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A B S T R A C T

The design of resilient coastal infrastructure requires high-fidelity modelling of complex in
teractions between waves, porous structures, and mobile seabed. To address this need, we 
develop a novel computational framework that couples Computational Fluid Dynamics (CFD) and 
the Discrete Element Method (DEM), explicitly integrating a resolved porous media module. This 
approach enables direct numerical simulation of multiphase flows and their particle-scale in
teractions with both stationary and mobile porous structures, such as breakwaters or armor units. 
The model is rigorously validated against six benchmark cases, demonstrating robust capabilities 
in capturing permeability, capillary effects, and fluid–solid momentum exchange. We further 
apply the framework to large-scale coastal scenario featuring realistic wave generation, curved 
and trapezoidal seawalls, and over one hundred mobile cubic armor units. The simulations 
provide deep insights into critical processes like wave reflection, entrapped air dynamics, and 
drag-induced energy dissipation. The simulation results quantitatively show that porous struc
tures significantly enhance wave energy dissipation, leading to superior wave attenuation. This 
integrated framework represents a significant advancement for high-fidelity, efficient simulations 
of fluid–structure interactions in dynamic and porous coastal environments, with great potential 
for coastal engineering design and environmental fluid mechanics.

1. Introduction

Porous structures serve as fundamental dynamic interfaces for energy dissipation and load redistribution in coastal protection 
systems and geotechnical infrastructure. In marine environments, these structures include floating breakwaters [1,2], 
seawall-embankment integrated systems [3,4], rubble-mound barriers [5,6], and perforated seawalls [7], all leveraging interstitial 
fluid–structure interactions to attenuate wave energy and mitigate erosion. Analogous geotechnical systems, such as granular filters in 
earth dams [8] and ballast layers [9], similarly rely on pore-scale mechanics to regulate seepage forces and ensure stability. These 
innovations underscore the critical role of multiphase flow dynamics in optimizing porous structure performance across scales. For 
instance, floating breakwaters exemplify adaptive porous marine structures where wave attenuation arises from both dynamic 
buoyancy responses and material porosity [10]. Similarly, modern seawall-embankment hybrid systems incorporate permeable cores 
within traditional coastal defenses to concurrently dissipate wave energy and prevent hinterland flooding [11].

These dual imperatives have motivated decades of research, as comprehensively reviewed in seminal works on analytical and 
numerical approaches [12,13]. Engineering analyses have long relied on macroscopic porous media flow behavior, where force 
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formulations derived from experimental observations govern numerical implementations. Pioneering studies by Darcy [14], For
chheimer [15], and Polubarinova-Kochina [16] established seminal foundational models, including linear drag, quadratic inertial 
resistance, and transient acceleration terms, that have been widely used to quantify fluid-porous interactions through empirical co
efficients. These formulations were systematically integrated into computational frameworks as momentum source terms, homoge
nizing porous zones into "sponge" regions in CFD models. This paradigm has advanced simulations of fixed porous structures like 
rubble-mound breakwaters in coastal engineering [17,18]. However, treating porous media as static proves inadequate for floating 
structures, where dynamic fluid–structure interactions necessitate resolution of intra-wave force fluctuations and 
six-degree-of-freedom (6DoF) motions.

The emergence of innovative coastal defenses (e.g., porous floating breakwaters, hybrid armor-seawall systems) has exposed 
critical gaps in numerical capabilities. While experimental advancements, such as perforated membranes and diamond-shaped units, 
demonstrate enhanced wave dissipation [19,20], existing numerical frameworks face three fundamental challenges: (1) reformulating 
force closure models to account for relative fluid–structure velocities; (2) resolving nonlinear interactions between air–water interfaces 
and porous units during wave breaking; and (3) addressing discontinuous permeability fields in systems combining permeable and 
impermeable elements (e.g., armor units adjacent to solid seawalls).

Multiscale numerical modeling of porous media generally falls into two categories: discrete models, which explicitly resolve in
ternal pore-scale geometries, and continuum models, which homogenize the porous structure via averaging techniques [21–23]. While 
discrete approaches enable high-fidelity pore-scale analysis and continuum methods are efficient for large-scale scenarios, both 
conventionally assume a stationary porous domain. This inherent limitation preclude the simulation of dynamic structural 
displacement [24]. Consequently, classical CFD techniques, including volume-of-fluid (VOF)-based finite-volume solvers [25,26], 
smoothed particle hydrodynamics (SPH) [27,28], and the lattice Boltzmann method (LBM) [29,30], are typically confined to modeling 
fluid infiltration within static matrices. More recently, machine-learning frameworks have emerged to rapidly predict porous 
media-fluid interactions, such as dynamic wave propagation [31,32], by learning reduced-order representations from high-fidelity 
simulations. However, these data-driven models also largely rely on the assumption of static porous domains. Thus, a fundamental 
challenge persists: the accurate representation of fully dynamic porous structures, where fluid flow and solid displacement are 
intrinsically coupled, remains beyond the scope of most existing numerical and data-driven approaches.

Modeling fully dynamic systems represents a persistent challenge in computational mechanics, with established methodologies 
facing significant limitations. For instance, Dong et al. [33] developed a coupled CFD-RBD (rigid-body dynamics) framework to 
simulate wave interactions with porous floating breakwaters. While being a step forward, their formulation is not readily generalizable 
to systems with mixed permeable/impermeable boundaries or arbitrary geometric complexity. The CFD-DEM (discrete element 
method) coupling offers greater adaptability by resolving the motion of and interactions among numerous discrete bodies alongside 
the fluid-particle dynamics [34]. However, a fundamental constraint of prevailing CFD-DEM schemes is their treatment of imper
meable particle assemblies as a impermeably, discrete medium [35–38]. Critically, unlike the CFD-RBD paradigm wherein rigid bodies 
can be assigned intrinsic porous properties, standard CFD-DEM cannot represent individual particles or structures as porous entities. 
Furthermore, the computational cost of achieving high-fidelity resolution of interparticle or interstructural fluid flow in such systems is 
often prohibitive [39]. These issues collectively form a major conceptual and technical barrier to the large-scale simulation of fully 
dynamic, multiscale porous systems with authentic structural mobility.

To overcome these limitations, especially, the inability to handle mixed mobile and stationary permeable/impermeable bodies with 
arbitrary geometries, and their prohibitive computational cost for large-scale applications, this study introduces a unified, GPU- 
accelerated CFD-DEM framework for fully dynamic porous systems. Our approach fundamentally departs from conventional formu
lations by explicitly resolving mobile and stationary porous structures, impermeable bodies, and their interactions within multiphase 
flows. Key innovation of the framework include: (1) The treatment of individual structural units as either porous or impermeable 
media; (2) Particle-scale hydrodynamic force computation and two-way fluid-structure coupling; (3) Adaptive porosity mapping for 
hybrid configurations (e.g., layered rubble mounds adjacent to rigid seawalls). (4) An embedded six-degree-of-freedom (6DoF) solver 
for high-fidelity transient wave-induced motions and structural dynamics. The framework is rigorously verified through six benchmark 
cases spanning three critical regimes: stationary porous media, stationary porous-fluid interactions, and dynamic porous structure–
fluid interactions. These validations systematically verify the model’s capabilities in resolving porous media hydrodynamics (including 
permeability and capillary forces), multiphase flow transitions, and CFD-DEM integration. Building on this foundation, we demon
strate engineering applicability via a large-scale coastal defense simulation incorporating wave generation, air-water phase dynamics, 
curved/trapezoidal seawalls, and over 100 mobile cubic armor units. This case study confirms the methodology’s robustness in 
handling real-world complexities involving coexisting stationary/mobile porous structures and multiphase flows.

The paper is structured as follows: Section 2 introduces the resolved CFD-DEM framework incorporating porous media, including a 
comparison with the multiphase porous media model and the integration of CFD and DEM components. Section 3 verifies the 
framework using benchmark cases involving multiphase flows and stationary/moving porous structures, with quantitative accuracy 
assessment. Section 4 applies the framework to a complex wave-armor unit-seawall system, demonstrating real-world coastal engi
neering applicability.

2. Methodology: resolved CFD-DEM framework for porous media

2.1. Multiphase model with porous media

In this study, porous structures are modeled as a homogenized continuum material with spatially uniform porosity and 
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permeability [21]. Following established classifications [22,23], we categorize the media into two types based on pore-scale geometry 
and dominant flow regime: (1) Type A: This category includes coarse-grained, open structures with relatively large pores or flow 
passages, such as porous breakwaters, rubble-mound structures, and wave-dissipating blocks, where flow through large pores occurs at 
higher velocities and inertial effects are significant. (2) Type B: This category encompasses fine-grained materials such as soils and 
loosely packed granular sands or gravels, where flow is characterized by low-velocity infiltration and capillary forces. For flow in Type 
A porous media, the Darcy-Forchheimer equation [33] captures nonlinear inertial effects, with capillary forces deemed negligible and 
thus excluded from the model. Conversely, Type B porous media necessitate advanced modeling to address critical capillary effects. 
Here, the Brooks-Corey and van Genuchten models [40] characterize both the permeability-dominated and capillary-dominated flow 
under unsaturated conditions. In this study, multiphase modeling approaches are tailored to each type, with conventional algorithms 
modified for Type B to incorporate capillarity.

The simulation of multiphase flow employs the Volume of Fluid (VOF) method in conjunction with the MULES algorithm [41,42], 
which tracks phase distribution through volume fractions (αi) and integrates a compressive flux term into the advection equation to 
enhance interface resolution. The continuity equation governing volume fraction transport in porous media [40] incorporates this 
compressive term (Eq. (1)). Assuming incompressible fluids, the continuity equation is expressed as: 

∂ϕαi

∂t
+∇ ⋅

(
αiuf

)
+∇ ⋅ (ϕαi(1 − αi)uc) = 0, (1) 

where ϕ is porosity of porous media and t is the time. uf is the fluid velocity and uc is the compressed velocity.
The computation of the compressive flux term is location-dependent: in pure fluid regions and Type A porous media, it is deter

mined using the conventional MULES algorithm, whereas for Type B porous media, the approach proposed by Francisco et al. [40] is 
adopted due to the dominant role of capillary forces. 

uc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c
⃒
⃒uf
⃒
⃒∇αi

/
|∇αi|, in pure fluid regions and Type A porous media,

ϕ− 1

⎡

⎢
⎢
⎢
⎢
⎣

−

(
Mi

αi
−

Mj

αj

)

∇p +

(
ρiMi

αi
−

ρjMj

αj

)

g+

(
Miαj

αi
+

Mjαi

αj

)

∇pc −

(
Mi

αi
−

Mj

αj

)

pc∇αi

⎤

⎥
⎥
⎥
⎥
⎦
, in Type B porous media,

(2) 

where c ∈ [0, 1] is the coefficient to control the compressed velocity. The subscripts i and j denote fluid phase i and fluid phase j, 
respectively. g, M and ρ denotes the gravity, mobility and density, respectively. p is the fluid pressure and pc is the capillary pressure.

The capillary pressure pc and mobility M are determined based on the capillary pressure and relative permeability models, 
respectively. In this study, we adopt the models proposed by van Genuchten [43] and Brooks and Corey [44], as defined in Eqs. (3) to 
(8). 

pc = pc,0α− β
i,pc (Brooks − Corey model), (3) 

pc = pc,0

(
α− 1/m

i,pc − 1
)1− m

(van Genuchten model), (4) 

αi,pc =
αi − αpc,irr

αpc,max − αpc,irr
(5) 

where pc,0 is the entry capillary pressure. β and m are the model parameters. αpc,max and αpc,irr denote the maximum saturation and the 
irreducible saturation of the fluid phase i, respectively. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mi =
k0

μi
kri =

k0

μi

(
αi,eff

)m

Mj =
k0

μj
krj =

k0

μj

(
1 − αi,eff

)m
(Brooks − Corey model), (6) 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mi =
k0

μi
kri =

k0

μi
α

1
2
i,eff

(

1 −

(

1 − α
1
m
i,eff

)m)2

Mj =
k0

μj
krj =

k0

μj

(
1 − αi,eff

)1
2

(

1 − α
1
m
i,eff

)2m
(van Genuchten model), (7) 

αi,eff =
αi − αi,irr

1 − αj,irr − αi,irr
(8) 

where k0 is the absolute permeability of the porous media. m is the model parameter. μ is the fluid viscosity. αi,irr denotes the irre
ducible saturation of the fluid phase i.
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The equivalent density ρ and viscosity μ across the entire CFD domain are updated using the VOF algorithm and the permeability 
model. 

ρ =

{
α1ρ1 + α2ρ2, in pure fluid regions and Type A porous media,

(M1 + M2)
− 1
(M1ρ1 + M2ρ2), in Type B porous media, (9) 

μ = α1μ1 + α2μ2 (10) 

2.2. Momentum equations of coupled CFD-DEM

Unlike the conventional Navier–Stokes equations, when considering resolved CFD-DEM and porous media, the porosity ϕ and drag 
force fd must be incorporated into the following momentum equation. 

ϕ− 1
(

∂
∂t
(
ρuf
)
+∇ ⋅

(
ϕ− 1ρuf ⊗ uf

)
)

= − ∇p +∇ ⋅
(
ϕ− 1μ ⋅

(
∇uf

))
+ fc + fd, (11) 

where ρ, uf and p represent the density, velocity, and pressure of fluid, respectively. p is defined as p = pd + ρgh, where pd is the 
dynamic pressure, g is the gravitational acceleration, and h is the reference height [45]. fc and fd represent the surface tension and the 
drag force in the porous media, respectively.

The surface tension fc is computed by the following equation. In pure fluid regions, this term is computed using the conventional 
surface tension formulation, whereas in porous media, it is determined based on the capillary model. 

fc =

⎧
⎪⎨

⎪⎩

ϕ− 1cσ|∇α1|n, in pure fluid regions and Type A porous media,
[

(M1 + M2)
− 1
(M1α2 − M2α1)

∂pc

∂α1
− pc

]

∇α1, in Type B porous media,
(12) 

where σ denotes the surface tension coefficient, and c represents the curvature of the fluid-gas interface, defined as c = − ∇ ⋅ n, with n 
being the unit normal vector at the interface. For a free surface, n is computed as n =∇α1/|∇α1|, while on a boundary face, n is set to n 
= nc, reconstructed according to the specified contact angle. The capillary pressure pc is determined using Eqs. (3) and (4).

Accurate computation of the contact angle at solid boundaries is critical in two-phase flow simulations, as it directly affects the 
fidelity of interface tracking and associated physical phenomena. Within the VOF-based framework, the prescribed contact angle is 
imposed by reconstructing the interface normal vector nc at boundary faces. This corrected interface normal nc is formulated as a 
linear combination: 

nc = anwall + bn, (13) 

where nwall denotes the unit normal vector of the solid boundary. The coefficients a and b are determined by satisfying two constraints: 
orthogonality and angular continuity. Specifically, the reconstructed interface normal vector nc must satisfy nc ⋅ nwall = cos θeq and 
nc ⋅ n = cos Δθ, where Δθ = θnow − θeq. Here, θeq is the target contact angle, and θnow is the current contact angle, defined as θnow =

arccos(n ⋅ nwall). By solving this system, the coefficients a and b can be obtained as follows: 

a =
cos θ − cos θnow ⋅ cos Δθ

1 − (cos θnow)
2 , (14) 

b =
cos Δθ − cos θnow ⋅ cos θ

1 − (cos θnow)
2 , (15) 

The drag force fd consists of two components: one induced by permeability (fd1) and the other by turbulence (fd2). The 
permeability-induced drag force fd1 can be further classified based on the porosity, as shown in Eq. (16). When the porosity is less than 
0.01, representing a fully impermeable solid, the conventional resolved CFD-DEM drag force model is applied [34]. Conversely, when 
the porosity exceeds 0.01, indicating a porous medium, the drag force is determined using the permeability model [40]. The drag force 
fd2 can be written as fd2 = Cd2

⃒
⃒uf
⃒
⃒uf [46,47]. Since this quadratic drag term primarily accounts for inertial resistance in high Reynolds 

number flows, accurately determining the coefficient Cd2 is often challenging due to its dependence on complex flow conditions. 
However, in Type B porous media, the flow is typically in the low Reynolds number regime, where viscous forces dominate and inertial 
effects are minimal. As a result, this term is neglected specifically for Type B cases, while retained for Type A where higher flow 
velocities and inertial contributions are more relevant. 

fd1 =

⎧
⎨

⎩

((
1 − ε,p

)
uf

n + ε,pvn − uf
n+1
)

Au, (ϕ < 0.01)

Kc

((
1 − ε,p

)
uf

n + ε,pvn − uf
n+1
)
, (ϕ ≥ 0.01)

, (16) 

where ε,p =
ρs
ρ εp is the density-equivalent fraction. Au represents the diagonal elements of the coefficient matrix formed after the 

discretization of Eq. (11). εp represents the solid fraction, which quantifies the volume fraction occupied by particles within a given 
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CFD cell. A solid fraction of 0 indicates that the cell is entirely outside a DEM particle, while a value of 1 signifies that the cell is 
completely contained within a DEM particle. ρs and ρ denote the densities of the solid particle and fluid, respectively. v = vp + ωp × r, 
where vp and ωp represent the linear and angular velocities of Particle p, respectively. The vector r denotes the position vector 
extending from the particle’s centroid to the center of the mesh cell. The coefficient Kc is defined as follows: 

Kc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cd1
(1 − ϕ)2

ϕ3 , in Type A porous media,

k− 1
0

(
kri

μi
+

krj

μj

)− 1

, in Type B porous media,

(17) 

where Cd1 is the permeability coefficient.
The motion of porous media is modeled using the Discrete Element Method (DEM) by solving the linear and angular momentum 

equations governing the motion of individual particles (Eq. (18)). Multiple interaction forces [48,49], including the particle–particle 
collision force Fp− p, the particle-wall collision force Fp− w, and the fluid–particle interaction force Ff [34], are considered in the model. 
The term ωp ×

(
Ipωp

)
represents the gyroscopic torque that arises from the interaction between the inertia tensor distribution and the 

angular velocity, and it is specifically relevant for non-spherical particles. Unlike traditional resolved CFD-DEM methods, the fluid
–particle interaction in this study also incorporates the porosity of the porous media ϕ, reflecting its impact on the flow dynamics and 
particle behavior. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mp
dvp

dt
= Ff + mpg +

∑
Fp− p +

∑
Fp− w

Ip
dωp

dt
+ ωp ×

(
Ipωp

)
=
∑

Mt +
∑

Mr

Ff =
∑

j∈Th
(1 − ϕ)

(ρs

ρ εp
(
− ∇p + μρ∇2uf

)
+
(

1 −
ρs

ρ εp

)
fd

)

j
⋅ Vj

(18) 

where mp and Ip denote the mass and rotational inertia of Particle p, respectively. Mt and Mr correspond to the torque induced by the 
tangential force and the rolling friction torque [50], respectively.

The CFD-DEM coupling adopts separate time steps for the fluid and particle solvers. The CFD time step, ΔtCFD, is dynamically 
determined by the Courant-Friedrichs-Lewy (CFL) condition [51], maintaining a Courant number below 0.5 for numerical stability. In 
contrast, the DEM solver employs an explicit integration scheme and requires a significantly smaller time step, ΔtDEM. To reconcile the 
stability requirements with computational efficiency for both solvers, we implement sub-cycling for DEM. Following common practice 
in resolved CFD-DEM simulations [52], we set ΔtDEM = ΔtCFD/10. Thus, for each CFD step, the DEM solver performs ten sub-cycles to 
advance particle motion and contact forces before two phases synchronize to exchange momentum and volume-fraction data.

2.3. DEM for porous media of arbitrary geometry

Existing studies often treat porous media as a stationary solid [40] or consider only a single movable solid described by rigid body 
dynamics [33]. These simplifications greatly restrict the applicability of such methods in more complex engineering fields, such as 
coastal engineering. However, the proposed DEM algorithm with non-spherical particles enables the modeling of porous media with 
arbitrary shapes, allowing for high-accuracy and efficient simulation of the motion and collisions of porous solids interacting with 
fluids. Solving DEM with irregular-shaped particles requires addressing three key challenges: (1) the representation of irregular-shaped 
particles, (2) the collision model for irregular-shaped particles, and (3) the construction of the solid fraction field for irregular-shaped 
particles within CFD cells.

2.3.1. Representation of irregular geometry
Currently, in coupled CFD-DEM simulations, irregular-shaped particles are primarily represented using two approaches: (1) clumps 

composed of multiple spheres [53,54] and (2) spherical harmonics [55], and (3) polygonal or polyhedron based technique [56,57]. 
The clump-particle approach suffers from low computational efficiency and unrealistic contact parameters [58,59]. Spherical har
monics also have limited generality in representing diverse particle shapes. In this study, we adopt the STL format, which is one of the 
most versatile storage formats for arbitrary-shaped structures. The STL format represents structural information through a collection of 
triangular facets, making it well-suited for capturing complex geometries. Specifically, an STL file provides the coordinates of the three 
vertices (Pi1 to Pi3) of each triangular facet within the structure, along with the normal vector (nfi) pointing outward from the exterior 
of the structure (Fig. 1).

2.3.2. Collision model
The collision modeling of irregular-shaped particles remains a significant research focus. The most common approach involves 

discretizing the particle surface into a series of points and applying conventional collision models, such as the Hertzian contact model. 
However, in this point-based discretization method, achieving high collision accuracy requires a high point density, leading to sub
stantial computational costs. Additionally, since these collision models compute contact forces based on particle overlapping, they can 
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result in particle penetration, compromising physical accuracy.
In this study, we adopt a collision model based on the barrier-based method, which is derived from the Incremental Potential 

Contact (IPC) model [60]. This collision model has been widely employed in the finite element method [61] due to its four key ad
vantages: (i) it does not introduce additional degrees of freedom or iterative steps, (ii) it ensures non-penetration, (iii) it avoids 
ill-conditioned matrix systems, and (iv) it allows direct control over solution accuracy. We extend this model to the contact modeling of 
irregular-shaped particles in DEM, enabling direct utilization of STL-format triangular mesh data for collision force computation. This 
approach eliminates the need for additional preprocessing of particle geometry, enhancing computational efficiency and accuracy. The 
normal contact force Fn and the frictional force Ft can be written as: 

Fn =

⎧
⎪⎨

⎪⎩

k(dn − d̂)
[

2ln
(

dn

d̂

)

−
d̂
un

+ 1
]

np, if 0 < dn < d̂,

0, if dn ≥ d̂,

(19) 

Ft =

⎧
⎪⎨

⎪⎩

(

−
d2

t

ŝ2 +
2|dt|

ŝ

)

μtFntp, if |dt| < ŝ,

μtFntp, if |dt| ≥ ŝ,

(20) 

where k denotes the normal stiffness. dn and dt represent the normal and slip distances of two contact bodies, respectively. np and tp are 
the normal and slip direction vectors of two contact bodies, respectively. d̂ represents the critical normal distance, where the normal 
contact force Fn is activated only when the normal distance is smaller than this threshold. ̂s denotes the critical slip distance, beyond 
which the frictional force Ft remains constant once the normal displacement exceeds ŝ. The friction coefficient μt is a dimensionless 
material property that characterizes the resistance to sliding between two contacting surfaces.

The parameterization scheme employed in Eqs. (19) and (20) follows the theoretical framework established by Zhao et al. [61], 
where the critical normal distance d̂ is set equal to the slip threshold ŝ. While empirical studies [60,61] often recommend setting d̂ 
between 10− 3L to 10− 4L (where L denotes the characteristic domain size) or even smaller than 10− 4L for large-scale simulations, we 
propose a particle-scale rationale for our resolved CFD-DEM context. We link d̂ directly to the particle diameter to align with explicit 
resolution of individual particles. Assuming an acceptable relative error of 5 %, ̂d is initially defined as 5 % of the particle diameter. For 
practical implementation, we set d̂ = 0.1 dc,min , where dc,min is the minimum distance between contact points and adjacent particle 
centroids. This ensures a sufficiently small numerical threshold for robust contact resolution in particulate simulations. The normal 

stiffness k is then determined as k =
(

pN,0

)

optimal
/(2.256 d̂), consistent with the contact theory in [61]. Here, 

(
pN,0

)

optimal 
denotes the 

theoretical optimal initial contact force for a perfectly closed contact at the start of the simulation, which we take as the static force on a 

particle surface, 
(

pN,0

)

optimal
= mp|g|.

Accurate computation of the normal separation distance dn and the tangential slip displacement dt is essential for evaluating 
contact forces. Using computational geometry principles, we simplify the collision detection between arbitrarily shaped triangulated 
solids into two fundamental interaction modes: point-face (PF) and edge-edge (EE) contacts, as depicted in Fig. 2.

For each contact mode, we rigorously derive the normal and tangential displacement components through geometric projection 
operations, subsequently computing the corresponding normal contact force and Coulomb friction force. The detailed numerical 
implementation workflow, including geometric query algorithms and force resolution procedures, is systematically outlined in 

Fig. 1. Schematic of the structure described by the STL format, including triangular facets and the corresponding normal vectors pointing outward 
from each facet (as indicated by the arrows).

T. Yu and J. Zhao                                                                                                                                                                                                     Computer Methods in Applied Mechanics and Engineering 450 (2026) 118676 

6 



Algorithm 1.

2.3.3. Construction of solid fraction field
In numerical simulations involving mobile porous media, precise determination of real-time solid-phase spatial distribution within 

the CFD domain is critical for dynamically identifying porous regions. This study employs a coupled resolved CFD-DEM framework, 
where the spatial occupancy of irregular-shaped particles within individual CFD cells is quantified through a solid fraction field. To 
achieve high-fidelity reconstruction of this field, the signed distance field (SDF) methodology proposed by Lai et al. [34] is imple
mented. The SDF value D, defined as the minimum distance from each CFD mesh vertex to particle surfaces (with positive and negative 
values distinguishing exterior and interior regions, respectively), serves as the basis for iteratively updating the solid fraction field via 
Eq.(21) using an SDF-based interpolation scheme. 

εp =

∑
D<0|D|∑
|D|

(21) 

Subsequently, the porosity field is reconstructed through a composite formulation: 

ϕ =
∑

εpϕp +
(

1 −
∑

εp

)
(22) 

where ϕp denotes the intrinsic porosity of the porous particle. The porosity for cell i, is evaluated by summing over all particles that 
geometrically overlap with it, which ensures an accurate representation in dense regions where multiple particles may occupy a single 
control volume, such as in regions where two particles are in contact. This dual-component model explicitly decouples the contri
butions from (i) effective porosity modulated by solid-phase distribution and (ii) preserved background porosity in solid-free regions. 
The formulation ensures both smooth porosity transition at fluid-porous interfaces and rigorous mass conservation during solid-phase 
motion, addressing key challenges in multiphase porous media simulations. The integration of these methodologies within the GPU- 
accelerated TFluid platform developed by the authors enables efficient resolution of complex particle-fluid interactions while main
taining numerical stability across dynamic boundary conditions.

For geometrically regular shapes and analytically defined solids, the SDF can be directly computed using established analytical 
formulas. However, irregular particle morphologies, which lack predefined mathematical representations, require numerical 

Fig. 2. Two collision modes: (1) Point-face collision; (2) Edge-edge collision.

Algorithm 1 
Computational procedure of the collision model.

Steps Treatments

1: Obtain STL data Store lists of vertices Pi and normal vectors nfi of particles.
2: Construct an edge list Store the vertex indices corresponding to each edge of the particle.
3: PF collision detection Iterate through each point, search for neighboring faces of adjacent particles, and compute the normal vector np and distance dn.
4: PF displacement Accumulate displacement between two particles: u+ = Δu if dn < d̂ and = 0if dn ≥ d̂.
5: PF normal force Compute the normal force Fn using Eq. (19).
6: PF slip direction Calculate the slip displacement vector: ut = u −

(
u ⋅ np

)
np, and update the slip direction vector tp = ut/‖ ut ‖.

7: PF friction force Calculate the slip distance dt = ‖ ut ‖ and compute the corresponding friction force Ft using Eq. (20).
8: EE collision detection Iterate through each edge, search for neighboring edges of adjacent particles, and compute the normal vector np and distance dn.
9: EE displacement Accumulate displacement between two particles: u+ = Δu if dn < d̂ and = 0if dn ≥ d̂.
10: EE normal force Compute the normal force Fn using Eq. (19).
11: EE slip direction Calculate the slip displacement vector: ut = u −

(
u ⋅ np

)
np, and update the slip direction vector tp = ut/‖ ut ‖.

12: EE friction force Calculate the slip distance dt = ‖ ut ‖ and compute the corresponding friction force Ft using Eq. (20).
13: Update particle motion Sum the contact forces acting on the particle and update its motion and position using the DEM approach.
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approaches to determine SDF values. To address this challenge, we develop a computational framework based on spatial hashing 
algorithms, enabling efficient SDF calculation for arbitrarily complex geometries. Rooted in the fundamental definition of SDF, our 
methodology draws inspiration from collision detection paradigms by categorizing proximity computations into two distinct modes: 
(1) vertex-to-surface distance, defined as the shortest Euclidean distance from a mesh vertex to the particle surface, and (2) vertex-to- 
edge distance, representing the minimal distance between a vertex and particle edges, as schematically illustrated in Fig. 3. The final 
SDF value is obtained through comparative evaluation of these dual distance metrics. A complete implementation workflow of this 
procedure is provided in Algorithm 2. While the underlying geometric calculations employ standard vector algebra and optimization 
principles, their implementation details, constituting well-established procedures in computational geometry, are omitted here for 
brevity. This hybrid strategy effectively balances algorithmic generality with computational efficiency, particularly when handling the 
intricate geometric configurations characteristic of porous media systems. By integrating spatial hashing with adaptive proximity 
detection, the proposed method achieves robust SDF determination while maintaining scalability for large-scale particle-fluid inter
action simulations.

The complete SDF computation procedure is outlined as follows:

2.4. Numerical aspects

2.4.1. Wave modulus
Wave generation, a standard technique in coastal hydrodynamics, is implemented in this study using a piston-type wavemaker, 

Fig. 3. Two distance modes: (1) Vertex-face distance; (2) Vertex-edge distance.

Algorithm 2 
Computational procedure of the SDF computation.

Steps Treatments

1: Hash grid 
construction

Establish a cubic hash grid based on the CFD domain.

2: Hash list generation Store the triangular facets and edges of the particles into their corresponding hash grid cells and construct a hash list.
3: Distance calculation Iterate through the cell vertices, determine the hash grid cell they belong to, and search the surrounding 27 neighboring hash grid 

cells for triangular facets and edges. Compute the minimum distance from each cell vertex to these facets and edges.
4: SDF computation Compare the two types of minimum distances obtained in Step 3, and assign the shortest distance to the corresponding SDF value for 

the given cell vertex with respect to a specific particle.

Fig. 4. Schematic of wave generation by the piston-type wave maker and the absorption zone.
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modeled within the CFD-DEM framework via the immersed boundary method [62]. As illustrated in Fig. 4, the piston is represented as 
a finite-thickness rectangular plate, treated as a non-spherical rigid body fully coupled with the two-phase flow in the resolved 
CFD-DEM formulation. A time-dependent sinusoidal velocity is prescribed to the plate, with the resulting piston motion enforced 
through a localized forcing term added to the momentum equation. This approach generates waves without requiring moving meshes. 
Key advantages of this immersed-boundary strategy include: (1) simulation of both the piston and porous structures on a single, fixed 
background grid. (2) Elimination of mesh regeneration and associated interpolation errors. (3) Enhanced numerical robustness for 
large-scale CFD-DEM computations.

The momentum-equation source term introduced by the immersed boundary method is given as follows: 

fw1 = C(x) ⋅ Au
(
uf

n+1 − vwnw
)

(23) 

Here, C(x) is a spatially dependent coefficient, which takes the value C with C = 1 at the location of the piston and is zero else
where. The term vw denotes the prescribed velocity of the piston, which is determined according to the desired wave profile. For 
instance, to generate a simple sinusoidal wave, the velocity can be defined as vw = Aωcos(ωt), where A is the wave amplitude and ω is 
the angular frequency. nw denotes the moving direction of the piston.

To complement the wave generation technique, an absorption zone is implemented at the outlet to prevent reflected waves from 
contaminating the generated periodic wave field. Using the source term method, a damping force is applied within the absorption zone 
to gradually restore the flow to a still-water state. The corresponding source term force, which is added to the right-hand side of the 
CFD momentum equation, is defined as follows. 

fw2 = σmax × 0.5
(

1 − cos
(

π x − x1

x2 − x1

))

Auun+1
f (24) 

Here, σmax is a user-defined parameter that controls the damping strength within the absorption zone. The coordinates x1 and x2 

define the spatial extent of the absorption region.

2.4.2. Numerical implementation
The finite volume method (FVM) is adopted to numerically solve the computational fluid dynamics (CFD) governing equations, 

encompassing the continuity equation (Eq. (1)) and momentum equation (Eq. (11)). In parallel, the discrete element method (DEM) 
governing equations are discretized via an explicit time integration scheme. To address the computational demands of multiphysics 
coupling, specifically two-phase flow, porous media interactions, and resolved CFD-DEM coupling, a fully GPU-accelerated framework 
is implemented. This framework, integrating porous-resolved CFD-DEM capabilities, has been deployed within the TFluid software 
(www.t-fluid.com), a CUDA C++-based platform optimized for high-performance computing. While GPU parallelization significantly 
enhances computational efficiency, the present study prioritizes the development of multiphysics coupling algorithms; therefore, the 
technical specifics of parallel implementation are beyond the scope of this discussion.

2.4.3. Numerical discretization of governing equations
The continuity and momentum equations are discretized using FVM, as formalized in Eqs. (1) and (11). The transient terms are 

integrated in time using a first-order Euler scheme, while the convective terms are discretized using an upwind scheme. Viscous 
diffusion terms are evaluated via Gauss’ divergence theorem. After spatial and temporal discretization, all terms are split into implicit 
and explicit contributions: implicit terms are assembled into the coefficient matrix, whereas explicit terms are accumulated in the 
constant vector. Here, superscript n denotes the current time step (explicit terms), while n + 1 represents the implicit unknowns to be 
solved. The drag force fd in Eq. (16) is partitioned into explicit and implicit components through superscript annotation. The source 
terms associated with wave generation and the absorption zone, as described in Section 2.4.1, are incorporated.

To couple velocity and pressure fields, the Pressure Implicit with Splitting of Operators (PISO) algorithm [63], a widely validated 
pressure-velocity correction method, is employed. 

αi
n+1 = αi

n − Δt ⋅
∑

αifφ
ʹn
f − Δt

∑
αif
(
1 − αif

)
φn

cf , (25) 

ρV
Δt

ϕ− 1
(

un+1
f − un

f

)
+ ϕ− 1

∑
ρφʹn

f u
n+1
f 

= ϕ− 1
∑

μ(∇u)n+1
f ⋅ nA +

(
fn

c + fd − ∇p+ fw1 + fw2
)
V, (26) 

Boundary-face values are determined by their prescribed boundary conditions. For the two most common types of boundary 
conditions, Dirichlet (first-type) and Neumann (second-type), the boundary constraints correspond to fixed values and fixed gradients, 
respectively. For a boundary face f, Dirichlet condition specifies a fixed value at the face, e.g., uf = ub. The face-normal gradients are 
then obtained from the difference between the boundary value and the adjacent cell-center value, e.g., ∇uf = (ub − uc) /|d|, where uc 

is the value at the neighboring cell center and d is the distance vector from the cell center to the boundary face center. Neumann 
conditions specify a fixed face-normal gradient, e.g., ∇uf = ∇ub. The face value is subsequently reconstructed as uf = uc + d ⋅ ∇ub. 
Once the boundary-face values or gradients are determined, they are directly incorporated into the discretized equations, completing 
the finite-volume assembly of the system. This approach ensures consistency between boundary constraints and discrete operators and 
remains compatible with both implicit and explicit solution strategies.
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For the DEM governing equation (Eq. (18)), an explicit temporal discretization scheme is applied, yielding Eq. (27). This approach 
ensures numerical stability while maintaining computational efficiency for particle-scale interactions. 

⎧
⎨

⎩

vp
n+1 =

(
vp

n +
(

Ff + mpg +
∑

Fp− p +
∑

Fp− w

)n
Δt
)/

mp

ωp
n+1 =

(
ωp

n +
(

Ip
− 1
(∑

Mt +
∑

Mr − ωp ×
(
Ipωp

)))n
Δt
) (27) 

2.4.4. Overall procedure
The computational framework for the full-process GPU-accelerated porous-resolved two-phase CFD-DEM method is illustrated in 

Fig. 5. The simulation begins with CPU-side initialization of computational domains and material properties for both the fluid (CFD) 
and particle (DEM) phases, followed by data transfer to the GPU for high-performance execution. The core workflow proceeds through 
the following major stages: 

(1) Particle dynamics 
Particle motions are resolved under the combined influence of fluid-induced drag (Eqs. (12) and (16)), gravity, and inter- 

particle contact forces (Eqs. (19) and (20)). Trajectories are updated explicitly using a time integration scheme (Eq. (27)). 
To maintain numerical stability under explicit integration, a DEM sub-cycling strategy is employed, whereby multiple DEM 
steps are performed within each CFD time step.

(2) Porous fluid coupling 
The solid fraction field εp is reconstructed using a SDF-based algorithm (Eq. (21)). The porosity field ϕ is dynamically updated 

as ϕ =
∑

εpϕp +
(
1 −

∑
εp
)
, where ϕp denotes particle-scale porosity and the summation includes all particles that geomet

rically overlap with the cell being evaluated. The volume fraction field is constrained using the MULES algorithm (Eq. (25)), 
while fluid properties, including the density and viscosity, are updated via Eqs. (9) and (10).

Fig. 5. Implementation flowchart of the fully GPU-accelerated porous-resolved two-phase CFD-DEM framework, where blue texts indicate gov
erning equations for corresponding steps.

Table 1 
Model setup of six benchmark cases.

Benchmark 
index

Basic model setup Validation objective

I [40,64] Stationary porous media Capillary model, gravity, and two-phase model
II [40] Permeability model and two-phase model
III [40,65] Stationary porous media and pure fluid regions Capillary model and two-phase model
IV [66,67] Permeability model and two-phase model
V [33] Two-dimensional moving porous structure and pure fluid 

regions
Permeability model, two-phase model, and resolved CFD-DEM

VI [68] Three-dimensional moving porous structure and pure 
fluid regions

Permeability model, two-phase model, resolved CFD-DEM, and grid-resolution 
convergence test
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Fig. 6. . Schematic diagram of six benchmark cases. (A) Benchmark I: gravity-capillarity equilibrium [40,64]; (B) Benchmark II: oil drainage in a 
heterogeneous reservoir [40]; (C) Benchmark III: Taylor film [40,65]; (D) Benchmark IV: porous dam breaking [66,67]. (E) Benchmark V: 
two-dimensional wave-induced dynamic response of a porous structure [33]. (F) Benchmark VI: three-dimensional wave-induced dynamic response 
of a porous structure with mooring chains [68].
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(3) Fluid phase resolution 
The momentum equations (Eq. (26)) is discretized with porosity-dependent terms and solved using the AmgX GPU- 

accelerated algebraic multigrid solver. The PISO algorithm is employed to iteratively update the velocity, pressure, and flux 
fields.

(4) Data management and output 
Upon convergence, results are transferred back to the CPU for output processing. Termination criteria are evaluated at each 

iteration cycle (as indicated by decision nodes in Fig. 5).

Key equations associated with each stage are highlighted in blue texts to facilitate traceability between computational steps and 
their governing formulations. This tightly integrated GPU-parallelized workflow achieves high efficiency while preserving numerical 
stability in simulating complex fluid-porous particle interactions.

3. Benchmark and validation

In this chapter, six benchmark cases are presented to verify the performance of the proposed resolved CFD-DEM framework for 
multiphase flow in porous media. The cases are arranged in order of increasing complexity: (1) stationary domains composed entirely 
of porous media; (2) mixed domains combining stationary porous regions with pure fluid regions; and (3) mixed domains involving 
freely moving porous structures interacting with surrounding two-phase flows.

3.1. Model setup of six benchmark cases

To evaluate the accuracy and robustness of the proposed resolved CFD-DEM framework for multiphase flow in porous media, six 
benchmark cases of increasing complexity are considered. These benchmarks span a range of physical phenomena and geometrical 
configurations, as summarized in Table 1. The schematic diagram of six benchmark cases is shown in Fig. 6. It should be noted that, 
except for Benchmark II, the second fluid phase in all other benchmark cases is air, with a density of 1 kg/m³ and a dynamic viscosity of 
1.76 × 10⁻⁵ Pa⋅s. The primary fluid phase is water, with a density of 1000 kg/m³ and a dynamic viscosity of 0.001 Pa⋅s. 

• Benchmark I (Fig. 6A) examines the balance between gravitational and capillary forces in a one-dimensional, vertical porous 
column partially saturated with water and air [40,64]. The domain is 1 m tall and discretized with 1500 cells, with porosity ϕ = 0.5 
and intrinsic permeability k0 = 1 × 10− 11 m2. Initially, the bottom half of the column is partially saturated (volume fraction of 
water α1 = 0.5), while the top half is dry. Both air and water are permitted to flow freely through the top boundary, while the 
bottom boundary is sealed. The entry capillary pressure is set to pc,0 = 100 Pa. For the van Genuchten model, the parameter m =
0.5, while for the Brooks-Corey model, the parameters are m = 3 and β = 0.5.

• Benchmark II (Fig. 6B) evaluates the performance of the two-phase flow model in a spatially heterogeneous porous medium 
representative of Darcy-scale oil reservoirs [40]. The simulation domain measures 1 m × 0.4 m and is discretized with a 2000 × 800 
grid. Water is injected into an oil-saturated medium at a constant velocity of 1 × 10− 4 m/s, with the outlet pressure fixed at 0 Pa. 
The domain’s permeability is initialized as a grid of 0.25 × 0.1 m blocks, with local values ranging from 1 × 10− 13 to 4 × 10− 13 m2, 
mimicking geological heterogeneity. Relative permeability is modeled using the van Genuchten formulation (Eqs. (7) and (9)), with 
the entry capillary pressure pc,0 = 100 Pa and model parameter m = 0.5; capillary effects are otherwise neglected in the flow field.

Fig. 7. (A) Initial and final water saturation profiles (volume fraction field of water) using two capillary pressure models (Brooks-Corey model and 
van Genuchten model). (B) Comparison of steady-state profiles from simulation results and analytical solutions [40].
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Fig. 8. Comparison of simulation results for oil drainage in a heterogeneous porous medium using different Solvers: hybridPorousInterFoam [40], impesFoam [69], and TFluid (this study). White grid 
blocks represent various permeability values, as shown in Fig. 6B.
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• Benchmark III (Fig. 6C) focuses on validating the multiphase contact dynamics in a hybrid domain composed of both porous and 
pure fluid regions [40,65]. The system consists of a two-dimensional micro-channel measuring 800 μm in length and 136 μm in 
height, discretized with a 280 × 158 grid. The top and bottom 18 μm layers are modeled as porous media with permeability k0 = 1 
× 10− 20 m2, while the central 100 μm region represents a pure fluid zone. Ethanol, with viscosity μ1 = 1.2 × 10− 3 Pa⋅s, density ρ1 
= 789 kg/m3, and surface tension coefficient σ = 0.02 N/m, is injected from the left inlet at a velocity of 0.4 m/s. The outlet, 
located on the right boundary, is maintained at a fixed pressure of 0 Pa. A contact angle of 20◦ is imposed at the fluid-solid interface. 
For the permeability model, the Brooks-Corey model is employed in this case, with the model parameter set to m = 3. Under these 
conditions, a thin film forms along the channel walls due to the interplay between viscous forces and capillarity at the contact line.

• Benchmark IV (Fig. 6D) replicates the dam-break experiment conducted by Lin [67], in which a 29 cm-long porous dam was 
positioned at the center of a water tank (89.2 × 44 × 58 cm). A gate located 2 cm upstream of the dam was manually removed 
within 0.1 s to initiate the flow. Two types of porous materials were tested: crushed rocks (porosity = 0.49) and uniform glass beads 
(porosity = 0.39). The initial upstream and downstream water levels were denoted as H₁ and H₂, respectively, with H₁ = 24 cm and 
H₂ = 2.5 cm for the crushed rock case, and H₁ = 25 cm and H₂ = 1.5 cm for the glass bead case [66]. To reduce computational cost 
while retaining the key flow features, the domain was simplified to a quasi-two-dimensional setup by reducing the spanwise 
thickness to 4 cm, and the mesh was discretized into 178 × 8 × 120 cells. The van Genuchten model was employed to describe 
capillary behavior, and simulations were conducted with varying intrinsic permeabilities and model parameters to evaluate the 
method’s sensitivity.

• Benchmark V (Fig. 6E) investigates the two-phase interaction between surface waves and a freely movable porous structure using 
a resolved CFD-DEM framework [33]. The setup replicates a two-dimensional wave flume experiment in which a porous box, 
representing a floating breakwater, is placed in a numerical wave tank. Following Dong’s simulation setup [33], the computational 
domain length was set to 8 m to reduce the computational cost. A uniform grid was employed, with a cell size of 6.7 mm. The box 
has dimensions of 50 cm × 20 cm, a material density of 680 kg/m³, and is freely floating without mooring constraints. Incident 
sinusoidal waves with an amplitude of 1.5 cm and a period of 1.2 s propagate through a still water depth of 50 cm. To establish 
hydrostatic equilibrium prior to wave interaction, the buoyancy force acting on the structure is evaluated, resulting in a static 
equilibrium draft (immersed depth) of approximately 13.6 cm. The Darcy-Forchheimer model is applied, with the drag coefficients 

Fig. 9. (A) Locations of seven probe points placed at the leading edge of the fingering front for quantitative comparison. (B) x-coordinate positions 
of these probe points at t = 1500 s for oil drainage in a heterogeneous porous medium, as predicted by different solvers: hybridPorousInterFoam [40], 
impesFoam [69], and TFluid (this study).
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set to Cd1 = 1 × 107 m− 2 and Cd2 = 37.5 m− 1. This benchmark primarily validates the ability of the proposed framework to 
capture wave-induced motions, porous damping, and complex fluid-structure interactions in two-phase environments.

• Benchmark VI (Fig. 6F) builds upon Benchmark V by introducing mooring-chain constraints in a 3D wave flume, following the 
setup of Luo et al. [68]. The computational domain measures 8 m (length) × 0.8 m (width) × 1 m (height). A porous box (50 cm ×
80 cm × 22 cm, density 680 kg/m³) is moored by four mooring chains. Each chain is anchored 4 cm above the tank bottom (at the 
top of the deadweights) and attached to a bottom corner of the structure, forming an inclination angle of approximately 47◦ In the 
simulation, the chains are modeled as tension-only springs with a stiffness of 1 × 1010 N/m to provide realistic constraint. 
Monochromatic incident waves (height: 7.95 cm, period: 1.3 s) propagate over a still water depth of 58 cm. The porous media 
employs the same Darcy-Forchheimer model parameter as in Benchmark V. The baseline simulation employs a uniform 16 mm grid, 
with 10 mm and 25.6 mm grids used for a convergence study; the finest mesh contains 6.4 million cells. This benchmark 
comprehensively evaluates the capability of the proposed framework to capture wave-induced motions, porous damping, mooring 
dynamics, and complex fluid-structure interactions in a two-phase environment.

3.2. Benchmarking analyses

3.2.1. Benchmarks I and II: stationary porous media
The accuracy of the proposed model in capturing capillarity-driven flow behavior was first verified through Benchmark I, as shown 

in Fig. 7. The system evolves toward a steady-state saturation profile governed by gravity-capillarity equilibrium, wherein gravity 
drives the heavier water downward and capillary forces act upward. This case is used to verify the implementation and accuracy of the 
capillary pressure term under static equilibrium conditions. Panel (A) illustrates the initial and final water saturation profiles under 
two different capillary pressure models, while Panel (B) compares the simulated steady-state saturation distribution against the 
analytical gravity-capillarity equilibrium solution (Eq. (28)) [69]. Excellent agreement is observed in both cases, demonstrating the 
model’s capability to resolve the interplay between gravitational and capillary forces in unsaturated porous media. 

∂α1

∂z
=

(ρ2 − ρ1)gz
∂pc
∂α1

, (28) 

where α1 denotes the volume fraction of water, pc is the capillary pressure computed from Eqs. (3) and (4), ρ1 and ρ2 represent the 
densities of water and air, respectively, and gz is the gravitational acceleration in the z-direction.

Fig. 10. Comparison of simulation results for the Taylor film case: (A) wall boundary condition using interFoam [40]; (B) porous region as boundary 
using hybridPorousInterFoam [40]; (C and D) porous region as boundary using the method proposed in this study with σ = 0.02 N/m (C) and σ =
0.01 N/m (D).
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Benchmark II further evaluates the model’s robustness in heterogeneous reservoirs, where spatially varying permeability signifi
cantly influences two-phase dynamics. A key feature in such systems is the occurrence of viscous fingering, unstable and finger-like 
displacement patterns that emerge when a less viscous fluid displaces a more viscous one in a heterogeneous porous medium. 
These instabilities are highly sensitive to local permeability contrasts and saturation-dependent flow properties. As shown in Fig. 8, the 
oil drainage simulation results using the proposed solver closely match those obtained from established solvers, such as hybrid
PorousInterFoam [40] and impesFoam [69]. To quantify the agreement among different solvers, we have further selected seven probe 
points located at the tips of the dominant fingering structures (Fig. 9A). Fig. 9B presents a quantitative comparison of the x-coordinates 
of these seven points at t = 1500 s. The root mean square errors (RMSE) of the penetration distances between this study and the two 
reference solvers are 9.9 μm and 21.4 μm, corresponding to 0.99 % and 2.14 % of the computational domain length in the flow di
rection, respectively. It confirms the model’s applicability to complex Darcy-scale systems with strong heterogeneity and 
fingering-prone displacement fronts.

3.2.2. Benchmarks III and IV: stationary porous media and pure fluid regions
Benchmark III focuses on modeling the displacement of a viscous fluid (ethanol) by air within a microchannel, a classical 

configuration known for producing a “Taylor film” along the channel walls [65]. This phenomenon occurs due to the competition 
between viscous and capillary forces at the fluid-solid interface, resulting in the formation of a thin liquid film that remains attached to 

Fig. 11. Simulation results of water distribution and velocity vectors during flow through the crushed-stone dam at 0.4 s, 0.8 s, 1.6 s, and 2.0 s. The 
absolute permeability is k0 = 1.5 × 10− 8 m2 and the van Genuchten model parameter m = 0.8.
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the walls as the displacing air phase advances. This benchmark is particularly useful for validating the accuracy of two-phase interface 
tracking, wall-film formation, and the implementation of surface tension effects within the numerical framework. The height of this 
film is given by the following analytical solution (Eq. (29)) [65], which we use as a benchmark to verify our numerical simulations. 

h
H

=
1.34Ca2/3

1 + 3.35Ca2/3, (29) 

where h is the film thickness, H is the channel height, and Ca is the capillary number, defined as Ca = μethanolU/σ, where μethanol is the 
dynamic viscosity of ethanol, U is the injection velocity, and σ is the surface tension coefficient.

The theoretical film thickness derived from analytical solutions under simulated conditions is 4.35 μm. As illustrated in Fig. 10, 

Fig. 12. Simulation results of water distribution and velocity vectors during flow through the glass-beads dam at 0.4 s, 0.8 s, 1.6 s, and 2.0 s. The 
absolute permeability is k0 = 5 × 10− 9 m2 and the van Genuchten model parameter m = 0.8.

T. Yu and J. Zhao                                                                                                                                                                                                     Computer Methods in Applied Mechanics and Engineering 450 (2026) 118676 

17 



numerical implementations using three distinct computational approaches exhibit consistent agreement with this theoretical baseline: 
hybridPorousInterFoam simulations with impermeable porous boundaries yield 4.50 μm (3.4 % deviation), while conventional inter
Foam simulations with wall boundaries produce equivalent results (4.50 μm, 3.4 % deviation). Simulations employing the revised 
boundary conditions resulted in 4.43 μm (1.8 % deviation), within established experimental uncertainty margins [70,71]. Further 
extending to reduced surface tension conditions (σ = 0.01 N/m), the theoretical film thickness measures 6.15 μm. The present al
gorithm achieves remarkable agreement (6.147 μm, Fig. 10D), corresponding to an exceptionally small error of 0.05 %. This quan
titative consistency across methodologies, spanning wall-boundary, porous-boundary, and variable surface tension conditions, 
confirms the physical validity of thin-film modeling frameworks in porous media applications. The sub-percent deviation at lower 
surface tension further demonstrates the method’s robustness in capturing capillarity-dominated regimes.

Benchmark IV evaluates the framework’s ability to simulate transient two-phase flow through porous media under dam-break 
conditions. Figs. 11 and 12 illustrate the water infiltration process through the porous dam composed of crushed rock (Case I) and 
glass beads (Case II), respectively. In each figure, three representative regions are marked for detailed analysis: Region I corresponds to 
the cross-section where water first contacts the porous dam, Region II indicates the water level inside the dam, and Region III rep
resents the water level at the downstream outlet. Differences in intrinsic permeability lead to distinct flow characteristics in these 
regions: (1) Upon initial impact, low-permeability media result in faster formation of a reflected wave in Region I, as seen in the 0.4 s 
snapshot of Case II; (2) Steeper water level gradients develop within the lower-permeability dam, delaying full infiltration. Complete 
penetration occurs around 0.8 s in Case I, while in Case II it takes approximately 1.6 s; (3) In the higher-permeability Case I, Region III 
exhibits a rapid rise in water level accompanied by noticeable wave formation, whereas in Case II, the water level in Region III in
creases slowly and remains smooth. Such insights into localized flow behaviors and permeability effects can inform the future design 
and optimization of porous dams and embankments in hydraulic engineering applications, particularly where selective infiltration and 
controlled drainage are critical.

To assess the accuracy of the proposed method, Figs. 13–18 present a quantitative comparison of the simulated free-surface profiles 
for Case I and Case II with experimental data [67] and CFD-DEM simulation results [66]. Since the experiments do not provide absolute 
permeabilities, permeability values were selected through testing to match the experimental observations. The comparisons 
(Figs. 14–18) demonstrate excellent agreement between the present simulations, the experimental observations, and the CFD-DEM 
results, accurately capturing the evolution of the free surface on both sides of the dam, the water level at the dam interface, and 
the internal seepage profile within the porous medium. To further quantify the agreement, 80 uniformly distributed points were 
selected along the free-surface profiles in the x-direction, and RMSE of the z-direction coordinate were calculated. As shown in Fig. 13, 
the RMSE values between the current simulation results, experimental measurements, and previously published simulation data were 
evaluated for both Case I and Case II across five different time instances. The maximum RMSEs were 0.95 cm, 1.15 cm, and 0.54 cm, 
corresponding to 3.95 %, 4.6 %, and 2.16 % of the initial water column height, respectively. The average RMSEs over the five timesteps 
were 0.68 cm, 0.79 cm, and 0.38 cm, which represent 2.83 %, 3.16 %, and 1.52 % of the initial water height. Two factors contribute to 
the observed discrepancies. First, the continuum approach uses an empirical permeability model that may not fully represent the 
pore-scale geometry of the experimental granular packing. Second, the numerical simulation assumes an instantaneous release, unlike 
the finite gate-opening duration (around 0.1 s) in the experiment [67]. Nevertheless, the overall errors remain within an acceptable 
margin, as evidenced by a mean deviation of only 1.5 %. These results highlight the proposed model’s ability to accurately capture 
permeability-dependent flow transitions and surface dynamics in porous structures under highly transient conditions.

Although minor discrepancies are observed between the current simulation and the experiment in certain details, such as the free 
surface at the right dam interface at 0.4 s for both Case I and Case II (see Figs. 14 and 16), our results align very closely with those from 
the CFD-DEM simulations in these regions. This explains why the largest RMSE consistently occurs at the initial time point (t₁ = 0.4 s) 
in Fig. 13. These differences can be attributed to two primary factors: (1) In the experiments, the flow was initiated by manually 

Fig. 13. Normalized root mean square errors (the ratio of RMSE to initial water column height) at different time instances for Case I and Case II, 
computed by comparing the current simulation results with experimental measurements [67] and previously published CFD-DEM simulation data 
[66]. Specifically, the RMSE is calculated using the z-coordinates of 80 uniformly distributed sampling points along the free surface. For Case I, the 
simulation uses k0 = 1.5 × 10− 8 m2 and the time steps t₁ to t₅ correspond to 0.4 s, 0.8 s, 1.2 s, 1.6 s, and 2.0 s; for Case II, the simulation uses k0 = 5 
×10− 9 m2 and t₁ to t₅ correspond to 0.4 s, 0.8 s, 1.2 s, 1.6 s, and 4.0 s.

T. Yu and J. Zhao                                                                                                                                                                                                     Computer Methods in Applied Mechanics and Engineering 450 (2026) 118676 

18 



removing a gate over approximately 0.1 s, which introduces a slightly different initial condition compared to the simulations where the 
water column collapses instantaneously; (2) The porous dam in the simulation was modeled as a homogeneous and isotropic porous 
medium for simplicity, whereas the actual experimental structure inevitably exhibits certain heterogeneities.

To examine the effects of absolute permeability and model parameters on the simulation outcomes, a series of comparative sim
ulations were conducted with varying input values. Figs. 14 and 15 compare the results of Case I under different absolute permeability 
values and model parameters, while Figs. 16 and 17 present the corresponding comparisons for Case II. The results show that the model 
parameter has a negligible influence on the free surface profile, whereas absolute permeability plays a dominant role. As the absolute 
permeability increases, the infiltration rate accelerates significantly, resulting in a more rapid drop in the upstream water level and a 
faster rise in the downstream free surface. This is also accompanied by more pronounced wave motions, as observed at 1.2 s in Fig. 15. 
These findings are consistent with the earlier comparisons between the crushed-stone dam and the glass-beads dam.

3.2.3. Benchmark V: two-dimensional moving porous structure and pure fluid regions
Benchmark V investigates the coupled interaction between a freely moving porous structure and two-phase flow (waves), extending 

the previous benchmarks involving static porous structures. This case further validates the capability of the fully resolved CFD-DEM 
framework and the proposed porous media model in handling fluid-structure interaction. Fig. 19 compares the experimental [33] and 
simulated responses of the porous structure over one wave period, including its dynamic posture and the trajectory of the center of 
gravity (CoG). The results show that our simulation can accurately reproduce both the motion posture of the porous structure and the 

Fig. 14. Comparison of simulation results with the absolute permeability k0 = 1× 10− 8, 1.5× 10− 8, and 2 × 10− 8 m2 against experimental testing 
data [67] for flow through the crushed-stone dam.
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free surface profiles on both sides, consistent with experimental observations. To further elucidate the mechanisms behind the 
structure’s motion, Fig. 19C presents velocity vector fields of the flow inside and around the porous body. Notably, the fluid within the 
porous structure exhibits higher velocities than the surrounding fluid, which can be attributed to the dynamic interaction induced by 
the motion of the structure itself. We will analyze this velocity field in more detail later when comparing the dynamics of the porous 
structure (Fig. 22) with those of an enclosed structure.

Fig. 20A depicts the CoG trajectories obtained from the experiment [33], previous simulations [33], and the current study. The 
results demonstrate that the CoG trajectory predicted by the present method closely follows the trend of previous simulations and 
provides more accurate estimates of single-period displacements in both the x and z directions. Compared with the experimental mean 
displacements over three wave periods (0.0615 m in x and 0.0368 m in z), the current simulation yields values of 0.0626 m and 0.0358 
m, corresponding to relative errors of only 1.8 % and 2.37 %, respectively. In contrast, the previous simulation results showed dis
placements of 0.0601 m and 0.0355 m, with errors of 2.3 % and 3.53 % [33]. These results further confirm the accuracy of the 
proposed method in simulating the dynamics of freely floating porous structures.

While the simulated x- and z-direction displacements agree closely with experiments, the trajectory shape diverges slightly at the 
start of each wave period. This discrepancy stems from an assumption in the current numerical approach, which homogenizes the 
discrete porous structure into a continuum material with uniform porosity and permeability. In contrast, the experiment uses discretely 
arranged spheres in a stratified configuration for the porous structure [33], creating preferential flow channels. These channels allow 
early fluid passage upon wave impact, reducing the initial force on the structure and altering the trajectory slope, an effect our 

Fig. 15. Comparison of simulation results with the van Genuchten model parameter m = 0.6, 0.8, and 1.0 against lexperimental testing data [67] 
for flow through the crushed-stone dam.
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homogenized model largely smoothed over. Nevertheless, the overall trajectory pattern aligns with prior continuum-based numerical 
studies [33]. A more detailed mechanistic analysis would necessitate comparison with fully discrete models.

We replaced the porous structure with an enclosed structure of identical shape and density to further investigate the motion 
behavior of a closed body under wave action, and to analyze the differences in dynamic response between the two configurations, 
along with the underlying physical mechanisms. Fig. 20B presents the trajectories of the CoG for both the porous and enclosed 
structures, while Fig. 22 illustrates the motion and surrounding flow velocity vectors of the enclosed structure over a single wave 
period. The results clearly reveal distinct differences between the two types of structures. The porous structure exhibits a significantly 
longer trajectory within a single period, approximately 1.67 times that of the enclosed structure. In terms of shape, the CoG trajectory 
of the porous structure resembles a half-ellipse within a single period, while that of the enclosed structure forms a nearly complete 
ellipse with a noticeable overlap between successive periods. Both structures exhibit similar vertical (z-direction) displacements, 
primarily determined by the wave amplitude. However, their draft depths differ due to buoyancy effects: the porous structure sits 
deeper in the water than the enclosed structure, as shown in Figs. 19 and 22.

Fig. 21 presents comparative profiles of x-direction linear velocity and angular velocity magnitude for porous and enclosed 
structures under wave loading, with z-direction velocities omitted due to negligible inter-structural differences. Both velocity com
ponents exhibit periodic oscillations precisely synchronized with the 1.2 s wave period. Critically, the porous structure demonstrates 
significantly amplified x-direction linear velocities, where positive and negative peaks exceed those of the enclosed configuration by 
0.01 m/s and 0.022 m/s respectively, yielding a mean cycle differential of 0.033 m/s. This translational enhancement facilitates 

Fig. 16. Comparison of simulation results with the absolute permeability k0 = 1× 10− 8, 5× 10− 9, and 2.5 × 10− 9 m2 against experimental testing 
data [67] for flow through the glass-beads dam.
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greater positive displacement in porous systems, mechanistically explaining their characteristic tilted elliptical trajectory observed in 
companion analyses (Fig. 20B). Conversely, angular velocity profiles show closely matched oscillation patterns with near-symmetric 
peaks, though enclosed structures exhibit stronger rotational response with peak magnitudes exceeding porous values by approxi
mately 0.09 rad/s, indicating more pronounced rotational oscillations under wave excitation. The dichotomy arises from interstitial 
fluid penetration augmenting translational momentum in porous media versus wave energy concentration in rotational modes for 
enclosed systems due to restricted permeability.

To further explore the differences in horizontal (x-direction) motion, a comparison between Figs. 19 and 22 highlights a key 
observation: a strong vortex appears in the forward region of the porous structure, where the free surface consistently moves rightward 
at all six time points across the wave cycle. This persistent rightward motion drives the formation of a localized vortex. In contrast, for 
the enclosed structure, free surface motion near the front is primarily governed by wave phase, showing more symmetric oscillations. 
For example, at T/6 and 2T/6 in Fig. 21, fluid on the right side of the enclosed structure moves leftward, opposing its motion and 
generating resistance. This contrast is absent in the porous case because the incoming wave crest propagates through the porous 
structure and continues to the lee side, as seen from T/6 to 2T/6 in Fig. 19. Due to drag effects, part of the wave energy is transferred 
into kinetic energy of the porous body, causing it to oscillate while drifting in the direction of wave propagation. The fluid that passes 
through the porous medium interacts with the surrounding flow, generating vortices that mitigate the opposing force in front of the 
structure, thereby facilitating its net forward motion. Overall, the porous structure demonstrates a superior capacity to dissipate wave 
energy by transforming a larger share of the incoming wave energy into kinetic motion, highlighting its potential effectiveness in 

Fig. 17. Comparison of simulation results with the van Genuchten model parameter m = 0.6, 0.8, and 1.0 against experimental testing data [67] 
for flow through the glass-beads dam.
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coastal protection applications.

3.2.4. Benchmark VI: three-dimensional moving porous structure and pure fluid regions
Benchmark VI examines the three-dimensional coupled interaction of a moored porous structure with two-phase wave-driven flow. 

The computational setup (Fig. 23A) includes a wave-generating piston, four mooring chains, the porous floating body, and a down
stream wave-damping zone. Fig. 23B illustrates the motion of the porous structure and the corresponding configuration changes of the 
mooring system over one wave period. Note that the chains are shown schematically as straight lines, a simplification that does not 
affect the computed structural forces.

In contrast to Benchmark V, the moored porous floating structure here undergoes significant forward translation and lateral 
oscillation due to constraint by the mooring system. Fig. 24A compares the numerical and experimental time histories for rotation 
angle and x-displacement over one period. The numerical model captures the overall motion trends well, with maximum deviations of 
approximately 5 % in rotation and 8 % in displacement, both within acceptable margins. Closer inspection reveals the smoother 
numerical profile lacks the inflection points seen in the experimental displacement curve. This discrepancy aligns with the explanation 
from Benchmark V: the porous medium is modeled as a continuous equivalent, which introduces possible deviations from the discrete 
physical experiment. Additional minor discrepancies may stem from uncertainties in measuring centimeter-scale experimental 
motions.

A grid-convergence study with three resolution levels of successive refinement ratios of 1.6 (10 mm, 16 mm, and 25.6 mm, 

Fig. 18. Comparison among experimental testing data [67], CFD-DEM simulation [66], and the present simulation with m = 1.0 and k0 = 5 ×10− 9 

m2 for flow through the glass-beads dam.
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corresponding to 22, 13.7, and 8.6 elements per the smallest vertical structural scale, respectively) further confirms spatial inde
pendence. As shown in Fig. 24B, the results from the 10 mm and 16 mm grids are closely aligned (deviations < 3.8 %), while the 
coarsest mesh (25.6 mm) exhibits significantly larger errors (up to 11 % in rotation and 9.5 % in displacement). This confirms that the 
16 mm baseline grid provides a converged solution.

4. Simulation of wave impact on coastal structures

4.1. Model setup

Fig. 25 illustrates the model setup for the illustrative case study on wave impact against coastal structures. The computational 
domain measures 45 m × 40 m × 8 m, discretized with a uniform grid size of 0.015 m, resulting in approximately 4.3 million cells. The 
time steps for the CFD and DEM simulations are 0.005 s and 0.0005 s, respectively. The solid domain comprises a seawall and 118 cubic 
armor units, each with a side length of 1.2 m. The armor units have a density of 2500 kg/m³ and a porosity of 0.25, while the seawall is 
modeled as an impermeable rigid body. A normal contact stiffness of 529 kN/m and a friction coefficient of 0.6 are assigned to all 
relevant interfaces. Each block spans approximately 8 grid cells in one direction, satisfying the resolution requirements for resolved 
CFD-DEM simulations [72]. Executed on an NVIDIA RTX 4070 Ti Super GPU, the simulation of this case for 60 s of physical time was 
completed within 5.2 h of wall-clock time, showcasing the computational efficiency of the proposed CFD-DEM framework on modern 
GPU architectures.

The seawall has a curved geometry with a trapezoidal cross-section: 4.3 m in height, 2 m wide at the top, and 7 m at the base. Its 
total width is 60 m, but to reduce computational cost, only the central 40 m section is simulated. A piston-type wave maker of 1 m 

Fig. 19. Time-resolved experimental snapshots capturing the dynamic response of the floating porous structure over six characteristic wave phases. 
(A) Experimental observations [33]; (B) Corresponding simulation results using the proposed method; (C) Velocity vector field predicted by 
the simulation.

Fig. 20. Comparison of the trajectory of the center of gravity (CoG) of (A) the floating porous structure, including experimental data [33], previous 
simulation results [33], and results obtained in this study; (B) the floating porous structure and the enclosed structure.
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length and 40 m width is placed between x = 3 m and x = 4 m to generate waves, as shown in Fig. 4. A sinusoidal wave with an 
amplitude of 0.5 m and a period of 4 s is prescribed. Initially, a still water region of height 3.2 m is set in the range x = 0–25 m.

The seawall is modeled as a fixed, impermeable solid. The armor units are modeled either as freely moving porous media or as 
impermeable solids for comparative analysis. Given that armor units are often constructed from porous concrete with efficient 
drainage capabilities, the Darcy-Forchheimer model is applied, using the same parameters as in the previous benchmark case. The fluid 
properties for water and air are consistent with those used in the previous section. This case study serves to verify the capability of the 
proposed two-phase CFD-DEM framework in modeling complex interactions among waves, free porous blocks, and fixed seawalls.

4.2. Analysis of simulation results

Fig. 26 illustrates the fluid distribution and velocity vectors during the initial stage of seawater impact on the armor units and dam 
structures. First, the top view shown in Fig. 26A clearly indicates that seawater rapidly flows through the gaps between the armor units. 
Due to the narrowness of these gaps, the flow velocity within them is significantly higher, approximately 1.5 times, compared to the 
regions not directly obstructed by the armor units (as observed at t = 0.5 s). As the wave continues to propagate over the armor units (t 
= 1.0 s to 2.0 s), the velocity within the porous region decreases rapidly, from 0.75 m/s to approximately 0.4 m/s. This reduction is 
attributed to the additional resistance imposed by the downstream armor units and dam structures as the fluid traverses the porous 
region.

Following this interaction, a distinct reflected wave is generated due to the combined resistance of the armor units and the dam. 
Notably, at t = 2.0 s, the reflected wave is more pronounced on both lateral sides of the curved dam. This phenomenon arises because 
the wave initially impacts the central part of the dam before reaching the sides, allowing more time for the wave’s potential energy to 
be converted into kinetic energy, thereby increasing the impact velocity. This increased initial impact velocity on the sides also results 
in the greater wave height upon passing through the armor-unit gaps, where the wave crests have already reached the top of the dam. 
This effect is clearly observed in Fig. 26B at t = 1.0 s, where the impact velocity of the lateral waves is approximately twice that of the 
central region. By t = 4.0 s, the reflected wave collides and merges with the incoming incident wave, leading to a reduction in wave 
velocity due to their interaction (t = 3.0 s to 4.0 s).

Beyond the initial impact phase, to further investigate the long-term evolution of wave motion, we conducted a simulation 

Fig. 21. Comparative profiles of (A) x-direction linear velocity and (B) angular velocity magnitude for porous and enclosed structures under 
wave loading.
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spanning one minute and plotted the variation of the total kinetic energy of the water within the computational domain, as shown in 
Fig. 27. To examine the influence of armor-unit permeability on wave energy dissipation, two different drag force coefficients were 
considered, represented by the solid and dashed lines in Fig. 27. Specifically, Case I employs a drag force coefficient of 1 × 107 kg/ 
(m³⋅s), while Case II uses 1 × 106 kg/(m³⋅s), as a reference for the subsequent analysis.

Initially, both cases exhibit identical trends in kinetic energy variation, which is directly related to the prescribed wave-making 
period in the simulation. At the beginning of the simulation, the prescribed initial fluid field, under the influence of gravity, leads 
to the conversion of potential energy into kinetic energy, resulting in a large initial impact velocity (see Fig. 26) and correspondingly 
high initial kinetic energy, as illustrated during 0–4 s in Fig. 27A. However, as described in the previous section, the incident waves 
interact with the reflected waves, leading to partial cancellation of motion. Combined with the resistance exerted by the armor units 
and dam structures, this interaction causes a periodic decay in the total kinetic energy. In this early stage, energy dissipation is pri
marily dominated by internal fluid interactions, and thus the differences between the two drag force coefficients are minimal.

After 30 s, the wave field reaches a quasi-steady state governed primarily by the wave-making conditions. In this regime, the 
resistance from the armor units and dam becomes the dominant factor driving energy dissipation. Fig. 27B shows an enlarged view of 
the kinetic energy evolution from 30 s to 60 s, where it is evident that the case with the smaller drag force coefficient consistently 

Fig. 22. Time-resolved experimental snapshots capturing the dynamic response of the floating enclosed structure over six characteristic wave 
phases. (A) Corresponding simulation results using the proposed method; (C) Velocity vector field predicted by the simulation.
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exhibits lower kinetic energy compared to the larger coefficient, with a maximum reduction of up to approximately 8 %. It is important 
to note that a smaller drag force coefficient corresponds to higher armor-unit permeability, allowing more wave energy to penetrate 
the armor units and experience additional dissipation due to internal resistance. These findings are consistent with the conclusions 
drawn in Benchmark V.

To further examine the wave energy dissipation process, Fig. 27C presents the time history of the total kinetic energy of the armor 
units. This energy is governed by two primary components: the wave kinetic energy and the energy dissipation from friction. The 
dominant energy transfer pathway involves the wave kinetic energy being converted into the kinetic energy of the armor units via 
fluid-particle drag force, followed by dissipated through friction. A comparison between the high-permeability (Case II) and low- 
permeability (Case I) cases reveals key differences. During the period of 2–36 s, the mean kinetic energy for Case II is 200.4 J, 7.3 
% higher than that of Case I (2729.8 J). In contrast, from 36–60 s, the mean kinetic energy of Case II is 56.2 J lower. This shift occurs 
because the low-permeability case exhibits higher wave kinetic energy in the later stage (36–60 s), leading to higher armor unit ve
locities (Fig. 27B). However, in the earlier stage (2–36 s), the difference in wave kinetic energy is negligible, while the armor units in 
the high-permeability case possess significantly more kinetic energy. This indicates that a greater portion of wave energy is converted 
into the kinetic and subsequently dissipated in the porous structures, demonstrating their advantage in promoting wave energy 
dissipation.

To further investigate the underlying causes of the energy differences observed between the two cases, we focus on the time point at 
which this discrepancy is most pronounced, namely t = 36.5 s, and examine the corresponding differences in wave flow field dis
tributions. Fig. 28 (A and B) presents the velocity field distributions within the wave region for both cases, using the same contour scale 
with a maximum velocity of 3 m/s. As the wave field has reached a quasi-steady state at this time, the peak velocities are approximately 
half of those observed during the initial impact phase (Fig. 26). In this context, two key differences are noted: in Case I, due to the lower 
permeability of the armor units, the wave is able to propagate farther inland, as shown in the magnified insets of Fig. 28 (A and B); 
moreover, the reflected wave in Case I exhibits a higher velocity compared to Case II, with maximum values of 2.41 m/s and 2.26 m/s, 
respectively, an increase of approximately 6 %.

To provide further insight, we examine the cross-section I-I (y = 42 m) that passes through the region of maximum reflected wave 
velocity, as indicated in Fig. 28 (A and B). Fig. 28 (C and D) shows the velocity vector fields, flow distributions, and armor-unit 

Fig. 23. (A) Schematic illustration of the Benchmark VI model and (B) the corresponding wave-structure motion response at four instants within 
one wave period (T = 1.3 s).
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configurations along this cross-section for both cases. It is evident that in Case I, the lower permeability of the armor units results in the 
presence of entrapped air, whereas in Case II, the armor units are fully saturated with water. The influence of entrapped air manifests in 
three key ways: (a) increasing buoyant force on the armor units, which reduces energy dissipation via friction (Fig. 27C); (b) impeding 
internal water flow, thereby decreasing the volume available for energy dissipation (Fig. 28C); and (c) enhancing water circulation 
between the armor units and the dam, leading to higher reflected wave heights (Fig. 28E).

Additionally, the reflected wave velocity remains slightly higher in Case I than in Case II, further underscoring the influence of 
armor-unit permeability on wave energy dynamics. Fig. 28E presents the temporal evolution of the wave height at x = 20 m. At this 

Fig. 24. Validation and convergence study of the floating body motion: (A) Temporal evolution of rotation angle and x-coordinate validated against 
experimental data [68]; (B) Assessment of grid convergence for the same parameters using mesh sizes of 10 mm, 16 mm, and 25.6 mm.

Fig. 25. Schematic diagram of the illustrative case study on wave impact against coastal structures. Waves are generated by a piston-type wave 
maker, as depicted in Fig. 4.
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location, the wave height is governed by both incident and reflected waves. The amplitude of these fluctuations is consistently smaller 
in the high-permeability case. Over the 10 wave periods shown in Fig. 28E, the mean fluctuation amplitude for the high-permeability 
case is 0.03 m (or 6 % of the incident wave amplitude) lower than that in the low-permeability case. This finding demonstrates that the 
high-permeability structure more effectively dissipates wave energy, thereby reducing the overall wave amplitude.

5. Conclusions and outlooks

This study has presented a novel, fully resolved CFD-DEM framework for high-fidelity simulation of multiphase flow interactions 
with both stationary and mobile porous media of arbitrary geometry. The key contributions of this work are threefold: 

(1) A unified micro-continuum formulation: We developed a generalized multiphase flow model that seamlessly integrates pure 
fluid regions with two distinct types of porous media (coarse-grained Type A and fine-grained, capillary-dominated Type B) 
within a single set of governing equations. This formulation explicitly resolves the porosity field, eliminating the need for 
empirical momentum source terms and enabling direct computation of particle-scale hydrodynamic forces.

(2) A robust geometry-aware DEM coupling: The framework incorporates a high-fidelity DEM for arbitrary-shaped particles using 
an STL-based representation, a barrier-based Incremental Potential Contact (IPC) model to prevent penetration, and a signed 
distance field (SDF) method for efficient and accurate solid fraction mapping. This allows for the simulation of complex porous 
structures, their collisions, and their dynamic fluid-structure interactions without geometrical simplification.

Fig. 26. Simulation results of wave and velocity vectors at different time steps: (A) Top view; (B) Side view.
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(3) Comprehensive validation and demonstration: We rigorously validated the accuracy and robustness of the framework against 
six benchmark cases and quantitatively demonstrated its capability to capture critical phenomena including capillarity-gravity 
equilibrium, viscous fingering, Taylor film formation, transient dam-break seepage, and the six-degree-of-freedom motion of 
floating porous bodies. The subsequent large-scale application to a coastal defense system with over 100 mobile armor units and 
a curved seawall confirmed the framework’s engineering utility in predicting complex wave dynamics, energy dissipation, and 
the role of entrapped air.

The results consistently demonstrate that explicitly resolving the geometry and dynamics of porous media is crucial for accurately 
predicting the complex behavior of coastal fluid-structure systems. The simulations quantitatively show that permeable structures 
enhance wave energy dissipation not just through drag but also by facilitating fluid flow through interstitial spaces, leading to vortex 
generation and momentum transfer that are absent in impermeable counterparts.

This integrated approach provides a powerful virtual laboratory for investigating multi-physics problems in coastal engineering, 
geomechanics, and beyond. Future work will focus on enhancing computational efficiency through adaptive mesh refinement (AMR) 
[73] and multi-resolution coupling techniques to enable even larger-scale simulations. In particular, AMR can be combined with the 
cut-cell method [74,75] to handle complex computational domains featuring curved, sloping, or irregular boundaries that commonly 
arise in industrial and laboratory configurations [76–78]. The framework also sets the stage for exploring related phenomena such as 
sediment transport, scour, and the fluidization of granular porous media under extreme hydrodynamic loading.
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Fig. 27. Evolution of total kinetic energy of water (A-B) and armor units (C) for two different drag coefficients. (A) Full curve (0–60 s); (B) Enlarged 
view of the 30–60 s interval from (A).
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Fig. 28. Water distribution and corresponding velocity field at 36.5 s for drag coefficients of 1 × 107m-2 (A) and 1 × 106m-2 (B). (C) and (D) show 
the water distribution, velocity vectors, and armor-unit configuration at the y = 42 m cross-section at 36.5 s for drag coefficients of 1 × 107m-2 and 
1 × 106m-2, respectively. (E) depicts the temporal evolution of the water surface elevation at the intersection of the x = 20 m and y = 42 m 
cross-sections.
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[76] A. Hager, C.D.L. für partikuläre Strömungen, D.-I.D.C. Goniva, CFD–DEM on Multiple Scales, an Extensive Investigation of Parti-cle–Fluid Interactions, Johannes 

Kepler University Linz, Linz, 2014.
[77] J. Mao, L. Zhao, Y. Di, X. Liu, W. Xu, A resolved CFD–DEM approach for the simulation of landslides and impulse waves, Comput. Methods Appl. Mech. Eng. 359 

(2020) 112750.
[78] C. Li, Y. Zhang, J. Shen, W. Zhang, Coupled simulation of fluid-particle interaction for large complex granules: a resolved CFD-DEM method for modelling the 

airflow in a vertical fixed bed of irregular sinter particles, Particuology 90 (2024) 292–306.

T. Yu and J. Zhao                                                                                                                                                                                                     Computer Methods in Applied Mechanics and Engineering 450 (2026) 118676 

34 

http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0044
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0045
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0045
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0046
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0047
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0048
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0048
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0049
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0050
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0051
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0053
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0056
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0056
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0057
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0057
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0058
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0059
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0059
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0060
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0060
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0061
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0061
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0062
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0062
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0063
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0064
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0064
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0065
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0066
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0067
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0068
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0068
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0069
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0069
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0070
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0070
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0071
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0071
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0072
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0073
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0073
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0074
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0074
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0075
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0076
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0076
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0077
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0077
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0078
http://refhub.elsevier.com/S0045-7825(25)00948-X/sbref0078

	Resolved CFD-DEM for high-fidelity multiphase flow modeling in porous media of arbitrary geometry
	1 Introduction
	2 Methodology: resolved CFD-DEM framework for porous media
	2.1 Multiphase model with porous media
	2.2 Momentum equations of coupled CFD-DEM
	2.3 DEM for porous media of arbitrary geometry
	2.3.1 Representation of irregular geometry
	2.3.2 Collision model
	2.3.3 Construction of solid fraction field

	2.4 Numerical aspects
	2.4.1 Wave modulus
	2.4.2 Numerical implementation
	2.4.3 Numerical discretization of governing equations
	2.4.4 Overall procedure


	3 Benchmark and validation
	3.1 Model setup of six benchmark cases
	3.2 Benchmarking analyses
	3.2.1 Benchmarks I and II: stationary porous media
	3.2.2 Benchmarks III and IV: stationary porous media and pure fluid regions
	3.2.3 Benchmark V: two-dimensional moving porous structure and pure fluid regions
	3.2.4 Benchmark VI: three-dimensional moving porous structure and pure fluid regions


	4 Simulation of wave impact on coastal structures
	4.1 Model setup
	4.2 Analysis of simulation results

	5 Conclusions and outlooks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


