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 a b s t r a c t

Updated Lagrangian smoothed particle hydrodynamics (SPH) for solid dynamics is often plagued 
by numerical instabilities, particularly hourglass modes that produce unphysical zigzag patterns. 
While recent essentially non-hourglass (SPH-ENOG) and generalized non-hourglass (SPH-GNOG) 
formulations have improved stability, they suffer from poor angular momentum conservation, 
limiting their accuracy in rotational problems. To overcome this, this paper presents two angular-
momentum enhanced non-hourglass formulations. First, we enhance the SPH-ENOG method with 
rotation matrices derived from Rodrigues’ formula, creating SPH-ENOG-A for elastic materials, 
which explicitly accounts for rigid rotations during time integration, thereby significantly en-
hancing angular momentum conservation. To strictly enforce linear momentum conservation, 
the average of the rotation matrices is computed and applied to each particle. We then extend 
this approach to reformulate the corrective term in SPH-GNOG, yielding SPH-GNOG-A—a uni-
fied method for both elastic and plastic materials that not only improves angular momentum 
conservation but also eliminates prior dependencies on material-specific coefficients. Validated 
against elastic (oscillating plates, spinning solids) and plastic (Taylor bars, high-velocity impacts) 
benchmarks, our methods retain the hourglass-free stability, convergence, and accuracy of their 
predecessors while achieving a significant leap in angular momentum conservation.

1.  Introduction

Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian method that was initially developed for astrophysical simu-
lations [1,2]. Over the years, SPH has been successfully applied to a wide range of engineering problems, including fluid dynam-
ics [3–6], solid mechanics [7–13], and fluid-structure interactions [14–17]. In the context of solid dynamics, updated Lagrangian 
smoothed particle hydrodynamics (ULSPH) offers distinct advantages over total Lagrangian smoothed particle hydrodynamics (TL-
SPH) for simulating material damage and fracture due to its independence from the initial configuration [18].

However, numerical instabilities, such as zigzag particle and stress distributions, and numerical fractures, frequently arise when 
employing the original shear force discretization scheme in ULSPH for solid dynamics simulations [7]. These instabilities severely 
limit the practical application of ULSPH in engineering problems involving large deformations and complex material behavior.
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$n=2$


$n=3$


\begin {equation}\frac {\text {d} \rho }{\text {d} t} = -\rho \nabla \cdot {\mathbf {v}}, \label {continuity-equation}\end {equation}


\begin {equation}\frac {\text {d} {\mathbf {v}}}{\text {d} t} = \frac {1}{\rho }\nabla \cdot \bm {\sigma } + {\mathbf {g}}, \label {momentum-equation}\end {equation}


$\rho $


$\mathbf {v}$


$\bm {\sigma }$


$\mathbf {g}$


$\bm {\sigma }$


$p$


$\bm {\sigma }^s$


\begin {equation}\bm {\sigma } = -p \mathbf I + \bm {\sigma }^s, \label {pressure-shear-stress}\end {equation}


$\mathbf {I}$


\begin {equation}p = c_0^2(\rho - \rho _0), \label {Xeqn4-4}\end {equation}


$\rho _0$


$\rho $


$c_0$


$K$


$c_0 = \sqrt {K / \rho _0}$


\begin {equation}\frac {\text {d} \mathbf {v}^p}{\text {d} t} = -\frac {1}{\rho }\nabla p, \label {normal-acc}\end {equation}


\begin {equation}\frac {\text {d} \mathbf {v}^s}{\text {d} t} = \frac {1}{\rho }\nabla \cdot \bm {\sigma }^s. \label {shear-acc}\end {equation}


$\frac {\text {d} \mathbf {v}^p}{\text {d} t}$


$\frac {\text {d} \mathbf {v}^s}{\text {d} t}$


$\frac {\text {d} \mathbf {v}}{\text {d} t}$


$\frac {\text {d} \mathbf {v}}{\text {d} t} = \frac {\text {d} \mathbf {v}^p}{\text {d} t} + \frac {\text {d} \mathbf {v}^s}{\text {d} t} + \mathbf {g}$


\begin {equation}\bm {\sigma }^s = \int _{0}^{t} \dot {\bm {\sigma }}^s \text {d}t. \label {shear-stress-integral}\end {equation}


$\dot {\bm {\sigma }}^s$


\begin {equation}\dot {\bm {\sigma }}^s = 2G\dot {\bm {\varepsilon }}^s + \bm {\sigma }^s \cdot \bm {\Omega }^T + \bm {\Omega } \cdot \bm {\sigma }^s, \label {stress-rate}\end {equation}


$G$


$\dot {\bm {\varepsilon }}^s$


$\dot {\bm {\varepsilon }}$


$\dot {\bm {\varepsilon }}^s = \dot {\bm {\varepsilon }} - \tfrac {1}{d}\text {tr}(\dot {\bm {\varepsilon }})\mathbf {I}$


$d=2,3$


$\text {tr}(\cdot )$


$\dot {\bm {\varepsilon }}$


$\bm {\Omega }$


\begin {equation}\dot {\bm {\varepsilon }} = \tfrac {1}{2} \left [ \nabla {\mathbf {v}} + (\nabla {\mathbf {v}})^{\mathsf {T}} \right ], \label {strain-rate}\end {equation}


\begin {equation}\bm {\Omega } = \tfrac {1}{2} \left [ \nabla {\mathbf {v}} - (\nabla {\mathbf {v}})^{\mathsf {T}} \right ], \label {spin-rate}\end {equation}


$\nabla {\mathbf {v}}$


$\mathsf {T}$


$J_2$


\begin {equation}f(J_2, \alpha )=\sqrt {2J_2} - \sqrt {\tfrac {2}{3}}(\kappa \alpha +{\sigma }_Y). \label {yield-criterion}\end {equation}


$J_2 \equiv \tfrac {1}{2}\bm {\sigma }^s:\bm {\sigma }^s$


$\kappa $


$\alpha $


$\sigma _Y$


$J_2$


\begin {equation}\dot {\bm {\sigma }}^s = 2G\dot {\bm {\varepsilon }}^s - \dot {\lambda } \frac {\sqrt {2}G}{\sqrt {J_2}}\bm {\sigma }^s + \bm {\sigma }^s \cdot \bm {\Omega }^{\mathsf {T}} + \bm {\Omega } \cdot \bm {\sigma }^s. \label {J2-stress-rate}\end {equation}


$\dot {\lambda }$


\begin {equation}\dot {\lambda } = \frac {\bm {\sigma }^s:\dot {\bm {\varepsilon }}}{(1 + \kappa /3G)\sqrt {2J_2}}. \label {plastic-multiplier-rate}\end {equation}


$\bm {\sigma }^{s,\text {trial}}$


$f > 0$


\begin {equation}\bm {\sigma }^s = \frac {\kappa \alpha + \sigma _Y}{\sqrt {3J_2^{\text {trial}}}}\bm {\sigma }^{s,\text {trial}}. \label {return-mapping}\end {equation}


\begin {equation}\frac {\text {d} \rho _i }{\text {d} t} = \rho _i \sum _j \mathbf {v}_{ij} \cdot \nabla _i W_{ij} V_j. \label {continuity-equation-discrete}\end {equation}


\begin {equation}\frac {\text {d} \mathbf {v}_i^p}{\text {d} t} = -\frac {2}{\rho _i} \sum _j P^* \nabla _i W_{ij} V_j. \label {normal-accelaration-discrete}\end {equation}


$W_{ij} \equiv W(\mathbf {r}_i - \mathbf {r}_j, h)$


$\mathbf {r}$


$h$


$i$


$j$


$V_j$


$j$


$j$


$i$


$\mathbf {e}_{ij}$


$\mathbf {v}_{ij} = \mathbf {v}_i - \mathbf {v}_j$


$\nabla _i W_{ij} = \frac {\partial W(r_{ij}, h)}{\partial r_{ij}} \mathbf {e}_{ij}$


$r_{ij} = |\mathbf {r}_i - \mathbf {r}_j|$


$P^*$


$\mathbf {e}_{ij}$


\begin {equation}P^* = \frac {\rho _L c_L P_R + \rho _R c_R P_L + \rho _L c_L \rho _R c_R (U_L - U_R)}{\rho _L c_L + \rho _R c_R}. \label {P-Riemann}\end {equation}


$L$


$R$


\begin {equation}\begin {cases} (\rho _L, U_L, P_L, c_L ) = (\rho _i, -\mathbf {v}_i \cdot \mathbf {e}_{ij}, p_i, c_{0i}) \\ (\rho _R, U_R, P_R, c_R ) = (\rho _j, -\mathbf {v}_j \cdot \mathbf {e}_{ij}, p_j, c_{0j}). \end {cases} \label {left-right-states}\end {equation}


\begin {equation}\frac {\text {d} \mathbf {v}_i^s}{\text {d} t} = \frac {1}{\rho _i} \sum _j \left ( \bm {\sigma }^s_i + \bm {\sigma }^s_j \right ) \cdot \nabla _i W_{ij} V_j. \label {shear-accelaration-discrete}\end {equation}


\begin {equation}\nabla \mathbf {v}_i = - \sum _j \mathbf {v}_{ij} \otimes \left ( \mathbf {B}_i \nabla _i W_{ij} \right ) V_j, \label {velocity-gradient-discrete-correction}\end {equation}


$\mathbf {B}_i$


\begin {equation}\mathbf {B}_i = - \left ( \sum _j \mathbf {r}_{ij} \otimes \nabla _i W_{ij} V_j \right )^{-1}. \label {correction-matrix}\end {equation}


$\Delta t_{ad}$


$\Delta t_{ac}$


$\Delta t_{ad}$


\begin {equation}\Delta t_{ad} = \text {CFL}_{ad} \frac {h}{\left \lvert \mathbf {v} \right \rvert _{\max }}, \label {advection-time-step}\end {equation}


$\text {CFL}_{ad} = 0.2$


$h$


$\left \lvert \mathbf {v} \right \rvert _{\max }$


\begin {equation}\Delta t_{ac} = \text {CFL}_{ac} \frac {h}{c_0 + \left \lvert \mathbf {v} \right \rvert _{\max }}, \label {acoustic-time-step}\end {equation}


$\text {CFL}_{ac} = 0.4$


$c_0$


\begin {equation}\frac {\text {d} {\mathbf {v}}^s}{\text {d} t} = G{\frac {1}{\rho } {\int _{0}^{t} {(\nabla ^2 {\mathbf {v}})} \text {d}t}} \label {simplify-non-hourglass-formulation}\end {equation}


\begin {equation}\frac {\text {d} {\mathbf {v}}_i^s}{\text {d} t} = 2 \xi _E {G\frac {1}{\rho _i} {\int _{0}^{t} {\left (\sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} {\nabla _i W_{ij}} V_j \right )} \text {d}t}}. \label {ENOG-discretization}\end {equation}


$\xi _E$


$h$


$\xi _E$


${\mathbf {a}}^s=\text {d} {\mathbf {v}}^s/\text {d} t$


$(t=0)$


\begin {equation}{\mathbf {a}}_{i}^{s,n+1} = {\mathbf {a}}_{i}^{s,n} + \Delta {\mathbf {a}}_{i}^{s,n+1} \quad n \geq 1. \label {Xeqn26-26}\end {equation}


$a_{i}^{s,1}$


$n=1$


\begin {equation}{\mathbf {a}}_{i}^{s,1} = {2 \xi _E {G\frac {1}{\rho _i} {\int _{0}^{t_1} {\left (\sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} {\nabla _i W_{ij}} V_j \right )} \text {d}t}}} = {2 \xi _E {G\underbrace {\frac {1}{\rho _i} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} {\nabla _i W_{ij}} V_j \right )}_{n=1} t_1}}, \label {ENOG-A-n-1}\end {equation}


$\Delta {\mathbf {a}}_{i}^{s,n+1}$


\begin {align}& \Delta {\mathbf {a}}_{i}^{s,n+1} = 2 \xi _E G\frac {1}{\rho _i} \int _{t_n}^{t_{n+1}} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right ) \mathrm {d}t = 2 \xi _E G \underbrace { \frac {1}{\rho _i} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right )}_{n+1} (t_{n+1}-t_n) . \label {delta_acceleration}\end {align}


$n=1$


$n=2$


$\tau = \mathbf {r} \times \mathbf {F} = m \mathbf {r} \times \mathbf {a}$


$\mathbf {r}$


$\mathbf {F}$


$m$


$\mathbf {a}$


$i$


$n=1$


$\mathbf {a}_{i \rightarrow j_k}^{s,1}$


$i$


$j_k \ (k=1,2,3)$


${\mathbf {a}}_{i\rightarrow j_1}^{s,1}$


${\mathbf {a}}_{i\rightarrow j_2}^{s,1}$


$\mathbf {a}_i^{s,1}={\mathbf {a}}_{i\rightarrow j_1}^{s,1}+{\mathbf {a}}_{i\rightarrow j_2}^{s,1}+{\mathbf {a}}_{i\rightarrow j_3}^{s,1}$


$i$


$j_3$


$i$


$n=1$


\begin {equation}\tau _i^1 = m_i \mathbf {r}_i^1 \times \mathbf {a}_i^{s,1}, \label {Xeqn28-29}\end {equation}


$n=1$


$\mathbf {r}_i^1$


$\mathbf {a}_i^{s,1}$


$\tau _i^1 = 0$


$n=2$


\begin {align}& {\mathbf {a}}_{i}^{s,2} = 2 \xi _E G\frac {1}{\rho _i} \int _{0}^{t_2} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right ) \mathrm {d}t \nonumber \\ & = 2 \xi _E G\frac {1}{\rho _i} \int _{0}^{t_1} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right ) \mathrm {d}t \nonumber + 2 \xi _E G\frac {1}{\rho _i} \int _{t_1}^{t_2} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right ) \mathrm {d}t \nonumber \\ & = 2 \xi _E G \underbrace { \frac {1}{\rho _i} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right )}_{n=1} t_1 + 2 \xi _E G \underbrace { \frac {1}{\rho _i} \left ( \sum _{j} \frac {\mathbf {e}_{ij} \cdot {\mathbf {v}}_{ij}}{r_{ij}} \nabla _i W_{ij} V_j \right )}_{n=2} (t_2-t_1) & \nonumber \\ & = {\mathbf {a}}_{i}^{s,1} + \Delta {\mathbf {a}}_{i}^{s,2}, \label {GNOG-A-n-2}\end {align}


$\Delta {\mathbf {a}}_{i}^{s,2}$


$\Delta {\mathbf {a}}_{i}^{s,2}$


$i$


$j_3$


$n=2$


${\mathbf {a}}_{i}^{s,1}$


$n=2$


\begin {equation}\tau _i^2 = m_i \mathbf {r}_i^2 \times {\mathbf {a}}_{i}^{s,2} = m_i \mathbf {r}_i^2 \times \left ( {\mathbf {a}}_{i}^{s,1} + \Delta {\mathbf {a}}_{i}^{s,2} \right )=m_i \mathbf {r}_i^2 \times {\mathbf {a}}_{i}^{s,1}, \label {Xeqn29-31}\end {equation}


$n=2$


$\mathbf {r}_i^2$


${\mathbf {a}}_{i}^{s,1}$


$n=2$


$\tau _i (t_1) \neq 0$


$i$


$j_1$


$j_2$


$j_3$


$n=2$


$\mathbf {R}_i^1$


$n=2$


$\mathbf {a}_{i}^{s,1}$


$\mathbf {r}_{i}^{2}$


$\mathbf {R}$


$\mathbf {R}_i^1 {\mathbf {a}}_{i}^{s,1}$


$\Delta {\mathbf {a}}_{i}^{s,2}$


$\mathbf {r}_{i}^{2}$


$i$


\begin {equation}\tau _i^2 = m_i \mathbf {r}_i^2 \times {\mathbf {a}}_{i}^{s,2} = m_i \mathbf {r}_i^2 \times \underbrace {\left (\mathbf {R}_i^1 {\mathbf {a}}_{i}^{s,1} + \Delta {\mathbf {a}}_{i}^{s,2} \right )}_{{\mathbf {a}}_{i}^{s,2}}=0. \label {Xeqn30-32}\end {equation}


${\mathbf {a}}_{i}^{s,2} = \mathbf {R}_i^1 {\mathbf {a}}_{i}^{s,1} + \Delta {\mathbf {a}}_{i}^{s,2}$


$n=2$


$\mathbf {R}_i^1$


$n=2$


$n=3$


$i$


\begin {equation}\tau _i^3 = m_i \mathbf {r}_i^3 \times {\mathbf {a}}_{i}^{s,3} = m_i \mathbf {r}_i^3 \times \underbrace {\left (\mathbf {R}_i^2 {\mathbf {a}}_{i}^{s,2} + \Delta {\mathbf {a}}_{i}^{s,3} \right )}_{{\mathbf {a}}_{i}^{s,3}}=0. \label {Xeqn31-33}\end {equation}


$n=3$


$i$


$n+1$


\begin {equation}{\mathbf {a}}_{i}^{s,n+1} = \mathbf {R}_i^n {\mathbf {a}}_{i}^{s,n} + \Delta {\mathbf {a}}_{i}^{s,n+1} \quad n \geq 1. \label {ENOG-A-discretization}\end {equation}


$a_{i}^{s,1}$


$n=1$


$\mathbf {R}$


\begin {equation}\frac {\text {d} \mathbf {R}}{\text {d} t} = \bm {\Omega } \mathbf {R}, \label {rotation-matrix-differential-equation}\end {equation}


$\mathbf {R}(0) = \mathbf {I}$


\begin {equation}\mathbf {R} = \exp \left ( \bm {\Omega } \Delta t \right ), \label {rotation-matrix-solution}\end {equation}


$\bm {\Omega }$


$\Delta t$


$\exp $


\begin {equation}\exp \left ( \bm {\Omega } \Delta t \right ) = \mathbf {I} + \bm {\Omega } \Delta t + \frac {1}{2!}(\bm {\Omega } \Delta t)^2 + \frac {1}{3!}(\bm {\Omega } \Delta t)^3 + \cdots . \label {rotation-matrix-taylor-series}\end {equation}


$\bm {\Omega }$


\begin {equation}\mathbf {R} = \mathbf {I} + \sin (\|\bm {\omega } \| \Delta t) \frac {\bm {\Omega }}{\|\bm {\omega }\|} + \left [1 - \cos (\|\bm {\omega } \| \Delta t) \right ] {\left ( \frac {\bm {\Omega }}{\|\bm {\omega }\|} \right )}^2, \label {rodrigues-rotation-formula}\end {equation}


\begin {equation}\|\bm {\omega } \| = \sqrt {-\frac {1}{2} \text {tr} \left ({\bm {\Omega }^2}\right )}. \label {Xeqn37-39}\end {equation}


$i$


$n$


\begin {equation}\mathbf {R}_i^n = \mathbf {I} + \sin (\|\bm {\omega }_i^n \| \Delta t_{ac}^n) \frac {\bm {\Omega }_i^n}{\|\bm {\omega }_i^n\|} + \left [1 - \cos (\|\bm {\omega }_i^n \| \Delta t_{ac}^n) \right ] {\left ( \frac {\bm {\Omega }_i^n}{\|\bm {\omega }_i^n\|} \right )}^2. \label {rodrigues-rotation-formula-i}\end {equation}


$\mathbf {R}_i^n$


$\overline {\mathbf {R}}^n$


$\overline {\mathbf {R}}^n$


\begin {equation}\overline {\mathbf {R}}^n = \frac {1}{N} \sum _{i=1}^{N} \mathbf {R}_i^n, \label {average-rotation-matrix}\end {equation}


$N$


$n+1$


\begin {equation}{\mathbf {a}}_{i}^{s,n+1} = \overline {\mathbf {R}}^n {\mathbf {a}}_{i}^{s,n} + \Delta {\mathbf {a}}_{i}^{s,n+1} \quad n \geq 1. \label {ENOG-A-discretization-average}\end {equation}


$i$


$\bm {\sigma }^s \cdot \bm {\Omega }^T + \bm {\Omega } \cdot \bm {\sigma }^s$


\begin {equation}\widehat {\mathbf {f}}_{i}=\xi _G G \int _{0}^{t} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\frac {\partial W_{ij}}{\partial {r}_{ij}} V_i V_j} \right ) \text {d}t. \label {penalty-force}\end {equation}


$\int _{0}^{t} \left ( \bullet \right ) \text {d}t$


$i$


$\bullet $


$t=0$


$\widehat {{\mathbf {v}}}_{ij}$


\begin {equation}\widehat {{\mathbf {v}}}_{ij}={{\mathbf {v}}}_{ij}-{{\mathbf {v}}}_{ij}^{linear}={{\mathbf {v}}}_{ij}- \frac {1}{2}\left (\nabla {{\mathbf {v}}}_{i} + \nabla {{\mathbf {v}}}_{j} \right )\cdot {\mathbf {r}}_{ij}. \label {vij_error}\end {equation}


$i$


$\widehat {{\mathbf {a}}}_{i}=\widehat {\mathbf {f}}_{i}/m_i$


$\widehat {{\mathbf {a}}}_{i}$


\begin {equation}\frac {\text {d} \mathbf {v}_i^s}{\text {d} t} = \frac {1}{\rho _i} \sum _j \left ( \bm {\sigma }^s_i + \bm {\sigma }^s_j \right ) \cdot \nabla _i W_{ij} V_j + \widehat {{\mathbf {a}}}_{i}. \label {shear-accelaration-GNOG}\end {equation}


$\xi _G$


$\widehat {{\mathbf {a}}}_{i}$


$\mathbf {R}$


$\widehat {{\mathbf {a}}}_{i}$


$\mathbf {e}_{ij}$


\begin {equation}\widehat {\mathbf {f}}_{i} = \xi _G G \int _{0}^{t} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij} \cdot \mathbf {e}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\nabla _i W_{ij} V_i V_j} \right ) \text {d}t. \label {GNOG-penalty-force-eij}\end {equation}


$n+1$


$\widehat {{\mathbf {a}}}_{i}$


\begin {equation}\widehat {{\mathbf {a}}}_{i}^{n+1} = \overline {\mathbf {R}}^n \widehat {{\mathbf {a}}}_{i}^{n} + \Delta \widehat {{\mathbf {a}}}_{i}^{n+1} \quad n \geq 1. \label {GNOG-A-discretization}\end {equation}


$\widehat {{\mathbf {a}}}_{i}^{1}$


\begin {equation}\widehat {{\mathbf {a}}}_{i}^{1} = \xi _G G \frac {1}{\rho _i} \int _{0}^{t_1} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij} \cdot \mathbf {e}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\nabla _i W_{ij} V_j} \right ) \text {d}t = \xi _G G \underbrace {\frac {1}{\rho _i} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij} \cdot \mathbf {e}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\nabla _i W_{ij} V_j} \right )}_{n=1} t_1. \label {GNOG-A-n-1}\end {equation}


$\Delta \widehat {{\mathbf {a}}}_{i}^{n+1}$


\begin {align}& \Delta \widehat {{\mathbf {a}}}_{i}^{n+1} = \xi _G G \int _{t_n}^{t_{n+1}} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij} \cdot \mathbf {e}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\nabla _i W_{ij} V_i V_j} \right ) \text {d}t = \xi _G G \underbrace { \frac {1}{\rho _i} \left ( \sum _{j} {\frac {\widehat {{\mathbf {v}}}_{ij} \cdot \mathbf {e}_{ij}}{\left \lvert {\mathbf {r}}_{ij} \right \rvert }} {\nabla _i W_{ij} V_i V_j} \right )}_{n+1} (t_{n+1}-t_n) . \label {delta_acceleration_GNOG}\end {align}


$\overline {\mathbf {R}}^n$


$\xi _G=2$


$h = 1.3dp$


$2.6dp$


$dp$


$\xi _E$


$\xi _G$


$L$


$H$


\begin {equation}v_y(x) = v_f\, c_0 \, \frac {f(x)}{f(L)} , \label {eq:2D-plate-initial-velocity}\end {equation}


\begin {equation}\begin {aligned} f(x) &= \left (\sin (kL) + \sinh (kL)\right )\left (\cos (kx) - \cosh (kx)\right ) - \left (\cos (kL) + \cosh (kL)\right )\left (\sin (kx) - \sinh (kx)\right ), \end {aligned} \label {eq:2D-plate-fx}\end {equation}


$v_f$


$c_0$


$kL=1.875$


$\cos (kL)\cosh (kL)=-1$


\begin {equation}\omega ^2 = \frac {E H^2 k^4}{12\, \rho _0 \left (1-\nu ^2\right )}, \label {eq:2D-plate-frequency}\end {equation}


$E$


$\nu $


$\rho _0=\SI {1000}{\kg /\m ^3}$


$E=\SI {2e6}{\Pa }$


$\nu =0.3975$


$L=\SI {0.2}{\m }$


$H=\SI {0.02}{\m }$


$t=0.05$


$v_f = \SI {0.05}{m/s}$


$t = 0.37$


$v_f = \SI {0.05}{m/s}$


$H/dp = 10$


$20$


$40$


$H/dp=40$


$H/dp=10$


$H/dp=20$


$T$


$L$


$H$


$H/dp=30$


$H/dp = 10$


$v_f = \SI {0.05}{m/s}$


$T$


$T$


$T$


$\xi _E$


$\xi _G$


$L = W = \SI {0.4}{\meter }$


$H = \SI {0.01}{\meter }$


$z$


$z$


\begin {equation}v_z(x,y) = \sin \left (\frac {m \pi x}{L}\right ) \sin \left (\frac {n \pi y}{W}\right ), \label {3D-plate-vy}\end {equation}


$m$


$n$


$x$


$y$


\begin {equation}T = \frac {2}{\pi } \left [ \left (\frac {m}{L}\right )^2 + \left (\frac {n}{W}\right )^2 \right ]^{-1} \sqrt {\frac {\rho _0 H}{D}}, \label {3D-plate-period}\end {equation}


$D$


\begin {equation}D = \frac {E H^3}{12(1 - \nu ^2)}. \label {3D-plate-parameter-D}\end {equation}


$\rho _0 = \SI {1000}{\kg /\m ^3}$


$E = \SI {1e8}{\Pa }$


$\nu = 0.3$


$t = \SI {0.01}{\second }$


$(m,n) = (1,1)$


$(2,2)$


$H/dp = 9$


$t = \SI {0.01}{\second }$


$(m,n) = (1,1)$


$(2,2)$


$dp$


$H/dp = 9$


$(m,n) = (1,1)$


$dp$


$T$


$(m,n)$


$H/dp = 9$


$1$


$\mathrm {m}$


$\omega = 50$


$\rho _0 = \SI {1100}{\kg /\m ^3}$


$E = \SI {1.7e7}{\Pa }$


$\nu = 0.45$


$0.05$


$\mathrm {m}$


$\widehat {\mathbf {a}}_{i}$


$59.17\%$


$2.58\%$


$1.12\%$


$0.55\%$


$\xi _G$


$\xi _G$


$\omega = [0, 0, 50]^{\text {T}}\ \text {rad/s}$


$\rho _0 = \SI {1100}{\kg /\m ^3}$


$E = \SI {1.7e7}{\Pa }$


$\nu = 0.3$


$0.05$


$\mathrm {m}$


$\xi _G$


$\xi _G=2$


$R = \SI {3.91e-3}{\meter }$


$\SI {2.346e-2}{\meter }$


$\mathbf {v}_0 = (0, 0, -373)$


$t = 0$


$J_2$


$\rho _0 = \SI {2700}{\kg /\m ^3}$


$E = \SI {7.82e10}{\Pa }$


$\nu = 0.3$


$\sigma _Y = \SI {2.9e8}{\Pa }$


$dp = R/12$


$H = \SI {0.03}{\meter }$


$L = \SI {0.006}{\meter }$


$\mathbf {v}_0 = (0, 0, -227)$


$(0.003, 0, 0)$


$J_2$


$\rho _0 = \SI {8930}{\kg /\m ^3}$


$E = \SI {1.17e11}{\Pa }$


$\nu = 0.35$


$\sigma _Y = \SI {4e8}{\Pa }$


$\kappa = \SI {1e8}{\Pa }$


$dp = L/20$


$s$


$t={60}{\mu }{\rm s}$


$s$


$L/dp=20$


$0.01$


$\mathrm {m}$


$0.05$


$\mathrm {m}$


$\times $


$0.002$


$\mathrm {m}$


$v_0=\SI {3100}{\m /\s }$


$\rho _0 = \SI {8930}{\kg /\m ^3}$


$E = \SI {7.417e10}{\N /\m ^2}$


$\nu = 0.344$


$c_0 = \SI {5328}{\m /\s }$


$\sigma _Y = \SI {3e8}{\N /\m ^2}$


$dp = \SI {0.0002}{\meter }$


$t={8}{\mu }\rm {s}$


$t={8}{\mu }\rm {s}$


$\xi _G = 2$
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Initially, Monaghan [19] and Gray et al. [7] attributed particle clustering and non-physical fractures in elastic materials to tensile 
instability [20]. Gray et al. [7] proposed an artificial stress method that introduces a repulsive force between particle pairs, which 
increases as interparticle distance decreases, thereby preventing particle clustering. This approach gained widespread adoption in 
subsequent research. However, while effectively mitigating particle clustering and non-physical fractures, this method produces 
disordered stress distributions and exhibits zigzag patterns in both stress fields and particle arrangements. These zigzag patterns 
correspond to a numerical instability known as hourglass modes, previously identified in grid-based methods [21,22] and TLSPH 
[23,24].

The emergence of hourglass modes stems from zero-energy modes [25], where specific particle velocity distributions (e.g., Fig. 2 
in Ref.[26]) generate non-rigid rotational deformations that yield zero strain energy [25,27]. The underlying mechanism involves 
mutual cancellation of contributions from neighboring particles during first-order derivative calculations (e.g., velocity gradients), 
leading to erroneous stress estimations. Building on this understanding, Zhang et al. [26] introduced the concept of hourglass modes 
into ULSPH and addressed numerical instabilities from this perspective. Specifically, drawing inspiration from TLSPH treatments 
[24], they reformulated shear acceleration into a Laplacian form of velocity, proposing the essentially non-hourglass formulation 
(SPH-ENOG) [26] to avoid errors inherent in first-order differentiation through second-order derivative computation. Their results 
demonstrated the elimination of both particle clustering/non-physical fractures and zigzag patterns for elastic simulations, yielding 
smooth stress fields and uniform particle distributions.

However, extending this methodology to plastic materials with complex constitutive relations remains challenging due to the 
difficulty in expressing shear acceleration as a second-order velocity derivative for general plasticity models. To address this lim-
itation, Zhang et al. [18] recently proposed the generalized non-hourglass formulation (SPH-GNOG), which introduces a penalty 
force to correct discrepancies between linearly predicted and actual velocity differences of neighboring particle pairs. Unlike SPH-
ENOG’s complete reconstruction of the shear acceleration term, SPH-GNOG incorporates the penalty force as a corrective term in 
the momentum equation. Results confirm SPH-GNOG’s effectiveness in eliminating numerical instabilities for both elastic and plastic 
materials. Nevertheless, Zhang et al. [18] required different modeling coefficients for elastic versus plastic materials, failing to unify 
this parameter.

An additional limitation concerns the inaccurate maintenance of angular momentum in both SPH-ENOG and SPH-GNOG, which 
compromises accuracy in scenarios sensitive to angular momentum. SPH-ENOG exhibits severe angular momentum non-conservation 
due to its complete reformulation of the shear acceleration term [26], while SPH-GNOG’s introduction of merely a corrective term 
results in comparatively minor impacts on overall angular momentum [18]. However, the material-dependent modeling coefficient 
in SPH-GNOG likely originates from angular momentum non-conservation, as plastic deformations involve more irregular particle 
rotations that amplify non-conservation effects.

This study consequently investigates angular momentum conservation in ULSPH while maintaining numerical stability for solid 
material simulations. We first analyze the fundamental causes of angular momentum non-conservation in SPH-ENOG and introduce 
a rotation matrix to properly reorient shear acceleration at each time step, developing the angular-momentum-enhanced essentially 
non-hourglass formulation (SPH-ENOG-A). Recognizing SPH-ENOG-A’s limitation to elastic materials, we extend the angular mo-
mentum correction approach to SPH-GNOG’s penalty force, formulating an angular-momentum-enhanced version (SPH-GNOG-A) 
applicable to both elastic and plastic materials. Although angular momentum non-conservation in SPH-GNOG’s corrective term has 
limited overall impact as noted above, SPH-GNOG-A achieves significant advancement by enabling identical modeling coefficients 
for elastic and plastic materials, as the correction method significantly mitigates the angular momentum non-conservation inher-
ent to plastic deformation. This eliminates material-dependent parameterization and establishes a unified simulation framework for 
different constitutive models.

The remainder of this paper is organized as follows: Section 2 outlines the governing equations for elastic and plastic solids. 
Section 3 describes the fundamental SPH discretization and time integration scheme. Section 4 details the theoretical development of 
the angular-momentum enhanced formulations. Section 5 presents extensive numerical validation, and Section 6 concludes with key 
findings and future research directions. For further in-depth research, the algorithms developed in this work have been implemented 
and open-sourced within the SPHinXsys project [28], available at https://www.sphinxsys.org.

2.  Governing equations and constitutive relations

2.1.  Elasticity

Within the Lagrangian description, the fundamental conservation laws for mass and momentum governing continuum media are 
expressed by:

d𝜌
d𝑡

= −𝜌∇ ⋅ 𝐯, (1)

d𝐯
d𝑡

= 1
𝜌
∇ ⋅ 𝝈 + 𝐠, (2)

where 𝜌 denotes density, 𝐯 represents velocity, 𝝈 is the Cauchy stress tensor, and 𝐠 signifies body force per unit mass.
The total stress tensor 𝝈 admits a decomposition into hydrostatic pressure 𝑝 and deviatoric shear stress 𝝈𝑠:

𝝈 = −𝑝𝐈 + 𝝈𝑠, (3)
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with 𝐈 as the identity tensor. The hydrostatic pressure is computed via an artificial equation of state [7]:
𝑝 = 𝑐20 (𝜌 − 𝜌0), (4)

where 𝜌0 and 𝜌 correspond to initial and current density, respectively. The sound speed 𝑐0 derives from the bulk modulus 𝐾 as 
𝑐0 =

√

𝐾∕𝜌0. This linearized state equation assumes deformation-independent bulk modulus.
Combining (2) and (3), acceleration contributions from volumetric (pressure) and deviatoric (shear) stress components become:

d𝐯𝑝
d𝑡

= −1
𝜌
∇𝑝, (5)

d𝐯𝑠
d𝑡

= 1
𝜌
∇ ⋅ 𝝈𝑠. (6)

Here d𝐯𝑝d𝑡  and d𝐯𝑠d𝑡  denote pressure-induced and shear-induced acceleration components. The total acceleration d𝐯d𝑡  therefore combines 
these terms with gravitational effects: d𝐯d𝑡 = d𝐯𝑝

d𝑡 + d𝐯𝑠
d𝑡 + 𝐠.

Shear stress evolution follows temporal integration of its rate quantity:

𝝈𝑠 = ∫

𝑡

0
𝝈̇𝑠d𝑡. (7)

For linear elastic materials, the Jaumann rate of shear stress 𝝈̇𝑠 takes the form:
𝝈̇𝑠 = 2𝐺𝜺̇𝑠 + 𝝈𝑠 ⋅𝛀𝑇 +𝛀 ⋅ 𝝈𝑠, (8)

where 𝐺 indicates shear modulus. The deviatoric strain rate 𝜺̇𝑠 relates to the full strain rate 𝜺̇ through 𝜺̇𝑠 = 𝜺̇ − 1
𝑑 tr(𝜺̇)𝐈, with 𝑑 = 2, 3

being spatial dimension and tr(⋅) the trace operator. Strain rate 𝜺̇ and spin rate 𝛀 are defined following conventional expressions:
𝜺̇ = 1

2

[

∇𝐯 + (∇𝐯)𝖳
]

, (9)

𝛀 = 1
2

[

∇𝐯 − (∇𝐯)𝖳
]

, (10)

where ∇𝐯 is the velocity gradient tensor and the superscript 𝖳 denotes transpose.

2.2.  Plasticity

The current study employs the 𝐽2 plasticity framework [29], with the yield criterion formulated as:

𝑓 (𝐽2, 𝛼) =
√

2𝐽2 −
√

2
3 (𝜅𝛼 + 𝜎𝑌 ). (11)

Here 𝐽2 ≡ 1
2𝝈

𝑠 ∶ 𝝈𝑠 represents the second deviatoric stress invariant, where 𝜅 denotes the hardening modulus, 𝛼 is the hardening 
parameter, and 𝜎𝑌  signifies the initial yield stress (flow stress).

According to [30], the shear stress evolution in 𝐽2 plasticity follows:

𝝈̇𝑠 = 2𝐺𝜺̇𝑠 − 𝜆̇

√

2𝐺
√

𝐽2
𝝈𝑠 + 𝝈𝑠 ⋅𝛀𝖳 +𝛀 ⋅ 𝝈𝑠. (12)

The plastic multiplier rate 𝜆̇ is determined by [30]:

𝜆̇ = 𝝈𝑠 ∶ 𝜺̇
(1 + 𝜅∕3𝐺)

√

2𝐽2
. (13)

The trial shear stress 𝝈𝑠,trial are first updated based on the stress rate. When the resulting stress violates the yield condition 
(𝑓 > 0), a stress return mapping procedure [29,31] enforces consistency by projecting the stress state back onto the yield surface. 
This correction establishes the following relation between corrected and trial shear stresses [29,31]:

𝝈𝑠 =
𝜅𝛼 + 𝜎𝑌
√

3𝐽 trial2

𝝈𝑠,trial. (14)

3.  Method

3.1.  SPH discretization

Following standard SPH discretization, the continuity equation becomes:
d𝜌𝑖
d𝑡

= 𝜌𝑖
∑

𝑗
𝐯𝑖𝑗 ⋅ ∇𝑖𝑊𝑖𝑗𝑉𝑗 . (15)
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For the volumetric acceleration term, we adopt a Riemann-based discretization [32,33] of the pressure momentum equation:
d𝐯𝑝𝑖
d𝑡

= − 2
𝜌𝑖

∑

𝑗
𝑃 ∗∇𝑖𝑊𝑖𝑗𝑉𝑗 . (16)

This study employs the following SPH notations: 𝑊𝑖𝑗 ≡ 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) denotes the kernel function, with 𝐫 indicating particle position 
and ℎ the smoothing length. Subscripts 𝑖 and 𝑗 identify particles, while 𝑉𝑗 represents the volume of particle 𝑗. The unit vector 
from particle 𝑗 to 𝑖 is 𝐞𝑖𝑗 , and 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 gives their relative velocity. The kernel gradient is defined as ∇𝑖𝑊𝑖𝑗 =

𝜕𝑊 (𝑟𝑖𝑗 ,ℎ)
𝜕𝑟𝑖𝑗

𝐞𝑖𝑗 , where 
𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗 | is inter-particle distance.

The Riemann solution 𝑃 ∗ [32], obtained along 𝐞𝑖𝑗 , resolves inter-particle states:

𝑃 ∗ =
𝜌𝐿𝑐𝐿𝑃𝑅 + 𝜌𝑅𝑐𝑅𝑃𝐿 + 𝜌𝐿𝑐𝐿𝜌𝑅𝑐𝑅(𝑈𝐿 − 𝑈𝑅)

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
. (17)

Left (𝐿) and right (𝑅) Riemann states are assigned as:
{

(𝜌𝐿, 𝑈𝐿, 𝑃𝐿, 𝑐𝐿) = (𝜌𝑖,−𝐯𝑖 ⋅ 𝐞𝑖𝑗 , 𝑝𝑖, 𝑐0𝑖)
(𝜌𝑅, 𝑈𝑅, 𝑃𝑅, 𝑐𝑅) = (𝜌𝑗 ,−𝐯𝑗 ⋅ 𝐞𝑖𝑗 , 𝑝𝑗 , 𝑐0𝑗 ).

(18)

The shear-induced acceleration discretizes to:
d𝐯𝑠𝑖
d𝑡

= 1
𝜌𝑖

∑

𝑗

(

𝝈𝑠
𝑖 + 𝝈𝑠

𝑗

)

⋅ ∇𝑖𝑊𝑖𝑗𝑉𝑗 . (19)

The velocity gradient in (9) adopts the discretization [34]:
∇𝐯𝑖 = −

∑

𝑗
𝐯𝑖𝑗 ⊗

(

𝐁𝑖∇𝑖𝑊𝑖𝑗
)

𝑉𝑗 , (20)

where the kernel gradient correction matrix 𝐁𝑖 [35,36] is:

𝐁𝑖 = −

(

∑

𝑗
𝐫𝑖𝑗 ⊗ ∇𝑖𝑊𝑖𝑗𝑉𝑗

)−1

. (21)

3.2.  Time integration scheme

To enhance computational efficiency, this study implements the dual-criteria time stepping approach [26,37] with distinct advec-
tion (Δ𝑡𝑎𝑑) and acoustic (Δ𝑡𝑎𝑐) time steps.

The advection step Δ𝑡𝑎𝑑 updates particle configurations according to:

Δ𝑡𝑎𝑑 = CFL𝑎𝑑
ℎ

|𝐯|max
, (22)

where CFL𝑎𝑑 = 0.2, ℎ is the smoothing length, and |𝐯|max denotes maximum particle advection speed.
For the update of physical variables such as velocity and density, the acoustic time step follows:

Δ𝑡𝑎𝑐 = CFL𝑎𝑐
ℎ

𝑐0 + |𝐯|max
, (23)

where CFL𝑎𝑐 = 0.4 and 𝑐0 is the sound speed.
The position-based Verlet scheme [38] is employed for the acoustic time integration, details of which can be found in literatures 

[18,39].

4.  Angular-momentum enhanced non-hourglass formulation

This section first presents a re-derivation of the shear acceleration formulation within the SPH-ENOG framework, yielding an 
angular-momentum enhanced variant, designated as SPH-ENOG-A. Given that the original SPH-ENOG formulation is restricted to 
elastic materials, we further extend the derivation methodology to reformulate the penalty force in SPH-GNOG. The resulting SPH-
GNOG-A scheme maintains applicability to both elastic and plastic constitutive behaviors.

It is important to note that the proposed non-hourglass formulation is specifically designed to address the hourglass instability 
within the continuum material. It is not applied to rigid wall interactions, as the contact force calculation (based on the algorithms 
in SPHinXsys [28]) does not suffer from hourglass modes.

4.1.  Angular-momentum enhanced essentially non-hourglass formulation

In the SPH-ENOG, to remove hourglass modes, the second-order derivative of velocity is employed to calculate the shear acceler-
ation, which is expressed as [26]:

d𝐯𝑠
d𝑡

= 𝐺 1
𝜌∫

𝑡

0
(∇2𝐯)d𝑡 (24)
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Fig. 1. Illustration of shear acceleration direction at (a) time step 𝑛 = 1 and (b) time step 𝑛 = 2.

The discrete form of shear acceleration can be written as [26]:
d𝐯𝑠𝑖
d𝑡

= 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡

0

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡. (25)

where 𝜉𝐸 is a positive parameter related to the smoothing length ℎ and the type of kernel function [40]. According to Zhang et al. 
[26], the value of 𝜉𝐸 is set to 3.5 for 2D scenarios and 4.2 for 3D scenarios.

The time integration on the right-hand side of the Eq.  (25) signifies that the shear acceleration (𝐚𝑠 = d𝐯𝑠∕d𝑡) is accumulated from 
the initial time (𝑡 = 0) up to the current time. Mathematically, this can be expressed as:

𝐚𝑠,𝑛+1𝑖 = 𝐚𝑠,𝑛𝑖 + Δ𝐚𝑠,𝑛+1𝑖 𝑛 ≥ 1. (26)

The initial value of 𝑎𝑠,1𝑖  at time step 𝑛 = 1 is given by:

𝐚𝑠,1𝑖 = 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡1

0

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡 = 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=1

𝑡1, (27)

Δ𝐚𝑠,𝑛+1𝑖  is calculated by: 

Δ𝐚𝑠,𝑛+1𝑖 = 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡𝑛+1

𝑡𝑛

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡 = 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1

(𝑡𝑛+1 − 𝑡𝑛). (28)

Although SPH-ENOG is capable of eliminating numerical instabilities in the simulation of elastic materials, its angular momentum 
conservation is severely compromised. As a result, its computational accuracy decreases in cases where angular momentum plays a 
significant role [26].

To analyze angular momentum conservation, we consider four particles initially located at the corners of a square and rotating 
around the center, as illustrated in Fig. 1. In theory, the angular momentum of each particle should remain constant, which requires 
the net torque 𝜏 = 𝐫 × 𝐅 = 𝑚𝐫 × 𝐚 acting on each to be zero. Here, 𝐫 is the position vector, 𝐅 represents the total force, 𝑚 is the mass, 
and 𝐚 stands for acceleration.

The shear acceleration of particle 𝑖 at time step 𝑛 = 1 is given by Eq.  (27), and the summation is over the three neighboring 
particles. Each term 𝐚𝑠,1𝑖→𝑗𝑘

 points along the vector connecting 𝑖 to 𝑗𝑘 (𝑘 = 1, 2, 3). Since 𝐚𝑠,1𝑖→𝑗1
 and 𝐚𝑠,1𝑖→𝑗2

 have equal magnitudes, the 
resultant shear acceleration 𝐚𝑠,1𝑖 = 𝐚𝑠,1𝑖→𝑗1

+ 𝐚𝑠,1𝑖→𝑗2
+ 𝐚𝑠,1𝑖→𝑗3

 thus aligns with the line joining 𝑖 and 𝑗3, as depicted in Fig. 1a.
The torque on particle 𝑖 at this time (𝑛 = 1) is:

𝜏1𝑖 = 𝑚𝑖𝐫1𝑖 × 𝐚𝑠,1𝑖 , (29)

where the superscript “1” represents the time step 𝑛 = 1. Since 𝐫1𝑖  and 𝐚𝑠,1𝑖  are collinear, it follows that 𝜏1𝑖 = 0. The same result applies 
to the other particles, indicating that the total angular momentum is preserved at the first time step.

At the subsequent time step 𝑛 = 2, the shear acceleration is updated as:

𝐚𝑠,2𝑖 = 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡2

0

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡
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Fig. 2. Illustrating the direction of shear acceleration after applying a rotation matrix at (a) time step 𝑛 = 2 and (b) time step 𝑛 = 3.

= 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡1

0

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡 + 2𝜉𝐸𝐺
1
𝜌𝑖 ∫

𝑡2

𝑡1

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

d𝑡

= 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=1

𝑡1 + 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=2

(𝑡2 − 𝑡1)

= 𝐚𝑠,1𝑖 + Δ𝐚𝑠,2𝑖 , (30)

where Δ𝐚𝑠,2𝑖  denotes the shear acceleration increment. The direction of Δ𝐚𝑠,2𝑖  remains aligned with the connection vector between 
particles 𝑖 and 𝑗3 at time step 𝑛 = 2 (Fig. 1b), consistent with the directional analysis of 𝐚𝑠,1𝑖 . The corresponding torque at 𝑛 = 2 is:

𝜏2𝑖 = 𝑚𝑖𝐫2𝑖 × 𝐚𝑠,2𝑖 = 𝑚𝑖𝐫2𝑖 ×
(

𝐚𝑠,1𝑖 + Δ𝐚𝑠,2𝑖
)

= 𝑚𝑖𝐫2𝑖 × 𝐚𝑠,1𝑖 , (31)

where the superscript “2” represents the time step 𝑛 = 2. Because the vectors 𝐫2𝑖  and 𝐚𝑠,1𝑖  are generally not collinear at time step 
𝑛 = 2 (as shown in Fig. 1b), 𝜏𝑖(𝑡1) ≠ 0. Furthermore, calculations show that the torques on all particles (𝑖, 𝑗1, 𝑗2, 𝑗3) point in the same 
direction. This demonstrates that angular momentum is not conserved in the system at time step 𝑛 = 2.

Prior SPH-ENOG formulations failed to resolve angular momentum non-conservation [26]; this study presents an effective solu-
tion to address this fundamental issue. Specifically, we introduce a rotation matrix 𝐑1

𝑖  at time step 𝑛 = 2, which rotates the shear 
acceleration vector 𝐚𝑠,1𝑖  to align with the direction of 𝐫2𝑖 , as shown in Fig. 2a. The method for calculating the rotation matrix 𝐑 will 
be provided later. At this point, since both 𝐑1

𝑖 𝐚
𝑠,1
𝑖  and Δ𝐚𝑠,2𝑖  are parallel to 𝐫2𝑖 , the torque of particle 𝑖 is given by:

𝜏2𝑖 = 𝑚𝑖𝐫2𝑖 × 𝐚𝑠,2𝑖 = 𝑚𝑖𝐫2𝑖 ×
(

𝐑1
𝑖 𝐚

𝑠,1
𝑖 + Δ𝐚𝑠,2𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐚𝑠,2𝑖

= 0. (32)

Here, 𝐚𝑠,2𝑖 = 𝐑1
𝑖 𝐚

𝑠,1
𝑖 + Δ𝐚𝑠,2𝑖  is the shear acceleration at time step 𝑛 = 2 after applying the rotation matrix 𝐑1

𝑖 . For the other three particles, 
the same calculation method shows that their torques are also zero. Therefore, the total torque of the system is zero at 𝑛 = 2, and 
angular momentum is conserved.

Similarly, at time step 𝑛 = 3 (Fig. 2b), the torque of particle 𝑖 is given by:
𝜏3𝑖 = 𝑚𝑖𝐫3𝑖 × 𝐚𝑠,3𝑖 = 𝑚𝑖𝐫3𝑖 ×

(

𝐑2
𝑖 𝐚

𝑠,2
𝑖 + Δ𝐚𝑠,3𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐚𝑠,3𝑖

= 0. (33)

The total torque of the system is also zero at 𝑛 = 3, and angular momentum is conserved.
Therefore, considering the conservation of angular momentum, the acceleration of particle 𝑖 caused by shear forces at time step 

𝑛 + 1 in SPH-ENOG-A can be expressed as:
𝐚𝑠,𝑛+1𝑖 = 𝐑𝑛

𝑖 𝐚
𝑠,𝑛
𝑖 + Δ𝐚𝑠,𝑛+1𝑖 𝑛 ≥ 1. (34)

The initial value of 𝑎𝑠,1𝑖  at time step 𝑛 = 1 is given by Eq.  (27).
As the particle moves from one moment to the next, the rotation matrix 𝐑 are described by the following differential equation 

[41]:
d𝐑
d𝑡

= 𝛀𝐑, (35)
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where the initial value of 𝐑(0) = 𝐈. The solution of the above equation takes the form:
𝐑 = exp (𝛀Δ𝑡), (36)

where 𝛀 is the spin rate, and can be calculated by Eq.  (10). Δ𝑡 denotes the time interval between two consecutive time instants. 
Here, exp denotes the matrix exponential, which can be computed through a Taylor series expansion:

exp (𝛀Δ𝑡) = 𝐈 +𝛀Δ𝑡 + 1
2!
(𝛀Δ𝑡)2 + 1

3!
(𝛀Δ𝑡)3 +⋯ . (37)

Due to the skew-symmetry of 𝛀, the series can be simplified into Rodrigues’ formula [41,42]:

𝐑 = 𝐈 + sin(‖𝝎‖Δ𝑡) 𝛀
‖𝝎‖

+ [1 − cos(‖𝝎‖Δ𝑡)]
(

𝛀
‖𝝎‖

)2
, (38)

where

‖𝝎‖ =
√

−1
2
tr
(

𝛀2
)

. (39)

Thus, in Eq.  (34), the rotation matrix of particle 𝑖 at time step 𝑛 is given by:

𝐑𝑛
𝑖 = 𝐈 + sin(‖𝝎𝑛

𝑖 ‖Δ𝑡
𝑛
𝑎𝑐 )

𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

+
[

1 − cos(‖𝝎𝑛
𝑖 ‖Δ𝑡

𝑛
𝑎𝑐 )

]

( 𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

)2

. (40)

The original SPH-ENOG formulation (Eq.  (25)) strictly enforces pairwise symmetry in its incremental force calculation, ensuring 
exact linear momentum conservation. However, this particle-wise rotation 𝐑𝑛

𝑖  inherently relaxes the constraint of strict linear mo-
mentum conservation in non-uniformly rotating fields. To overcome this limitation, the average rotation matrix 𝐑𝑛 of all particles 
can be computed and uniformly applied to each particle’s shear acceleration update. 𝐑𝑛 is defined as:

𝐑
𝑛
= 1

𝑁

𝑁
∑

𝑖=1
𝐑𝑛
𝑖 , (41)

where 𝑁 is the total number of particles in the system. By doing so, the updated shear acceleration at time step 𝑛 + 1 becomes:
𝐚𝑠,𝑛+1𝑖 = 𝐑

𝑛
𝐚𝑠,𝑛𝑖 + Δ𝐚𝑠,𝑛+1𝑖 𝑛 ≥ 1. (42)

By combining Eqs.  (27), (41), and (42), the acceleration of particle 𝑖 induced by shear forces can be calculated. This approach 
effectively restores strict linear momentum conservation across the system while still significantly enhancing angular momentum 
conservation.

It is important to clarify the inherent limitations of the original SPH-ENOG formulation, particularly regarding objectivity and its 
extension to plasticity. First, in deriving the shear acceleration form (Eq. (25)), the rotational terms from the objective stress rate 
(i.e., 𝝈𝑠 ⋅𝛀𝑇 +𝛀 ⋅ 𝝈𝑠) were intentionally neglected to achieve a simplified second-order velocity derivative structure. Consequently, 
this formulation is not fully objective; it essentially treats the constitutive update as strain-driven without accounting for rigid body 
rotation, leading to the poor angular momentum conservation observed in rotational benchmarks. Second, the SPH-ENOG approach 
bypasses the explicit calculation of shear stress in the momentum update. While shear stress is updated for visualization using Eq. 
(7) and Eq.  (8), it does not actively participate in the acceleration calculation. This characteristic renders the original SPH-ENOG 
unsuitable for plasticity simulations, where explicit stress evaluation is required to check yield criteria and perform return mapping 
algorithms. These limitations motivated the development of the current angular-momentum enhanced formulation (SPH-ENOG-A) to 
restore objectivity, and the generalized formulation (SPH-GNOG) to accommodate plasticity.

The complete update procedure for the SPH-ENOG-A formulation, incorporating the rotation matrix and time integration, is 
summarized in Algorithm 1.

Algorithm 1 Update algorithm for the SPH-ENOG-A formulation.

1: Calculate the initial value of shear acceleration: 𝐚𝑠,1𝑖 = 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=1

𝑡1.

2: Compute shear acceleration increment: Δ𝐚𝑠,𝑛+1𝑖 = 2𝜉𝐸𝐺
1
𝜌𝑖

(

∑

𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1

(𝑡𝑛+1 − 𝑡𝑛).

3: Construct rotation matrix: 𝐑𝑛
𝑖 = 𝐈 + sin(‖𝝎𝑛

𝑖 ‖Δ𝑡
𝑛
𝑎𝑐 )

𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

+
[

1 − cos(‖𝝎𝑛
𝑖 ‖Δ𝑡

𝑛
𝑎𝑐 )

]

(

𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

)2
.

4: Calculate average rotation matrix: 𝐑𝑛
= 1

𝑁
∑𝑁

𝑖=1 𝐑
𝑛
𝑖 .

5: Update total shear acceleration at step 𝑛 + 1: 𝐚𝑠,𝑛+1𝑖 = 𝐑
𝑛
𝐚𝑠,𝑛𝑖 + Δ𝐚𝑠,𝑛+1𝑖 𝑛 ≥ 1.
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4.2.  Angular-momentum enhanced generalized non-hourglass formulation

In SPH-GNOG, a penalty force is incorporated into the momentum equation to address the hourglass modes [18]. The penalty 
force is defined as:

𝐟̂𝑖 = 𝜉𝐺𝐺 ∫

𝑡

0

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
𝑉𝑖𝑉𝑗

⎞

⎟

⎟

⎠

d𝑡. (43)

The time integration term ∫ 𝑡
0 (∙)d𝑡 indicates that the penalty force at point 𝑖 is computed as the cumulative contribution of the 

integrand, represented by ∙, from the initial time (𝑡 = 0) to the current time. ̂𝐯𝑖𝑗 represents the error value between the actual velocity 
difference and the linearly predicted velocity difference, defined as [18]:

𝐯𝑖𝑗 = 𝐯𝑖𝑗 − 𝐯𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑗 = 𝐯𝑖𝑗 −
1
2
(

∇𝐯𝑖 + ∇𝐯𝑗
)

⋅ 𝐫𝑖𝑗 . (44)

The acceleration of particle 𝑖 caused by the penalty force is ̂𝐚𝑖 = 𝐟̂𝑖∕𝑚𝑖. Subsequently, ̂𝐚𝑖 is introduced into the original momentum 
equation Eq.  (19) to calculate the shear acceleration, to remove the hourglass modes.

d𝐯𝑠𝑖
d𝑡

= 1
𝜌𝑖

∑

𝑗

(

𝝈𝑠
𝑖 + 𝝈𝑠

𝑗

)

⋅ ∇𝑖𝑊𝑖𝑗𝑉𝑗 + 𝐚̂𝑖. (45)

The above formula represents the method used in SPH-GNOG to compute the shear acceleration.
However, in SPH-GNOG, the coefficient 𝜉𝐺 must differ between elastic and plastic materials, likely because the correction term 

𝐚̂𝑖 in Eq. (45) does not guarantee angular momentum conservation. In this study, following the approach in Section 4.1, a rotation 
matrix 𝐑 is introduced in SPH-GNOG to enhance the angular momentum conservation of ̂𝐚𝑖.

First, following the derivation process in SPH-ENOG [26], the penalty force is projected onto the direction of 𝐞𝑖𝑗 , which is expressed 
as:

𝐟̂𝑖 = 𝜉𝐺𝐺 ∫

𝑡

0

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑖𝑉𝑗
⎞

⎟

⎟

⎠

d𝑡. (46)

Then, analogous to Eq.  (34), at time step 𝑛 + 1, the value of ̂𝐚𝑖 is given as:
𝐚̂𝑛+1𝑖 = 𝐑

𝑛
𝐚̂𝑛𝑖 + Δ𝐚̂𝑛+1𝑖 𝑛 ≥ 1. (47)

The initial value of ̂𝐚1𝑖  is given by:

𝐚̂1𝑖 = 𝜉𝐺𝐺
1
𝜌𝑖 ∫

𝑡1

0

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑗
⎞

⎟

⎟

⎠

d𝑡 = 𝜉𝐺𝐺
1
𝜌𝑖

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑗
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=1

𝑡1. (48)

Δ𝐚̂𝑛+1𝑖  is calculated by: 

Δ𝐚̂𝑛+1𝑖 = 𝜉𝐺𝐺 ∫

𝑡𝑛+1

𝑡𝑛

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑖𝑉𝑗
⎞

⎟

⎟

⎠

d𝑡 = 𝜉𝐺𝐺
1
𝜌𝑖

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑖𝑉𝑗
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1

(𝑡𝑛+1 − 𝑡𝑛). (49)

The rotation matrix 𝐑𝑛 is computed via the same procedure as in Eq.  (40) and Eq.  (41). With this approach, the proposed SPH-
GNOG-A ensures a consistent coefficient of 𝜉𝐺 = 2 for both elastic and plastic materials.

The update procedure for the SPH-GNOG-A formulation is summarized in Algorithm 2. 

5.  Numerical examples

In this section, we assess a series of benchmark problems and compare the outcomes against analytical solutions and previously 
reported numerical results, both qualitatively and quantitatively. For clarity, we adopt the following abbreviations for the SPH 
formulations considered in this study: SPH-OG denotes the original ULSPH method; SPH-OAS, the original ULSPH with artificial 
stress [7]; SPH-ENOG, the essentially non-hourglass ULSPH formulation [26]; SPH-GNOG, the generalized non-hourglass ULSPH 
formulation [18]; SPH-ENOG-A, the proposed essentially non-hourglass ULSPH with angular-momentum enhancement; and SPH-
GNOG-A, the proposed generalized non-hourglass ULSPH with angular-momentum enhancement.

In this study, all simulations employ the 5th-order Wendland kernel [43] with smoothing length ℎ = 1.3𝑑𝑝 and cut-off radius 2.6𝑑𝑝, 
where 𝑑𝑝 denotes the initial particle spacing. The modeling coefficients 𝜉𝐸 (3.5 for 2D cases and 4.2 for 3D cases) and 𝜉𝐺 (2.0) were 
determined empirically through systematic numerical calibration experiments, and these values are kept constant across all cases 
presented in this study. Incorporation of the kernel gradient correction [24,44,45] into the governing equations is expected to further 
enhance accuracy and convergence. This will be investigated in future work and is beyond the scope of the present study.
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Algorithm 2 Update algorithm for the SPH-GNOG-A formulation.

1: Calculate the initial value of acceleration induced by penalty force: ̂𝐚1𝑖 = 𝜉𝐺𝐺
1
𝜌𝑖

⎛

⎜

⎜

⎝

∑

𝑗

𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗
|

|

|

𝐫𝑖𝑗
|

|

|

∇𝑖𝑊𝑖𝑗𝑉𝑗
⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛=1

𝑡1.

2: Compute the increment of acceleration induced by penalty force: Δ𝐚̂𝑛+1𝑖 = 𝜉𝐺𝐺
1
𝜌𝑖

⎛

⎜

⎜

⎝
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𝑗
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⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1

(𝑡𝑛+1 − 𝑡𝑛).

3: Construct rotation matrix: 𝐑𝑛
𝑖 = 𝐈 + sin(‖𝝎𝑛

𝑖 ‖Δ𝑡
𝑛
𝑎𝑐 )

𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

+
[

1 − cos(‖𝝎𝑛
𝑖 ‖Δ𝑡

𝑛
𝑎𝑐 )

]

(

𝛀𝑛
𝑖

‖𝝎𝑛
𝑖 ‖

)2
.

4: Calculate average rotation matrix: 𝐑𝑛
= 1

𝑁
∑𝑁

𝑖=1 𝐑
𝑛
𝑖 .

5: Compute the acceleration induced by penalty force at step 𝑛 + 1: ̂𝐚𝑛+1𝑖 = 𝐑
𝑛
𝐚̂𝑛𝑖 + Δ𝐚̂𝑛+1𝑖 𝑛 ≥ 1.

6: Update the total shear acceleration at step 𝑛 + 1: 𝐚𝑠,𝑛+1𝑖 = 1
𝜌𝑖

∑

𝑗

(

𝝈𝑠
𝑖 + 𝝈𝑠

𝑗

)

⋅ ∇𝑖𝑊𝑖𝑗𝑉𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1

+𝐚̂𝑛+1𝑖 .

Fig. 3. 2D oscillating plate: model setup.

5.1.  Elastic examples

This subsection evaluates the stability, convergence, and accuracy of the proposed SPH-ENOG-A and SPH-GNOG-A formulations 
via a series of elastic solid dynamics benchmarks, assessing their performance across various deformation scenarios.

5.1.1.  2D oscillating plate
A 2D elastic plate of length 𝐿 and thickness 𝐻 is clamped at the left edge, forming a cantilever (Fig. 3) [7,26,39,46]. Numerical 

results are compared against classical theory [47] and prior computations [7,18,26]. An observation point is placed at the mid-span 
of the free end to record the vertical deflection, defined as positive upward.

A transverse initial velocity is prescribed as:

𝑣𝑦(𝑥) = 𝑣𝑓 𝑐0
𝑓 (𝑥)
𝑓 (𝐿)

, (50)

with the mode shape:
𝑓 (𝑥) = (sin(𝑘𝐿) + sinh(𝑘𝐿))(cos(𝑘𝑥) − cosh(𝑘𝑥)) − (cos(𝑘𝐿) + cosh(𝑘𝐿))(sin(𝑘𝑥) − sinh(𝑘𝑥)), (51)

where 𝑣𝑓  is a user-specified amplitude, 𝑐0 is the sound speed, and 𝑘𝐿 = 1.875 is the first-mode root of cos(𝑘𝐿) cosh(𝑘𝐿) = −1.
The theoretical natural frequency is:

𝜔2 = 𝐸𝐻2𝑘4

12 𝜌0
(

1 − 𝜈2
) , (52)

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. Material and geometric parameters follow [7,48]: 𝜌0 = 1000 kg∕m3, 𝐸 = 2 × 106 Pa, 
𝜈 = 0.3975, 𝐿 = 0.2m, and 𝐻 = 0.02m.

Fig. 4 presents a comparative analysis of the von Mises stress distribution and particle arrangement in the 2D oscillating plate 
simulation at various time steps, employing different numerical schemes. Fig. 4a, corresponding to the original SPH formulation 
without hourglass control (SPH-OG) [26], exhibits severe numerical pathologies, including non-physical fracture formation and dis-
ordered particle patterns, indicative of strong numerical instabilities. The outcome from SPH-OAS [26], shown in Fig. 4b, demon-
strates a marked improvement by preventing fracture formation; however, a pronounced zigzag stress pattern and particle disorder 
emerge over time (𝑡 = 0.37 s), reflecting the accumulation of spurious numerical modes. In contrast, both the SPH-ENOG (Fig. 4c) and 
SPH-GNOG (Fig. 4d) formulations produce numerically stable results, characterized by smooth stress transitions and a well-ordered 
particle configuration throughout the simulation. The proposed angular-momentum enhancing variants, SPH-ENOG-A (Fig. 4e) and 
SPH-GNOG-A (Fig. 4f), yield outcomes of equally high quality-displaying uniform particle distributions and physically plausible stress 
fields.
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Fig. 4. 2D oscillating plate: evolution of particle configuration with time (𝑡 = 0.05 s and 0.37 s) for (a) SPH-OG [26], (b) SPH-OAS [7,26], (c) 
SPH-ENOG [26], and, (d) SPH-GNOG [18], (e) SPH-ENOG-A, and (f) SPH-GNOG-A. Here, 𝑣𝑓 = 0.05m∕s. The particles are colored by von Mises 
stress.

Fig. 5 presents a convergence study of the proposed SPH-ENOG-A and SPH-GNOG-A formulations. Subfigures (a) and (b) depict 
the temporal evolution of deflection at three different spatial resolutions (𝐻∕𝑑𝑝 = 10, 20, and 40). The deflection curves demonstrate 
diminishing discrepancies between adjacent resolutions as the resolution is refined, demonstrating the convergence behavior of both 
methods-a finding consistent with established literatures [7,16,24,48]. Subfigures (c) and (d) present a quantitative convergence 
analysis based on the error relative to the reference solution at the finest resolution (𝐻∕𝑑𝑝 = 40). The convergence rates, calculated 
from the error norms between solutions at 𝐻∕𝑑𝑝 = 10, 𝐻∕𝑑𝑝 = 20 and the reference, are approximately 1.5 for both SPH-ENOG-A 
and SPH-GNOG-A.

Furthermore, the predictive capability of the proposed formulations is quantitatively assessed. Table 1 compares the computed 
first oscillation periods of the 2D oscillating plate against theoretical values across a range of initial velocities, including results 
from multiple established SPH schemes such as the transport-velocity formulation (SPH-TVF) [46] and the unified transport-velocity 
formulation (SPH-UTVF) [46]. The newly developed SPH-ENOG-A and SPH-GNOG-A demonstrate errors comparable to those of 
existing approaches, with the latter showing particularly consistent performance independent of the initial velocity magnitude. This 
comparison confirms that the proposed methods achieve numerical accuracy on par with state-of-the-art SPH formulations for solid 
dynamics. It is worth noting that in this particular benchmark, where angular momentum conservation is less critical, both SPH-
ENOG and SPH-GNOG are capable of delivering accurate results, similar to those achieved by their angular-momentum enhancing 
counterparts, SPH-ENOG-A and SPH-GNOG-A. It should be noted that SPH-ENOG-A is limited to elastic constitutive models. In 
contrast, SPH-GNOG-A offers unified applicability to both elastic and plastic materials, providing enhanced versatility for practical 
engineering simulations involving complex material responses.

Fig. 6 illustrates the long-term stability of three SPH schemes evaluated through an extended simulation spanning over 30 oscilla-
tion periods, with all methods employing a single time-step size to minimize accumulated integration errors. While SPH-OAS exhibits 
rapid amplitude attenuation, indicating excessive numerical dissipation, both proposed formulations (SPH-ENOG-A and SPH-GNOG-
A) maintain stable oscillation amplitudes with only minimal decay. Furthermore, pronounced hourglass modes emerge in SPH-OAS at 
later stages, whereas the proposed formulations preserve smooth stress distributions and uniform particle arrangements throughout 
the entire simulation duration, demonstrating superior numerical stability for long-term dynamics.
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Fig. 5. 2D oscillating plate: convergence study of the proposed SPH-ENOG-A and SPH-GNOG-A; (a)-(b) temporal evolution of deflection at various 
resolutions; (c)-(d) convergence analysis. 𝑣𝑓 = 0.05m∕s.

Table 1 
2D oscillating plate: comparison of the first oscillation period 𝑇  obtained from the present SPH-ENOG-
A and SPH-GNOG-A formulations, various existing SPH methods (SPH-OAS [7], SPH-TVF [46], SPH-
UTVF [46], SPH-ENOG [26], SPH-GNOG [18]), and analytical solutions. Here, 𝐿=0.2, 𝐻=0.02 and 
𝐻∕𝑑𝑝 = 30.

𝑣𝑓  0.001  0.01  0.03  0.05
𝑇  (Analytical)  0.254  0.254  0.254  0.254
𝑇  (SPH-OAS [7])  0.273  0.273  0.275  0.278
𝑇  (SPH-TVF [46])  0.275  0.277  0.283  0.284
𝑇  (SPH-UTVF [46])  0.274  0.271  0.271  0.271
𝑇  (SPH-ENOG [26])  0.262  0.263  0.268  0.279
𝑇  (SPH-GNOG [18])  0.275  0.273  0.272  0.272
𝑇  (SPH-ENOG-A)  0.265  0.265  0.266  0.269
𝑇  (SPH-GNOG-A)  0.274  0.274  0.274  0.275

The first oscillation period 𝑇  for the 2D oscillating plate, obtained using different cut-off radii, is presented in Table 2. The results 
demonstrate minimal variation in 𝑇  across the tested range. This indicates that the chosen cut-off radius is sufficient for solution 
convergence. Furthermore, the consistency observed across all radii confirms that the current modeling coefficients (𝜉𝐸 and 𝜉𝐺) 
remain applicable for different kernel supports.

5.1.2.  3D oscillating plate
This section examines the oscillatory behavior of a 3D thin plate under simply-supported boundary conditions applied along all four 

lateral edges. As illustrated in Fig. 7, the model consists of an elastic plate with dimensions 𝐿 = 𝑊 = 0.4m and thickness 𝐻 = 0.01m, 
following established benchmarks in the literature [15,24,49]. The simply-supported condition is enforced by constraining the out-
of-plane displacement (i.e., along the 𝑧-direction) of particles located at the midpoints of each side. An observation point is placed at 
the plate center to record vertical deflections over time.
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Fig. 6. 2D oscillating plate: long-term stability assessment of SPH-ENOG-A and SPH-GNOG-A formulations compared with SPH-OAS [26]. 𝐻∕𝑑𝑝 = 10
and 𝑣𝑓 = 0.05m∕s.

Table 2 
2D oscillating plate: comparison of the first oscillation period 𝑇  calculated using different cut-off radii.

Method Cut-off radius 𝑣𝑓

 0.001  0.01  0.03  0.05

𝑇  (SPH-ENOG-A)
2.6𝑑𝑝  0.265  0.265  0.266  0.269
2.8𝑑𝑝  0.265  0.265  0.267  0.270
3.0𝑑𝑝  0.267  0.266  0.269  0.271

𝑇  (SPH-GNOG-A)
2.6𝑑𝑝  0.274  0.274  0.274  0.275
2.8𝑑𝑝  0.273  0.273  0.274  0.274
3.0𝑑𝑝  0.273  0.273  0.273  0.273

Fig. 7. 3D oscillating plate: model setup.

The plate is initialized with a velocity field in the 𝑧-direction defined as:
𝑣𝑧(𝑥, 𝑦) = sin

(𝑚𝜋𝑥
𝐿

)

sin
( 𝑛𝜋𝑦
𝑊

)

, (53)

where 𝑚 and 𝑛 are modal integers governing the vibration shape in the 𝑥- and 𝑦-directions, respectively.
The theoretical oscillation period for this configuration is given by:

𝑇 = 2
𝜋

[

(𝑚
𝐿

)2
+
( 𝑛
𝑊

)2
]−1√𝜌0𝐻

𝐷
, (54)

where 𝐷 denotes the flexural rigidity, calculated as:

𝐷 = 𝐸𝐻3

12(1 − 𝜈2)
. (55)

The material properties are assigned as follows: density 𝜌0 = 1000 kg∕m3, Young’s modulus 𝐸 = 1 × 108 Pa, and Poisson’s ratio 𝜈 = 0.3.
The particle distribution and von Mises stress profile are first examined to assess the numerical stability of the proposed for-

mulations. Fig. 8 illustrates the deformed configurations and stress distributions obtained using SPH-ENOG-A and SPH-GNOG-A at 
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Fig. 8. 3D oscillating plate: deformed configurations from SPH-ENOG-A and SPH-GNOG-A at 𝑡 = 0.01 s for vibration modes (𝑚, 𝑛) = (1, 1) and (2, 2), 
respectively (𝐻∕𝑑𝑝 = 9).

Fig. 9. 3D oscillating plate: (a)-(b) time histories of deflection under different initial particle spacings (𝑑𝑝) for SPH-ENOG-A and SPH-GNOG-A; (c)-
(d) temporal evolution of elastic strain energy, kinetic energy, and total energy for SPH-ENOG-A and SPH-GNOG-A (𝐻∕𝑑𝑝 = 9). All cases correspond 
to mode (𝑚, 𝑛) = (1, 1).

𝑡 = 0.01 s for vibration modes (𝑚, 𝑛) = (1, 1) and (2, 2). Both schemes produce smooth stress profiles and maintain uniform particle dis-
tributions without non-physical fractures or hourglass instabilities, demonstrating their robustness in handling complex deformation 
modes. Fig. 9 presents the time history of deflection and energy evolution for both SPH-ENOG-A and SPH-GNOG-A. Subfigures (a) 
and (b) show that the deflection curves converge consistently as the resolution increases (i.e., decreasing initial particle spacing 𝑑𝑝), 
indicating the spatial convergence of the proposed methods. Subfigures (c) and (d) depict the evolution of elastic strain energy, kinetic 
energy, and total energy over time. Although minor fluctuations are observed due to numerical effects, the total energy exhibits a 
gradually decaying trend-consistent with the numerical dissipation inherent in the Riemann solver employed. In addition, we plan to 
incorporate entropy-stable methods in future work, following established frameworks [50–52], to enforce non-negativity of entropy 
production. This is expected to eliminate the energy oscillations and ensure a monotonic decay of the total system energy.
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Fig. 10. 2D spinning plate: model setup.

Fig. 11. 2D spinning plate: evolution of particle configuration at different instants for (a) SPH-ENOG-A, colored by pressure, and (b) SPH-GNOG-A, 
colored by von Mises stress.

Table 3 
3D oscillating plate: comparison of the first oscillation period 𝑇  obtained by SPH-ENOG-A, SPH-GNOG-A and analytical solutions 
for different vibration modes (𝑚, 𝑛) and resolutions.

Method (𝑚, 𝑛)
 Oscillation Period 𝑇

Analytical
𝐻∕𝑑𝑝 = 3 𝐻∕𝑑𝑝 = 5 𝐻∕𝑑𝑝 = 9

SPH-ENOG-A
(1, 1)  0.0573  0.0543  0.0528  0.0532
(2, 1)  0.0231  0.0218  0.0212  0.0213
(2, 2)  0.0149  0.0141  0.0136  0.0133

SPH-GNOG-A
(1, 1)  0.0581  0.0553  0.0538  0.0532
(2, 1)  0.0241  0.0226  0.0220  0.0213
(2, 2)  0.0153  0.0144  0.0138  0.0133

Furthermore, the first oscillation periods under different vibration modes and resolutions are summarized in Table 3. The results 
confirm that both SPH-ENOG-A and SPH-GNOG-A yield period values that converge toward the theoretical solution as resolution 
increases. At the highest resolution considered (𝐻∕𝑑𝑝 = 9), the maximum error across all vibration modes remains below 4%, under-
scoring the accuracy and convergence of the proposed methods.

5.1.3.  2D spinning plate
To evaluate the capability of the proposed algorithm in suppressing numerical instabilities under tension-dominated conditions, a 

2D elastic spinning plate case is considered [18,39,53]. As depicted in Fig. 10, a square plate of unit side length (1m) is initialized with 
a rigid-body rotation about its center at an angular velocity 𝜔 = 50 rad/s, in the absence of initial deformation or external constraints. 
Under these ideal conditions, both linear and angular momentum are theoretically conserved. While the preceding benchmarks fo-
cused on non-rotational scenarios, this case specifically examines the angular momentum conservation properties of the proposed 
SPH-ENOG-A and SPH-GNOG-A formulations. Material properties are defined as [54]: initial density 𝜌0 = 1100 kg∕m3, Young’s mod-
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Fig. 12. 2D spinning plate: time histories of displacement and velocity at the observation point, along with linear/angular momentum and energies, 
for (a) SPH-ENOG [26], (b) SPH-ENOG-A, (c) SPH-GNOG [18], and (d) SPH-GNOG-A.

ulus 𝐸 = 1.7 × 107 Pa, and Poisson’s ratio 𝜈 = 0.45. The initial particle spacing is set to 0.05m. An observation point is placed at the 
top-right corner of the plate to track the time histories of displacement and velocity.

Fig. 11 presents the temporal evolution of (a) pressure distribution from SPH-ENOG-A and (b) von Mises stress distribution from 
SPH-GNOG-A. The consistently negative pressure in Fig. 11a indicates a tension-dominated state throughout the plate. Both methods 
exhibit smooth pressure/stress profiles and maintain uniform particle distributions, with no evidence of particle clustering or numer-
ical fractures-demonstrating that the proposed formulations effectively suppress numerical instabilities even under predominantly 
tensile loading conditions.

Fig. 12 provides a comprehensive comparison of the temporal evolution of displacement and velocity at the observation point, 
along with linear momentum, angular momentum, and energy histories, for four SPH schemes: SPH-ENOG [26], SPH-ENOG-A, SPH-
GNOG [18], and SPH-GNOG-A. In the case of SPH-ENOG (row a), the velocity history (subfigure a2) exhibits noticeable fluctuations 
in amplitude, which can be attributed to the poor conservation of angular momentum (subfigure a3). This angular momentum 
non-conservation further induces unphysical oscillations in kinetic energy. When the angular-momentum enhanced SPH-ENOG-A 
is employed (row b), the angular momentum remains stably (subfigure b3), showing a significant enhancement compared to SPH-
ENOG. Consequently, the conservation of total energy is significantly improved. For the SPH-GNOG (row c), the level of angular-
momentum conservation (subfigure c3) is substantially better than that of SPH-ENOG (subfigure a3). This is because the corrective 
term ̂𝐚𝑖 in SPH-GNOG’s shear acceleration discretization (Eq.  (45)) introduces only a minor perturbation to the original formulation, 
whereas SPH-ENOG entirely reconstructs the shear acceleration term (Eq.  (25)), leading to more severe non-conservation. With the 
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Fig. 13. 2D spinning plate: evolution of angular momentum error for different numerical schemes.

Fig. 14. 3D spinning cube: model setup.

Fig. 15. 3D spinning cube: evolution of particle configuration at different instants for (a) SPH-ENOG-A, colored by pressure, and (b) SPH-GNOG-A, 
colored by von Mises stress.
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Fig. 16. 3D spinning cube: temporal evolution of angular momentum computed using (a) SPH-ENOG-A and (b) SPH-GNOG-A.

Fig. 17. Model setup for (a) round Taylor bar and (b) square Taylor bar.

introduction of SPH-GNOG-A (row d), the corrective term is reformulated to improve angular momentum conservation. Furthermore, 
linear momentum conservation is also maintained with high fidelity (subfigure a3-d3), demonstrating that the method successfully 
resolves the angular momentum issue without introducing global linear momentum drift in such standard benchmarks.

Fig. 13 quantifies the temporal evolution of the angular momentum deviation from its theoretical value across all schemes. The 
results clearly illustrate the enhanced performance of the new numerical treatments concerning angular momentum conservation. 
For materials modeled using the original SPH-ENOG scheme, a severe maximum error of 59.17% was observed. The application of 
the new stabilization technique in SPH-ENOG-A radically addresses this issue, slashing the peak error to a mere 2.58%. This dramatic 
reduction highlights the critical role of SPH-ENOG-A in ensuring robust angular momentum preservation for highly elastic simulations. 
Furthermore, even for the already low-error baseline provided by SPH-GNOG (maximum error 1.12%), its modified counterpart, SPH-
GNOG-A, achieves a worthwhile improvement, reducing the maximum error to 0.55%. This refinement indicates that SPH-GNOG-A 
serves to fine-tune the accuracy of the velocity and displacement fields.

Although the improvement in angular momentum conservation achieved by SPH-GNOG-A over SPH-GNOG is modest, a conse-
quence of the limited influence of the corrective term, its primary advantage lies in establishing a unified applicability for the modeling 
coefficient 𝜉𝐺 across both elastic and plastic materials. In stark contrast, the original SPH-GNOG formulation necessitated the use of 
distinct 𝜉𝐺 values for elastic and plastic materials [18]. This divergence was due to the nature of plastic deformation, which induces 
more irregular and complex rotations that significantly amplify the effects of angular momentum non-conservation. SPH-GNOG-A 
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Fig. 18. Round Taylor bar: longitudinal section view showing temporal evolution of particle configurations for (a) SPH-OG [18] and (b) SPH-GNOG-
A. Particles are colored by von Mises stress (𝑑𝑝 = 𝑅∕12).

Fig. 19. Round Taylor bar: temporal evolution of (a) length and (b) radius of the bar at various resolutions. The results are compared with the final 
values of length and radius obtained from HEMP [59], CSQ [60], FLIP [61], and RKPM [57].

effectively eliminates this dependency, thereby guaranteeing consistent and robust computational performance irrespective of the 
material’s mechanical state.

5.1.4.  3D spinning cube
To further assess the conservation characteristics of the proposed formulations in 3D settings, the spinning cube benchmark is 

employed. Adopting the configuration from Lee et al. [55], a unit-side-length cube is set in rigid-body rotation about its centroid 
with an angular velocity of 𝜔 = [0, 0, 50]T rad/s, free from external constraints or initial deformation, as illustrated in Fig. 14. This 
case extends the previous 2D spinning plate analysis to three dimensions, providing a more comprehensive assessment of the angular 
momentum conservation capabilities of SPH-ENOG-A and SPH-GNOG-A formulations. The cube is modeled as an elastic solid with the 
following properties [55]: density 𝜌0 = 1100 kg∕m3, Young’s modulus 𝐸 = 1.7 × 107 Pa, and Poisson’s ratio 𝜈 = 0.3. The discretization 
employs an initial particle spacing of 0.05m.

Fig. 15 illustrates the dynamic response of the 3D spinning cube, with (a) SPH-ENOG-A depicting pressure evolution and (b) 
SPH-GNOG-A showing von Mises stress development. Both numerical approaches yield physically plausible results, as evidenced 
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Fig. 20. Square Taylor bar: temporal evolution of particle configurations for (a) SPH-OG [18] and (b) SPH-GNOG-A. Particles are colored by von 
Mises stress (𝑑𝑝 = 𝐿∕20).

by the well-preserved particle organization and absence of stress anomalies throughout the simulation. The smooth transitions in 
both pressure and stress fields, coupled with maintained particle homogeneity, confirm the numerical robustness of the proposed 
formulations in handling 3D spinning motions. Fig. 16 compares the temporal evolution of angular momentum for the SPH-ENOG-A 
and SPH-GNOG-A formulations. Both exhibit superb conservation properties, with angular momentum remaining nearly constant 
throughout the simulation. Specifically, the maximum relative error is 2.67% for SPH-ENOG-A and 1.18% for SPH-GNOG-A.

5.2.  Plastic examples

While the above numerical examples have focused on elastic materials to validate both SPH-ENOG-A and SPH-GNOG-A formu-
lations, it is important to note that SPH-ENOG-A is restricted to elastic material modeling, whereas SPH-GNOG-A maintains unified 
applicability to both elastic and plastic materials. Consequently, the following cases employ a plastic benchmark to evaluate the 
stability and accuracy of SPH-GNOG-A. Notably, unlike the original SPH-GNOG [18] which required scaling the modeling coefficient 
𝜉𝐺 for plastic materials, the proposed SPH-GNOG-A enables the use of a consistent 𝜉𝐺 = 2 value across different material types.

5.2.1.  Round Taylor bar
We now consider a classic impact problem originally introduced by Taylor [56] to measure yield properties, which has been widely 

adopted for validating elastoplastic material models [57,58]. As illustrated in Fig. 17a, a cylindrical bar with an initial radius 𝑅 =
3.91 × 10−3 m and length 2.346 × 10−2 m impacts a rigid frictionless wall with an initial velocity 𝐯0 = (0, 0,−373) m/s. The simulation 
begins at 𝑡 = 0 when the bar first contacts the wall. Material response is described by a 𝐽2 model with perfect plasticity [57], using 
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Fig. 21. High-velocity impact: model setup (unit: m).

Fig. 22. High-velocity impact: evolution of von Mises stress with the present SPH-GNOG-A at different times.

Fig. 23. High-velocity impact: deformation of projectile and target at 𝑡 = 8𝜇s obtained with different algorithms, i.e., (a) BAL [64], (b) MON [64], 
(c) CON [64], (d) SAV1 [64], (e) SAV2 [64], (f) adaptive total Lagrangian Eulerian SPH [65], (g) Xiao and Liu’s study [66], and (h) the present 
SPH-GNOG-A.
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Table 4 
Square Taylor bar: the x-coordinate of the observation point 𝑠 at the final moment (𝑡 = 60𝜇s).

𝐿∕𝑑𝑝 = 8 𝐿∕𝑑𝑝 = 12 𝐿∕𝑑𝑝 = 16 𝐿∕𝑑𝑝 = 20  Haider et al. [62]
 x-coordinate (mm) 5.21 5.91 6.46 6.86 6.93

the following parameters [57]: density 𝜌0 = 2700 kg∕m3, Young’s modulus 𝐸 = 7.82 × 1010 Pa, Poisson’s ratio 𝜈 = 0.3, and yield stress 
𝜎𝑌 = 2.9 × 108 Pa.

Fig. 18 displays particle configurations (longitudinal section) during the impact of a cylindrical Taylor bar. Results are reported 
for SPH-OG [18] (Fig. 18a) and for the proposed SPH-GNOG-A formulation (Fig. 18b). Owing to the bar’s axisymmetric geometry and 
the initially isotropic particle distribution, both methods preserve a largely uniform particle arrangement. However, SPH-OG yields 
noticeably non-smooth von Mises stress fields, whereas SPH-GNOG-A produces smoother stress distributions with minimal numerical 
artifacts across the domain, indicating effective suppression of hourglass modes under plastic deformation. Fig. 19 quantifies the 
time evolution of the bar length and radius at multiple spatial resolutions. Dotted curves correspond to SPH-GNOG-A at different 
discretization levels, while solid lines denote reference solutions from established methods, including HEMP [59], CSQ [60], FLIP 
[61], and RKPM [57]. The SPH-GNOG-A solutions converge toward the published benchmarks as the resolution increases, thereby 
confirming both the accuracy and the spatial convergence properties of the proposed formulation.

5.2.2.  Square Taylor bar
This subsection extends the Taylor bar impact analysis to a square cross-section geometry, providing an additional benchmark 

for evaluating the proposed formulations under more complex stress states. As depicted in Fig. 17b, a square bar with initial height 
𝐻 = 0.03m and cross-sectional side length 𝐿 = 0.006m impacts a rigid wall with initial velocity 𝐯0 = (0, 0,−227) m/s, following the 
configuration established in [62]. An observation point is positioned at coordinates (0.003, 0, 0) m to track displacement history 
during deformation. Material behavior is modeled using a 𝐽2 plasticity framework incorporating linear isotropic hardening [62]. The 
constitutive parameters are specified as follows: density 𝜌0 = 8930 kg∕m3, Young’s modulus 𝐸 = 1.17 × 1011 Pa, Poisson’s ratio 𝜈 = 0.35, 
initial yield stress 𝜎𝑌 = 4 × 108 Pa, and hardening modulus 𝜅 = 1 × 108 Pa. This configuration introduces distinct corner effects and 
stress concentration patterns compared to the cylindrical Taylor bar case, offering enhanced validation of the algorithm’s capability 
to handle complex plastic flow geometries.

Fig. 20 compares the deformation patterns of the square Taylor bar simulated using SPH-OG and the proposed SPH-GNOG-A 
formulation, with particle configurations colored by von Mises stress. The SPH-OG results exhibit pronounced particle disordering, 
while SPH-GNOG-A maintains coherent particle arrangements throughout the impact process, demonstrating enhanced numerical 
stability in handling severe plastic deformation. Convergence analysis is quantitatively assessed in Table 4, which presents the final 
x-coordinate of observation point 𝑠 at various spatial resolutions. The SPH-GNOG-A results show systematic convergence toward the 
reference solution by Haider et al. [62] as resolution increases, with the finest discretization (𝐿∕𝑑𝑝 = 20) achieving close agreement. 
This consistent convergence behavior validates the accuracy and robustness of the proposed formulation for impact problems involving 
complex plastic flow.

5.2.3.  High-velocity impact
This section examines a challenging high-velocity impact scenario involving a circular projectile striking a rectangular target, 

building upon previous investigations [63,64]. The simulation is designed to evaluate the capability of the proposed formulation to 
handle extreme deformation and material fragmentation under dynamic loading conditions. As shown in Fig. 21, the configuration 
consists of a circular projectile with a diameter of 0.01m impacting a rectangular target of dimensions 0.05m (height) × 0.002m (width) 
at an initial velocity of 𝑣0 = 3100m∕s [64], with the target being unconstrained. Both components are modeled as aluminum with 
elastic-perfectly plastic material response. Following established parameters from prior studies [64,65], the material properties are 
specified as: density 𝜌0 = 8930 kg∕m3, Young’s modulus 𝐸 = 7.417 × 1010 N∕m2, Poisson’s ratio 𝜈 = 0.344, sound speed 𝑐0 = 5328m∕s, 
and yield stress 𝜎𝑌 = 3 × 108 N∕m2. The initial particle spacing is set to 𝑑𝑝 = 0.0002m.

The dynamic response during high-velocity impact is captured in Fig. 22, which illustrates the temporal progression of von 
Mises stress distribution using the proposed SPH-GNOG-A formulation. Notably, the stress field maintains smooth transitions without 
exhibiting hourglass patterns, confirming the method’s robustness under extreme loading conditions. Fig. 23 compares deformation 
patterns at 𝑡 = 8𝜇s obtained using various numerical approaches, including multiple SPH variants from the literature and the present 
SPH-GNOG-A. The proposed method produces deformation morphologies consistent with established schemes.

6.  Conclusions and outlook

This paper introduces two angular-momentum-enhanced formulations for SPH solid dynamics: SPH-ENOG-A for elastic materials 
and SPH-GNOG-A with unified applicability to both elastic and plastic materials. A central contribution is the incorporation of 
Rodrigues’ rotation matrices to explicitly track finite rotational motions, thereby ensuring angular momentum enhancement. Strict 
conservation of linear momentum is achieved by calculating the average rotation matrix at each time step and applying it uniformly to 
all particles. Although this approach introduces a minor compromise in angular momentum conservation, the improvement achieved 
is still substantially better than in prior versions.

The numerical studies support the following conclusions:
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• Performance in elastic benchmarks: Both SPH-ENOG-A and SPH-GNOG-A exhibit excellent stability and accuracy in classical 
elastic tests (e.g., oscillating plates), while fully preserving the hourglass-suppression capabilities of their predecessors.

• Angular momentum enhancement: By introducing a rotation-corrected formulation, the proposed methods achieve a marked 
improvement in angular momentum conservation, which translates to more accurate and stable results in rotation-dominated 
scenarios. In the spinning plate test, SPH-ENOG-A significantly reduces the maximum angular momentum error from 59.17% 
(in SPH-ENOG) to 2.58%. Similarly, SPH-GNOG-A reduces the maximum error relative to SPH-GNOG from 1.12% to 0.55%. This 
demonstrates that while SPH-ENOG-A substantially enhances angular-momentum conservation for elastic materials, SPH-GNOG-A 
further refines the already low error of SPH-GNOG, ensuring highly accurate displacement and velocity predictions in problems 
with significant rotational components.

• Unified material modeling: Although the gain in angular momentum conservation from SPH-GNOG-A over SPH-GNOG is modest-
because the hourglass control term in SPH-GNOG operates primarily as a corrective term with limited influence-a key advancement 
is the ability of SPH-GNOG-A to use a single parameter setting (𝜉𝐺 = 2) for both elastic and plastic materials. This removes 
the material-dependent parameter in SPH-GNOG and substantially enhances the practical utility of the method for industrial 
applications involving complex material responses.

• Plastic deformation capability: SPH-GNOG-A demonstrates robust performance in challenging plastic impact problems, including 
Taylor bar and high-velocity impact scenarios. It maintains smooth stress fields and coherent particle distributions under severe 
plastic deformation, confirming its suitability for a broad range of engineering applications.

• Limitations and future work: Despite these advances, several research directions remain. Incorporating more sophisticated constitu-
tive models-such as those accounting for damage and fracture-would broaden the method’s applicability. Extending the approach 
to fluid-structure interaction and developing adaptive resolution strategies could further improve computational efficiency for 
large-scale simulations.

In summary, SPH-ENOG-A and SPH-GNOG-A address fundamental limitations of existing SPH formulations for solid dynamics. 
By significantly enhancing angular momentum conservation and retaining strong stability properties, they offer reliable tools for 
simulating complex solid mechanics across elastic and plastic regimes.
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