the generalised principal stresses in the plastic regime, shown in
Fig. 11, indicate that during all stages of plastic expansion r�zz remains the intermediate stress of the three,



Fig. 10. Variations of the normalized stresses r�rr and r�hh as a function of the plastic radius. (‘G’ denotes gradient theory; ‘C’ denotes
conventional theory). (a) Variation of normalized stress r�rr as a function of the plastic radius. (b) Variation of the normalized stress r�hh as
a function of the plastic radius. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this paper.)
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while r�hh is the maximum. This confirms the validity of the yield criterion assumption presented in Eq. (18).
Fig. 11. also shows that the difference ðr�hh � r�rrÞ, for the elastic regime in the cylinder, is always a maximum
value at the elastic–plastic interface. This implies that, whenever further plastic yielding occurs, it always hap-
pens at this interface so that the plastic regime will develop in a progressive manner from the inner cavity radi-
us to the outer cavity radius. This matches the assumptions made a priori in the analysis.

4.2.2. Parametric sensitivity study

It is interesting to investigate the plastic pressure-displacement relation in terms of the cavity pressure and
the displacement at the outer surface (the response during the elastic loading period is linear). Fig. 12 shows
several such plots for various choices of the parameter c/l, as well as the plot for conventional cavity expan-
sion theory (c/l = 0). Compared with the conventional curve, the gradient-dependent p � u responses are gen-
erally stiffer but have a slightly lower ultimate pressure at the fully plastic state. For example, the ultimate



Fig. 12. Pressure-expansion relation for plastic loading of a gradient-dependent solid at different values of c/l (l/a = 0.1).

Fig. 11. Normalized plastic stresses for a gradient-dependent solid at different values of q/a.
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pressure difference at the fully plastic state for c/l = 0.25 is 0.24% and 0.93% for c/l = 2. Since smaller value
of c/l imply that the effects of the gradient terms are less significant, these results are as expected.

Fig. 13 shows the pressure-expansion response when we fix c/l at 1 and vary the internal length scales
according to: l/a = 0.05, 0.075, 0.1, 0.125 and 0.15. The gradient-dependent pressure-expansion curves are
again stiffer than the conventional response, but exhibit a slightly lower ultimate collapse pressure. As expect-
ed, the predicted p � u relations are closer to the conventional curve for small values of l/a, where the dimen-
sion of the microstructure is small in relation to the problem size. In the extreme case of l/a = 0, which
corresponds to a material whose microstructural size is negligible in comparison with the problem size, the
gradient effects can be totally disregarded and the conventional results are immediately recovered.

The results in Section 3 suggest that the gradient-dependent material gives a stiffer response than a
conventional one in the elastic range. This additional stiffness carries over into the partly plastic stage of cavity



Fig. 13. Pressure-expansion relation for a cavity expansion in a gradient-dependent solid at different values of l/a (c/l = 1.0).
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expansion, prior to the onset of plastic collapse. The effect of the gradient terms on the overall elasto-plastic
response, as expected, is significantly influenced by the cylinder thickness. In connection with Figs. 12 and 13,
when the cylinder is relative thin (b/a = 2), the stiffening effects in the elastic region outweigh the weakening
effects in the plastic regime during most of the loading process, so that most of the gradient-dependent p–u
curve is above the conventional one until the critical cavity pressure is approached. During the computations
we also found that the expansion pressure p and the elastic-plastic radius q are almost linearly related. There-
fore, for a thin cylinder, the stiffening effects from the elastic region are still significant up until 95% or so of
the cylinder has entered the plastic state. For a thick cylinder the situation is quite different. To illustrate this
point, we also investigated the pressure-expansion responses for three other cases with b/a = 4, 6 and 10. To
make the gradient effects discernable for these examples, the corresponding internal length scales were
increased to l/a = 0.2, 0.3 and 0.4. The quantity c/l was fixed at 1, and the other parameters were unchanged
from the previous computations.

The results, presented in Fig. 14, show that the pressure-expansion responses for the different cases are gen-
erally similar in shape, but have widely varying collapse pressures. As expected, the thicker cylinders have the
highest ultimate cavity pressures. As the cylinder thickness increases, the elastic stiffening effect caused by the
gradient-dependent terms becomes less pronounced. This is to say, in a thick cylinder, the stiffening effects
from the elastic region decay more quickly than in a thin cylinder. For example, for the case of b/a = 10,
the weakening effects in the plastic region outweigh the stiffening effects from the elastic region when 1/7 of
the cylinder is still elastic. In contrast, for the case of b/a = 2, this transition occurs when only a small elastic
area is left in the cylinder (q � b/30). This phenomenon can be interpreted as a size effect for the cylindrical
expansion problem, and is only discernable by the use of gradient theory.

Fig. 14 also shows that for thick cylinders with b/a > 2.0, the outer wall initially experiences compressive
deformation and moves inwards. This implies that, initially, this surface does not feel the effects of the cavity
pressure and is mainly deformed by the hydrostatic pressure imposed on the outer wall.
5. Summary and discussions

This paper has investigated cylindrical cavity expansion in elasto-plastic gradient-dependent media. The
strain gradient plasticity model assumes small strains and is used in combination with a generalised form
of Tresca’s yield criterion. A numerical shooting method and Broyden’s iteration procedure are used to solve
the governing fourth-order ODE equation system with two-point boundary conditions. The elastic and plastic



Fig. 14. Pressure–expansion relations for gradient-dependent solid cylinders of varying thickness.
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solutions obtained have been compared extensively against those derived from conventional analysis. Major
conclusions from the analysis are:

(1) The numerical shooting procedures are effective in dealing with the gradient-dependent governing equa-
tions. The results obtained are generally insensitive to the prescribed tolerance and initial values assumed
for the problem.

(2) The stress distribution in the cylinder for the gradient-dependent case is highly inhomogeneous, even
under a uniform hydrostatic pressure at the initial state.

(3) The influence of microstructure on the stress and deformation during the cavity expansion process can
be modelled by adjusting the gradient-dependent elastic modulus and the internal length scale. When
these quantities are large, the cavity expansion solutions exhibit pronounced differences from those
obtained by conventional theory.

(4) The gradient-dependent material generally has a stiffer elastic response than a conventional material
under cavity expansion, but displays a weaker response in the plastic regime. During the elasto-plastic
expansion, the combined effects from the elastic and plastic regions of the cylinder cause a transition
point in the response. Before this point the stiffening effects from the elastic regime dominate, while after
it the weakening effects from the plastic regime prevail.

(5) For a thin cylinder, the stiffening effects from the elastic region are evident until the cylinder is about to
enter the fully plastic state; whereas for a thick cylinder, the stiffening effects are dissipated much earlier
in the loading process when a relatively large fraction of the cylinder is still in an elastic state. This size
effect for the cavity expansion problem stems from the nature of the gradient-dependent model used in
the analysis.

It is worth noting that the proposed numerical procedure for solving the gradient-dependent cavity expan-
sion problem cannot be used to simulate the case of cavity expanding from a zero radius via a similarity solu-
tion. This is because all the length variables in the present analysis have been normalised with respect to the
inner cavity radius. Moreover, the strains in this instance are large (see, e.g., Collins et al., 1992). To deal with
the situation of a cavity expanding from a zero radius, the cylinder thickness could be used as a reference for
the normalisation. To consider the case of an infinite cylinder width, the average material grain size could be
used as a reference length. However, this may result in the gradient effects being negligible if the internal length
scale is too small compared with the problem dimension. Moreover, the current solution to the plastic
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expansion case is not a closed form one, as the deformation in the plastic regime has not been obtained. To
compute these deformations, additional plastic flow rules involving gradient terms need to be considered. We
also note that the present strain gradient formulation could be generalised to a finite strain form, e.g., accord-
ing to the approach proposed by Chambon et al. (2004). This would allow large strain examples, such as pile
installation, to be analysed more rigorously.

Where possible, it is preferable for theoretical studies to be benchmarked against experimental data. This is
not done in the present work because, in contrast to various conventional theories, gradient-enhanced theories
have so far received relatively little calibration against real data due to their recent development. Indeed, many
of their parameters are still an open question. Nevertheless, we suggest that the semi-analytical solutions for
cavity expansion in a higher order continuum presented here can be used for benchmarking of any similar
studies in the future.

Appendix A. Strain gradient theory in cylindrical coordinates

In Zhao et al. (2005, 2007), the strain gradient theory was presented in a general tensor form using rectan-
gular coordinates. For the cavity expansion problem, however, alternative formulations in cylindrical coordi-
nates need to be developed. The translation between the two coordinates for the strain gradient theory, though
conceptually simple, is not straightforward as it involves intricate tensor manipulations. We have derived for-
mulations for elastic strain gradient theory in orthogonal curvilinear coordinates (Zhao and Sheng, 2006),
according to the procedure as suggested by Eringen (1967) for conventional mechanics. Here the results for
cylindrical coordinates, and the simplification for the cavity expansion problem, are provided. The following
gradient-dependent equilibrium equations hold for cylindrical coordinates:
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For the special case of the cavity expansion problem treated here, a generalised plane strain state is assumed
where the displacement associated with the z axis vanishes. In addition, the problem is axi-symmetric so that
all the variables are independent of h. In view of this, all the partial differential terms with respect to z and h in
Eq. (11) can thus be dropped, which leads to the following equilibrium equations for the cavity expansion
problem:
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We also have the following generalised stresses which do not appear in the equilibrium equations:
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The traction and higher-order traction conditions for the inner and outer cavity faces read:
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For the axi-symmetric cavity expansion problem, the displacements ur depend on r only. The strain gradients
thus have the following non-zero components:
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Appendix B. Cavity expansion solution using conventional theory

It is assumed that in the conventional theory, the elastic relations presented in Eq. (8) hold for the plane
strain cavity expansion problem. In addition, the Tresca criterion is assumed to govern the yield behaviour
in the cylinder:
rhh � rrr ¼ j: ðb:1Þ

where rhh and rrr are the maximum and minimum principal stresses respectively.

The expansion pressure and the outer surface displacement are:
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while the stresses in the elastic and plastic regimes of the cylinder read:
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Appendix C

C.1. Shooting procedure for elastic cavity expansion

(1) Enter with the parameters: a, b/a, k/l, c/l, l/a, j/l, the specified tolerance TOL, the maxi-
mum number of iterations MAXITS, the perturbation tolerance EPS0 ¼

ffiffiffiffiffiffiffi
eps
p

where eps denotes
the machine precision, and the simple mixing coefficient for the update in the Broyden method
v.

(2) Enter with the pressure level at inner and outer walls of the cylinder: pint and pout.
(3) Enter the initial guess for y1 and y2 at r = a, respectively: n0( = Aa + (B/a)) and f0(=A � (B/a2)), and

form the vector: X0 ¼ ð n0 f0 ÞT.
(4) Substitute X0 ¼ ð y1 y2 Þ

T ¼ ð n0 f0 ÞT into Eq. (16) to compute the initial value for y3 and y4 at r = a,
which are denoted as y0

3 and y0
4.

(5) Use Y0
a ¼ ½ n0 f0 y0

3 y0
4
�T as the initial condition to solve the first order differential equation system

Eq. (15) by a fourth-order explicit Runge–Kutta method. Obtain the solution for Y over r = [a,b] and
denote it as Y1.

(6) Extract the values of Y1 at r = b: Y1
b ¼ ½ y1

1ðbÞ y1
2ðbÞ y1

3ðbÞ y1
4ðbÞ �

T.
(7) Substitute Y1

b into Eq. (17) to obtain the error vector F0 ¼ ð f 0
T f 0

R Þ
T, where
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(8) Compute the square of the Euclidean norm of F0 as jF0j ¼ ðf 0

TÞ
2 þ ðf 0

RÞ
2.

(9) If |F0| 6 TOL, go to step (24).
(10) Impose small perturbations to n0 and f 0, according to dn0 = EPS0 · n0 and df0 = EPS0 · f0, and let

n00 ¼ n0 þ dn0, f00 ¼ f0 þ df0.
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(11) Substitute y1 ¼ n00 and y2 = f0 into Eq. (16) to compute a new vector Y�a at r = a. Use Y�a as the
initial condition to solve the differential equation system Eq. (15) by the fourth-order explicit Run-
ge–Kutta method, and obtain the solution for Y over r = [a,b]: Y*. Extract the values of Y at r = b:
Y�b.

(12) Substitute y1 = n0 and y2 ¼ f00 into Eq. (16) to obtain another vector Yþa . Use Yþa as the initial
condition to solve the differential equation system of Eq. (15) by the fourth-order Runge–Kutta
method, and obtain the solution for Y over r = [a,b]: Y+. Extract the values of Y+ at r = b:
Yþb .

(13) Substitute Y�b and Yþb into Eq. (c.1) to obtain F� ¼ ð f �T f �R Þ
T and Fþ ¼ ð f þT f þR Þ

T, respectively.
(14) Compute:
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R
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2
4

3
5 ðc:2Þ
(15) Compute B0 = (A0)�1 and set s0 = �B0 · F0. Update X: X1 = X0 + s0.
(16) Perform steps (17) to (22) MAXITS times:
(17) Use X1 ¼ ð n1 f1 ÞT and repeat steps (3) to (6) to obtain the new distribution of Y over r = [a,b]: Y1, and

a new vector F1 ¼ ð f 1
T f 1

R Þ
T. Compute |F1| as in step (8).

(18) If |F1| 6 TOL, go to Step (24).
(19) Compute B1 using:
B1 ¼ B0 þ ðs
0 � B0ðF1 � F0ÞÞðs0ÞTB0

ðs0ÞTB0ðF1 � F0Þ
ðc:3Þ
(20) Compute s1 = �B1 · F1. Then update: X10 ¼ X0 þ s0.
(21) Use simple mixing to update X : X1 ¼ ð1� vÞX1 þ vX10.
(22) Set F0 = F1, s0 = s1, B0 = B1 and go to Step (14).
(23) Convergence not achieved after MAXITS iterations. Print error message and stop.
(24) Exit with Y1.
C.2. Load stepping procedure for elastic cavity expansion

(1) Enter with parameters: a, b/a, k/l, p0/l, Dp/p0, c/l, l/a, j/l, TOL, MAXITS, EPS0 ¼
ffiffiffiffiffiffiffi
eps
p

, v.
(2) Increase the hydrostatic pressure from zero to p0.
(3) Compute the displacement solution at p0 using the above shooting procedure. Compute the correspond-

ing stress field in the cylinder.
(4) For each point along the radius of the cylinder, compute the corresponding stresses r�hh, r�rr and r�zz.

Choose the maximum stress among the three as r�max and the minimum one as r�min.
(5) If at any point, r�max � r�min � j > TOL, the initial hydrostatic pressure p0 is too large. Choose a smaller

value for p0 and repeat Steps (3) to (5).
(6) Let p1 = p0. Estimate pci by using Eq. (b.2) in Appendix B. Calculate Dps = (pci � p0)/10.
(7) Increase the inner cavity pressure by Dps from p1 to p2: p2 = p1 + Dps. Use the shooting procedure to

compute the corresponding displacement and stress solutions.
(8) For each point along the radius of the cylinder, compute the stresses r�hh, r�rr and r�zz. Choose the max-

imum stress among the three as r�max and the minimum one as r�min. Compute the value of
K ¼ ðr�max � r�minÞ for each point.

(9) Of all the points along the cylinder radius, find two points where the value of K is the largest Km1 and
next to largest Km2, respectively.

(10) If (Km1 � j) < �TOL, the cylinder is still in a purely elastic state. Set p2 = p1 and go to Step (7).
(11) If |Km1 � j| 6 TOL and (Km2 � j) < �TOL, initial yielding occurs. Go to Step (13).
(12) If (Km2 � j) > TOL, the initial yielding point has been overshot. Set Dps = Dps/2 and go to Step (7).
(13) Exit with p2 and the corresponding displacement and stress solutions.
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C.3. Procedure for the plastic solution of gradient-dependent cavity expansion

(1) Enter with the following parameters: a, b/a, k/l, c/l, l/a, j/l, v, TOL, MAXITS, EPS0 ¼
ffiffiffiffiffiffiffi
eps
p

.
(2) Enter the total number of increments for q stepping from a to b: Nq.
(3) Compute: Dq = (b � a)/Nq.
(4) Use the numerical shooting procedure to solve the two-point boundary value problem constituted by

Eqs. (15), (19) and (17), and find the displacements and their gradients across the cylinder on initial
yielding Yyi.

(5) Use Yyi to compute the stresses and higher stresses at q0 = a, and substitute these stresses into Eq. (20) to
evaluate the critical cavity pressure at initial yielding. Compute ŝðaÞrhh.

(6) Evaluate u0 by Eq. (25) and Yyi at q0 = a. Set ~u0 ¼ u0.
(7) Increment q0 by Dq: q1 = q0 + Dq.
(8) Let dy4=dr ¼ ~u0 in Eq. (24). Solve Eqs. (15), (24) and (17) using the numerical shooting method, and

obtain the displacement vector Y for q1 6 r 6 b.
(9) Compute ~u1 according to Eq. (26) using Y at r = q1. Calculate d ¼ j~u1 � ~u0j=j~u0j.

(10) If d > TOL, let ~u0 ¼ ~u1. If d 6 TOL, go to Step (12).
(11) If q1 < b, go to Step (8). If q1 = b, go to Step (9).
(12) Save Y, compute the stress field for q1 6 r 6 b; Compute the stresses and current cavity pressure accord-

ing to Eqs. (28) and (30).
(13) Set ~u0 ¼ ~u1. If q1 < b, go to Step (7). If q1 = b, go to Step (14).
(14) Exit with the obtained solutions to the plastic cavity expansion.
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Chambon, R., Caillerie, D., El Hassan, N., 1998. One-dimensional localisation studied with a second grade model. European Journal of

Mechanics – A/Solids 17 (4), 637–656.
Chambon, R., Caillerie, D., Tamagnini, C., 2004. A strain space gradient plasticity theory for finite strain. Computer Methods and

Application in Mechanical Engineering 193, 2797–2826.
Chambon, R., Moullet, J.C., 2004. Uniqueness studies in boundary value problems involving some second gradient models. Computer

Methods and Application in Mechanical Engineering 193, 2771–2796.
Chambon, R., Caillerie, D., Matsuchima, T., 2001. Plastic continuum with microstructure, local second gradient theories for geomaterials:

localization studies. International Journal of Solids and Structures 38, 8503–8527.
Collins, I.F., Pender, M., Wang, Y., 1992. Cavity expansion in sands under drained loading conditions. International Journal for

Numerical and Analytical Methods in Geomechanics 16 (1), 3–23.
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