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Abstract 11 

This paper presents a Peridynamics-based computational approach for modeling coupled fluid 12 
flow and heat transfer problems. A new thermo-hydrodynamic Peridynamic (PD) model is 13 
formulated with the semi-Lagrangian scheme and non-local operators. To enhance accuracy and 14 
numerical stability, a multi-horizon scheme is developed to introduce distinct horizons for the flow 15 
field and thermal field. The multi-horizon scheme helps to capture the convective zone and 16 
complex thermal flow pattern while effectively mitigating possible oscillations in temperature. We 17 
validate the computational approach using benchmarks and numerical examples including heat 18 
conduction, natural convection in a closed cavity, and Rayleigh-Bénard convection cell. The 19 
results demonstrate that the proposed method can accurately capture typical thermal flow 20 
behaviors and complex convective patterns. This work offers a new foundation for future 21 
development of a unified PD framework for robust, comprehensive multi-physics analysis of 22 
thermal fluid-solid interaction problems with complex evolving discontinuities in solids. 23 
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1 Introduction 26 

Coupled fluid flow with heat transfer is a complex and intriguing physical process found in various 27 
natural and engineered systems. It involves simultaneous interactions between fluid motion and 28 
thermal energy transfer. This coupling plays a crucial role in many practical applications, from 29 
engineering processes to natural phenomena like ocean currents and atmospheric circulation. For 30 
example, in designing heat exchangers and solar collectors (Du et al., 2024), accurate predictions 31 
of fluid flow and heat transfer rates are vital for efficient heat exchange between different fluid 32 
streams and solid structures. Similarly, in aerospace engineering, understanding the interaction 33 
between fluid flow and heat transfer is crucial for assessing the thermal loads on aircraft surfaces 34 
during flight (van Heerden et al., 2022). Studying coupled fluid flow and heat transfer presents 35 
challenges due to the complicated phenomena involved, including convective heat transfer, 36 
boundary layer development, fluid mixing, and thermal stratification. The convection processes to 37 
be discussed in this paper can be categorized into two types based on the driving forces behind 38 
fluid motion. Natural convection arises from buoyancy force caused by temperature variations, 39 
while forced convection results from pressure or viscous force applied on the fluid boundary. Most 40 
convective problems in practice involve a combination of both types.  41 

Various mesh-based numerical methods have been developed to better understand the complex 42 
interplay between fluid dynamics, thermal energy transport, and boundary conditions for realistic 43 
modeling of coupled process. Gartling (1977) employed the Galerkin finite element method (FEM) 44 
to solve the Navier-Stokes equation coupled with the energy equation, assuming the fluid was 45 
assumed to be incompressible and applying the Boussinesq approximation. The work examined 46 
thermal flow near a heat exchanger and in a cylindrical enclosure. Similar problems have been 47 
investigated using least-square FEM (Bell & Surana, 1995; Prabhakar & Reddy, 2006; Tang & 48 
Tsang, 1997; Wang & Qin, 2018). To accommodate the three-dimensional (3D) complexity 49 
inherent in fluid dynamics, Mallinson & Davis (1977) derived the solution of 3D Navier-Stokes 50 
equation within a box by finite difference method (FDM). The solution explored the 3D fluid 51 
motion generated by side heating from the box’s surface. Later, by using a second-order central 52 
difference scheme and special extrapolation with variable discretization, De Vahl Davis (1983) 53 
provided a benchmark solution for 2D natural convection problem, in which accurate predictions 54 
were achieved for fluid flow with Rayleigh number up to 106. FDM was also employed in more 55 
specific scenarios such as natural convection in shallow cavity (Cormack et al., 1974; Drummond 56 
& Korpela, 1987) and turbulent convection (Paolucci, 1990; Trias et al., 2007). The effects of an 57 
enclosed circle on thermal flow in a rectangular cavity were studied by Angeli et al. (2008) and 58 
Kim et al. (2008) using the finite volume method (FVM) and immersed boundary method, which 59 
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effectively capture the thermal flow field between the cooler outer rectangular enclosure and the 60 
hotter inner circular boundary.  61 

Recently, thermal flow coupling has been addressed using various particle-based methods. 62 
These methods do not rely on a fixed mesh structure, which reduces the computational costs 63 
associated with re-meshing and are hence well-suited for modeling complex geometries and free 64 
surface flow. Among these methods, smoothed particle hydrodynamics (SPH) has gained 65 
popularity for coupled thermal flow modeling. Cleary & Monaghan (1999) were the first to 66 
successfully implement thermal fields in SPH, although their work focused solely on heat 67 
conduction. Szewc et al. (2011) and Danis et al. (2013) explored natural convection in a square 68 
enclosure using SPH and examined the effects of Rayleigh number, Prandtl number, and Gay-69 
Lussac number. Their findings indicated that fluid flow transits gradually from laminar flow to 70 
turbulent flow as Rayleigh number increases up to 106. More recently, SPH has been effectively 71 
applied to model natural convection in complex geometries, such as a square closure with an inner 72 
circular hole (Aragón et al., 2021), concentric annuli (Garoosi & Shakibaeinia, 2020; Yang & 73 
Kong, 2019; Zhang & Yang, 2022) and reactor core with internal channels (Gui et al., 2022). More 74 
recently, Reece et al. (2024) extended the coupled SPH method to multi-phase condition by 75 
considering thermal stratification of different components. In addition to SPH, other particle-based 76 
methods have emerged. For instance, Gao & Oterkus (2019) leveraged the non-local operators 77 
proposed by Madenci et al. (2019) to simulate natural and mixed convection non-locally, achieving 78 
good agreements in temperature and velocity with SPH results.  79 

Peridynamics (PD), introduced by Silling (2000) and further developed by Silling et al. (2007), 80 
is a relatively new Lagrangian method based on the concept of particle interactions. It is a widely 81 
recognized that PD offers advantages over other meshfree or mesh-based methods, particularly in 82 
its ability to model complex evolving discontinuities. By employing integral form governing 83 
equations instead of differentials, PD is inherently well-suited for modeling fracturing processes 84 
in brittle materials. These include phenomena such as grain crushing (Shi et al., 2022; Zhu & Zhao, 85 
2019a, 2019b), thermally-induced fracturing (Bazazzadeh et al., 2020; Bie et al., 2024a; Bie et al., 86 
2024b; Chen et al., 2021; Gao & Oterkus, 2019a; Hao et al., 2024; Wang et al., 2018; Yang et al., 87 
2024a; Zhang & Zhang, 2022), and impact-induced fracturing (Yao et al., 2023; Yao & Huang, 88 
2022; Zhu & Zhao, 2021). While PD has shown significant capability in addressing discontinuities 89 
in solid mechanics, literature on its application to fluid flow is limited. Recently, a new version of 90 
PD, named Eulerian PD (Silling et al., 2017) or semi-Lagrangian PD (Behzadinasab & Foster, 91 
2020), has emerged. This approach uses the deformed body as the reference configuration rather 92 
than undeformed one, showing promise for modeling fluid flow and large deformation problems. 93 
The authors have recently extended the PD framework to include fluid flow and fluid-solid 94 



 

4 
 

interaction modeling by coupling total- and semi-Lagrangian formulations of PD (Yang et al., 95 
2024b). However, to the best of the authors’ knowledge, there is currently no PD approach 96 
available for modeling coupled flow and heat transfer processes, especially when thermal fluid-97 
solid interaction problems are involved with evolving discontinuities in solids.  98 

This study presents a cutting-edge effort to establish a unified PD framework that integrates 99 
both fluid dynamics and energy exchanges. A novel coupled thermo-hydrodynamic PD model will 100 
be developed using a semi-Lagrangian formulation within the state-based PD framework. The 101 
formulation accommodates non-isothermal conditions by incorporating a non-local form energy 102 
equation. A multi-horizon scheme is introduced for improving numerical accuracy and stability. 103 
The work presented here lays the groundwork for future development of a fully coupled thermo-104 
hydro-mechanical (THM) PD framework, which will provide unique capabilities for modeling 105 
coupled THM processes involving large deformation, fracturing in solids, and fluid flow in 106 
fractured media. Typical examples include frost cracking and slope failure induced by freezing 107 
and thawing (Chen et al., 2024a; Chen et al., 2024b; Yu et al., 2024a, 2024b, 2024c), cool water 108 
injection into hot rock formations for oil extraction (Xue et al., 2023), and magma-driven 109 
fracturing (Spence & Turcotte, 1985; Taddeucci et al., 2021). 110 

The structure of this paper is organized as follows: Section 2 introduces the fundamental 111 
concepts of PD theory, discussing both total- and semi-Lagrangian formulations. Building upon 112 
this foundation, Section 3 presents our proposed novel thermo-hydrodynamic PD model. Section 113 
4 details the integration scheme for the PD model to facilitate implementation and computation. 114 
Sections 5 and 6 provide a comprehensive set of benchmark and numerical examples, including 115 
investigations into heat conduction, natural convection, and Rayleigh-Bernard convection cell. 116 
Finally, Section 7 concludes the paper by summarizing the key findings and implications of our 117 
study, along with a discussion of potential limitations and outlook. 118 

2 Peridynamics theory and non-local operators 119 

The PD approach is based on the fundamental principle of modeling interactions among individual 120 
material points. In this framework, a continuous medium is represented by discretizing it into a 121 
finite number of material points. During this discretization process, a specific range known as the 122 
horizon is defined, which sets the extent of the interaction forces between a master material point 123 
and its neighboring points. The set of all neighboring points associated with a given master material 124 
point, denoted as Ω!, is referred to as its family. Consequently, the equation of motion for each 125 
material point x can be expressed by considering all interactions within its family, as follows: 126 
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𝜌(𝒙)�̈�(𝒙, 𝑡) = + [𝑻〈𝒙′ − 𝒙〉 − 𝑻〈𝒙 − 𝒙′〉]
"!

d𝑉!# + 𝒃(𝒙) (1) 

where 𝜌, 𝒖 and 𝒃 represent the density, displacement and body force density of a master material 127 
point, respectively, and 𝑉!# represents the volume of a neighboring point. 𝑻 is defined as the force 128 
state, which operates on each bond and yields the interaction forces between different material 129 
points. For example, 𝑻〈𝒙′ − 𝒙〉 denotes the force exerting from point 𝒙′ on point 𝒙.  130 

Force state 𝑻〈𝒙′ − 𝒙〉 can be quantified in different ways through constitutive models. For 131 
brittle-elastic materials, a typical model is the linear PD solid model given as (Silling et al., 2007) 132 

𝑻〈𝒙′ − 𝒙〉 = 𝑡
𝒀
‖𝒀‖ (2) 

in which 𝑡 is a scalar force state; 𝒀 is the deformed bond vector between two material points. Note 133 
that for the linear PD solid model given in Eq. (2), the magnitude of 𝑻〈𝒙′ − 𝒙〉 may not be the 134 
same as 𝑻〈𝒙 − 𝒙′〉  and this formulation is commonly known as the state-based PD. If the 135 
magnitude of interaction forces between two material points are always equal, the state-based PD 136 
reduces to bond-based PD. State-based PD is adopted throughout this paper as it frees many 137 
limitations of the bond-based PD (Silling et al., 2007).  138 

 139 

Fig. 1. Schematics of: a) basic concepts and initial configuration of PD; b) total-Lagrangian scheme; and c) 140 
semi-Lagrangian scheme by taking thermal expansion process as an example. 141 
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 142 

As an alternative formulation to the classical solid mechanics, the original PD employed the 143 
Lagrangian scheme, as illustrated in Fig. 1(b). In this scheme, neighboring material points for a 144 
specific master point stay fixed, while the shape and size of the family evolve continually with 145 
deformation. The Lagrangian formulation is well-suited for solid mechanics applications where 146 
small deformation assumption usually remains valid. However, it faces challenges when applied 147 
to fluid mechanics and problems involving significant deformation, as the shape of the family can 148 
become highly distorted. Under such circumstance, the derivatives in the governing equations are 149 
poorly evaluated by integration over material points within a distorted family. Semi-Lagrangian 150 
PD serves as a remedy to facilitate modeling of large deformation problems by PD. Also known 151 
as Eulerian PD (Silling et al., 2017) or updated Lagrangian PD (Bergel & Li, 2016; Tu & Li, 2017; 152 
Yan et al., 2019, 2021), it represents a relatively new variant of the traditional PD approach that 153 
combines both Lagrangian material points and Eulerian grids. In the semi-Lagrangian PD 154 
formulation, material points are still tracked using a Lagrangian approach, meaning their positions, 155 
velocities, and accelerations are explicitly updated at each time step. However, the interactions 156 
among the material points are computed using a Eulerian framework, where a fixed family shape 157 
is maintained, as illustrated in Fig. 1(c). This approach requires updating neighboring material 158 
points in the presence of significant deformation, and derivatives are approximated using non-local 159 
integral operators. Two commonly used non-local operators are the non-local gradient operator 𝔾 160 
and the non-local divergence operator 𝔻, which can be expressed as follows (Bergel & Li, 2016) 161 

𝔾(𝑨) = <+ 𝑤⟨‖𝒀‖⟩(∆ ∙ 𝑨) ⊗ 𝒀	d𝑉!"
$!

D𝑴!
%& ≅ ∇𝑨 (3) 

𝔻(𝑨) = + 𝑤⟨‖𝒀‖⟩(∆ ∙ 𝑨) ∙ (𝑴!
%&𝒀)	d𝑉!"

$!
≅ ∇ ∙ 𝑨 (4) 

where 𝑨 is a random vector; ∆ ∙ represents a difference operator, for example ∆ ∙ 𝑨 = 𝑨!" − 𝑨!; 162 
∇𝑨 and ∇ ∙ 𝑨 represents the local gradient and local divergence of vector 𝑨, respectively; ⊗ is the 163 
dyadic product; 𝑴! is defined as the shape matrix, which is calculated as 164 

𝑴! 	= + 𝑤⟨‖𝒀‖⟩	𝒀⊗ 𝒀	d𝑉!#
$!

 (5) 

in which 𝑤⟨‖𝒀‖⟩ is the weight function that determines the influence of neighboring material 165 
points based on their distances to the master point. The weight function can be chosen in various 166 
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forms, such as unity, B-spline, or Gaussian functions. In this study, 𝑤⟨‖𝒀‖⟩ is specifically selected 167 
in the Gaussian from 168 

𝑤⟨‖𝒀‖⟩ = 𝑒%'
‖𝒀‖
*+ ,

#

 (6) 

where the parameter 𝛼  is selected to be 0.5. Note that all the integrations in Eqs. (3)-(5) are 169 
conducted over the updated family 𝐵!. 170 

3 Coupled thermo-hydrodynamic Peridynamics model 171 

In this section, the governing equations for fluid flow coupled with heat transfer are reformulated 172 
into their non-local forms using the semi-Lagrangian PD method and non-local operators. The 173 
fluid flow is assumed to be weakly compressible, inviscid, and heat conducting. 174 

3.1 Continuity equation 175 

The continuity equation required the conservation of mass within a fixed volume over time, which 176 
is given by 177 

𝜕𝜌
𝜕𝑡 + ∇ ∙

(𝜌𝒗) = 0 (7) 

where 𝒗 is the velocity vector; 𝜕/𝜕𝑡 is the Eulerian derivative with respect to time. The term ∇ ∙178 
(𝜌𝒗) can be further expanded into 179 

𝜕𝜌
𝜕𝑡 + 𝒗 ∙ ∇𝜌 + 𝜌∇ ∙ 𝒗 = 0 (8) 

for isothermal flows, the density change, i.e., the second term on the left-hand side of Eq. (8), can 180 
be neglected. However, for thermal flows, where temperature variations occur, the density 181 
becomes a thermodynamic variable that is dependent on temperature. Therefore, all three terms in 182 
Eq. (8) should be explicitly considered for thermal flow.  183 

To bridge the Eulerian and Lagrangian descriptions (note that semi-Lagrangian PD still adopts 184 
Lagrangian description), Lagrangian derivative (also known as material derivative) is introduced 185 
as 186 

D
D𝑡 =

𝜕
𝜕𝑡 + 𝒗 ∙ ∇ (9) 
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and therefore, the continuity equation given in Eq. (8) can be alternatively written in Lagrangian 187 
form as  188 

-.
-/
+ 𝜌∇ ∙ 𝒗 = 0. (10) 

Note that Eq. (10) and Eq. (8) are fundamentally equivalent. The Lagrangian derivative (or 189 
material derivative) explicitly incorporates both the local change present in the Eulerian derivative 190 
and the convective change terms. This equivalence arises because the material derivative accounts 191 
for the temporal variation at a fixed point (local change) and the transport of the quantity due to 192 
fluid motion (convective change). Thus, the two formulations describe the same physical process 193 
but from different perspectives. 194 

In the case of incompressible flows, directly implementing Eq. (10) in an explicit scheme 195 
necessitates an extremely small time step, which is computationally prohibitive. To address this 196 
issue, a weakly compressible method proposed by Monaghan (1994) in SPH is utilized to model 197 
the incompressible fluid. In this approach, an equation of state is introduced to describe the 198 
relationship between the pressure 𝑝 and the density 𝜌 of the fluid as  199 

𝑝 =
𝜌𝑐01

𝑛 ST
𝜌
𝜌0
U
2
− 1W (11) 

where 𝑛 is one fitting parameter, which can be interpreted from experiments; 𝜌0  is the initial 200 
density; 𝑐0 is the artificial sound speed. By using the weakly compressible method, the density is 201 
updated according to Eq. (10) and the pressure is calculated explicitly from Eq. (11). Substituting 202 
the non-local divergence operator given in Eq. (4) into Eq. (10) gives the non-local continuity 203 
equation as follows 204 

D𝜌
D𝑡 = −𝜌+ 𝜔⟨‖𝒀‖⟩	𝒗	⟨𝒀⟩ ∙ (𝑴!

%&𝒀)
$!

d𝑉!# (12) 

3.2 Momentum equation 205 

The classical local equation of motion is mathematically expressed as 206 

𝜕𝜌𝒗
𝜕𝑡 + ∇ ∙ (𝜌𝒗⊗ 𝒗) = ∇ ∙ 𝝈 + 𝒃 (13) 

where 𝝈 is the Cauchy stress tensor; 𝒃 denotes the body force density. Eq. (13) governs the motion 207 
of a continuous media and is more commonly known as Navier equation in fluid mechanics. For 208 
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incompressible fluid, Eq. (13) can be further simplified by expanding the two derivatives on the 209 
left side 210 

𝜌 T
𝜕𝒗
𝜕𝑡 + 𝒗∇ ∙ 𝒗U = ∇ ∙ 𝝈 + 𝜌𝒈 (14) 

or expressed in the Lagrangian description with material derivative  211 

𝜌
D𝒗
D𝑡 = ∇ ∙ 𝝈 + 𝜌𝒈 (15) 

In the case of thermal flow, temperature variations can lead to changes in fluid properties such 212 
as density and viscosity. The Boussinesq approximation is a commonly adopted approach in which 213 
the variations of all fluid properties, except for density differences multiplied by the acceleration 214 
due to gravity, i.e., 𝜌𝒈  in Eqs. (14)-(15), are neglected. This approximation allows for a 215 
computationally efficient simulation while effectively capturing the buoyancy force resulting from 216 
temperature changes. However, it is important to note that the Boussinesq approximation requires 217 
small variations in both temperature and density to be valid. In this study, instead of using the 218 
Boussinesq approximation, we update the density in each step according to Eq. (10) and then 219 
consider the thermal effect by incorporating the following expression 220 

𝜌 = 𝜌′ + ∆𝜌 (16) 

where 𝜌′ denotes the initial density obtained directly from Eq. (10) at each step and ∆𝜌 is the 221 
variation of density induced by variation in temperature. Provided that the variation in density is 222 
linearly related to the variation in temperature, ∆𝜌 can be expressed as a function of thermal 223 
expansion coefficient 𝛽 as  224 

∆𝜌 = −𝛽∆𝛩𝜌′ (17) 

in which ∆𝛩  is the variation in temperature. Note that the density is assumed to decrease 225 
monotonically as temperature increases. If the density-temperature relationship is nonlinear and 226 
requires a more complex expression, it is possible to introduce more intricate equations to capture 227 
the behavior accurately (Szewc et al., 2011).  228 

The momentum equation can also be expressed in non-local form by substituting Eq. (4) into 229 
Eq. (15) 230 

𝜌
D𝒗
D𝑡 = + 𝜔⟨‖𝒀‖⟩	(𝝈!𝑴!

%& + 𝝈!#𝑴!#
%&)

$!
𝒀	d𝑉!# + 𝒃 (18) 
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3.3 Constitutive equation of fluid 231 

For Newtonian fluid considered in this paper, the stress tensor 𝝈 in Eq. (15) can be decomposed 232 
into two parts 233 

𝝈 = −𝑝𝑰 + 2𝜇�̇� (19) 

where the pressure 𝑝 represents the hydrostatic part and can be calculated by the equation of state 234 
defined in Eq. (11); 𝜇 is dynamic viscosity and �̇� is the rate of deformation, the product of which 235 
denotes the viscous part. �̇� can be related to the gradient of velocity as  236 

�̇� =
1
2
[∇𝒗 + (∇𝒗)3] (20) 

3.4 Energy equation 237 

When considering heat transfer, the fluid flow system is extended by incorporating the energy 238 
equation, which states that the time rate of change of the total energy  239 

𝜌 T
𝜕𝑒
𝜕𝑡 + 𝒗∇ ∙ 𝑒U = −∇ ∙ 𝒒 + 𝜑 + 𝜌𝛩4 (21) 

where 𝛩4 is the internal volumetric heat generation per unit mass; dissipation function 𝜑 = 2𝜇�̇� ∶240 
�̇� is adopted according to Reddy & Gartling (2010); the heat flux 𝒒 is defined as  241 

𝒒 = −𝑘5∇𝛩 (22) 

in which 𝑘5  is the thermal conductivity. For the internal energy function 𝑒 , one of the most 242 
common expressions is as a function of temperature and density, i.e., 𝑒 = 𝑒(𝛩, 𝜌). The derivative 243 
of 𝑒 to time can be expanded according to the chain rule as  244 

𝜕𝑒
𝜕𝑡 =

𝜕𝑒
𝜕𝛩

D𝛩
D𝑡 +

𝜕𝑒
𝜕𝜌
D𝜌
D𝑡  (23) 

where 𝜕𝑒/𝜕𝛩  is defined as the specific heat capacity 𝑐 ; and D𝜌  can be regarded as zero for 245 
incompressible fluid considered in this paper. Therefore, substituting Eq. (23) into Eqs. (21)-(22) 246 
yields the non-local energy equation and non-local Fourier’s law  247 

𝜌𝑐
D𝛩
D𝑡 = + 𝜔⟨‖𝒀‖⟩f𝒒!𝑴!

%& + 𝒒!"𝑴!"
%&g	𝒀	d𝑉!"

$!
+ 𝜑 + 𝜌𝛩4 (24) 
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𝒒𝒙 = −𝑘5 <+ 𝜔⟨‖𝒀‖⟩	(∆ ∙ 𝛩)	𝒀	d𝑉!"
$!

D𝑴!
%& (25) 

4 Multi-horizon scheme and numerical implementation 248 

Section 3 provides a detailed formulation of the coupled thermo-hydrodynamic PD model, which 249 
can be readily used to model convection problems. However, our previous research on the 250 
dispersion relation and error analysis of the PD heat equation (Yang et al., 2024a) has highlighted 251 
the significant impact of non-locality on the accuracy of thermal field modeling. Specifically, as 252 
the horizon size increases, the ratio of heat conduction slows down, and there is a potential for 253 
oscillations in the temperature field. This phenomenon occurs because the non-local PD 254 
formulation allows particles to bypass heat flux, which is inconsistent with the fundamental nature 255 
of heat conduction, a process that is inherently local and relies on direct contact. It is worth noting 256 
that the previous investigation was based on a total-Lagrangian scheme, and the situation may be 257 
even more challenging with a semi-Lagrangian scheme due to the additional errors arising from 258 
irregularly distributed material points. With these considerations, it is favourable to use a small 259 
horizon for the thermal field since a small horizon helps mitigate the potential issues associated 260 
with non-local effects as mentioned above.  261 

On the other hand, the convection process in thermal flow can exhibit highly non-local 262 
behaviour. In fluid flow systems, convection can induce changes in density and velocity profiles 263 
throughout the fluid domain. While these changes originate from local heat conduction, they can 264 
occur over a larger spatial extent, especially in extreme cases such as Earth's atmosphere and 265 
mantle, spanning hundreds of kilometers (Huang, 2024). Since density and velocity are crucial 266 
factors in determining flow behaviours of fluids, it is essential to select a horizon size for fluid 267 
flow modeling that is large enough to capture the convective characteristics. According to the 268 
numerical experiments conducted by Reece et al. (2024), a kernel smoothing length of four times 269 
the particle size is required to accurately capture the steady-state thermal flow in SPH. Similarly, 270 
based on our experience, it is recommended that the horizon for fluid flow modeling in PD should 271 
be at least three times the material point size, with four or five times acceptable, to effectively 272 
capture the complex convective pattern. However, this poses a dilemma when it comes to modeling 273 
thermal flow, as a smaller horizon is preferable to heat conduction process.  274 

To address the challenge of maintaining accuracy and stability for both fluid and thermal field 275 
modeling, a multi-horizon scheme has been employed in this study. This approach, first proposed 276 
by Yang et al. (2024a) in coupled thermo-mechanical problems, involves using a larger horizon 277 
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for solid fracturing modeling and a smaller horizon for heat transfer modeling. In the context of 278 
coupled flow and heat transfer processes, a larger horizon is adopted for modeling fluid motion 279 
while a smaller one, termed as thermal horizon, is used for heat conduction. The larger fluid 280 
horizon captures convective behavior and changes in density and velocity profiles over a larger 281 
spatial extent, while the smaller thermal horizon focuses on localized heat conduction and 282 
mitigates dispersive issues in thermal modeling. This approach allows us to achieve optimized 283 
accuracy in both fluid and thermal aspects by considering their distinct characteristics. The multi-284 
horizon scheme also serves as a way to save computational cost as fewer neighboring material 285 
points are involved in the thermal field model. A schematic diagram illustrating the methodology 286 
is presented in Fig. 2. 287 

 288 

 289 

Fig. 2. Schematics of semi-Lagrangian multi-horizon thermo-hydrodynamic PD model: family of material 290 
point i (initial Ω! and updated B!) and thermal horizon of material point j (initial Ω"# and updated B"#). 291 

4.1 Spatial discretization 292 

To solve the integral governing equations, the entire simulation domain must be discretized into 293 
subdomains. Typically, line segments, squares, and cubes are used as subdomains for 1D, 2D, and 294 
3D problems, respectively. After discretization, material points are placed at the centroids of these 295 
subdomains. All calculations are performed at these material points, which are analogous to 296 
Gaussian points in the FEM. However, these material points carry all material properties as well 297 
as the volume (or area/length for 2D/1D problems) of their respective subdomains. For clarity, Fig. 298 
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3 illustrates the discretization of a 2D problem with a uniform spacing ∆𝑥 between material points. 299 
Using this meshless discretization scheme, Eq. (12), Eq. (18), Eq. (24) and Eq. (25) can be 300 
expressed in the discretized form as 301 

D𝜌7
D𝑡 = −𝜌7i𝜔jk𝒀78kl	f𝒗8 −	𝒗7g ∙ f𝑴7

%&𝒀78g
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8:&

𝑉8𝜓8 (26) 
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+ 𝜑7 + 𝜌𝛩47 (28) 

𝒒7 = −𝑘5 ni𝜔jk𝒀78klf𝛩8 − 𝛩7g𝒀78𝑉8𝜓8

9$
"

8:&

o𝑴7
%& (29) 

where the subscripts 𝑖 and 𝑗 are associated with master material point 𝑖 and neighboring material 302 
point 𝑗, respectively. 𝑁  represents family number within the fluid horizon while 𝑁#  represents 303 
family number within the thermal horizon. The deformed bond vector between 𝑖 and 𝑗, 𝒀78 , is 304 
calculated by 𝒙8 − 𝒙7. 𝜓8 is a volume correction coefficient since the outer neighboring material 305 

points within the range of 𝛿 − ∆𝑥/2 < k𝒀78k < 𝛿 are only partially enclosed within the horizon 306 
as illustrated in Fig. 3. The correction coefficient 𝜓8 	is defined according to the distance between 307 
two material points as (Silling & Askari, 2005) 308 

𝜓8 = u
𝛿 − ∆𝑥/2 − k𝒀78k

∆𝑥 								 , 𝛿 − ∆𝑥/2 < k𝒀78k < 𝛿

1																																, k𝒀78k ≤ 𝛿 − ∆𝑥/2
 (30) 
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 309 

Fig. 3. Discretization, material points and volume correction in a 2D problem. 310 

4.2 Time integration 311 

To numerically obtain the solution to the coupled thermo-hydrodynamic system, the coupled PD 312 
equations are partitioned naturally according to fluid flow field and thermal field, and each field is 313 
solved sequentially by a forward difference scheme. The procedure involves a series of steps as 314 
illustrated in the flow chart in Fig. 4. In each time step, the heat equation is initially solved within 315 
the thermal horizon using a forward difference scheme.  316 

𝜌72𝑐7
𝛩72;& − 𝛩72

Δ𝑡 =i𝜔jk𝒀782 klf𝒒72𝑴7
%& + 𝒒82𝑴8

%&g𝒀782 𝑉82𝜓82
9$
"

8:&

+ 𝜑72 + 𝜌72𝛩472  (31) 

where the superscript 𝑛 denotes the values at n-th step and Δ𝑡 is the time step. This computation 317 
enables the update of temperatures for material points within the thermal horizon while keeping 318 
the positions of all material points unchanged.  319 

Subsequently, the continuity and momentum equations are solved within the fluid horizon also 320 
by a  forward difference scheme  321 

.$
%&'%.$

%

</
= −𝜌72 ∑ 𝜔jk𝒀782 kl	f𝒗82 −	𝒗72g ∙ f𝑴7

%&𝒀782 g
9$
8:& 𝑉82𝜓82. (32) 

In this step, the new temperatures obtained from the heat equation solution are used. The position, 322 
velocity, and acceleration of the material points are then updated accordingly by the velocity Verlet 323 
scheme 324 
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 325 

Fig. 4. Flow chart of the time integration of multi-horizon scheme. 326 

 327 

In scenarios involving large deformation problems, such as fluid flow, it is important to note 328 
that both the fluid horizon and thermal horizon can become significantly distorted after updating 329 
the positions of the material points. As a result, an additional neighbor searching process is 330 
necessary in the semi-Lagrangian scheme. During this process, the neighboring material points of 331 
a given master point are updated while preserving the circular shape of both the fluid horizon and 332 
thermal horizon. For a visual representation of the described methodology, readers are referred to 333 
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Fig. 2. Since neighbor searching must be performed at each time step due to the continuous motion 334 
of material points, selecting an efficient neighbor-searching algorithm is critical for minimizing 335 
computational costs. In this study, we adopt the region partition search algorithm, as elaborated in 336 
Madenci & Oterkus (2014) and Diyaroglu (2016). The primary concept of the region partitioning 337 
algorithm is to divide the entire domain into equally sized cells that are larger than the horizon. 338 
When searching for neighbouring material points, it is only necessary to examine the neighbouring 339 
cells while deactivating all the material points in non-neighbouring cells. The region partition 340 
search algorithm has been proven to outperform several other searching algorithms with different 341 
tree structures (Vazic et al., 2020). While there may be more advanced searching algorithms that 342 
offer superior computational efficiency, optimizing the searching algorithm is beyond the scope 343 
of this paper. 344 

4.3 Implementation of boundary conditions 345 

In numerical simulations, displacement, velocity, and temperature boundary conditions can be 346 
directly implemented by introducing additional material points as non-local Dirichlet boundary 347 
conditions. For non-isothermal problems, adiabatic or flux boundary conditions are also commonly 348 
required. Flux boundary conditions are typically treated as Neumann boundary conditions. 349 
Madenci & Oterkus (2014) proposed a method for implementing non-local flux boundary 350 
conditions by adding extra material points and prescribing their temperatures at each time step; 351 
however, this approach significantly increases computational costs. 352 

In this study, we adopt a two-field formulation of the energy equation, as shown in Eq. (24) 353 
and Eq. (25), which explicitly expresses the governing equation for flux. This formulation allows 354 
flux boundary conditions to be imposed directly by prescribing the flux (Dirichlet boundary) rather 355 
than indirectly through temperature (Neumann boundary). Macek & Silling (2007) recommended 356 
that the extent of additional material points should match the horizon size, 𝛿 , to ensure that 357 
boundary conditions are adequately reflected within the simulation domain. In the multi-horizon 358 
scheme used in this work, displacement and velocity boundaries are applied using three layers of 359 
material points, while only one layer of material points is sufficient for thermal boundaries. 360 

4.4 Numerical stabilization 361 

Due to the discretized nature of material points in semi-Lagrangian PD, they can sometimes 362 
become unevenly distributed or cluster together, leading to inaccurate results or program errors. 363 
To mitigate this issue, the particle shifting technique is employed. It involves adjusting the 364 
positions of material points during the simulation to alleviate clustering and improve the overall 365 



 

17 
 

distribution. The shifting process typically includes two main steps. First, the density of each 366 
particle is estimated based on its neighboring material points as  367 

𝜌 =
∫ 𝜔⟨‖𝒀‖⟩	$!

d𝑚!#

∫ 𝜔⟨‖𝒀‖⟩	$!
d𝑉!#

 (37) 

where 𝑚!# and 𝑉!# represent the mass and volume of a neighbouring material point, respectively. 368 
Particles that are too close to each other or have higher densities are shifted or moved slightly to 369 
achieve a more uniform distribution. The shifting is performed by applying corrective 370 
displacements to each material points as (Yang et al., 2024a) 371 

∆𝒙7 = 𝐶=>3𝑣?@Ad𝑡i
~ 1𝑁7

∑ ‖𝒀‖9$
8:& �

1

‖𝒀‖1 𝑵⟨𝒀⟩
9$

8:&

 (38) 

where 𝐶=>3  is a shifting coefficient; 𝑣?@A  represents the maximum expected velocity of fluid 372 
material points throughout the computational domain; 𝑵⟨𝒀⟩  denotes the unit vector of the 373 
deformed bond.  374 

5 Benchmarks 375 

5.1 Pure heat conduction of fluid in a square cavity 376 

The natural convection within a closed square cavity serves as a typical case for modeling 377 
convective processes. To validate the proposed multi-horizon thermo-hydrodynamic PD model 378 
and semi-Lagrangian scheme for heat transfer, we first simulate pure heat conduction in the same 379 
square cavity before attempting to capture convective characteristics.  380 

The schematic illustration of the square cavity is shown in Fig. 5 with both the width and length 381 
𝑙 equal to 1 m. The initial temperature of the whole cavity is set as 0 °C. The temperatures of the 382 
left and right boundaries are fixed at 1 °C and 0 °C, respectively. The upper and lower boundaries 383 
are assumed to be adiabatic. All four surfaces are fixed by setting the velocity in both x and y 384 
directions to zero. These non-local boundary conditions are applied by adding additional material 385 
points outside the modeling domain as shown in Fig. 5(b). Following the multi-horizon scheme, 386 
the horizon for fluid flow is adopted to be three times the material point size, while the thermal 387 
horizon for heat transfer is chosen as 1.5 times the material point size. Note that for thermal flow 388 
modeling, the thermal horizon cannot be adopted as only one time material point size as used in 389 
thermo-mechanical problems of solids by Yang et al. (2024a). Owing to the large deformation 390 
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nature of fluid flow, the material points can be randomly distributed within the domain. If the 391 
thermal horizon is set as only one time point size, there might be no neighboring material points 392 
in certain direction and instability problem may be induced. The whole model is consequently 393 
discretized into 86×86 Lagrangian material points with each size equal to 0.0125m.  394 

 395 

 396 

Fig. 5. Natural convection in a closed square cavity: (a) thermal boundary conditions and body force; and 397 
(b) discretized PD model and velocity boundary conditions. 398 

 399 

The fluid is assumed to be dry air which has the following properties: density 𝜌 = 1.3082 400 
kg/m3, viscosity 𝜇 = 1.7 × 10%B  Pa∙s, thermal conductivity 𝑘5 = 0.024 W/m/°C, specific heat 401 
𝑐C = 1005 J/kg/°C and thermal expansion coefficient 𝛽 = 0.00343 °C-1 (McQuillan et al., 1984). 402 
For thermal flow, there are two relevant dimensionless quantities. One is the Prandtl number 403 
defined as  404 

Pr =
𝜈
𝛼 (39) 

which describes the ratio of momentum diffusivity 𝜈 = 𝜇/𝜌 to thermal diffusivity 𝛼 = 𝑘5/𝜌𝑐. 405 
The properties of dry air adopted here gives a Prandtl number equal to 0.71, which implies that the 406 
heat diffuses faster than momentum, leading to a more rapid temperature variation within fluid 407 
flow. Another important dimensionless quantity is the Rayleigh number given by 408 
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Ra =
𝑔𝛽(𝛩0 − 𝛩&)𝑙D

𝜈𝛼  (40) 

where 𝑔 is the gravity; 𝛩0 − 𝛩& represents the temperature difference across the cavity and 𝑙 is a 409 
characteristic length of the fluid domain. The Rayleigh number quantifies the tendency of a fluid 410 
to undergo convective motion due to thermal gradients. A larger Rayleigh number indicates more 411 
significant convection driven by buoyancy forces. In a zero-gravity environment, the fluid is free 412 
from external forces, resulting in a Rayleigh number of zero. Consequently, the combined 413 
conduction-convection process simplifies to pure conduction under this circumstance. In this sub-414 
section, 𝑔 is set to be zero in the numerical model to simulate pure heat conduction in fluid. 415 

 416 

 417 

Fig. 6. (a) Comparison between PD results and analytical solution (Crank, 1975); and (b) temperature 418 
contour of simulation results after reaching steady state. 419 

 420 

The transient heat distribution in a rectangular plate with such boundary conditions are 421 
analytically given by Crank (1975) 422 

𝛩 = 𝛩0 + (𝛩& − 𝛩0)
𝑥
𝑙 +

2
𝜋i

𝛩&cos𝑛𝜋 − 𝛩0
𝑛 sin

𝑛𝜋𝑥
𝑙 𝑒%

E(
.F
2#G#/
H#

I

2:&

 (41) 

By setting 𝛩0 = 1 °C and 𝛩& = 0 °C, the analytical results along with the PD results at the 423 
central horizontal line, i.e., from point (0.0,0.5) to point (1.0,0.5), are shown in Fig. 6(a). The 424 
proposed coupled thermo-hydrodynamic PD method consistently matches well with the analytical 425 
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solution until reaching the steady state. Fig. 6(b) plots the temperature and position at each 426 
discretized material point, along with the temperature contour. It can be observed that all the 427 
material points nearly remain at their initial positions since there is no external force, and the 428 
thermal expansion is inapparent. The temperatures of material points with the same x position are 429 
the same as expected, resulting in a uniformly distributed vertical temperature contour. This 430 
example benchmarks the capability of the coupled thermo-hydrodynamic PD model in modeling 431 
the heat conduction process.  432 

5.2 Natural convection in a closure 433 

In this section, the same problem in Section 5.1 is re-considered by adding gravity force which is 434 
the driving force of natural convection phenomenon. De Vahl Davis (1983) indicates that the 435 
thermal flow becomes turbulent when Ra reach around 106. Therefore, three different Ra values, 436 
103, 104, and 105, are simulated to investigate different patterns of convection. All the other setups 437 
are the same as adopted in Section 5.1.  438 

Fig. 7 depicts temperature field for three different cases after reaching the steady state. 439 
Different from the results in Fig. 6(b), the isotherms are all distorted due to the convection process. 440 
Owing to the temperature variation, the density at left and top sides of the cavity would be smaller 441 
than the density at right and bottom sides. Therefore, the density variation further induces a 442 
buoyancy force that drives a clockwise circulation within the square cavity. As the Rayleigh 443 
number increases, the isotherms become more distorted. This phenomenon indicates a higher 444 
speed flow is generated for higher Ra number as validated by Fig. 8, in which the velocity 445 
distribution in x and y directions at steady state are shown. For convection with lower Ra number, 446 
the thermal flow involves a larger part of the material points while the velocity remains low. As a 447 
contrast, with a higher Ra number, the velocity of the thermal flow increases significantly while 448 
only the material points near the boundaries participate in the flow. These flow patterns and 449 
convective characters are consistent with the literature (Danis et al., 2013; Gao & Oterkus, 2019b; 450 
Szewc et al., 2011). Note that there are oscillations in the velocity field. This is mainly due to the 451 
explicit scheme and weakly compressible assumption adopted. The divergence of velocity in Eq. 452 
(10) cannot be guaranteed to be exactly zero in current scheme. The error may be mitigated by an 453 
implicit scheme or explicit incompressible scheme. 454 
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 455 

Fig. 7. Temperature distribution at each material point and temperature contour in the cavity for: (a) Ra = 456 
103; (b) Ra = 104; and (c) Ra=105. 457 

 458 

Fig. 8. Velocity distribution at each material point for: (a) Ra = 103; (b) Ra = 104; and (c) Ra=105. 459 

 460 
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 461 

Fig. 9. Comparisons of (a) temperature and (b) normalized velocity in y direction along the central 462 
horizontal line for different Rayleigh numbers. 463 

 464 

Quantitative comparisons between the proposed PD method and the SPH results along the 465 
central horizontal line of the square cavity, i.e., from point (0.0,0.5) to point (1.0,0.5), are shown 466 
in Fig. 9(a) and (b). When the Rayleigh number is relatively small, the convection is not significant, 467 
and the temperature approximately decreases linearly with the x position. As the Rayleigh number 468 
increases, the temperature distribution becomes a curve affected by the velocity of material points 469 
that boost or hinder the heat transfer. For all Rayleigh numbers, the temperature obtained from the 470 
proposed PD method match well with SPH results. To facilitate a comparison of velocity with 471 
Danis et al. (2013), we normalize the velocity in the same manner as: 472 

𝑣∗ =
𝑣
𝛼 =

𝑣𝜌𝑐
𝑘5

 (42) 

As show in Fig. 9(b), the peak velocity increases significantly as Rayleigh number increases, which 473 
drives the convection process and makes the temperature contour more distorted. Again, both the 474 
trend and value of velocity are consistent with Danis et al. (2013). 475 

In heat transfer analysis, the Nusselt number is another widely used dimensionless parameter 476 
to characterize the convective heat transfer between fluid and a solid surface. The local Nusselt 477 
number is defined as 478 

Nu(𝑥) =
𝜕𝛩
𝜕𝑥  (43) 
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Note that although the boundaries are also modelled by fluid material points herein, it does not 479 
affect the validity of Nusselt number and its definition. The solid boundary can be applied by 480 
further developing coupled THM PD model, which serves as an interesting topic for future 481 
research. Fig. 10 plots the Nusselt number at the right wall, i.e., from point (1.0,0.0) to point 482 
(1.0,1.0), along with SPH results, where good agreements between the two methods are observed 483 
for all Rayleigh numbers.  484 

 485 

 486 

Fig. 10. Comparisons of Nusselt number at right wall for: (a) Ra = 103; (b) Ra = 104; and (c) Ra=105. 487 

6 Numerical example and discussions 488 

Another typical natural convection is Rayleigh-Bénard convection, which occurs in a planar 489 
horizontal layer of fluid heated from below as shown in Fig. 11(a). Different from the cases 490 
investigated in Sections 5.1 and 5.2, the gravity force in Rayleigh-Bénard convection is in line 491 
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with the initial temperature gradient. The Rayleigh-Bénard convection can develop a regular 492 
pattern of fluid flow known as Rayleigh-Bénard cell. The formation of such convection cell is still 493 
attributed to the density different due to temperature variation and hence buoyancy. The initial 494 
movement is the upwelling of less-dense fluid from the warmer bottom layer. The Rayleigh-495 
Bénard convection holds significant importance in various fields. For instance, it is utilized to 496 
explain intricate patterns of frost damage in turfgrass (Ackerson et al., 2015). In the realm of 497 
biochemistry, the Rayleigh-Bénard convection cell is employed for polymerase chain reaction 498 
(PCR) processes (Krishnan et al., 2002; Yao et al., 2007), where a steady roll-type convective flow 499 
is required to duplicate DNA. In such cases, the temperature gradient between the bottom and top 500 
plates plays a crucial role in governing the convection. The Rayleigh number, which is associated 501 
with the temperature gradient, must be sufficiently large to initiate convection while avoiding 502 
excessive values that could cause turbulent flow. Additionally, without proper cell size design, the 503 
possibility of generating multi-roll flows emerges. Consequently, the utilization of numerical 504 
simulations offers significant benefits in exploring and understanding these phenomena in greater 505 
detail.  506 

 507 

 508 

Fig. 11. Rayleigh-Bénard convection cell: (a) schematic (side view) of an experimental device by 509 
Krishnan et al. (2002); and (b) sketch map and boundaries conditions of PD model. 510 

6.1 PD simulation of Rayleigh-Bénard convection 511 

6.1.1 Roll pattern 512 

Herein, the proposed thermo-hydrodynamic PD model is used to model a Rayleigh-Bénard 513 
convection cell as shown in Fig. 11(b). The right and left walls of the cell are assumed to be 514 
adiabatic. The bottom wall is maintained at a higher temperature denoted as Θ&, while the top wall 515 
is subjected to a lower one Θ0. All four surfaces are fixed by setting the velocity in both x and y 516 
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directions to zero. The properties of the fluid in this case are summarized as follows: density 𝜌 =517 
975 kg/m3, viscosity 𝜇 = 0.000377 Pa∙s, thermal conductivity 𝑘5 = 6.71 W/m/°C, specific heat 518 
𝑐C = 4.176 J/kg/°C, and thermal expansion coefficient 𝛽 = 0.0005 °C-1. Note that the properties 519 
are selected based on water given in Yao et al. (2007) with the specific heat capacity minimized 520 
and the thermal conductivity magnified to obtain a more regular convective pattern. Different 521 
temperature difference between top and bottom walls and different cell sizes are used to produce 522 
different convective patterns and showcase the capability of the proposed PD method. 523 

 524 

Fig. 12. Temperature distribution at steady state in the cell for (a) Θ0 = 61 °C and Θ& = 70 °C; (b) 525 
Θ0 = 61 °C and Θ& = 79 °C; and (c) Θ0 = 61 °C and Θ& = 97 °C. 526 
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 527 

We first investigate a horizontally layered fluid cell with a width-to-height ratio of 2 as shown 528 
in Fig. 12. If the variation of temperature between the top and bottom plates is minor, the Rayleigh 529 
number is below the critical threshold that would trigger the convection, and the heat transport 530 
remains purely conductive. The temperature distributes linearly along the height after reaching the 531 
steady state. As the Rayleigh number increases, the pure conductive phase is broken up due to the 532 
tendency of upward movement of the heated fluid with lower density. These thermals have a 533 
mushroom-like appearance as indicated by the temperature fronts shown in Figs. 12(b) and 12(c), 534 
which is consistent with the phenomenological model proposed by Howard (1966) and experiment 535 
conducted by Sparrow et al. (1970). Finally, steady double-roll and triple-roll flows are formed for 536 
lower and higher Rayleigh number cases, respectively. The velocity of each material point is 537 
represented in Fig. 13 using arrows. The colormap represents the density of corresponding material 538 
point and saturates at higher and lower densities (a linear blue-white-red scale representing values 539 
from low to high).  540 

It can be observed that the thermal flow initiates from hot fluid with lower densities towards 541 
cold region with higher densities, which once again demonstrates the crucial role of buoyancy 542 
force in natural convection. Such eruption moves colder fluid close to the bottom wall to replace 543 
the hot fluid. As the cold fluid is heated through conduction from the wall, it eventually triggers 544 
another such eruption. This cyclical process repeats, giving rise to a roll-type flow pattern. The 545 
rotation of the flows alternates horizontally between clockwise and counterclockwise. The rolls in 546 
Fig. 13(a) are approximately circular in shape while those in Fig. 13(b) appear to be more oval-547 
shaped. This observation suggests a correlation between the Rayleigh number and the shape of the 548 
rolls. A higher Rayleigh number corresponds to thermals with increased velocity, which results in 549 
a more significant upward movement of the temperature front. Consequently, the rolls tend to take 550 
on an elliptical shape, with a longer axis in the vertical direction. In other words, the higher the 551 
Rayleigh number, the more elongated or stretched the rolls become vertically. This also explains 552 
why three rolls are formed in Figs. 12(b) and 13(b). The eruption is initiated around the position 553 
at x = 0.65 to form the second and third rolls (from right to left) in Fig. 13(b). Since both the second 554 
and third rolls are elliptical and there are still enough room in the right side of the cell for the 555 
formation of another complete roll, the first roll later is triggered and formed by the downward 556 
movement at the right edge of the second roll. Further increase in the temperature applied on 557 
bottom wall results in a turbulent and chaotic flow, which will be explored in detail in later cases. 558 
Note that although the geometry of model and boundary conditions are completely symmetric, the 559 
steady flow pattern is not. This phenomenon holds true in experiments where spatially random-560 
distributed upward thermals are observed (Sparrow et al., 1970; Tritton, 1988) and the Rayleigh-561 
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Bernard convection is known as one of the typical spontaneous symmetry breaking processes. In 562 
terms of numerical modeling, the symmetry of the material points is disrupted after displacements 563 
induced by heat conduction and convection. On the other hand, small numerical perturbations may 564 
be amplified owing to the non-local nature of the PD theory. To some extent, this simulation results 565 
reflect the reality lying in the symmetry breaking process of Rayleigh-Bernard convection.  566 

 567 

 568 

Fig. 13. Velocity field at steady state in the cell for (a) Θ0 = 61 °C and Θ& = 79 °C; (b) Θ0 = 61 °C and 569 
Θ& = 97	°C. The direction and magnitude of arrows align with the direction and magnitude of velocity, 570 
respectively. The arrows are colored by density.  571 

 572 

With the temperature of the top and bottom plates kept at 61 °C and 97 °C, respectively, 573 
different cell dimensions are adopted to investigate the effects of cell size. The results for width-574 
to-height ratio of 1, 2 and 3 are shown in Figs. 14(a)-(c). For these three cases, the Rayleigh 575 
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numbers are the same and the only differences lies in the width of the cell. The flow at steady state 576 
recovers from multi-roll type to single-roll type as the width-to-height ratio decreases, which is in 577 
line with the experimental finding by Krishnan et al. (2002). Such presence of a single steady roll, 578 
as depicted in Fig. 14(a), is advantageous for processes such as PCR. When the width-to-height 579 
ratio of the cell is set to 0.5 by doubling the height, the Rayleigh number of the cell in Fig. 14(d) 580 
is eight times of that in the other cases in Fig. 14(a)-(c). Consequently, the flow pattern becomes 581 
irregular and cannot reach a stable state. The temperature distribution and streamlines at different 582 
times are shown in Fig. 15. The initial thermal flux wanders upward instead of moving vertically 583 
as seen in Figs. 14(a)-(c). Subsequently, another new thermal flux emerges and disrupts the 584 
original flow. As a result, small-scale disorganized motions coexist alongside the larger-scale 585 
circulatory flow, leading to continuous interactions between them. The cell finally forms one single 586 
distorted thermal as shown in Figs. 15(d)-(f). Although the general shape of the thermal remains 587 
similar, this thermal flux still moves continuously with a certain period akin to the swaying of 588 
seaweed in water. This behavior is more clearly elucidated in Fig. 15(k)-(l), where the evolution 589 
of streamlines highlights the ongoing movement within the system. 590 

 591 

Fig. 14. Temperature distribution and roll type within the cell for different width-to-heigh ratios: (a) 1; (b) 592 
2; (c) 3 and (d) 0.5. 593 
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 594 

Fig. 15. Temperature distribution at (a) 5 s; (b) 6 s; (c) 10s; (d) 16 s; (e) 20 s and (f) 50 s; and streamlines 595 
at (g) 5 s; (h) 6 s; (i) 10s; (j) 16 s; (k) 20 s and (l) 50 s for the case in Fig. 14(d). Refer to the legend in Fig. 596 
14.  597 

6.1.2 Turbulent thermal flow 598 

To further validate the proposed PD computational method and demonstrate its capability in 599 
modeling turbulent thermal flows at high Rayleigh numbers, we numerically reproduce the 600 
Rayleigh-Bénard convection experiment conducted by Sparrow et al. (1970), as shown in Fig. 16. 601 
In the experiment, a heating plate of 9 cm in width was positioned 8 cm above the bottom of a 602 
tank. The dimensions of the tank are 58 cm in width and 40 cm in height. The tank was filled with 603 
water at an initial temperature equal to Θ0 = 23.6 °C. The plate was gradually heated to Θ& =604 
43.1 °C and maintained at this temperature. The experimental setup results in a Rayleigh number 605 
up to 10&0. For the simulation, we used the actual specific heat capacity and thermal conductivity 606 
of water. The experimental observations indicated that the fluid motion and temperature variation 607 
on the two sides and below the heating plate were minimal shortly after the heating commenced. 608 
Therefore, to optimize computational efficiency, we focus on the region above the heating plate 609 
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by selecting a simulation domain of 12 cm in width and 30 cm in height, as illustrated in Fig. 16. 610 
The material point size is set to 0.6 mm, resulting in a total of 104,236 material points.  611 

 612 

Fig. 16. Schematic of experimental setup in Sparrow et al. (1970) and numerical model. 613 

 614 

In Fig. 17, it can be seen that the cellular pattern shown in previous cases is completely gone. 615 
These thermals lose their regularity as they ascend. The heights of different thermals are also 616 
different. Nevertheless, all thermals manifest as rising columns of fluid, spaced more or less evenly 617 
along the expanse of the heated surface. As a thermal ascends through the relatively calm 618 
surroundings fluid, its leading edge becomes blunted and folded back, resulting in a nearly semi-619 
spherical cap and bestowing a mushroom-like appearance upon the thermal. Once these 620 
characteristics are established, the locations where the thermals originate appear to be fixed. In 621 
other words, subsequent generations of thermals emerge consistently from the same predetermined 622 
sites. These characteristics are consistent with the experimental results shown in Fig. 17(c), where 623 
the generations of thermals are in evidence. Fig. 18 illustrates the temperature evolution at the 624 
monitor point indicated in Fig. 16. This monitor point is located 0.8 cm above the heating plate, 625 
positioned above an active thermal. In the experiment, a thermocouple junction was placed at this 626 
location to record temperature changes. The experimental results show that the temperature 627 
oscillates with a nearly constant amplitude and a specific frequency, indicating that thermals are 628 
generated at almost consistent locations. The periodicity of the oscillations obtained from our 629 
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numerical results generally aligns well with the experimental recordings. However, the numerical 630 
results exhibit slight deviations from strict periodicity and constant amplitude. These discrepancies 631 
may be attributed to the smaller simulation domain that was adopted. Another possible reason is 632 
that the mesh resolution may be insufficient to fully resolve the interactions between nearby 633 
thermals, potentially leading to potential interference between them.  634 

 635 

Fig. 17. Thermals rising from a heating plate: (a) numerical results obtained from PD; (b) numerical results 636 
obtained from SPH; and (b) experimental results (Sparrow et al., 1970).  637 
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 638 

Fig. 18. Temperature evolution at a specific point above the heating plate. 639 

6.2 Discussion: performance and limitations 640 

A key concern regarding the proposed PD method is its computational efficiency. Common fluids, 641 
such as water, exhibit low thermal conductivity and high specific heat capacity, which often 642 
necessitates significant time to reach steady-state flow or display typical flow patterns. Achieving 643 
this with an explicit time integration scheme can lead to substantial computational costs. 644 

To assess the computational efficiency of the proposed PD method, we compare its 645 
performance with that of SPH for the turbulent Rayleigh-Bénard convection case. PD and SPH 646 
share several similarities that make them suitable for comparison; both are particle-based methods 647 
that rely on interactions between particles. While PD is primarily known for its application in solid 648 
mechanics, SPH is widely used for fluid modeling. For this comparison, we reproduce the coupled 649 
thermo-hydrodynamic SPH method reported by Reece et al. (2024). To ensure a fair comparison, 650 
both PD and SPH employ explicit time integration schemes, identical model setups, and the same 651 
time step sizes. Additionally, the interaction range for both methods, defined as the horizon in PD 652 
and the smoothing length in SPH, is set to three times the particle size. For the turbulent Rayleigh-653 
Bénard convection case, parallel computing is employed using 12 cores of an Intel® Xeon® Gold 654 
6248 @ 3 GHz processor. The numerical result generated by SPH is presented in Fig. 17(b). Both 655 
PD and SPH qualitatively capture the mushroom-shaped thermals. However, based on our current 656 
results, SPH appears to produce fewer thermals compared to PD. 657 
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Table 1. Computational time comparison between PD and SPH 659 

Case 
No of 

particles 
Steps PD SPH 

Turbulent Rayleigh-Bénard convection 104,236 500,000 169,037 s 55,687 s 

Natural convection with Ra = 10! 7,396 5,000,000 134,518 s 162,974 s 

Natural convection with Ra = 10" 7,396 5,000,000 183,647 s 161,683 s 

Natural convection with Ra = 10# 7,396 5,000,000 192,777 s 163,988 s 

 660 

Natural convection cases are also simulated using SPH, with computations performed on a 661 
single core of the same CPU. The computational times for the different cases, using both PD and 662 
SPH, are summarized in Table 1. From this table, it can be observed that the computational 663 
efficiency of PD is comparable to that of SPH for coupled thermo-hydrodynamic problems when 664 
using a single thread. However, PD exhibits lower efficiency than SPH when parallel computing 665 
is utilized. This difference can be attributed to several factors: the governing equations in PD, 666 
particularly for state-based formulations, are more complex than those in SPH, leading to higher 667 
computational overhead. Furthermore, SPH has been extensively used and optimized over several 668 
decades, especially in fluid dynamics. As a relatively newer method, PD has not yet benefited from 669 
the same level of algorithmic optimization and parallelization efforts as SPH.  670 

Nevertheless, it is important to acknowledge that the efficiency of particle-based method, 671 
whether PD or SPH, is generally lower than that of element-based method such as FEM and FVM 672 
when modelling internal flows. The primary advantages of particle-based methods lie in their 673 
ability to handle free-surface flows and fluid-solid interaction problems with evolving geometries. 674 
Unlike element-based methods, which use Eulerian meshes and cannot precisely identify the 675 
position of free surfaces within an element, particle-based methods naturally and accurately 676 
capture free surfaces. This capability makes them particularly well-suited for problems involving 677 
complex interfacial dynamics. 678 

One potential solution to further improve efficiency of PD is to employ an implicit scheme 679 
(Bie et al., 2019), which would allow for much larger time step. Additionally, the semi-Lagrangian 680 
formulation necessitates neighbor searches at each step arises, which can consume more time than 681 
the actual model computations in CPU-based codes. In this context, GPU-accelerated computing 682 
(Wang & Yin, 2024; Wang et al., 2025) also emerges as a promising approach. While these 683 
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technical considerations are intriguing, they delve more into the computer science and coding 684 
aspects, warranting dedicated future research. The primary focus here is more on the fluid 685 
mechanics aspect and the development of the coupled thermo-hydrodynamic formulation within a 686 
unified PD framework.  687 

It should be emphasized that the Rayleigh number in the Rayleigh-Bénard convection case 688 
reaches up to 10&0. According to Danis et al. (2013), thermal flows at such high Rayleigh numbers 689 
are inherently turbulent. While the proposed PD method demonstrates the ability to capture typical 690 
turbulent thermal flow patterns, its performance for cases with even higher Rayleigh numbers 691 
requires further investigation. Additionally, the current implementation does not incorporate a 692 
turbulence model. Although the results align reasonably with experimental observations, we 693 
anticipate that the accuracy of the simulations could be further enhanced by integrating a 694 
turbulence model into the PD framework. This integration would improve the capability of the 695 
method to resolve finer-scale turbulent structures and dynamics. 696 

Another important aspect of the multi-horizon scheme that warrants exploration is its energy 697 
conservation property, which has not been explicitly addressed in the previous work (Yang et al., 698 
2024a). An important assumption made in the present study is that kinetic energy and thermal 699 
energy are independent, conserving within their respective horizons. This assumption is 700 
fundamental, as fluid flow is primarily driven by internal buoyancy forces, and fluid displacement 701 
does not generate or dissipate heat. However, in two-way coupled thermo-hydrodynamic scenarios, 702 
such as the plastic flow of liquid metal, where heat generation or dissipation occurs due to fluid 703 
movement, ensuring energy conservation in the multi-horizon scheme poses an intriguing 704 
challenge that requires further investigation. 705 

7 Conclusion and outlook 706 

This paper presents a new thermo-hydrodynamic model developed within the stated-based 707 
Peridynamics (PD) framework. The semi-Lagrangian PD formulation is adopted for modeling 708 
large deformations of fluids. This formulation is extended to non-isothermal conditions by 709 
incorporating the energy equation, which governs the heat conduction within the fluids. The energy 710 
equation is transformed into a non-local form using non-local gradient and divergence operators 711 
to align with the PD formulation. Consequently, multi-physics analysis involving fluid flow with 712 
heat transfer can be effectively conducted within the framework. To mitigate the numerical 713 
oscillations in thermal fields and to reduce computational costs, a multi-horizon scheme is 714 
proposed for coupled thermo-hydrodynamic modeling, where a smaller horizon is adopted for the 715 
thermal field (i.e., temperature) and a larger horizon is used for the flow field (i.e., velocity, 716 
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acceleration). The proposed method is benchmarked against a pure conduction problem and a 717 
classical natural convection problem in closed cavity. Further applications demonstrate the 718 
capabilities of the coupled PD method in capturing complex thermal flow patterns, including 719 
steady roll-type flows and turbulent mushroom-like thermals, as evidenced by experiments. 720 
Quantitative comparisons between the numerical results and recorded experimental data on 721 
periodicity and frequency of turbulent thermal generation further validated the proposed method.  722 

The proposed computational method paves the way for the future development of a unified 723 
framework for computational modeling of coupled THM processes for both solids and fluids, 724 
particularly in scenarios where evolving discontinuities in solids play a critical role. Such scenarios 725 
are commonly encountered in nature and engineering applications. For instance, magma-driven 726 
fracturing (Spence & Turcotte, 1985; Taddeucci et al., 2021) in crustal rocks serves as a typical 727 
example. Similarly, in geothermal energy exploitation, cool water is injected into hot dry rock to 728 
create a more interconnected fracture network. In these contexts, the intricate interplays between 729 
mechanical and thermal fracturing, heat conduction and convection in and across different phases, 730 
as well as fluid flow, must all be considered. The proposed PD method for fluid modeling can be 731 
seamlessly integrated with existing thermo-mechanical PD solid models, such as the one 732 
developed by Yang et al. (2024a), which is capable of modeling heat transfer in solids as well as 733 
fracture initiation and propagation. Since both fluid and solid components can be modeled within 734 
a single particle-based framework, there is no need to explicitly define the fluid-solid interface. 735 
This represents a significant advantage when addressing complex, evolving geometries in fluid-736 
structure interaction problems. Furthermore, coupling PD fluid and solid models does not require 737 
specialized techniques. A straightforward fictitious point method (Yang et al., 2024b) can be 738 
employed to complete the horizons of interacting solid and fluid material points. This unified 739 
framework can be further extended to incorporate phase change processes between fluid and solid, 740 
enabling the modeling and interpretation of many intriguing phenomena in geoscience, such as 741 
igneous process and rainfall- or temperature-induced fracture initiation and propagation in glaciers. 742 
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