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 a b s t r a c t

The morphological evolution of pore spaces is a critical yet poorly quantified microstructural de-
terminant of the macroscopic mechanical and hydraulic behavior of granular materials. While the 
anisotropy of the grain contact network (𝐹𝑐

) is known to dictate material response, the concurrent 
evolution of pore space anisotropy (𝐹𝑝

) and its coupling with 𝐹𝑐 remains inadequately understood. 
This study employs Minkowski moment tensor analysis within a Discrete Element Method (DEM) 
framework to bridge this gap. We systematically investigate dense and loose, monodisperse and 
polydisperse assemblies under cyclic triaxial loading to quantify the dynamic coupling between 
𝐹𝑐 and 𝐹𝑝. We demonstrate a moderate to strong correlation between 𝐹𝑐 and 𝐹𝑝, with a systematic 
lag in the response of 𝐹𝑝 attributed to hierarchical geometric emergence across scales. This lag is 
constrained by particle-scale free-volume reorganization and its kinematic compatibility with par-
ticle motion. Additionally, key pore-scale metrics, including inverse Voronoi cell fractions (𝜙−1

𝑣

)

, 
pore-scale porosity (𝜙𝑝

)

, and pore shape anisotropy 𝛽, are well described by gamma distributions 
across all packing densities and strain levels. Notably, the scaled 𝜙−1

𝑣  follows a 𝑘-gamma distribu-
tion, providing a statistically consistent descriptor for volume fluctuations. A strong correlation is 
also observed between the average pore shape factor (|𝛽|𝑎𝑣𝑔) and global porosity, suggesting that 
|𝛽|𝑎𝑣𝑔 serves as a geometry-based descriptor linking collective pore deformation to packing den-
sity. These findings underscore the utility of the Minkowski tensor approach in capturing 3D fabric 
evolution and explicitly linking pore- and grain-scale interactions. The quantitative relationships 
and statistical descriptors presented here provide a new foundation for enhancing constitutive 
models in geotechnics and powder technology, offering insights relevant to future investigations 
into permeability evolution and shear band formation.

1.  Introduction

Granular materials derive their macroscopic mechanical and transport properties from microstructural characteristics which are 
collectively termed fabric encompassing the spatial arrangement, orientation, and interactions of particles, as well as the geometry 
and connectivity of void spaces. Fabric tensors provide a mathematical basis for quantifying these directional features, capturing 
the anisotropic distribution of particles, contacts, and pores within granular assemblies (Li and Li, 2009; Guo and Zhao, 2013; 
Sufian et al., 2019b). This microstructural representation is crucial for predicting key engineering behavior, including small-strain 
stiffness (Kuwano and Jardine, 2002; Wang and Mok, 2008), peak strength (Arthur and Menzies, 1972; Ventouras and Coop, 2009; 
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Li and Li, 2009), shear dilatancy (Cresswell and Powrie, 2004; Wan and Guo, 2004), and fluid permeability (Chan and Kenney, 1973; 
Kuhn et al., 2015). Moreover, the topological organization of pore networks, particularly their connectivity and the presence of closed 
particle chains (loop structures), plays a fundamental role in controlling fluid flow, energy dissipation, and strain localization (Vlahinić 
et al., 2014; Chueire et al., 2023; Ma et al., 2024). The analysis of these topological descriptors via network-based frameworks 
necessitates a unified view of the solid and void phases (Russell et al., 2016; Deng et al., 2021; Mei et al., 2023; Jiang et al., 2025). 
Comprehensive characterization of fabric tensors defined for these phases is therefore vital for predicting and optimizing macroscopic 
mechanical and transport properties across disciplines such as geomechanics and materials science.

Among various fabric descriptors, the contact-normal-based fabric tensor has been extensively studied using Discrete Element 
Method (DEM) due to its direct connection to force transmission mechanisms (Oda, 1982; Rothenburg and Bathurst, 1989; Ouadfel 
and Rothenburg, 2001; Guo and Zhao, 2013). Complementary tensors based on contact forces and particle orientations further 
enrich this framework, enabling detailed tracking of anisotropy evolution under loading, which is essential for advanced constitutive 
modeling (Li and Dafalias, 2012; Gao et al., 2014). However, while contact-based tensors dominate the literature, void-based fabric 
tensors remain comparatively underexplored despite their significant influence on both mechanical response and hydrogeological 
behavior (Sufian et al., 2015, 2019b).

Quantifying fabric tensors requires high-resolution data on particle geometries, spatial positions, inter-particle contact normals, 
and force transmission that are notoriously difficult to capture comprehensively in experiments. Traditional laboratory techniques, 
such as photoelasticity, have provided invaluable, direct visualization of grain-scale force chains and fabric evolution (Oda et al., 1985; 
Majmudar and Behringer, 2005). However, these methods are predominantly confined to two-dimensional (2D) systems employing 
disk-shaped particles. While high-resolution X-ray computed tomography (CT) has emerged as a powerful tool for 3D imaging and 
non-destructive characterization of particle morphologies and contact points (Desrues, 2004; Fonseca et al., 2012; Kawamoto et al., 
2018), it still struggles to resolve dynamic contact forces during loading. This limitation hinders a comprehensive, force-informed 
understanding of fabric evolution (Li and Juanes, 2024). In this context, the DEM provides a powerful computational alternative, 
offering complete access to particle-scale kinematics and contact forces with high fidelity. We therefore leverage DEM in this study 
to investigate the evolution of internal fabric, with a specific focus on under-explored, void-based descriptors that complement 
established contact-based metrics.

The void structure is an integral component of granular fabric, yet its quantitative description poses unique challenges. Early 
methodologies, such as the scanning line technique pioneered by Oda et al. (1985), sought to characterize void orientation, leading 
to the definition of a 3D void fabric tensor (Inglis and Pietruszczak, 2003). This approach was later refined for 2D digital images 
by Ghedia and O’Sullivan (2012) to capture average void directionality and length within shear bands. Alternative frameworks have 
also been proposed: a graph-theoretical approach represents voids as loops enclosed by branch vectors (Satake, 1992; Kuhn, 1999), 
while a tessellation-based method defines void cell systems via modified Delaunay-Voronoi partitions at contact points (Li and Li, 
2009). Building on the latter, Fu and Dafalias (2015) incorporated both directional distribution and void vector lengths, revealing a 
strong correlation between void- and contact normal-based fabric tensors in 2D DEM simulations of non-elongated particles. This is a 
finding that powerfully underscores the interconnectedness of solid and void phase evolution. Parallels can be drawn to cellular solids 
and foams, where macroscopic mechanical responses are intimately tied to the morphological and topological features of internal 
voids (Saadatfar et al., 2012; Blatny et al., 2023), such as how initial pore alignment influences anisotropic deformation and shear 
band formation.

Despite these advances, existing void-based fabric tensors often rely on simplified geometric proxies (e.g., mean lengths and 
elongation ratios) that fail to fully capture the complex 3D topology and shape anisotropy of pore spaces. This critical limitation 
motivates the present study, in which we introduce Minkowski tensors, a rigorous mathematical framework from integral geometry, 
to characterize void fabric (Schröder-Turk et al., 2011, 2013). Unlike traditional second-order tensors, Minkowski tensors provide a 
hierarchy of shape descriptors (e.g., volume, surface area, curvature) that encode both magnitude and directional properties, offering 
a richer and more comprehensive representation of anisotropy. By integrating Minkowski tensors into DEM simulations, we bridge the 
gap between contact- and void-based fabric descriptions, extending insights from Fu and Dafalias (2015) into 3D. This approach not 
only deepens our understanding of fabric evolution under loading but also lays the foundation for constitutive models that explicitly 
account for the coupled mechanical roles of the solid and void phases.

Our investigation is framed within the context of critical state soil mechanics, where granular fabric evolves toward a steady state 
under sustained shear. Understanding how void fabric aligns with the critical state offers new pathways to unravel fabric-stiffness 
coupling and refine constitutive laws with path-independent descriptors. The remainder of this paper is structured as follows: Section 2 
details the DEM framework and the methodology for computing contact- and void-based fabric tensors, including the Minkowski tensor 
formalism.  Section 3 describes the DEM model setup, and Section 4 analyzes fabric evolution under cyclical triaxial compression, 
explores the interrelation between different fabric descriptors. Finally, Section 5 summarizes the key findings and outlines future 
research directions for integrating topological void measures into multiscale constitutive frameworks.

2.  Methodology

This section outlines the methodological framework employed in this study. The analysis begins with pore unit extraction, where we 
delineate the pore network within granular assemblies using regular triangulation and a subsequent merging algorithm. Subsequently, 
we compute the contact-based fabric tensor to quantify anisotropy in the spatial distribution of inter-particle contacts. To characterize 
the void phase, we then apply Minkowski tensors to measure pore shape anisotropy. Finally, we derive a pore orientational tensor to 
determine the principal directions of pore units, thereby extending our analysis to their directional anisotropy and enabling a direct 
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Fig. 1. (a) Voronoi tessellation of a polydisperse granular assembly, illustrating the partitioning of space based on particle neighborhood. The color 
gradient indicates varying particle radii, with values ranging from 1.7 × 10−4 m to 2.3 × 10−4 m. (b) Regular triangulation of the same assembly, 
highlighting the connectivity between particles and pores.

comparison with the contact fabric. Unless otherwise specified, this study considers assemblies comprising only spherical particles. 
This approach eliminates the need for other factors that contribute to fabric anisotropy, like branch vectors related to non-spherical 
particles. These vectors can introduce additional shape-induced anisotropies in contact networks (Satake, 1992; Kuhn, 1999). By 
simplifying the analysis, we focus more on the evolutions observed at the pore and contact scales.

2.1.  Pore unit extraction

The pore space within a granular system exhibits geometric heterogeneity, consisting of relatively open void regions interconnected 
by narrow constrictions, typically located near particle-particle contacts, where the solid surface-to-pore volume ratio is relatively 
large. These constrictions play a dominant role in controlling transport, capillarity, and local mechanical interactions (Das et al., 
2025). The pore space is subdivided into pore units, representing pore bodies, which are connected by pore throats that mediate 
connectivity between them (Catalano et al., 2014; Yuan and Chareyre, 2017). Although the void phase is topologically continuous 
and formally constitutes a single connected domain, it contains locally expanded cavities separated by narrow pore throats. The 
subdivision into pore units, therefore, reflects a coarse-grained model based on the geometric contrast between pore bodies and pore 
throats.

Pore unit extraction in this study proceeds through a two-stage process to delineate the pore-scale network within the granular 
system. An initial geometric discretization of the pore space is obtained using regular triangulation (weighted Delaunay) mapped 
from particle positions and radii (Catalano et al., 2014). Fig. 1 illustrates the geometric duality between the Voronoi tessellation 
and the regular triangulation adopted for pore unit construction, highlighting the spatial partitioning and pore connectivity of the 
granular assembly. The regular triangulation partitions the void space into grain-based tetrahedra 𝑇𝑖, each enclosing a localized pore 
volume bounded by four neighboring particles, see Fig. 2a. At this stage, the discretization over-segments the pore space: individual 
tetrahedra serve as elementary geometric units and do not yet correspond to physical pores. The facet of the adjoining tetrahedron 
encompasses the pore throat separating adjacent void regions. Each grain-based tetrahedron 𝑇𝑖 is associated with a pore volume 𝑉𝑖, 
from which an effective pore radius is defined as

𝑟𝑖 = 𝜒𝑉 1∕3
𝑖 , (1)

where 𝜒 is a dimensionless shape factor that maps the void volume to an equivalent regular shape of identical volume (Sweijen et al., 
2018). The use of equivalent regular pore shapes follows the framework established in Joekar-Niasar et al. (2010) and Sweijen et al. 
(2018), providing a scalar measure of pore size suitable for geometric comparison during pore assembly.

To identify physically meaningful pore bodies, the grain-based tetrahedra are assembled into pore units through an iterative throat-
controlled merging algorithm. For each pair of neighboring tetrahedra 𝑇𝑖 and 𝑇𝑗 , the void opening connecting them is characterized by 
a pore throat radius 𝑟𝑖𝑗 . Two neighboring tetrahedra are merged when the ratio of the connecting throat radius to the pore body size 
exceeds a threshold, i.e., 𝑟𝑖𝑗∕𝑟𝑖 ≥ 𝜑, where 𝜑 is a dimensionless merging criterion. This condition identifies pore throats that do not 
act as effective narrow geometric constrictions. The merging procedure is hierarchical and iterative in nature, see Fig. 2. The criterion 
𝜑 is progressively reduced from an initially large value toward a prescribed lower bound 𝜑min = 0.90, such that tetrahedra connected 
through wide openings are merged first, followed by those connected through progressively smaller openings as the criterion is 
relaxed (Sweijen et al., 2018). After each merging event, the pore unit volume is updated as the sum of the constituent tetrahedral 
void volumes, and a new effective pore radius is recomputed using the same volume-radius relation, Eq.  (1). All neighboring throat-
to-body ratios are then re-evaluated using the updated pore size, allowing pore units to emerge dynamically from the evolving 
local geometry rather than from a single-pass classification. Fig. 3 shows the particle configuration associated with an individual 
tetrahedron and a merged pore unit (coordination number 16), along with their corresponding Voronoi cells.

The number of tetrahedra that may be merged into a single pore unit is capped at a coordination number of 20, which prevents 
unphysical chaining through elongated void regions, (Sweijen et al., 2018). This constraint acts as numerical regularization, does 
not affect pore connectivity or total pore volume, but rather stabilizes higher-order pore-scale statistics. The robustness of the pore 
unit definition is assessed by examining pore-scale statistical distributions across representative volume elements with increasing 
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Fig. 2. Schematic illustration of pore unit extraction using an iterative throat-controlled merging algorithm. (a) Regular triangulation over-segments 
the continuous void space into grain-based tetrahedra 𝑇𝑖, each enclosing a localized void volume bounded by surrounding particles. (b) Neighboring 
tetrahedra, for instance 𝑇1 and 𝑇2, are merged when the pore throat connecting them has a radius 𝑟12 larger than the pore body radius 𝑟1, i.e., 
𝑟12∕𝑟1 > 𝜑. The merged pore unit has a volume equal to the sum of the constituent void volumes, from which a new effective pore radius is 
computed.

Fig. 3. (a) Pore unit with a coordination number of 4, illustrating the arrangement of particles. (b) Merged pore unit with a coordination number of 
16, demonstrating a more complex connectivity. (c) Voronoi cells for the 4-particle system, highlighting the spatial partitioning of the neighboring 
region. (d) Voronoi cells for the 10-particle system.

particle numbers, as shown in Fig. 4. The convergence and statistical stability of normalized pore radii, throat radii, and pore-scale 
porosity distributions demonstrate that the resulting pore-scale descriptors are primarily sensitive to local geometric contrast and are 
not sensitive to system size or to the specific realization of the iterative merging process.

2.2.  Contact fabric anisotropy

The contact-based fabric tensor quantifies the averaged spatial distribution of inter-particle contact orientations within a representa-
tive volume element (RVE) of a granular assembly. This tensor provides a fundamental measure of anisotropy in the contact network, 
reflecting how contact normals (unit vectors aligning with the direction of contact forces) organize under loading or structural con-
straints. Following the definition proposed by Oda (1982), the contact fabric tensor is expressed as:

𝜙𝑖𝑗 =
1
𝑁𝑐

𝑁𝑐
∑

𝑘=1
𝑛𝑘𝑖 𝑛

𝑘
𝑗 = ∮Ω

𝐸(Ω)𝑛𝑖𝑛𝑗 𝑑Ω, (2)
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Fig. 4. Pore-scale statistical distributions for representative volume element with varying numbers of particles. (Left) Normalized pore radii (𝑅𝑖∕⟨𝑟⟩), 
(Middle) Normalized throat radii (𝑅𝑖𝑗∕⟨𝑟⟩) and (Right) Pore porosity (𝜙𝑖).

where 𝑁𝑐 denotes the total number of inter-particle contacts, 𝑛𝑘𝑖  represents the 𝑖-th component of the unit normal vector for the 
𝑘-th contact, and 𝐸(Ω) is the angular distribution density of these vectors over the unit sphere Ω. The summation form captures the 
discrete contributions of individual contacts, while the integral form reflects the continuous distribution, linking microscopic contact 
orientations to macroscopic fabric properties.

The distribution density 𝐸(Ω) describes the likelihood of contact normals aligning in specific directions, assumed here to be 
symmetric about the origin (Ken-Ichi, 1984; Sitharam et al., 2009). It is formulated as:

𝐸(Ω) = 1
4𝜋

(

1 + 𝑎𝑖𝑗𝑛𝑖𝑛𝑗
)

, (3)

where 𝑎𝑖𝑗 is a second-order anisotropy tensor that quantifies deviations from isotropy. The factor 1∕4𝜋 ensures normalization over 
the unit sphere for an isotropic case, while the term 𝑎𝑖𝑗𝑛𝑖𝑛𝑗 introduces directional bias. This tensor 𝑎𝑖𝑗 is derived from the deviatoric 
part of 𝜙𝑖𝑗 , defined as:

𝑎𝑖𝑗 =
15
2
𝜙′
𝑖𝑗 where 𝜙′

𝑖𝑗 = 𝜙𝑖𝑗 −
𝜙𝑖𝑖
3
𝛿𝑖𝑗 , (4)

with 𝜙′
𝑖𝑗 representing the traceless deviatoric component of the fabric tensor, and 𝛿𝑖𝑗 the Kronecker delta. The coefficient 15∕2 scales 

𝑎𝑖𝑗 to align with probabilistic interpretations of anisotropy, as established in prior work (Ken-Ichi, 1984).
To measure the degree of contact fabric anisotropy, we compute the scalar invariant 𝐹𝑐 , given by:

𝐹𝑐 =
√

3
2
𝑎𝑖𝑗𝑎𝑖𝑗 , (5)

where the repeated indices imply summation. This invariant, rooted in the second moment of 𝑎𝑖𝑗 , quantifies the magnitude of 
anisotropy in the contact network, with 𝐹𝑐 = 0 indicating an isotropic distribution and increasing values reflecting stronger directional 
preference. Together, these expressions provide a robust framework for analyzing how contact fabric evolves, offering insights into 
the microstructural basis of macroscopic mechanical behavior in granular materials.

2.3.  Minkowski tensors for shape anisotropy

Minkowski tensors provide a robust framework for quantifying the shape anisotropy of a 3D body 𝐾, encompassing both convex and 
non-convex geometries. These tensors yield six independent, symmetric rank-2 metrics —denoted 𝑊 2,0

0 , 𝑊 2,0
1 , 𝑊 2,0

2 , 𝑊 2,0
3 , 𝑊 0,2

1 , and 
𝑊 0,2

2  —whose eigenvalues map to an ellipsoid in Euclidean space. The degree of anisotropy is derived from the ratio of the minimum 
to maximum eigenvalues, offering a scalar measure of directional bias (Schröder-Turk et al., 2011). For a body 𝐾 with bounding 
surface 𝜕𝐾, these tensors are defined as:

𝑊 2,0
0 = ∫𝐾

𝑟 ⊗ 𝑟 𝑑𝑉 , (6)

𝑊 2,0
1 = 1

3 ∫𝜕𝐾
𝑟 ⊗ 𝑟 𝑑𝐴, (7)

𝑊 2,0
2 = 1

3 ∫𝜕𝐾
𝐻(𝑟) 𝑟 ⊗ 𝑟 𝑑𝐴, (8)

𝑊 2,0
3 = 1

3 ∫𝜕𝐾
𝐺(𝑟) 𝑟 ⊗ 𝑟 𝑑𝐴, (9)
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𝑊 0,2
1 = 1

3 ∫𝜕𝐾
𝑛 ⊗ 𝑛 𝑑𝐴, (10)

𝑊 0,2
2 = 1

3 ∫𝜕𝐾
𝐻(𝑟) 𝑛 ⊗ 𝑛 𝑑𝐴, (11)

where 𝑟 is the position vector from a chosen origin, 𝑛 is the outward unit normal to 𝜕𝐾, and the dyadic product 𝑟 ⊗ 𝑟 = 𝑟𝑖𝑟𝑗 (or 
𝑛 ⊗ 𝑛 = 𝑛𝑖𝑛𝑗) forms a symmetric tensor. The terms 𝐻(𝑟) and 𝐺(𝑟) denote the mean and Gaussian curvatures at point 𝑟 on the surface, 
respectively. The factor 1∕3 ensures normalization consistent with geometric conventions (Schröder-Turk et al., 2011).

These six tensors capture distinct morphological features of 𝐾. The first four —𝑊 2,0
0 , 𝑊 2,0

1 , 𝑊 2,0
2 , and 𝑊 2,0

3  —are moment tensors, 
analogous to moments of inertia. For a body with unit density, the inertia tensor 𝐼 is:

𝐼 = ∫𝐾
(‖𝑟‖2𝐸3 − 𝑟 ⊗ 𝑟) 𝑑𝑉 , (12)

where 𝐸3 is the 3D identity matrix. The relationship between 𝑊 2,0
0  and 𝐼 is:

𝑊 2,0
0 − tr(𝑊 2,0

0 )𝐸3 = 𝐼, (13)

with tr(𝑊 2,0
0 ) as the trace. Thus, 𝑊 2,0

0  quantifies the volumetric mass distribution about a reference point, typically the cen-
troid. The additive property of Minkowski tensors, rooted in their convex-body origins, extends their applicability to non-convex 
shapes (Schröder-Turk et al., 2011).

In this study, we employ 𝑊 2,0
0  to compute the anisotropy of pore units (cells) within granular assemblies (Xing et al., 2024). This 

moment tensor, which reflects the volumetric shape, is calculated using a Python-based algorithm adapted from the open-source 
Karambola code (Schröder-Turk et al., 2011). The computation proceeds as follows:

1. Triangulate the surface facets of the pore unit.
2. Construct tetrahedra by connecting each facet to the centroid as the reference point.
3. Compute the moment contribution of each tetrahedron and sum these to obtain 𝑊 2,0

0 .

This process subdivides the volume into tetrahedra anchored at the centroid for a polyhedron with convex facets, which serves 
as the reference point for computing position vectors r in Eq.  (6). The total 𝑊 2,0

0  is the sum of individual tetrahedral contributions, 
leveraging the tensors’ additivity to ensure consistency across the pore’s geometry.

The Minkowski tensor is utilized effectively to quantify the anisotropies and the shapes of the spatial bodies (Schröder-Turk et al., 
2010, 2011). For a given body 𝐾, the maximum, intermediate, and minimum eigenvalues of the second-order Minkowski moment 
tensor, 𝜆max ≥ 𝜆int ≥ 𝜆min, encode the principal geometric directions and their relative extents. Although ratios of extremal eigenvalues 
have been widely used to quantify the degree of anisotropy, such measures do not explicitly incorporate the role of the intermediate 
eigenvalue and are often unable to distinguish between different classes of anisotropic shapes, like prolate or oblate.

In this work, the pore shape anisotropy is quantified using a scalar measure that explicitly includes all three eigenvalues of the 
Minkowski tensor:

𝛽 =
𝜆max + 𝜆min − 2𝜆int

𝜆mean
, (14)

where the mean eigenvalue is defined 𝜆mean = (𝜆max + 𝜆min + 𝜆int )∕3. The numerator of 𝛽 represents the ordering of the eigenvalues 
and characterizes the relative position of the intermediate eigenvalue within the eigen space. As a result, 𝛽 explicitly encodes pore 
shape anisotropy: 𝛽 < 0 corresponds to prolate-dominated geometries and 𝛽 > 0 indicate oblate-dominated geometries. Isotropic pore 
geometries are characterized by 𝛽 = 0 (Guo and Zhao, 2014).

For a given granular assembly, an ensemble-averaged pore shape factor is defined as

|𝛽|𝑎𝑣𝑔 = 1
𝑁𝑝

𝑁𝑝
∑

𝑖=1
|𝛽𝑖|, (15)

where 𝛽𝑖 denotes the pore shape anisotropy parameter of the 𝑖-th pore and 𝑁𝑝 is the total number of identified pores. The absolute 
value is adopted to quantify the magnitude of pore shape anisotropy independent of orientation, consistent with the scalar nature of 
the macroscopic correlations.

2.4.  Pore orientational tensor and anisotropy

The application of the Minkowski moment tensor extends beyond quantifying the shape anisotropy of a body 𝐾. The moment tensor 
is also employed to calculate the principal orientation of an individual pore unit. This principal orientation is determined through 
eigen decomposition, where the eigenvalues (𝜆) and eigenvectors (𝑝) define the shape anisotropy and principal orientation of the pore 
unit, respectively. The major, intermediate, and minor orientation axes correspond to the maximum, intermediate, and minimum 
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Fig. 5. (a) Three-dimensional Voronoi cell associated with a particle, illustrating the local pore geometry used for Minkowski tensor analysis. (b) 
Two-dimensional schematic showing the distance 𝑑𝑣𝑝 between the Voronoi cell centroid, 𝑥𝑣 and the particle center, 𝑥𝑝.

eigenvalues, respectively (Sufian et al., 2015). Following the definition of a “local void vector" in Konishi and Naruse (1988), the 
principal eigenvector of a pore unit can be used to compute the pore orientation tensor (ℙ𝑖𝑗 ), Eq.  (16).

ℙ𝑖𝑗 = 1
𝑁𝑝

𝑁𝑝
∑

𝑘=1
𝑝𝑘𝑖 𝑝

𝑘
𝑗 = ∮

Ω

𝐸(Ω)𝑝𝑖𝑝𝑗𝑑Ω, (16)

where 𝑁𝑝 is the total number of pore units in the granular assembly and 𝑝𝑘𝑖  represents the 𝑖-th component of the principal eigenvector 
of the 𝑘-th pore unit. Similar to the angular distribution function of the contact normal vectors, a symmetric distribution density 𝐸(Ω)
can also be expressed for the directional distribution of the pore orientation tensor, Eq.  (17) (Ken-Ichi, 1984).

𝐸(Ω) = 1
4𝜋

(1 + ℙ𝑖𝑗𝑝𝑖𝑝𝑗 ), (17)

where ℙ𝑖𝑗 is the second order anisotropy pore fabric tensor defined as

𝑝𝑖𝑗 = 15
2

ℙ ′
𝑖𝑗 , where ℙ ′

𝑖𝑗 = ℙ𝑖𝑗 −
ℙ𝑖𝑖
3

. (18)

The following invariant of 𝑝𝑖𝑗 is used to quantify the degree of anisotropy (𝐹𝑝) of the pore-based fabric tensor,

𝐹𝑝 =
√

3
2
𝑝𝑖𝑗𝑝𝑖𝑗 . (19)

2.5.  Voronoi-based particle cell geometry and kinematic descriptor

The local geometry of the void space surrounding individual particles is characterized using Voronoi tessellation. For each particle, 
the associated Voronoi cell defines the region of space closer to that particle than to any other, providing a particle-centered partition 
of the pore space, see Fig. 3 and Fig. 5a. Whereas pore units represent coarse-grained cavities formed by multiple grains, Voronoi cells 
capture the pore geometry at the particle scale and are therefore suited for quantifying local pore shape and pore-particle kinematics. 
The anisotropy of each Voronoi cell is quantified using the second-order Minkowski tensor 𝑊 0,2

0 . The same tensorial formalism is 
applied to Voronoi cells as described in Section 2.3, enabling a consistent comparison between particle-centered and pore-centered 
geometric descriptors, 𝐹𝑣 and 𝐹𝑝, respectively. 𝐹𝑣 is quantified as

𝐹𝑣 =
√

3
2
𝑣𝑖𝑗𝑣𝑖𝑗 , (20)

where 𝑣𝑖𝑗 is 15∕2 times the deviatoric part of 𝕍𝑖𝑗 tensor, similar to one defined in Eq.  (16), averaged over the number of Voronoi 
cells (or number of particles).

A kinematic descriptor is introduced to quantify the relative positioning of the pore space with respect to the particle. This 
descriptor 𝑑𝑣𝑝 is defined as the Euclidean distance between the centroid of the Voronoi cell and the center of the corresponding 
particle

𝑑𝑣𝑝 =
‖

‖

‖

𝑥𝑣 − 𝑥𝑝
‖

‖

‖

, (21)

where 𝑥𝑣 is the centroid of the Voronoi cell and 𝑥𝑝 is the particle center. The quantity 𝑑𝑣𝑝 provides a scalar measure of the geometric 
offset between the particle and its surrounding pore space, see Fig. 5b.

3.  Details of simulations

3.1.  Discrete element method

The open-source code Yade-DEM is used to perform simulations (Šmilauer et al., 2010). In this study, spherical particles are modeled 
using a soft-sphere contact approach, where the Hertz-Mindlin theory of elastic deformation governs interactions between particles. 
Yade-DEM incorporates the “Computational Geometry Algorithms Library” (CGAL), which ensures precise calculations of predicates 
and highly efficient triangulation algorithms, crucial for establishing accurate pore-scale networks within the packing.
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Table 1 
Properties of monodisperse and polydisperse granular packings for loose and 
dense configurations.

 Property  Monodisperse  Polydisperse
 Loose (ML)  Dense (MD)  Loose (PL)  Dense (PD)

 Particle radius, 𝑟 (mm)  0.2  0.2  0.2 ± 0.2𝑟  0.2 ± 0.2𝑟
 Porosity  0.388  0.437  0.381  0.435

The Hertz-Mindlin contact model is used to compute the elastic forces, where it is assumed that small deformations occurred at 
contact points between two particles, resulting in 𝛿𝑛𝑖𝑗 being much smaller than min(𝑟𝑖, 𝑟𝑗 ). The normal component of the contact force, 
denoted 𝐹 𝑛

𝑖𝑗 is given according to Johnson and Johnson (1987) and Thornton et al. (2011)

𝐹 𝑛
𝑖𝑗 = −𝑘𝑛𝑖𝑗

(

𝛿𝑛𝑖𝑗
)3∕2

. (22)

where 𝑘𝑛𝑖𝑗 is the contact stiffness in the normal direction. At each time step, the tangential component 𝐹 𝑠
𝑖𝑗 is computed as a function 

of shear increment Δ𝑢𝑠 Eq.  (23). Sliding may occur at contact if the tangential force exceeds a threshold value set by the coefficient 
of friction

(

𝐹 𝑠
𝑖𝑗

)𝑡
=
(

𝐹 𝑠
𝑖𝑗

)𝑡−Δ𝑡
+ 𝑘𝑠𝑖𝑗Δ𝑢𝑠𝑡. (23)

The contact force between two particles is represented by 𝐹 𝑐
𝑖𝑗 , which is the sum of the normal and tangential forces denoted by 

𝐹 𝑛
𝑖𝑗 and 𝐹 𝑠

𝑖𝑗 , respectively. The particle acceleration is computed using Newton’s second law to solve the coupled system, incorporating 
contact, gravitational, and fluid forces. The velocity and position of each particle are obtained by integrating the acceleration vector. 
Tangential forces 𝐹 𝑠

𝑖𝑗 are incrementally calculated using the tangential displacement, and sliding occurs when the tangential force 
exceeds the Coulomb friction limit, 𝐹 𝑠

𝑖𝑗 ≤ 𝜇𝐹 𝑛
𝑖𝑗 .

3.2.  Model setup

To explore the effects of particle size distribution on fabric evolution, two RVEs are generated: one with a monodisperse particle 
distribution and another with a polydisperse distribution. In the polydisperse granular assembly, particles have an average radius of 
0.2mm with a specified size variation, while the monodisperse assemblies employ uniform-size particles. Dense and loose packing 
states are achieved by manipulating inter-particle friction angles during isotropic compression.

Creating a dense RVE begins with an initial setup of spherical particles randomly distributed within a cubic domain of 0.02 ×
0.02 × 0.02 m3. The inter-particle friction angle is initially lowered to 1◦, resulting in an initial porosity exceeding 0.90 due to the 
sparse and disordered arrangement of the particles. Servo-controlled walls are then gradually moved to densify the packing until a 
statically homogeneous state is achieved under an isotropic confining stress of 100 kPa. Once this state is reached, the friction angle 
is restored to 30◦, a typical value for realistic granular materials such as silica sand, which stabilizes the assembly. This process yields 
a final porosity of approximately 0.38 for the dense packing, while the loose packing maintains a higher porosity. Table 1 lists the 
details for simulation and initial porosities of the RVEs.

To determine the RVE size, we analyzed the effect of particle number on the mechanical response using datasets with 1000, 
5000, 7000, and 10,000 particles. Fig. 6a presents the stress ratio (𝑞∕𝑝) vs. axial strain (𝜖𝑎) alongside the average stress ratio. We 
evaluated the variation in 𝑞∕𝑝 at specific 𝜖𝑎 levels of 1, 5, 10, 15, 20, and 25%, analyzing how the 𝑞∕𝑝 varied for each dataset, 
see Fig. 6b. The optimal RVE size was identified by selecting the configuration with the least variation from the mean 𝑞∕𝑝 while 
ensuring computational feasibility. Notably, datasets with 5000, 7000, and 10,000 particles showed variations within a range of −5% 
to 5%. The 5000-particle configuration was chosen for its computational efficiency without sacrificing accuracy.

Furthermore, pore-scale statistical distributions such as normalized pore radii (𝑅𝑖∕⟨𝑟⟩), throat radii (𝑅𝑖𝑗∕⟨𝑟⟩), and pore porosity 
(𝜙𝑖) are examined, see Fig. 4. These distributions demonstrated robust statistical consistency across the particle range of 5000 to 
10,000, confirming that the selected RVE size effectively captures the essential characteristics of the pore structure without incurring 
a high computational cost.

4.  Results and discussion

4.1.  Stress-strain relations and fabric evolution

The mechanical and microstructural responses of cyclically sheared granular assemblies are investigated for polydisperse granular 
assemblies, focusing on dense and loose states. The evolution of the stress ratio 𝑞∕𝑝 and the fabric anisotropies 𝐹𝑐 and 𝐹𝑝 for dense 
and loose assemblies is shown in Fig. 7, 8 and 11. The deviatoric stress is defined as 𝑞 = 𝜎1 − 𝜎3, and the mean confining stress as 
𝑝 = (𝜎1 + 𝜎2 + 𝜎3)∕3. The quantities 𝐹𝑐 and 𝐹𝑝 represent the anisotropies of the contact fabric and pore orientation, respectively.

Drained triaxial tests reveal two distinct mechanical behaviors: contracting and dilatant. A loose assembly exhibits contracting 
behavior, characterized by continuous volumetric contraction and deviatoric stress (𝑞) hardening, with a lower peak of 𝑞∕𝑝 ≈ 0.8
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Fig. 6. (a) Comparison of the stress ratio 𝑞∕𝑝 for RVEs with varying numbers of particles. The solid black line represents the average stress ratio 
𝑞∕𝑝 across all datasets. (b) Variation of the stress ratio 𝑞∕𝑝 from the average value at different axial strain levels.

Fig. 7. Stress ratio (𝑞∕𝑝) versus axial strain (𝜖𝑎) for the dense and loose granular assemblies. The dense system is represented by a solid line with 
circular markers, while the loose system is indicated by a dashed line with triangular markers. Loading curves are shown in blue, unloading curves 
in red, and reloading curves in black. Points a-f mark key deformation stages: a (initial, 𝜖𝑎 = 0%), b (peak stress), c (end of loading, 𝜖𝑎 = +25%), d
and e (zero 𝑞∕𝑝 during unloading and reloading), f (end of reloading, 𝜖𝑎 = +25%).

throughout shearing, stabilizing at the critical state without significant softening (Been and Jefferies, 1985). In contrast, a dense 
assembly displays dilatant behavior, initially undergoing slight volumetric contraction followed by dilation (associated with strain 
hardening), with 𝑞∕𝑝 rising to a peak of 1.1 before softening to a steady-state value of 0.8 at the critical state, reflecting the dilatancy 
typical of dense sands (Roscoe et al., 1963; Guo and Zhao, 2013). These trends align with classical soil mechanics, where dense 
samples dilate and loose samples compact under shear, highlighting the significant influence of packing density on fabric evolution 
and mechanical response during cyclic drained shearing.

4.1.1.  Contact-pore fabric coupling and directional evolution
Fig. 8a and b present the fabric anisotropy for contact fabric (𝐹𝑐), computed using Eq.  (5), and principal pore orientation anisotropy 
(𝐹𝑝), derived from Minkowski moment tensors (Eq.  (19)), for polydisperse loose and dense assemblies under cyclic triaxial loading, 
respectively. The polydisperse as well as monodisperse assemblies show a striking similarity between 𝐹𝑐 and 𝐹𝑝 during the loading, 
unloading, and reloading stages, suggesting a coupled evolution of contact and void fabrics (Fu and Dafalias, 2015). The sub-figures 
in Fig. 9 compare the distributions of contact normal orientations (top row) and principal pore orientations (bottom row) in the 𝑥𝑦-
plane for the polydisperse assembly at selected stages of the cyclic loading path, points a-f in Fig. 7. The contact normal distributions 
exhibit a pronounced directional preference that evolves systematically with the imposed deformation. In the initial isotropic state 
(point a), the distribution is nearly uniform, reflecting the RVE preparation protocol. As the dense granular assembly reaches peak 
strength (point b), strong anisotropy develops, with contact normals preferentially aligned along the compression axis. This behavior 
is consistent with critical state concepts, which link contact fabric anisotropy to mobilized shear resistance (Rothenburg and Bathurst, 
1989). During unloading and subsequent reloading, the contact fabric progressively loses its directional bias. In particular, at points 
d and e, which correspond to zero stress ratio (𝑞∕𝑝 = 0) during unloading and reloading, respectively (see Fig. 7), the contact normal 
distributions approach an isotropic configuration. This indicates that the contact network responds rapidly to stress reversal and 
tends toward isotropy as the deviatoric stress vanishes. In contrast, the pore orientation distributions display a delayed adjustment. 
Although pore orientations evolve coherently with contact normals during loading, they remain noticeably anisotropic at points d
and e, despite the near-isotropic contact fabric, as shown in Fig. 9j and k. Thus, at identical macroscopic stress states characterized 
by zero stress ratio, contact and pore fabrics do not exhibit the same degree of isotropy.

The observed anisotropy is quantified through second-order fabric tensors (see Fig. 8a and b), where the principal directions of 
these tensors rotate during loading-unloading-reloading cycles. During triaxial compression, the fabric tensors align their principal 
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Fig. 8. Evolution of contact fabric anisotropy (𝐹𝑐 , solid lines) and pore orientation anisotropy (𝐹𝑝, dashed lines) with axial strain for polydisperse 
(a) loose and (b) dense assemblies. 𝐹𝑐 consistently exhibits a higher magnitude than 𝐹𝑝 at corresponding strain levels, demonstrating the magnitude 
offset during loading (blue), unloading (red), and reloading (black) phases.

components with the global loading directions, resulting in contact normals and pore orientations predominantly concentrated ver-
tically. This relationship reverses during unloading, with contact normals and pores reorienting horizontally. The reversibility of 
fabric orientation during cyclic loading offers critical insight into the micromechanical origins of the path-dependent behavior of 
granular materials. While Fu and Dafalias (2015) established the concept of void fabric anisotropy in 2D, and Sufian et al. (2019a) 
extended this to 3D monodisperse assemblies, our analysis of polydisperse and monodisperse assemblies under cyclic loading reveals 
two distinct features in the coupled evolution of contact and pore fabrics.

The first feature is a systematic lag in pore fabric development. Across all assemblies, the pore orientation fabric anisotropy 𝐹𝑝
consistently trails the contact fabric anisotropy 𝐹𝑐 , resulting in non-synchronous evolution. At a given strain level, 𝐹𝑝 attains a lower 
magnitude than 𝐹𝑐 , indicating that pore-scale anisotropy develops more gradually than contact-scale anisotropy. The second feature 
is a pronounced hysteresis in the contact-pore fabric phase space. When 𝐹𝑝 is plotted directly against 𝐹𝑐 , the loading, unloading, 
and reloading paths form distinct trajectories rather than collapsing onto a single curve, as shown in Fig. 10. This hysteresis is not 
an independent phenomenon, but a geometric manifestation of the systematic lag under cyclic loading: because 𝐹𝑝 responds more 
slowly than 𝐹𝑐 , identical contact fabric states reached at different stages of the loading cycle correspond to different pore fabric states, 
despite the coherent reversal of their principal orientations during cyclic loading.

The origin of hysteresis is illustrated for the polydisperse dense (PD) assembly in Fig. 10c. During initial loading from point a
to point c, as the axial strain increases from 𝜖𝑎 = 0 to 𝜖𝑎 = +25%, the 𝐹𝑐 increases rapidly, reaching values of ≈ 0.9, whereas the 
𝐹𝑝 increases gradually to ≈ 0.5, reflecting the lag in pore fabric development. From point c, unloading is initiated by reversing the 
strain direction. As the axial strain decreases from 𝜖𝑎 = +25% and passes through zero stress ratio at point d, the 𝐹𝑐 and 𝐹𝑝 decrease, 
but with different rates of magnitude evolution. The 𝐹𝑐 responds more rapidly to strain reversal, while 𝐹𝑝 decreases more slowly. 
Reloading then proceeds from 𝜖𝑎 = −25% through point e and returns to 𝜖𝑎 = +25% at point f, which coincides with point c in strain 
space. Although the fabric measures have comparable magnitudes at the end of the cycle, their intermediate evolution follows distinct 
paths. As a result, identical values of 𝐹𝑐 reached during loading, unloading, or reloading correspond to different values of 𝐹𝑝. The 
hysteresis loop observed in the 𝐹𝑐 − 𝐹𝑝 phase space, therefore, arises directly from the delayed magnitude response of pore fabric 
relative to contact fabric under strain reversal, even though the fabrics reverse their principal orientations coherently throughout the 
cyclic loading.

The lag in the two anisotropy measures reflects a hierarchical geometric emergence across different length scales. The anisotropy 
emerges progressively from contact-level rearrangements to particle-scale free-volume geometry and, eventually, to pore-scale struc-
tures. Contact fabric anisotropy 𝐹𝑐 responds most directly to imposed deformation through the creation, loss, and reorientation of 
the geometrical contacts (Kuhn, 1999). Pore orientation anisotropy 𝐹𝑝, by contrast, is a collective geometric descriptor constrained 
by the collective arrangement of multiple particles and the surrounding free volume. Thus, anisotropy cannot emerge independently 
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from the contact network to the pore space. To further explain the geometric origin of the lag, we introduce an intermediate fabric 
descriptor based on the anisotropy of particle-centered Voronoi cells. Using the same Minkowski moment tensor formalism employed 
for pore units, we compute the anisotropy of individual Voronoi cells and define the corresponding Voronoi fabric anisotropy 𝐹𝑣 ( Sec-
tion 2.5). This ensures a consistent geometric basis for comparing fabric evolution at the contact, particle, and pore-scales. Fig. 11a 
and b show the evolution of 𝐹𝑣 together with 𝐹𝑐 and 𝐹𝑝 for polydisperse dense and loose assemblies, respectively. For brevity, the 
initial loading phase (0 ≤ 𝜖𝑎 ≤ 25%) is shown; however, 𝐹𝑣 is computed throughout the complete loading-unloading-reloading cycle 
and maintains its intermediate position between 𝐹𝑐 and 𝐹𝑝 across all deformation stages (see Fig. 10 for full-cycle relation). In all 
cases, the Voronoi fabric anisotropy evolves between the contact and pore fabric anisotropies, demonstrating that anisotropy first 
emerges at the particle-scale free volumes before accumulating into coherent pore-scale anisotropy.

The hierarchical ordering 𝐹𝑐 → 𝐹𝑣 → 𝐹𝑝 provides a mechanistic explanation for the observed lag between contact and pore 
anisotropies, emphasizing that pore-scale anisotropy does not respond instantaneously to contact statistics but emerges through 
progressive geometric integration. Contact rearrangements induce directional bias at the particle scale, which is integrated by the ge-
ometry of particle-centered free volumes (Voronoi cells). Once particle-scale anisotropy accumulates beyond a threshold governed by 
local geometric compatibility, collective reorientation and elongation of multi-particle pore units can occur. Pore fabric thus emerges 
as a higher-order internal variable constrained by particle-scale geometric constraints rather than an instantaneous response to contact 
statistics. The emergent role of particle-scale geometry in the geometrical arrangement becomes clear when the relationship between 
𝐹𝑣 and 𝐹𝑝 is examined across all assemblies (PD, PL, MD, and ML), see Fig. 12a. A strong linear relationship is observed between 𝐹𝑣
and 𝐹𝑝, indicating that pore-scale anisotropy is more constrained by particle-centered free-volume geometry than by contact fabric 
alone. This relationship persists across density states and particle size distributions, establishing the Voronoi fabric as the immediate 
geometric precursor to pore fabric evolution.

A quantitative comparison between 𝐹𝑐 and 𝐹𝑝 further reveals the systematic differences between monodisperse and polydisperse 
assemblies. Across all granular assemblies, 𝐹𝑐 generally exceeds 𝐹𝑝, but the magnitude of the difference 𝐹𝑐 − 𝐹𝑝 depends on particle 
size distribution. In monodisperse dense and loose assemblies, 𝐹𝑐 − 𝐹𝑝 spans a broader range (0.0–1.0) than in polydisperse dense 
and loose assemblies (0.0-0.5). Linear regression analysis between 𝐹𝑐 and 𝐹𝑝 confirms a positive correlation, with slopes indicating a 
moderate to stronger coupling for monodisperse particle assemblies (MD: Pearson 𝑟 = 0.87 and 𝑅2 = 0.75; ML: Pearson 𝑟 = 0.84 and 
𝑅2 = 0.71) compared to polydisperse assemblies (PD: Pearson 𝑟 = 0.70 and 𝑅2 = 0.50; PL: Pearson 𝑟 = 0.84 and 𝑅2 = 0.70). This suggests 
that MD assemblies exhibit more complementary fabric evolution due to increased inter-particle contacts and pore alignment under 
shear (Roscoe et al., 1963). In contrast, Sufian et al. (2019b) reported lower pore orientation anisotropy in 3D assemblies, potentially 
due to differences in pore extraction methods or shear-induced pore elongation. Additionally, Fu and Dafalias (2015) proposed a 
linear relationship of 𝐹𝑝 = 1.14𝐹𝑐 in 2D; our 3D simulations indicate that this may underestimate pore orientation anisotropy under 
cyclic loading, highlighting the effects of dimensionality. The greater range of 𝐹𝑐 − 𝐹𝑝 in MD assemblies (0.0–1.0) compared to PD 
assemblies (0.0-0.5) reflects a higher uniformity in contact alignment, while PD assemblies display more distributed stress paths due 
to particle size variability (Voivret et al., 2009).

To further elucidate why the strength of 𝐹𝑐 − 𝐹𝑝 correlation differs across MD and PD assemblies, we introduce a kinematic 
descriptor defined as the distance 𝑑𝑣𝑝 between a particle center and the centroid of its corresponding Voronoi cell. The scalar descriptor 
is a diagnostic measure of particle-free-volume kinematic compatibility, rather than a governing or constitutive parameter. A small 
value of 𝑑𝑣𝑝 indicates that the free volume deforms coherently with particle motion, whereas a larger value reflects increasing 
particle-free-volume incompatibility. Fig. 12b shows the evolution of the ensemble-averaged 𝑑𝑣𝑝 for MD and PD dense assemblies. MD 
assemblies exhibit systematically larger values of 𝑑𝑣𝑝 throughout deformation, indicating stronger geometric incompatibility between 
particle motion and free-volume reconfiguration. It is important to note that the scalar 𝑑𝑣𝑝 quantifies kinematic compatibility (local 
particle-free-volume) rather than the strength of fabric coupling (tensorial). In MD assemblies, the limited local accommodation of 
particle motion enforces collective geometric reorganization, resulting in a more coherent evolution of contact and pore fabrics. 
In contrast, PD assemblies exhibit enhanced local free-volume accommodation, allowing heterogeneous and spatially distributed 
rearrangements that weaken global fabric coherence and reduce the strength of 𝐹𝑐 − 𝐹𝑝 correlations.

4.2.  Porosity and pore shape factor

Fig. 13 explores the interplay between macroscale porosity and average pore shape factor |𝛽|𝑎𝑣𝑔 (Eq.  (15)), computed from Minkowski 
moment tensors (Schröder-Turk et al., 2011). The dense and loose granular assemblies show a strong correlation: porosity decreases 
with decreasing |𝛽|𝑎𝑣𝑔 during contraction, peaking during dilation, and stabilizing at the steady state. The observed trends suggest 
that pore-shape anisotropy amplifies under shear-induced dilation (in the dense case) and diminishes during compaction (loose case), 
providing a mechanistic link between microstructure and bulk behavior. In Fig. 14, linear regression analyses quantify this correlation 
between macroscopic porosity and the ensemble-averaged |𝛽|𝑎𝑣𝑔 , with 𝑅2 ≥ 0.86 across MD and PD assemblies. The adopted definition 
of 𝛽 explicitly incorporates all three eigenvalues of the Minkowski tensor and therefore encodes the degree of anisotropy and pore 
shape through the relative positioning of the intermediate eigenvalue. Thus, |𝛽|𝑎𝑣𝑔 offers a balanced contribution from pore elongation 
and shape, leading to comparable slopes and similar levels of correlation with porosity across granular assemblies. This suggests that 
macroscopic porosity is closely associated with the combined evolution of average pore shape factor |𝛽|𝑎𝑣𝑔 and shape as captured by 
𝛽. Differences originating from particle-size heterogeneity are therefore less pronounced in this scalar measure.

The coupling between porosity and |𝛽|𝑎𝑣𝑔 extends prior work by elucidating how microstructural adjustments govern bulk re-
sponse. Dense assemblies’ amplified |𝛽|𝑎𝑣𝑔 during dilation enhances pore alignment, facilitating stress redistribution, while loose 
assemblies’ stable |𝛽|𝑎𝑣𝑔 reflects a more uniform compaction process. This behavior complements the observed lag in pore orienta-
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Fig. 9. Polar distributions of contact normal orientations (top row, a-f) and principal pore orientations (bottom row, g-l) in the 𝑥𝑦-plane for 
polydisperse dense assembly at six deformation stages (see marked points in Fig. 7). Both distributions evolve from near-isotropic (a, g) to vertically 
aligned at peak strength (b, h), then redistribute horizontally during unloading (e, k), demonstrating a coordinated directional evolution.

tion anisotropy (𝐹𝑝) relative to contact anisotropy (𝐹𝑐) (see Fig. 10), where void spaces exhibit delayed response due to geometric 
constraints governing multi-particle reorganization through the hierarchical emergence 𝐹𝑐 → 𝐹𝑣 → 𝐹𝑝, and further quantified by the 
kinematic descriptor 𝑑𝑣𝑝. The higher |𝛽|𝑎𝑣𝑔 in dense granular assemblies, coupled with their greater 𝐹𝑝 magnitude, suggests that pore 
shapes serve as sensitive indicators of collective geometric reorganization, with implications for permeability evolution and shear 
band formation (Sufian et al., 2019b). The PD assemblies’ slightly lower regression slope and 𝑅2 values indicate distributed stress 
paths, reflecting an enhanced perspective on fabric heterogeneity.

4.2.1.  Particle- and pore-based metrics
The particle and pore-scale statistical properties are interpreted as emergent consequences of the geometric constraints and the hier-
archical evolution of the fabric established in the preceding sections. Fig. 15 presents the probability distribution 𝑃 (𝜙−1

𝑣 ), the inverse 
Voronoi volume fraction for polydisperse granular assemblies subjected to cyclical shear deformation. The 𝑃 (𝜙−1

𝑣 ) is defined as the 
ratio of the volume of the Voronoi cell to the enclosed particle (Guo and Zhao, 2014). These distributions are analyzed at multiple 
axial strain levels (𝜖𝑎 = 0%, 10%, and 25%) to capture the evolution of local packing structure during deformation. Fig. 15a, depicts 
the initially dense assembly, where a pronounced rightward shift of peak positions occurs with increasing strain, from approximately 
𝜙−1
𝑣 ≈ 1.65 at the initial state to 𝜙−1

𝑣 ≈ 1.8 at 25% strain. This shift quantifies the shear dilatancy, a characteristic of dense granular 
materials that requires them to expand volumetrically to accommodate shear-induced particle reorganization. Contrasting behavior is 
observed in Fig. 15b for the initially loose granular assemblies. The distribution maintains relatively consistent peak positions around 
𝜙−1
𝑣 ≈ 1.7 across all strain levels. This consistency suggests that loose assemblies undergo minimal bulk volume change despite sig-
nificant particle rearrangements during shear. The insets in both figures reveal a remarkable feature: when normalized appropriately 
to yield dimensionless variables ̂𝜙−1

𝑣 = 𝜙−1
𝑣 ∕⟨𝜙−1

𝑣 ⟩, the distributions from different strain states collapse onto a single curve well-
approximated by a gamma distribution. These results indicate that while the mean values change with deformation, the normalized 
distributions maintain a statistically consistent form during shearing.

Figs. 16 and 17 illustrate the complementary perspective of void space evolution through pore porosity distributions 𝑃 (𝜙𝑝) and 
pore shape anisotropy 𝑃 (𝛽), respectively. Fig. 16a, labeled “Shear dilation” corresponds to the initially dense assembly and shows 
a clear rightward shift in the distribution peaks from 𝜙𝑝 ≈ 0.30 to 𝜙𝑝 ≈ 0.35 as strain increases, reflecting heterogeneous pore size 
changes driven by deformation mechanisms. The observed widening and skewness suggest that pore structures become increasingly 
varied as the dense assembly rearranges under shear. This behavior aligns with shear dilation, where larger pores emerge due to 
particle sliding and rotation. The shift in the peak porosity directly corresponds to a net increase in average void space, consistent 
with the shear-induced dilatancy observed in triaxial compression tests. Conversely, Fig. 16b, labeled “Contraction”, represents the 
initially loose assembly and exhibits more subtle changes in distribution shape and position, consistent with the contractive tendency 
of loose granular materials under shear.

The probability distribution of the pore shape anisotropy 𝑃 (𝛽), for the polydisperse dense and loose granular assemblies, exhibits 
a consistent trend, as shown in Fig. 17. The presence of a non-zero probability density at 𝛽 = 0 suggests that the granular assembly 
includes shape-isotropic pore geometries, where the eigenvalues of the Minkowski tensor are equal. The persistence of these isotropic 
pore shapes across both isotropic and anisotropic stress states, as well as across granular assemblies, demonstrates that local geometric 
isotropy of the pore space can coexist with an anisotropic granular fabric. This observation highlights the ability of 𝛽 to capture pore 
shape anisotropy in a physically meaningful manner, revealing subtle geometric features of the void structure that are not apparent 
from the stress state alone. Furthermore, to compare pore-scale fluctuations across deformation stages and packing states, pore-scale 
quantities are normalized by their ensemble-averaged values. The normalized pore-scale porosity and pore shape anisotropy are 
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Fig. 10. Correlation between contact fabric anisotropy (𝐹𝑐) and pore orientation anisotropy (𝐹𝑝) for different granular assemblies during shearing. 
The data points represent the anisotropies during loading, unloading, and reloading stages. (a) MD, (b) ML, (c) PD and (d) PL.

Fig. 11. Evolution of contact fabric anisotropy (𝐹𝑐), Voronoi fabric anisotropy (𝐹𝑣), and pore orientation anisotropy (𝐹𝑝) with axial strain during 
the initial loading phase (0 ≤ 𝜖𝑎 ≤ 25) for polydisperse (a) dense and (b) loose assemblies. Only the loading phase is shown for clarity to highlight the 
hierarchical ordering; 𝐹𝑣 is computed throughout the complete cycle and used in the correlation analysis, Fig. 12. 𝐹𝑣 evolves intermediate between 
𝐹𝑐 and 𝐹𝑝, demonstrating hierarchical geometric emergence 𝐹𝑐 → 𝐹𝑣 → 𝐹𝑝.
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Fig. 12. (a) Linear relation between 𝐹𝑣 and 𝐹𝑝 across all assemblies, linear regression yields Pearson 𝑟 = 0.87, 𝑅2 = 0.75. (b) Evolution of 
ensemble-averaged shifted kinematic descriptor 𝑑𝑣𝑝-𝑑𝑣𝑝,min with axial strain for MD and PD assemblies, where 𝑑𝑣𝑝,min represents the minimum value. 
MD assemblies exhibit larger 𝑑𝑣𝑝, indicating their greater magnitude offsets.

Fig. 13. Evolution of the macroscale porosity and average pore shape factor |𝛽|𝑎𝑣𝑔 for a cyclical sheared polydispersed granular assembly.

defined as

𝜙̂𝑝 =
𝜙𝑝

⟨𝜙𝑝⟩
, and 𝛽 =

𝛽 − 𝛽𝑚𝑖𝑛
⟨𝛽⟩ − 𝛽𝑚𝑖𝑛

. (24)

The insets in Figs. 16 and 17 reveal that the normalized distributions of pore porosity (𝜙𝑝) and shape anisotropy (𝛽) adhere to a gamma 
distribution, independent of strain level. This adherence to the gamma statistical framework corroborates theoretical predictions for 
disordered granular systems, where local volume and shape fluctuations are well described by 𝑘-gamma distributions (Aste and 
Di Matteo, 2008; Guo and Zhao, 2014; Zhao et al., 2020).

The statistical analysis of microstructures, conducted through particle-based and void-based metrics, consistently reveals a gamma 
distribution framework, providing insights into the evolution of disorder under shear loading. As shown in Fig. 18a-c, the probabil-
ity distributions of inverse Voronoi cell fractions (𝜙−1

𝑣 ), pore-scale porosity (𝜙𝑝), and pore shape anisotropy (𝛽) adhere to gamma 
distributions across both monodisperse and polydisperse assemblies, encompassing dense and loose system at different shear levels. 
Notably, Fig. 18a demonstrates that the scaled and shifted inverse Voronoi cell fractions exhibit nearly identical distributions at 
different shear levels, suggesting that the compactivity of each assembly remains statistically consistent during deformation.

Further, we fitted a 𝑘-gamma distribution to the data, determining a shape parameter 𝑘 of 4.5. This value aligns with the findings 
of Guo and Zhao (2014), who demonstrated that local volume fluctuations in granular systems conform to a 𝑘-gamma distribution, 
with 𝑘 typically ranging between 5 and 7 under external loading, as calculated using Eq.  (25), where (𝜙−1

𝑣 )min and 𝜎𝜙−1𝑣  denotes the 
minimum and standard deviation, respectively. This persistence underscores the significance of the 𝑘-gamma framework in captur-
ing the statistical properties of granular systems, encompassing both spherical and non-spherical particles (Zhao et al., 2020). The 
parameter 𝑘 serves as a key indicator of microstructural organization (Aste and Di Matteo, 2008; Guo and Zhao, 2014).

𝑘 =
[⟨𝜙−1

𝑣 ⟩ − (𝜙−1
𝑣 )𝑚𝑖𝑛]2

𝜎2
𝜙−1𝑣

. (25)
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Fig. 14. Correlation between porosity and average pore shape factor |𝛽|𝑎𝑣𝑔 for different assemblies during shearing. A linear regression fit is 
illustrated, with a Pearson correlation coefficient 𝑟 and 𝑅2, indicating a correlation between the two variables. (a) Monodisperse particle assemblies 
and (b) Polydisperse particle assemblies.

Fig. 15. The probability distribution 𝑃 (𝜙−1
𝑣 ) of the inverse Voronoi volume fraction for polydisperse granular assemblies subjected to cyclic shear 

deformation. The inset displays the normalized values ̂𝜙−1
𝑣 , defined as ̂𝜙−1

𝑣 = 𝜙−1
𝑣 ∕⟨𝜙−1

𝑣 ⟩, (a) PD and (b) PL.

Fig. 16. The probability distribution 𝑃 (𝜙𝑝) represents the pore porosity for polydisperse granular assemblies subjected to cyclic shear deformation. 
The inset shows the normalized values 𝜙𝑝, defined as 𝜙𝑝 = 𝜙𝑝 ∕⟨𝜙𝑝⟩, (a) PD and (b) PL.
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Fig. 17. The probability distribution 𝑃 (𝛽) represents the shape factor for voids in granular assemblies. The inset shows the normalized values 𝛽, 
where 𝛽 = 𝛽 − 𝛽min∕⟨𝛽⟩ − 𝛽min, (a) PD and (b) PL.

Fig. 18. Probability distributions for (a) scaled and shifted Voronoi cell fractions, (b) pore-scale porosity, and (c) pore shape anisotropy for monodis-
perse and polydisperse granular assemblies at different axial strains. The scaled and shifted Voronoi cell fractions are fitted with a 𝑘-gamma distri-
bution, where the shape parameter 𝑘 equals 4.5. The distributions for porosity and shape anisotropy are fitted to a gamma fit.

Similarly, the void-based metrics in Fig. 18b-c, representing the normalized 𝜙𝑝 and 𝛽, conform to a gamma distribution across all 
strain levels, demonstrating a robust statistical form despite deformation. This conformity holds for monodisperse and polydisperse 
granular assemblies, with no significant differences in the shape of the normalized distributions, reflecting the underlying consistency 
of the pore structure’s statistical behavior under shear. The preservation of gamma statistics across both particle-based and void-based 
metrics highlights the consistent mechanisms governing volume and shape distributions in granular systems (Aste and Di Matteo, 
2008). The persistence, reinforced by the complementary nature of these analyses, establishes the gamma distribution framework as 
a statistically robust tool for characterizing microstructural evolution under complex loading paths.

5.  Summary and conclusions

This study established a pore-based fabric tensor framework, leveraging Minkowski moment tensors, to quantitatively characterize 
the anisotropic evolution of voids in granular materials under cyclic triaxial loading. Through DEM simulations of monodisperse 
and polydisperse granular assemblies in both dense and loose states, we decoupled the dynamic interplay between contact and void 
fabric, linking these microstructural metrics to macroscopic response. The principal findings are summarized as follows:

• Non-synchronous evolution and hierarchical fabric coupling: The evolution of pore fabric is non-synchronous with that of 
contact fabric. While contact anisotropy responds rapidly and reversibly to changes in loading direction, pore fabric exhibits a 
systematic lag, accompanied by pronounced path dependence. Identical macroscopic stress states and contact fabric configurations 
attained during different stages of the loading cycle correspond to distinct pore fabric states. This non-uniqueness demonstrates 
that pore fabric emerges as a higher order internal variable and cannot be treated as an instantaneous function of stress or contact 
anisotropy.

The lag in contact-pore fabric phase space arises from geometric constraints imposed by scale separation. Contact fabric reflects 
grain-scale kinematics, whereas pore units are collective geometric entities spanning multiple particles. Consequently, pore fabric 
can only evolve through coherent reorganization of particle-scale free volume. By introducing Voronoi-cell anisotropy as a particle-
scale descriptor, the analysis reveals a consistent hierarchical ordering of fabric evolution, with anisotropy emerging first at the 
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contact scale, then at the Voronoi scale, and finally at the pore scale. This hierarchy provides a mechanistic explanation for the 
delayed and hysteretic evolution of pore fabric under cyclic loading.

The differences between monodisperse and polydisperse assemblies further highlight the role of particle-scale geometric com-
patibility. A scalar kinematic descriptor based on the offset between particle centers and Voronoi centroids serves as a diagnostic 
measure of particle-free-volume incompatibility, indicating that enhanced local accommodation in polydisperse systems weakens 
global fabric coherence, whereas monodisperse assemblies promote more collective geometric reorganization.

• Multiscale descriptor of density and statistical organization: Beyond orientational fabric, the hierarchical emergence of pore 
structure is also reflected in the collective evolution of pore geometry and its statistical organization. At the macroscopic level, 
the average pore shape factor, |𝛽|𝑎𝑣𝑔 , computed directly from Minkowski tensors, exhibits a strong correlation with porosity 
across loading paths, consistently tracking volumetric contraction and dilation. The adopted definition of 𝛽 incorporates all three 
eigenvalues of the Minkowski tensor, and encodes the anisotropy magnitude and pore shape through the relative positioning 
of the intermediate eigenvalue. In this sense, |𝛽|𝑎𝑣𝑔 provides a mechanics-informed geometric descriptor linking collective pore 
deformation to bulk density, rather than acting as an independent state variable.

Although there is a clear path dependence in the evolution of the macroscopic pore fabric, key normalized pore-scale mea-
sures exhibit a statistically robust structure across deformation stages. Distributions of inverse Voronoi cell fractions, pore-scale 
porosity, and pore shape anisotropy are consistently well described by gamma-type distributions when appropriately normal-
ized. Notably, shear-induced dilation primarily manifests as a shift in the mean pore-scale porosity, while the functional form of 
the normalized distributions remains largely unchanged. This coexistence of macroscopic non-uniqueness with statistically stable 
pore-scale geometry indicates that collective geometric constraints impose a persistent local organization, even as global fabric 
evolves hierarchically under cyclic loading.

This pore-based tensor framework opens several promising research avenues. In geomechanics, it can be integrated with coupled 
fluid-particle modeling in DEM to elucidate how pore deformation controls permeability in saturated media and fluid trapping in 
unsaturated media (Das, 2022; Das et al., 2025). It also provides a direct metric for analyzing the role of pore orientation and shape 
anisotropy in strain localization and shear band formation (Russell et al., 2016; Deng et al., 2021). Furthermore, incorporating these 
fabric tensors into advanced constitutive models will enhance predictions of shear strength, dilatancy, and failure (Li and Dafalias, 
2012). Beyond soils, this framework is directly applicable to materials science, such as powder metallurgy, where understanding pore 
orientation and shape anisotropy in sintered granular compacts is critical for predicting mechanical strength and fatigue life (Saadatfar 
et al., 2012).
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