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ABSTRACT
Modeling the incompressible fluid flow in porous media has long been a challenging task in the Material Point Method
(MPM). Although widely used, conventional Updated Lagrangian MPM (ULMPM) often suffers from numerical sta-
bility and computational efficiency issues in the hydromechanical analysis of saturated porous media. To address
these issues, we herein present a novel semi-implicit Total Lagrangian MPM (TLMPM). The proposed TLMPM lever-
ages the fractional step method to decouple pore pressure from kinematic fields and employs the semi-implicit scheme
to bypass the small time step constraint imposed by permeability and fluid compressibility. Unlike its UL counterpart,
the TLMPM evaluates weighting functions and their gradients only once in the reference configuration, eliminating
material point tracking and inherently resolving cell-crossing instabilities. Given the consistent set of active degrees
of freedom throughout simulations, the proposed method greatly reduces computational costs associated with sys-
tem matrix assembly for both kinematics and pore pressure and with free-surface node detection. Furthermore, this
feature also facilitates the efficient Cholesky factorization, resulting in a substantial acceleration of the solver perfor-
mance. The proposed approach has been validated against various benchmark tests, and our results have highlighted
the remarkable performance of TLMPM, which can achieve up to 63 times speedup over conventional methods,
scaling favorably with problem size, and retaining numerical stability even with low-order basis functions. These
advancements position the TLMPM as a transformative tool for poroelastic analysis, with broader applicability to
large-deformation problems in geomechanics, energy systems, and environmental engineering.
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1 | Introduction

Coupled fluid flow and large deformation behavior in porous media plays a pivotal role in a wide range of geotechnical
engineering applications, like landslide [1, 2], hydraulic fracturing [3], and soil-structure interaction [4–7]. Accurate and
efficient modeling of the complex interaction between the solid matrix and pore fluid is essential for both a reliable predic-
tion and a robust design of infrastructures. Over the years, a range of numerical strategies has been developed to capture
fluid–solid interactions, including classic grid-based finite element methods (FEM) [8–12], entirely Lagrangian particle
methods such as smoothed particle hydrodynamics (SPH) [13, 14], and hybrid schemes like the material point method
(MPM) [15–17]. Comprehensive reviews of particle methods for FSI can be found in the study [18]. In particular, MPM
has emerged as a compelling approach owing to its hybrid Eulerian–Lagrangian description, which combines advantages
of mesh-based and meshfree representations for large deformation and contact-dominated FSI problems.

The MPM is featured by its use of material points to carry state variables, and utilizes an Eulerian background mesh
to calculate spatial gradients and solve the momentum equation. This hybrid description enables handling problems
involving large deformations and evolving interfaces, without suffering from the mesh distortion issues that typically
affect the traditional FEM. Early developments in hydromechanical coupled MPM date back to the 2010s [19–25]. These
attempts predominantly adopt explicit time integration schemes, where the kinematics of the solid skeleton and pore
fluid, as well as their interaction, are computed explicitly.

The explicit scheme is straightforward in implementation and well-suited for transient dynamic problems. However, it
is subject to strict time step constraints as it must fulfill the Courant-Friedrichs-Lewy (CFL) condition, which is jointly
dictated by the permeability of the porous medium and the bulk modulus of the pore fluid [26]. In practical scenarios,
porous media often exhibit low permeability, while pore fluid may be nearly incompressible, leading to prohibitively small
time steps. This limitation significantly hinders computational efficiency, particularly in quasi-static problems.

To alleviate these constraints, semi-explicit-implicit integration schemes have been developed [26–30]. By invoking the
fractional step method (FSM), the semi-implicit formulation weakly couples the kinematics and the pore pressures, split-
ting them to be solved sequentially and forming a staggered solution scheme. In particular, the kinematics is resolved
explicitly, while the pore pressure is solved implicitly [26]. This formulation permits an equal-order interpolation for both
solid and fluid fields, alleviating the time-step restrictions associated with the explicit method. In recent years, the scheme
has been further extended to thermo-hydro-mechanical (THM) coupling scenarios [31–35], demonstrating a great poten-
tial in large-deformation multiphysics analysis. The semi-implicit MPM generally requires assembling and solving one or
a few matrix equations at each step, leading to an increased computational cost. Moreover, spurious pore pressure oscil-
lations may occur due to the cell crossing noise and ill-imposition of Dirichlet and Neumann pressure boundary [36, 37],
hence demanding the use of artificial smoothing techniques which may incur substantial diffusive effects.

Despite differences in time integration strategies, both the explicit and semi-implicit MPM formulations build upon
an Updated Lagrangian (UL) framework, which continuously tracks the current deformed configuration and uses it to
evaluate shape functions and their gradients, as well as to perform numerical integration using particle quadrature. As
particles are (always) away from the optimal integration position, this process inevitably leads to quadrature errors [38],
especially for low-order interpolation functions with discontinuous shape function gradients [39, 40]. This issue is par-
ticularly pronounced when large deformations are present. Recent studies have highlighted the advantages of the Total
Lagrangian (TL) MPM, particularly for solid mechanics [41]. Unlike UL-based MPM, TLMPM computes shape functions,
their gradient, and kinematics with respect to the initial undeformed configuration (referred to as the reference configura-
tion). This treatment mitigates the drawback associated with continuous updates of the configuration and eliminates the
cell-crossing noise that can degrade numerical stability. TLMPM has also been successfully extended to frictional contact
problems [42, 43] and combined with FEM in hybrid TLMPM-ULFEM frameworks [44]. However, to the best of the
authors’ knowledge, its application to multiphysics problems, such as coupled hydromechanical analysis of porous
medium, remains unexplored. This work aims to investigate the applicability of TLMPM for this type of problem, high-
lighting its advantages and limitations, as well as exploring several mitigation measures to alleviate these limitations.

In this study, we present a Total Lagrangian formulation for hydromechanical coupling in saturated porous solids, focusing
on its efficient and stable MPM implementation. We concentrate on poroelastic materials undergoing large deformations,
such that complications arising from changes in material connectivity due to localized inelastic deformation are initially
avoided. The proposed method invokes the fractional step method (FSM) to weakly couple the pore pressure field and
the kinematics fields following the UL formulation proposed by [26]. The main difference between the two formulations
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is the approach to evaluating shape functions and their gradients, which is performed in the reference configuration,
inherently mitigating cell-crossing noise and the associated pore pressure instability issues common in UL-based vari-
ants. This strategy ensures that the active degrees of freedom remain unchanged throughout the computation, helping
to eliminate the need for particle tracking updates and repeated system matrix assembly for both kinematics and pore
pressure solvers. Additionally, the invariance of the coefficient matrix pattern enables the use of numerical factorization,
significantly accelerating the linear system solution.

The paper is organized as follows. Section 2 introduces the governing equations for the hydromechanical system. Section 3
presents the TL formulation within the MPM framework, while detailed numerical implementation is described in
Section 4. Benchmark and numerical examples that highlight performance comparisons with the ULMPM are provided
in Section 5. Finally, conclusions are drawn in Section 7 along with several suggestions for future work.

2 | Formulation and Methodology

2.1 | Prerequisite

In this manuscript, we employ the following notations and conventions. The dot notation
⋅
◽ and double dot notation

̈
◽

denote the first- and second-order material time derivatives, respectively. The symbol ◽⊗ ◽ represents the dyadic (outer)
product. Single and double contractions of tensor indices are denoted by ◽ ⋅ ◽ and ◽ ∶ ◽, respectively. Subscripts are
used to distinguish different types of variables: The subscript ◽𝑝 denotes particle (material point) variables, while ◽𝐼 or
◽𝐽 represent nodal variables. The subscripts ◽𝑠 and ◽𝑓 are used to identify quantities associated with the solid skeleton
and pore fluid, respectively. ∇𝑥(◽) and ∇𝑥 ⋅ (◽) denote the gradient operator and divergence operator with respect to the
current configuration, respectively, whereas ∇𝑋(◽) and ∇𝑋 ⋅ (◽) represent the gradient operator and divergence operator
the reference configuration, respectively.

2.2 | One-Point Two-Phase MPM and Kinematics

In this study, we adopt the one-point two-phase MPM framework. Each material point represents a mixture of solid
skeleton and pore fluid, and their respective volumes 𝑉𝛼 (𝛼 = 𝑠 or 𝑓 ) are determined from the corresponding volume
fractions 𝜃𝛼

𝑉𝛼 = 𝜃𝛼𝑉 (1)

where 𝑉 denotes the total mixture volume and we define 𝜃𝛼 ≡ 𝜃𝑡
𝛼 as the volume fraction for a specific phase at a given time

𝑡. For biphasic (or saturated) porous media, the relationship 𝜃𝑠 + 𝜃𝑓 = 1 holds. The mass of each phase, 𝑚𝛼 , are given by

𝑚𝛼 = 𝜃𝛼𝜌𝛼𝑉 (2)

with 𝜌𝛼 being the intrinsic mass density. Accordingly, the total homogenized mass density for the mixture is

𝜌 = 𝜃𝑠𝜌𝑠 + 𝜃𝑓𝜌𝑓 (3)

The current configuration of the mixture,Ω, is defined by the deformation mappings of its constituent phases. Specifically,
the solid phase is mapped by 𝝋𝑠(𝑿𝑠, 𝑡) and fluid phase by 𝝋𝑓 (𝑿𝑓 , 𝑡). Here, 𝑿𝑠 ≡ 𝑿 represents the position vector in the
reference configuration Ω0

𝑠 ≡ Ω0. The deformation gradient tensor 𝑭 , which relates the current configuration Ω to the
reference configuration Ω0, is defined as:

𝑭 = 𝜕𝒙

𝜕𝑿
(4)

where 𝒙 and 𝑿 are the current and reference position vectors of the material point, respectively.

In the one-point two-phase MPM formulation, the framework is established such that it can simulate the mechanical
deformation of porous materials in the presence of pore fluid. However, the movement of the fluid phase is not fully
tracked; specifically, while the equations of motion and mass conservation for the fluid phase are solved locally at each
time step, the displacement of fluid particles across time steps is disregarded. It is assumed that the void pore space
remains fully saturated at all times. Consequently, as illustrated in Figure 1, the overall deformation of the mixture can
be considered to coincide with that of the solid phase, allowing us to equate 𝑭 = 𝑭 𝑠.

3 of 37

 10970207, 2025, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.70135 by H
ong K

ong U
niversity O

f, W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 1 | Illustration of the finite deformation in hydromechanical coupling analysis.

The material time derivatives of the position vectors, the velocity, and the acceleration, for each phase can be defined as:

𝒗𝑠 = 𝒖̇𝑠 =
d𝑠𝒙

d𝑡
, 𝒂𝑠 = 𝒖̈𝑠 =

d𝑠𝒗𝑠

d𝑡
(5)

𝒗𝑓 = 𝒖̇𝑓 , 𝒂𝑓 = 𝒖̈𝑓 =
d𝑓𝒗𝑓

d𝑡
=

d𝑠𝒗𝑓

d𝑡
+
(
(𝒗𝑓 − 𝒗𝑠) ⋅ ∇𝑥

)
𝒗𝑓 ≈

d𝑠𝒗𝑓

d𝑡
(6)

Following the same notion of the deformation gradient, the position of the mixture material point is assumed to be gov-
erned solely by the solid-phase deformation. Consequently, the Lagrangian time derivative d(⋅)∕d𝑡 is taken to be equivalent
to d𝑠(⋅)∕d𝑡, aligning with the solid material point’s movement. Advective terms, such as those in Equation (6), are assumed
to be small under Darcy’s limit (low Reynolds number flow), and thus, often neglected for simplicity. Based on these
assumptions, the phase-wise acceleration can be expressed as 𝒂𝛼 = d𝑠𝒗𝛼∕d𝑡.

2.3 | Compressible Neo–Hookean Model

The compressible Neo–Hookean model is adopted to model the mechanical response of the solid skeleton [45]. The strain
energy density function 𝜓 of the material is expressed as:

𝜓 = 𝜇

2
(
𝐼1 − 𝑑

)
− 𝜇 ln 𝐽 + 𝜆

2
(ln 𝐽 )2 (7)

where 𝜆 and 𝜇 are the first and second Lamé parameters of the solid skeleton, respectively. Here, 𝐼1 = tr(𝑪) represents
the first invariant of the right Cauchy–Green deformation tensor 𝑪 = 𝑭 ⊤𝑭 , and 𝐽 = det(𝑭 ) denotes the Jacobian. The
parameter 𝑑 denotes the spatial dimension, which is set to 2 in this study.

Differentiating the strain energy density function 𝜓 with respect to the deformation, the effective Cauchy stress tensor
for the solid phase is derived as:

𝝈′ = 𝜇

𝐽

(
𝑭𝑭 𝑇 − 𝑰

)
+ 𝜆 ln 𝐽

𝐽
𝑰 (8)

where 𝑰 is the second-order identity tensor.

Following Terzaghi’s effective stress principle [46], the total Cauchy stress tensor 𝝈 can be decomposed into solid-phase
and pore-fluid phase components as:

𝝈 = 𝝈′ − 𝑝𝑰 (9)

where 𝑝 denotes the pore pressure. In the notation adopted herein, stress is considered positive in tension, whereas pore
fluid pressure is positive in compression.
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For the Total Lagrangian formulation, it is convenient to work with the first Piola–Kirchhoff stress 𝑷 , which is associated
with the Cauchy stress tensor 𝝈 via:

𝝈 = 1
𝐽
𝑷𝑭 𝑇 (10)

By performing a similar stress pull-back to Equation (9), the total first Piola-Kirchhoff stress is obtained as:

𝑷 = 𝑷 ′ − 𝑝𝐽𝑭 −𝑇 (11)

where 𝑷 ′ = 𝐽𝝈′𝑭 −𝑇 is the effective first Piola–Kirchhoff stress and 𝑝𝐽𝑭 −𝑇 represents the contribution from the pore
pressure.

2.4 | Mass Conservation

Assuming no mass exchange occurs between the solid and fluid phases, the mass balance equations for each phase can
be expressed as [26]:

d𝛼𝑚𝛼

d𝑡
=

d𝛼

d𝑡
(𝜃𝛼𝜌𝛼) + 𝜃𝛼𝜌𝛼∇𝑥 ⋅ 𝒗𝛼 = 0 (12)

In this study, both solid grains and interstitial pore fluid are assumed to be fully incompressible (d𝜌𝛼∕d𝑡 = 0), and hence
the mass balance equation simplifies to the following form:

d𝛼𝜃𝛼
d𝑡

+ 𝜃𝛼∇𝑥 ⋅ 𝒗𝛼 = 0 (13)

By summing the mass balance equations for both phases and noting that the total volume fraction sums to unity (𝜃𝑠 + 𝜃𝑓 =
1 for a saturated porous medium), the mass conservation equation for the mixture is derived as:

∇𝑥 ⋅
(
𝜃𝑠𝒗𝑠 + 𝜃𝑓𝒗𝑓

)
= 0 (14)

In the one-point two-phase MPM implementation, it is common to assume that the spatial variation of the phase-wise
volume fraction is negligible across the mixture [26], and therefore Equation (14) can be simplified to:

𝜃𝑠∇𝑥 ⋅ 𝒗𝑠 + 𝜃𝑓∇𝑥 ⋅ 𝒗𝑓 = 0 (15)

Considering the deformation of the material point is assumed to follow the solid phase, we can relate the current volume
fraction to its initial value via the Jacobian 𝐽 = 𝐽𝑠 = det𝑭 𝑠:

𝜃𝑠 = 𝜃0
𝑠∕𝐽 , 𝜃𝑓 = 1 − (1 − 𝜃0

𝑓 )∕𝐽 (16)

2.5 | Momentum Conservation

Neglecting convective terms, the linear momentum balance equations for the solid skeleton and the pore fluid are given
by:

𝜃𝑠𝜌𝑠𝒂𝑠 = ∇𝑥 ⋅
(
𝝈′ − 𝜃𝑠𝑝𝑰

)
+ 𝜃𝑠𝜌𝑠𝒃 − 𝒇 𝑑 − 𝒇 𝑏 (17)

𝜃𝑓𝜌𝑓𝒂𝑓 = −∇𝑥

(
𝜃𝑓𝑝

)
+ 𝜃𝑓𝜌𝑓𝒃 + 𝒇 𝑑 + 𝒇 𝑏 (18)

where 𝒃 is the body force per unit mass (e.g., gravitational acceleration). In the above expressions, the viscous drag and
buoyant force in the current configuration are denoted as 𝒇 𝑑 and 𝒇 𝑏, respectively. They are given by:

𝒇 𝑑 = −
𝜃2
𝑓
𝜌𝑓𝑔

𝑘

(
𝒗𝑓 − 𝒗𝑠

)
(19)

𝒇 𝑏 = 𝑝∇𝑥𝜃𝑓 (20)

Here, the drag force is considered to follow the linear Darcy’s law, where 𝑔 = 9.81 m/s is the gravitational acceleration
and 𝑘 is the soil permeability (hydraulic conductivity).
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2.6 | Semi-Explicit-Implicit Integration and Fractional Step Method

Although explicit schemes are straightforward to implement, they are often unsuitable for fully or weakly incompressible
materials, such as porous media saturated with pore water. This limitation arises from the requirement of significantly
small time steps to ensure stability. In this study, we adopt the semi-explicit-implicit scheme [26] for temporal dis-
cretization, which will be briefly summarized in this section. In this approach, the effective stress is solved explicitly
to circumvent the computational cost and complexity of formulating the consistent tangent operator for nonlinear elasto-
plastic materials. Meanwhile, the pore pressure is solved implicitly to overcome the time step restriction. Noted that, in
this study, we focus exclusively on highly deformable poroelastic materials. The implementation and extension of the
method to include poroelastoplastic materials are reserved for future work.

The fractional step method (FSM), also referred to as the splitting method, separates the computation of pore pressure
from other kinematic variables. By introducing intermediate velocities (𝒗∗𝛼, 𝛼 = 𝑠, 𝑓 ), the coupled system is advanced to
the next step through multiple substeps, with each substep addressing a single variable independently. The procedure is
outlined as follows:

{𝒗𝑡
𝛼, 𝑝

𝑡}
prediction
−−−−−−−−→ {𝒗∗𝛼}

pressure solution
−−−−−−−−−−−−→ {𝑝𝑡+1}

correction
−−−−−−−→ {𝒗𝑡+1

𝛼 } (21)

In the FSM, first, the inertial terms are decomposed into predictor and corrector, and related to 𝒗∗𝛼 as below:

𝒂𝑡
𝛼 =

𝒗𝑡+1
𝛼 − 𝒗𝑡

𝛼

Δ𝑡
=

𝒗∗𝛼 − 𝒗𝑡
𝛼

Δ𝑡
⏟⏟⏟

𝒂∗
𝛼

+
𝒗𝑡+1
𝛼 − 𝒗∗𝛼

Δ𝑡
⏟⏞⏞⏟⏞⏞⏟

𝒂∗∗
𝛼

(22)

With the predicted kinematic variables, the momentum balance equations are split to isolate the pore pressure 𝑝𝑡+1 from
the acceleration 𝒂𝑡+1

𝛼 . They are presented as:

Solid phase:

𝜃𝑠𝜌𝑠𝒂
∗
𝑠 = ∇𝑥 ⋅ 𝝈

′,𝑡 − 𝜃𝑠∇𝑥𝑝
𝑡 + 𝜃𝑠𝜌𝑠𝒃 +

𝜃2
𝑓
𝜌𝑓𝑔

𝑘
(𝒗∗𝑓 − 𝒗∗𝑠 ) (23)

𝜃𝑠𝜌𝑠𝒂
∗∗
𝑠 = −𝜃𝑠∇𝑥

(
𝑝𝑡+1 − 𝑝𝑡

)
(24)

Fluid phase:

𝜃𝑓𝜌𝑓𝒂
∗
𝑓 = −𝜃𝑓∇𝑥𝑝

𝑡 + 𝜃𝑓𝜌𝑓𝒃 −
𝜃2
𝑓
𝜌𝑓𝑔

𝑘
(𝒗∗𝑓 − 𝒗∗𝑠 ) (25)

𝜃𝑓𝜌𝑓𝒂
∗∗
𝑓 = −𝜃𝑓∇𝑥

(
𝑝𝑡+1 − 𝑝𝑡

)
(26)

Mixture:

𝜃𝑠𝜌𝑠𝒂
∗
𝑠 + 𝜃𝑓𝜌𝑓𝒂

∗
𝑓 = ∇𝑥 ⋅ (𝝈′,𝑡 − 𝑝𝑡) + 𝜌𝒃 (27)

𝜃𝑠𝜌𝑠𝒂
∗∗
𝑠 + 𝜃𝑓𝜌𝑓𝒂

∗∗
𝑓 = −∇𝑥

(
𝑝𝑡+1 − 𝑝𝑡

)
(28)

It is also worth noting that alternative methods for treating drag force Equations (23) and (25) are available [47, 48]. Herein,
we follow our previous work [26] and evaluate this term implicitly based on the predicted velocities, which reads:

𝒇 𝑑 = −
𝜃2
𝑓
𝜌𝑓𝑔

𝑘
(𝒗∗𝑓 − 𝒗∗𝑠 ) = −

𝜃2
𝑓
𝜌𝑓𝑔

𝑘

(
(𝒗𝑡

𝑓 − 𝒗𝑡
𝑠) + Δ𝑡(𝒂∗

𝑓 − 𝒂∗
𝑠 )
)

(29)

Upon computing the predicted accelerations via Equations (23) and (25), the intermediate velocities 𝒗∗𝛼 can be subse-
quently calculated. These intermediate velocities are then substituted into the continuity equation (Equation (15)), which
further yields the Poisson equation for the incremental pore pressure, Δ𝑝𝑡+1 = 𝑝𝑡+1 − 𝑝𝑡, that is,

Δ𝑡

(
𝜃𝑠
𝜌𝑠

+
𝜃𝑓

𝜌𝑓

)
∇2

𝑥

(
Δ𝑝𝑡+1) = 𝜃𝑠∇𝑥 ⋅ 𝒗

∗
𝑠 + 𝜃𝑓∇𝑥 ⋅ 𝒗

∗
𝑓 (30)
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After solving the Poisson equation to obtain the updated pore water pressure 𝑝𝑡+1, Equations (24) and (26) are utilized to
compute the updated velocities 𝒗𝑡+1

𝛼 , completing the computation process in a single time step.

Remark 1. It is worth emphasizing that, although various formulations can be adopted, our implementation of the
FSM-based MPM employs the momentum equations for the mixture and fluid phases to predict the intermediate accel-
eration and velocity. This option is chosen as it can simplify the enforcement of total external forces on the mixture and
pore water components, which can be seamlessly aligned with typical experimental measurements.

Remark 2. In the current study, we employed the incremental form of the FSM-MPM, which is demonstrated by [26]
to perform better in poromechanics simulations. Another alternative form, which solves the total pore pressure, 𝑝𝑡+1,
implicitly via a Poisson equation, has also been proposed in the literature. Interested readers are referred to [26, 49] for
further details.

2.7 | Weak Form

Following the Bubnov–Galerkin method, the weak form of the momentum equation at the prediction stage in the current
configuration Ω𝑡 is derived as follows:

∫Ω𝑡

𝛿𝒗 ⋅
(
𝜃𝑠𝜌𝑠𝒂

∗
𝑠

)
𝑑Ω𝑡 + ∫Ω𝑡

𝛿𝒗 ⋅
(
𝜃𝑓𝜌𝑓𝒂

∗
𝑓

)
𝑑Ω𝑡 = −∫Ω𝑡

∇𝑥𝛿𝒗 ∶
(
𝝈′,𝑡 − 𝑝𝑡𝑰

)
𝑑Ω𝑡

+ ∫Ω𝑡

𝛿𝒗 ⋅ 𝜌𝒃𝑑Ω𝑡 + ∫𝜕Ω𝜏
𝑡

𝛿𝒗 ⋅ 𝝉𝑑𝑆𝑡

(31)

∫Ω𝑡

𝛿𝒗 ⋅
(
𝜃𝑓𝜌𝑓𝒂

∗
𝑓

)
𝑑Ω𝑡 = ∫Ω𝑡

(
∇𝑥 ⋅ 𝛿𝒗

)
𝜃𝑓𝑝

𝑡𝑑Ω𝑡 − ∫Ω𝑡

𝛿𝒗 ⋅

(
𝜃2
𝑓
𝜌𝑓𝑔

𝑘

(
𝒗∗𝑓 − 𝒗∗𝑠

))
𝑑Ω𝑡

+ ∫Ω𝑡

𝛿𝒗 ⋅ 𝜃𝑓𝜌𝑓𝒃𝑑Ω𝑡 + ∫𝜕Ω𝑝
𝑡

𝛿𝒗 ⋅ 𝒕𝑓𝑑𝑆𝑡

(32)

Here, 𝛿𝒗 denotes the test function, with 𝛿𝒗 = 𝟎 on boundaries where solid or fluid displacements (or velocities) are pre-
scribed. Meanwhile, 𝝉 = 𝝈 ⋅ 𝒏 is the surface traction that acts on the boundary 𝜕Ω𝜏

𝑡 of the mixture, with 𝒏 being the unit
outward normal to the boundary, and 𝒕𝑓 = −𝜃𝑓𝑝𝑰 ⋅ 𝒏 is the prescribed traction of the fluid phase.

Similarly, the weak form of the Poisson equation for the pore pressure increment is as below:

∫Ω𝑡

𝛿𝑝 Δ𝑡

(
𝜃𝑠
𝜌𝑠

+
𝜃𝑓

𝜌𝑓

)
∇2

𝑥(Δ𝑝𝑡+1)𝑑Ω = ∫Ω𝑡

𝛿𝑝 𝜃𝑠∇𝑥 ⋅ 𝒗
∗
𝑠𝑑Ω + ∫Ω𝑡

𝛿𝑝 𝜃𝑓∇𝑥 ⋅ 𝒗
∗
𝑓𝑑Ω (33)

where 𝛿𝑝 is the test function for pore pressure, and it is assumed to be zero at the pore pressure boundary conditions 𝜕Ω𝑝.

Since the external loadings are already enforced during the prediction stage Equations (31) and (32), the solid and fluid
phases can be considered together to update the kinematic variables. The corresponding weak forms are presented as
follows:

∫Ω𝑡

𝛿𝒗 ⋅
(
𝜃𝑠𝜌𝑠𝒂

∗∗
𝑠

)
𝑑Ω𝑡 = −∫Ω𝑡

𝛿𝒗 ⋅ 𝜃𝑠∇𝑥(Δ𝑝𝑡+1)𝑑Ω𝑡 (34)

∫Ω𝑡

𝛿𝒗 ⋅
(
𝜃𝑓𝜌𝑓𝒂

∗∗
𝑓

)
𝑑Ω𝑡 = −∫Ω𝑡

𝛿𝒗 ⋅ 𝜃𝑓∇𝑥(Δ𝑝𝑡+1)𝑑Ω𝑡 (35)

3 | Total Lagrangian MPM for Hydromechanical Coupling Analysis

3.1 | Total Lagrangian Formulation

To develop the TLMPM for hydromechanical coupling analysis, it is essential to reformulate the weak form of the gov-
erning Equations (2.7) into their Total Lagrangian form that is established with respect to the reference configuration, as
shown in Figure 2.

7 of 37
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active cells

Current configuration
(UL)

Current configuration
(TL)

Reference configuration

initial pos. current pos.

Updated 
Lagrangian

(UL)

Total 
Lagrangian

(TL)

FIGURE 2 | Comparison of Total Lagrangian (TL) MPM and Updated Lagrangian (UL) MPM. The shaded region indicates the
activated cell when using standard MPM shape functions.

3.1.1 | Prediction Stage

Firstly, we can obtain the Total Lagrangian weak form of momentum equation for the mixture by pulling back
Equation (31) and making use of 1

𝐽
∇𝑋 ⋅ (𝐽𝝈𝑭 −𝑇 ) = ∇𝑥 ⋅ 𝝈, which yields to:

∫Ω0

𝛿𝒗 ⋅
(
𝜃𝑠𝜌𝑠𝒂

∗
𝑠𝐽

𝑡
)
𝑑Ω0 + ∫Ω0

𝛿𝒗 ⋅
(
𝜃𝑓𝜌𝑓𝒂

∗
𝑓𝐽

𝑡
)
𝑑Ω0 = −∫Ω0

∇𝑋𝛿𝒗 ∶
(
𝑷 ′,𝑡 − 𝑝𝑡𝐽 𝑡𝑭 −𝑇 )𝑑Ω0

+ ∫Ω0

𝛿𝒗 ⋅ 𝜌𝒃𝐽 𝑡𝑑Ω0 + ∫𝜕Ω𝜏
0

𝛿𝒗 ⋅ 𝑻 𝑑𝑆0

(36)

where Ω0 refers to the reference configuration, 𝑻 = 𝑷 𝑡 ⋅𝑵 is the first Piola–Kirchhoff traction vector acting on the mix-
ture, and 𝑵 is the outward unit normal vector to the boundary surface 𝜕Ω0.

For ease of constructing the Total Lagrangian formulation for the fluid phase, which involves the drag force term, we
invoke the Kozeny–Carman equation [50, 51] to relate the current permeability to the initial permeability in the reference
configuration 𝑘0, which is given below:

𝑘𝑡 =

(
𝜃𝑡
𝑓

)3

(
1 − 𝜃𝑡

𝑓

)2 𝜅 ≡
(
𝜃𝑡
𝑓

)3

(
𝜃0
𝑓

)3

(
1 − 𝜃0

𝑓

)2

(
1 − 𝜃𝑡

𝑓

)2 𝑘
0 ≡

(
𝜃𝑡
𝑓

)3

(
𝜃0
𝑓

)3

(
𝜃0
𝑠

)2(
𝜃𝑡
𝑠

)2 𝑘
0 ≡

(
𝜃𝑡
𝑓

)3

(
𝜃0
𝑓

)3 (𝐽
𝑡)2𝑘0 (37)

where 𝜅 is the reference permeability coefficient, which is assumed to be constant and a function of grain size distribution,
shape, and roughness. With Equation (37) in hand, and by invoking Equation (16), the Total Lagrangian weak form for
the fluid phase can be expressed as:

∫Ω0

𝛿𝒗 ⋅
(
𝜃𝑡
𝑓 𝜌𝑓𝒂

∗
𝑓

)
𝐽 𝑡𝑑Ω0 = ∫Ω0

𝜃𝑡
𝑓∇𝑋𝛿𝒗 ∶

(
𝐽 𝑡𝑝𝑡𝑭 −𝑇 )𝑑Ω0

− ∫Ω0

𝛿𝒗 ⋅

⎛⎜⎜⎜⎝
(
𝜃0
𝑓

)3

𝐽 𝑡 − 1 + 𝜃0
𝑓

𝜌𝑓𝑔

𝑘0

(
𝒗∗𝑓 − 𝒗∗𝑠

)⎞⎟⎟⎟⎠𝑑Ω0

+ ∫Ω0

𝛿𝒗 ⋅ 𝜃𝑡
𝑓 𝜌𝑓𝒃 𝐽 𝑡𝑑Ω0 + ∫𝜕Ω𝑝

0

𝛿𝒗 ⋅ 𝑻 𝑓𝑑𝑆0

(38)

where 𝑻 𝑓 = −
(
𝜃𝑡
𝑓
𝑝𝐽 𝑡𝑭 −𝑇

)
⋅𝑵 is the first Piola–Kirchhoff traction vector acting on the fluid phase pore-pressure bound-

ary 𝜕Ω𝑝
0.

8 of 37 International Journal for Numerical Methods in Engineering, 2025
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3.1.2 | Pore Pressure Solution

To simplify the derivation, we denote 𝜂𝑡 = Δ𝑡

(
𝜃𝑡
𝑠

𝜌𝑠
+

𝜃𝑡
𝑓

𝜌𝑓

)
. By transforming the integration domain from Ω𝑡 to Ω0, we can

arrange Equation (33) as follows:

∫Ω0

𝛿𝑝 𝜂𝑡∇2
𝑥(Δ𝑝𝑡+1)𝐽 𝑡𝑑Ω0 = ∫Ω0

𝛿𝑝 𝜃𝑡
𝑠∇𝑥 ⋅ 𝒗

∗
𝑠 𝐽 𝑡𝑑Ω0 + ∫Ω0

𝛿𝑝 𝜃𝑡
𝑓∇𝑥 ⋅ 𝒗

∗
𝑓 𝐽 𝑡𝑑Ω0 (39)

Applying integration by parts and divergence theorem, the LHS of Equation (39) can be written as:

∫Ω0

𝛿𝑝 𝜂𝑡∇2
𝑥(Δ𝑝𝑡+1)𝐽 𝑡𝑑Ω0 = −∫Ω0

𝜂𝑡𝐽 𝑡∇𝑥𝛿𝑝 ⋅ ∇𝑥(Δ𝑝𝑡+1)𝑑Ω0 + ∫𝜕Ω𝜈
0

𝛿𝑝 𝑇𝑝 𝑑𝑆0 (40)

Here, 𝑇𝑝 = 𝜂𝑡𝐽 𝑡∇𝑥(Δ𝑝𝑡+1) ⋅𝑵 denotes the spatial pressure gradient traction acting on the reference pressure Neumann
boundary 𝜕Ω𝜈

0. In the present work, the problems considered involve boundary conditions where this term vanishes (e.g.,
homogeneous Neumann boundary conditions with no inflow or outflow fluxes, as well as Dirichlet pressure conditions
at the free surface, 𝑝 = 0 on Γ𝑝, and homogenous kinematic boundary, 𝒗𝛼 ⋅ 𝒏 = 0 on Γ𝑢). For such cases, Equation (39)
simplifies to:

∫Ω0

𝜂𝑡∇𝑥𝛿𝑝 ⋅ ∇𝑥(Δ𝑝𝑡+1)𝐽 𝑡𝑑Ω0 = −∫Ω0

𝛿𝑝 𝜃𝑡
𝑠∇𝑥 ⋅ 𝒗

∗
𝑠𝐽

𝑡𝑑Ω0 − ∫Ω0

𝛿𝑝𝜃𝑓∇𝑥 ⋅ 𝒗
∗
𝑓𝐽

𝑡𝑑Ω0 (41)

Considering the following identity for any scalar field 𝜙 and vector field 𝒖 [52]:

∇𝑥𝜙 = 𝑭 −𝑇∇𝑋𝜙 (42)

∇𝑥 ⋅ 𝒖 = 1
𝐽
∇𝑋 ⋅

(
𝐽𝑭 −1𝒖

)
(43)

we could finally obtain the Total Lagrangian weak form of the Poisson equation for pore pressure:

∫Ω0

𝜂0(𝑭 −𝑇∇𝑋𝛿𝑝
)
⋅
(
𝑭 −𝑇∇𝑋(Δ𝑝𝑡+1)

)
𝑑Ω0 = −∫Ω0

𝛿𝑝 𝜃𝑡
𝑠∇𝑋 ⋅

(
𝐽 𝑡𝑭 −1𝒗∗𝑠

)
𝑑Ω0

− ∫Ω0

𝛿𝑝 𝜃𝑡
𝑓∇𝑋 ⋅

(
𝐽 𝑡𝑭 −1𝒗∗𝑓

)
𝑑Ω0

(44)

where through Equation (16), we can express

𝜂0 = Δ𝑡

(
𝜃0
𝑠

𝜌𝑠
+

𝐽 𝑡−1+𝜃0
𝑓

𝜌𝑓

)
(45)

3.1.3 | Correction Stage

The Total Lagrangian weak form of the momentum equation for the correction stage is derived similarly to the prediction
stage and can be expressed as follows:

∫Ω0

𝛿𝒗 ⋅
(
𝜃𝑡
𝑠𝜌𝑠𝒂

∗∗
𝑠 𝐽 𝑡

)
𝑑Ω0 = −∫Ω0

𝛿𝒗 ⋅ 𝜃𝑡
𝑠𝑭

−𝑇∇𝑋(Δ𝑝𝑡+1)𝐽 𝑡𝑑Ω0 (46)

∫Ω0

𝛿𝒗 ⋅
(
𝜃𝑡
𝑓 𝜌𝑓𝒂

∗∗
𝑓 𝐽 𝑡

)
𝑑Ω0 = −∫Ω0

𝛿𝒗 ⋅ 𝜃𝑡
𝑓𝑭

−𝑇∇𝑋(Δ𝑝𝑡+1)𝐽 𝑡𝑑Ω0 (47)

3.2 | Discretization

In MPM discretization, the continuous volume integral is approximated by a finite number of material points:

9 of 37
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∫Ω0

(◽)𝑑Ω ≈
𝑛𝑝∑
𝑝=1 ∫Ω0

𝑝

(◽)𝑑Ω𝑝 =
𝑛𝑝∑
𝑝=1

(◽)𝑉 0
𝑝 (48)

where 𝑛𝑝 denotes the number of material points, and 𝑉 0
𝑝 represents the undeformed volume of the material point. Fol-

lowing the Generalized Interpolation Material Point Method (GIMP) [53], we define the weighting function as follows:

𝑆𝐼𝑝 ≡ 𝑆𝐼 (𝑿𝑝) =
1
𝑉𝑝 ∫Ω𝑝∩Ω

𝜒𝑝(𝒙)𝑁𝐼 (𝒙)𝑑Ω (49)

∇𝑆𝐼𝑝 ≡ ∇𝑋𝑆𝐼 (𝑿𝑝) =
1
𝑉𝑝 ∫Ω𝑝∩Ω

𝜒𝑝(𝒙)∇𝑁𝐼 (𝒙)𝑑Ω (50)

where 𝜒𝑝 and 𝑁𝐼 (𝒙) are the particle characteristic function and the grid shape function, respectively. For convenience,
the same interpolation function will be used for both displacement and pressure discretization, which is written as:

𝒂𝛼𝑝 =
𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝𝒂𝛼𝐼 , 𝒗𝛼𝑝 =
𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝𝒗𝛼𝐼 , 𝑝𝑝 =
𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝𝑝𝐼 (51)

where 𝑛𝑛 is the number of node connectivity.

It is worth noting that, in the presented TLMPM, the weighting function is evaluated only once in the undeformed con-
figuration and remains unchanged throughout the simulation process. This feature offers a notable advantage compared
to the conventional ULMPM, as it eliminates the need for repeated material point tracking and basis function recalcula-
tion, thereby significantly reducing the computational cost. Additionally, the particle volume in Equations (49) and (50)
is taken as 𝑉 0

𝑝 .

3.2.1 | Prediction Stage

Substituting Equations (51) into (36) and (38), the split momentum equation at the prediction stage can be rewritten as
the following matrix form: [

𝑠 𝑓

−Δ𝑡 𝑓 + Δ𝑡

]{
𝒂∗
𝑠

𝒂∗
𝑓

}
=

{
𝒇 int + 𝒇 ext

𝒇 int
𝑓 + 𝒇 ext

𝑓 −(𝒗𝑡
𝑓
− 𝒗𝑡

𝑠)

}
(52)

in which:

(
𝑠

)
𝐼𝐽

=
𝑛𝑝∑
𝑝=1

𝑚𝑠𝑝𝑆𝐼𝑝𝑆𝐽𝑝, 𝑚𝑠𝑝 = 𝜃0
𝑠𝑝𝜌𝑠𝑉

0
𝑝 (53)

(
𝑓

)
𝐼𝐽

=
𝑛𝑝∑
𝑝=1

(
𝐽 𝑡
𝑝 − 1 + 𝜃0

𝑓𝑝

)
𝜌𝑓𝑆𝐼𝑝𝑆𝐽𝑝𝑉

0
𝑝 (54)

𝐼𝐽 =
𝑛𝑝∑
𝑝=1

(
𝜃0
𝑓𝑝

)3

𝐽 𝑡
𝑝 − 1 + 𝜃0

𝑓𝑝

𝜌𝑓𝑔

𝑘0 𝑆𝐼𝑝𝑆𝐽𝑝𝑉
0
𝑝 (55)

(
𝒇 int)

𝐼
= −

𝑛𝑝∑
𝑝=1

∇𝑋𝑆𝐼𝑝 ∶
(
𝑷 ′ 𝑡

𝑝 − 𝑝𝑡𝑝𝐽
𝑡
𝑝𝑭

−𝑇
𝑝

)
𝑉 0
𝑝 (56)

(
𝒇 ext)

𝐼
=

𝑛𝑝∑
𝑝=1

(
𝑚𝑓𝑝 + 𝑚𝑠𝑝

)
𝒃𝑆𝐼𝑝 + ∫𝜕Ω0

𝑆𝐼𝑝𝑻 𝑑𝑆0 (57)

(
𝒇 int

𝑓

)
𝐼
=

𝑛𝑝∑
𝑝=1

∇𝑋𝑆𝐼𝑝 ∶
((

𝐽 𝑡
𝑝 − 1 + 𝜃0

𝑓𝑝

)
𝑝𝑡𝑝𝑭

−𝑇
𝑝

)
𝑉 0
𝑝 (58)

(
𝒇 ext

𝑓

)
𝐼
=

𝑛𝑝∑
𝑝=1

𝑚𝑓𝑝𝒃𝑆𝐼𝑝 + ∫𝜕Ω0

𝑆𝐼𝑝𝑻 𝑓 𝑑𝑆0 (59)
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It is worth noting that the coefficient matrix in Equation (52) is non-symmetric, which typically necessitates the use
of specialized solvers, such as the least-squares conjugate gradient (LSCG) method, to resolve the system. To enhance
computational efficiency and stability, we can rearrange Equation (52) by subtracting the second row from the first row to
obtain a symmetric coefficient matrix. This treatment could enable the use of more efficient solvers and, more importantly,
make it compatible with Cholesky factorization as will be discussed later.

[
𝑠 + Δ𝑡 −Δ𝑡

−Δ𝑡 𝑓 + Δ𝑡

]{
𝒂∗
𝑠

𝒂∗
𝑓

}
=
⎧⎪⎨⎪⎩
𝒇 int + 𝒇 ext −

(
𝒇 int

𝑓 + 𝒇 ext
𝑓 −(𝒗𝑡

𝑓
− 𝒗𝑡

𝑠)
)

𝒇 int
𝑓 + 𝒇 ext

𝑓 −(𝒗𝑡
𝑓
− 𝒗𝑡

𝑠)

⎫⎪⎬⎪⎭ (60)

In most existing MPM implementations, the consistent mass matrix 𝛼 is commonly approximated by a lumped mass
matrix. This approximation is achieved by summing the entries of each row of the consistent mass matrix into its diagonal
components, utilizing the property of the weight function,

∑𝑛𝑛
𝐽=1𝑆𝐽 = 1 (cf. Figure 3). The resulting lumped mass matrix

is given by the following expression, where repeated indices do not imply Einstein summation:

(
𝛼

)
𝐼𝐽

=
𝑛𝑝∑
𝑝=1

𝑚𝛼𝑝𝑆𝐼𝑝𝛿𝐼𝐽 (61)

In explicit MPM, the lumped mass is typically preferred because its diagonal structure enables a straightforward explicit
update and enhances computational efficiency. In UL semi-implicit MPM, a lumped mass matrix is often effectively
required. As the particles move above the background mesh, the evolving shape functions can result in poorly conditioned
off-diagonal terms in the consistent mass matrix, and thus causing instability and premature termination. By contrast,
TL semi-implicit MPM adopts shape functions in the reference configuration, avoiding such issues in the consistent mass
matrix structure. Since the consistent mass matrix better preserves the coupling between degrees of freedom (DOFs) in the
discretized system and generally provides higher accuracy, it is adopted as the default choice in our TL MPM formulation.

3.2.2 | Pore Pressure Solution

After obtaining the intermediate accelerations of the nodes, the next step is to solve the Poisson equation for the pressure
increment. After discretization, the Poisson equation for the pore pressure can be written in matrix form as below:

FIGURE 3 | Sparsity pattern for coefficient matrix in prediction stage (Equation (52)). (a) With a consistent mass matrix block, (b)
With a lumped mass matrix block.
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{Δ𝒑} = 𝒄 (62)

with:

𝐼𝐽 = Δ𝑡

𝑛𝑝∑
𝑝=1

(
𝜃0
𝑠𝑝

𝜌𝑠
+

𝐽 𝑡
𝑝 − 1 + 𝜃0

𝑓𝑝

𝜌𝑓

)
𝑉 0
𝑝 ∇𝑆𝑇

𝐼𝑝𝑩𝑝∇𝑆𝐽𝑝 (63)

Δ𝑝𝐽 = 𝑝𝑡+1
𝐽

− 𝑝𝑡𝐽 (64)

𝑐𝐼 =
𝑛𝑛∑
𝐽=1

𝑛𝑝∑
𝑝=1

(
(𝐽 𝑡

𝑝 − 1 + 𝜃0
𝑓𝑝)𝑉

0
𝑝 ∇𝑋𝑆

𝑇
𝐼𝑝𝑭

−𝑇
𝑝 𝑆𝐽𝑝

)
𝒗∗𝑓𝐽

+
𝑛𝑛∑
𝐽=1

𝑛𝑝∑
𝑝=1

(
𝜃0
𝑠𝑝𝑉

0
𝑝 ∇𝑋𝑆

𝑇
𝐼𝑝𝑭

−𝑇
𝑝 𝑆𝐽𝑝

)
𝒗∗𝑠𝐽 (65)

where𝑩 is the so-called Piola deformation tensor, defined as the inverse of the right Cauchy-Green tensor, that is,𝑩 = 𝑪−1

with 𝑪−1 = (𝑭 𝑇 𝑭 )−1 = 𝑭 −1𝑭 −𝑇 .

3.2.3 | Correction Stage

Once the nodal pressure increment is obtained, we proceed to discretize the momentum equations for the correction
stage, as presented in Equations (46) and (47). These equations can be expressed in matrix form as follows:[

𝑠 𝟎
𝟎 𝑓

]{
𝒂∗∗
𝑠

𝒂∗∗
𝑓

}
=

{
𝑠Δ𝒑
𝑓Δ𝒑

}
(66)

where the mass matrix 𝑠 and 𝑓 is given in the same form as Equations (53) and (54), while the entity of matrices 𝑠

and 𝑓 are given as:

(
𝑠

)
𝐼𝐽

= −
𝑛𝑝∑
𝑝=1

𝜃0
𝑠𝑆𝐼𝑝𝑭

−𝑇
𝑝 ∇𝑋𝑆𝐽𝑝𝑉

0
𝑝 (67)

(
𝑓

)
𝐼𝐽

= −
𝑛𝑝∑
𝑝=1

(
𝐽 𝑡
𝑝 − 1 + 𝜃0

𝑓𝑝

)
𝑆𝐼𝑝𝑭

−𝑇
𝑝 ∇𝑋𝑆𝐽𝑝𝑉

0
𝑝 (68)

If the lumped-mass matrix is considered, Equation (66) can be solved explicitly, that is, via the mapped nodal mass, thereby
eliminating the need for matrix inversion.

4 | Numerical Implementation

4.1 | Critical Time Step

For the explicit MPM, the critical time step is constrained jointly by the Courant-Friedrichs-Lewy (CFL) condition [54]
and the permeability of the porous medium [55], which is given by:

Δ𝑡𝑐𝑟𝑖𝑡 = min
⎛⎜⎜⎝
Δℎ𝑒

𝑐𝑝
,− 1

𝜔2

⎛⎜⎜⎝
𝜌𝑓𝑔

𝜌𝑚𝑘
+

√(
𝜌𝑓𝑔

𝜌𝑚𝑘

)2

+ 4𝜔2
⎞⎟⎟⎠
⎞⎟⎟⎠ (69)

In the above expression, the first term represents the CFL condition, while the second term denotes the
permeability-related constraint. Here, Δℎ𝑒 is the element size, 𝑐𝑝 is the compressional wave velocity in the porous
medium, and 𝜔2 = 4𝐸∕

(
𝜌𝑚Δℎ2

𝑒

)
, where 𝜌𝑚 = 𝜌 +

(
1∕𝜃𝑓 − 2

)
𝜌𝑓 is the modified mixture density. The parameters 𝐸, 𝑘, and

𝜌 = 𝜃𝑠𝜌𝑠 + 𝜃𝑓𝜌𝑓 represent the elastic modulus of the solid phase, permeability, and bulk mixture density, respectively.
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In the two-phase explicit MPM implementation [20], the fluid is assumed to be weakly compressible, and its pressure is
obtained explicitly via the volume change. Therefore, in applying the CFL condition in Equation (69), the compressional
wave velocity of the pore fluid phase should be used, which is given by:

𝑐𝑝 = 𝑐𝑝
𝑓
=

√
𝐾𝑓

𝜌𝑓
(70)

where 𝐾𝑓 is the bulk modulus of the fluid phase.

In our previously proposed UL semi-implicit MPM [26], the pore pressure is computed implicitly while stress integra-
tion for the solid phase and the evaluation of internal forces are performed explicitly at the current configuration time 𝑡.
Thus, the CFL condition is still required for maintaining numerical stability. However, in contrast to the explicit counter-
part, the wave velocity used for the CFL condition in the semi-implicit scheme can be based on the wave velocity of the
solid skeleton, which is generally lower than the wave speed of the compressible fluid phase alone. This wave velocity is
given by:

𝑐𝑝 =

√
𝐾𝑠 + 4𝐺∕3

𝜌𝑠𝜃𝑠
(71)

where 𝐾𝑠 and 𝐺 are the bulk modulus and shear modulus of the solid phase.

This distinction in wave speed selection between the explicit and semi-implicit formulations leads to a less restrictive CFL
condition in the semi-implicit MPM, and hence a larger permissible critical time step. Furthermore, due to the drag force
term is treated implicitly, the semi-implicit scheme also allows for a permeability-independent time step [26], which is
more advantageous in low-permeability scenarios.

4.2 | Numerical Approximation and Factorization

As discussed in Section 3, solving linear systems of equations is a critical computational task in the proposed TLMPM.
Up to three linear systems must be solved at each time step (reduced to two when a lumped mass matrix is employed),
and these systems, despite having different sets of unknowns, can generally be expressed as:


𝑡
𝒙𝑡 = 𝒃𝑡 (72)

where 
𝑡 is the coefficient matrix, 𝒙𝑡 is the vector of unknowns, and 𝒃𝑡 is the RHS vector. Given the restriction on small

time steps (see Section 4.1), achieving computational efficiency in solving these systems is imperative.

Efficiency improvements can be realized by exploiting the characteristics of the coefficient matrices within TLMPM. In
this formulation, the shape functions and their gradients are evaluated at the initial positions of the particles. As a result,
both their values and the connectivity between particles and nodes remain unchanged during the computation. Conse-
quently, the size and sparsity patterns of the coefficient matrices𝑡 Equations (60), (62), and (66) are preserved throughout
the simulation. Although some components of the coefficient matrix, for example, 𝐽 𝑡

𝑝 and 𝑩𝑡
𝑝, may vary with time due

to material deformation and fluid flow, these changes are typically gradual under the small time step condition. This
observation motivates approximating the coefficient matrix as constant over multiple time steps, with updates occurring
at regular intervals, that is, 𝑛𝑘Δ𝑡. Thus, we approximate 

𝑡 as follows:


𝑡 ≈ ̃ = 

𝑡𝑘 , for 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1 (73)

where ̃denotes the approximated coefficient matrix, 𝑡𝑘 is the time when the matrix was last updated, and 𝑡𝑘+1 = 𝑡𝑘 + 𝑛𝑘Δ𝑡
is the subsequent update time. By assuming  remains constant within [𝑡𝑘, 𝑡𝑘+1), we can achieve substantial compu-
tational savings by avoiding the matrix assembly at each time step. More importantly, the factorization of 𝑡 can be
precomputed at time 𝑡𝑘 and subsequently reused for solving the linear systems in Equation (72) over the entire interval.

Because all relevant matrices are symmetric and positive definite, a Cholesky decomposition is particularly advantageous.
In this approach, the approximate coefficient matrix is decomposed as:

̃ = 𝐿
𝑇
𝐿 (74)
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where 𝐿 is a lower triangular matrix (see the example in Figure 4). This decomposition facilitates the efficient solution
of the linear system ̃𝒙𝑡 = 𝒃𝑡 by performing two steps:

𝐿𝒚 = 𝒃𝑡, forward substitution (75)


𝑇
𝐿𝒙

𝑡 = 𝒚, backward substitution (76)

where 𝒚 denotes an auxiliary vector of intermediate unknowns. Compared to LU decomposition, Cholesky decomposition
provides approximately twice the computational efficiency [56]. Although the decomposition itself has a time complexity
of (𝑛3), comparable to that of directly computing ̃

−1
, the subsequent solution of the triangular systems requires only

(𝑛2) operations. This is in contrast to the (𝑛3) operations normally required for full matrix multiplication, such as
computing ̃

−1
𝒃𝑡. These efficiency gains become increasingly significant as the matrix size grows.

In contrast, the traditional ULMPM requires the evaluation of shape functions and their gradients based on the cur-
rent positions of material points. Consequently, these functions and their gradients, along with the associated properties,
evolve dynamically over time. Moreover, material points may occasionally traverse computational cells, altering the active
degrees of freedom (DOFs), the node-material-point connectivity, and the underlying system matrix pattern. As a result,
the system matrices must be reassembled at each time step, thereby precluding any computational savings that might
otherwise be realized from the numerical approximations or matrix factorizations described above. This requirement
significantly increases both the computational cost and the overall methodological complexity.

4.3 | Pore Pressure Stabilization

While the fractional step method effectively reduces pressure oscillations caused by equally low-order interpolations for
pressure and kinematic fields, these oscillations may still persist when using significantly small time steps [57, 58]. In
our original implementation of FSM [26], we proposed the straightforward pore pressure smoothing technique to miti-
gate these oscillations. However, it often introduces excessive numerical dissipation in the computed pressure field and
compromises the accuracy of analyses. For this reason, we do not adopt the smoothing technique in the present study.

To further alleviate the effects of inf-sup instability, we employ an alternative stabilization approach known as the polyno-
mial pressure projection (PPP) method [32, 59–60]. This method introduces a penalty term to the mass balance equation,

FIGURE 4 | Sparsity pattern for coefficient matrix in Poisson equation (Equation 62). (a) Without Cholesky decomposition, (b)
Lower triangular factor for Cholesky decomposition.
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thereby ensuring that the overall system satisfies a weak inf-sup condition. In the context of the FSM, the modified pres-
sure Poisson equation is formulated as follows:

( +stab){Δ𝒑} = 𝒄 (77)

where stab is the stabilization matrix defined by:

(stab)𝐼𝐽 =
𝑛𝑝∑
𝑝=1

𝜏

2𝐺Δ𝑡

(
𝑆T

𝐼𝑝 − 𝑆T
𝑎𝑣𝑔

)(
𝑆𝐼𝑝 − 𝑆𝑎𝑣𝑔

)
𝐽 𝑡𝑉 0

𝑝 (78)

Here, 𝑆𝑎𝑣𝑔 denotes the averaged weighting function, which can be easily evaluated as 1∕𝑛𝑛𝑛𝑝𝑒 with 𝑛𝑛𝑛𝑝𝑒 being the number
of nodes per element, 𝐺 is the shear modulus of the solid material, and 𝜏 is the stabilization parameter. It is important to
note that if 𝜏 is chosen too large, excessive numerical diffusion may smear pressure gradients as stated by [59]; if it is too
small, stabilization becomes ineffective and spurious pressure modes can persist (see an example in Section B). Therefore,
it is crucial to select an appropriate 𝜏 for effective stabilization. In our experience, setting 𝜏 to the identity provides a robust
starting point that balances stability and diffusion across a broad range of cases. For further guidance on determining 𝜏,
readers are referred to [60].

4.4 | Boundary Conditions

Boundary conditions (BCs) play a crucial role in numerically resolving the coupled hydromechanical system. For BCs of
the kinematic fields (both Dirichlet and Neumann types) and the Neumann BCs of the pore pressure field, there is negligi-
ble difference between the ULMPM and TLMPM implementations, as the corresponding boundary node sets are generally
predefined either in the current or reference configurations.1 During computation, these constraints are enforced in the
matrix equations through direct modifications of matrices or penalty methods.

However, there are significant differences between the two approaches in enforcing Dirichlet boundary conditions for the
pore pressure field. In ULMPM, the continuous movement and deformation of the free surface boundary make it impos-
sible to predefine the sets of boundary nodes near the free surface. Thus, an additional free-surface detection algorithm
is required to dynamically detect the evolution of the free surface at each time step, providing constraints to the Poisson
equation. A widely adopted technique for free surface detection employs a volume-fraction-based criterion inspired by
the Volume of Fluid (VOF) method [37]. Specifically for ULMPM simulations presented in this work, we modified the
volume-fraction-based method, which was originally proposed for cell-based evaluation, to node-based evaluation. Here,
we compute the volume fraction 𝛼𝐼 for all nodes:

𝛼𝐼 = 1
𝑉𝑒

𝑛𝑝∑
𝑝=1

𝑆𝐼𝑝𝑉𝑝 (79)

where 𝑉𝑒 is the cell volume (for a regular mesh). If the computed volume fraction falls below a threshold 𝜖𝑛 and the node
does not belong to other sets of BCs, those nodes are identified as free-surface nodes. It should be noted that the choice of
this threshold may depend on the dimension of the problem and the selection of the shape function. In the current study,
we used 𝜖𝑛 = 0.8 for UL-MPM and 𝜖𝑛 = 0.25 for UL-GIMP. However, as recently discussed by [36], the imposition of the
free-surface boundary condition on the background grid nodes, rather than at the actual material boundary, can lead to
numerical pressure oscillations, which may lead to numerical instabilities.

On the other hand, the proposed TLMPM offers the desired ease in the enforcement of Dirichlet boundary conditions for
pore pressure. Since the deformations are mapped back to the fixed reference configuration where the matrix equation
is established, the free surface nodes are easily identified and can be predefined at the beginning of the simulation. This
simplification facilitates the implementation and reduces computational costs since the global matrix structure remains
consistent and valid throughout the analysis. A detailed comparison between the ULMPM and TLMPM approaches for
handling boundary conditions is provided in Section 5.4.

4.5 | Computational Procedure

In this section, we present the detailed computational procedure employed in our implementation. Following the Update
Stress First (USF) scheme, the procedure consists of four key steps described in the subsequent subsections.
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4.5.1 | Particle-to-Grid Mapping (P2G)

At the beginning of each time step, the mass and momentum of each constituent of material points are mapped onto the
background computational grid, expressed as:

𝑚𝛼𝐼 =
𝑛𝑝∑
𝑝=1

𝑆𝐼𝑝𝑚𝛼𝑝 (80)

(𝑚𝒗)𝑡𝛼𝐼 =
𝑛𝑝∑
𝑝=1

𝑆𝐼𝑝𝑚𝛼𝑝𝒗
𝑡
𝛼𝑝 (81)

Because the TL formulation is adopted, the nodal mass is computed only once at the beginning of the simulation. The
nodal velocity can then be computed as:

𝒗𝑡
𝛼𝐼 =

(𝑚𝒗)𝑡
𝛼𝐼

𝑚𝛼𝐼

(82)

4.5.2 | Deformation and Stress Update

Once the particle data have been transferred to the grid, the deformation gradient at each material point is updated based
on the current velocity field, which is given by:

𝑭 𝑡+1 = 𝜕𝒙𝑡+1

𝜕𝑋
=

𝜕
(
𝒙𝑡 + Δ𝒖

)
𝜕𝑿

= 𝑭 𝑡 + Δ𝑡
𝜕𝒗

𝜕𝑿
= 𝑭 𝑡 + Δ𝑡

𝑛𝑛∑
𝐼=1

∇𝑋𝑆𝐼𝑝𝑣
𝑡
𝑠𝐼 (83)

It is worth noting that this expression differs slightly from the form commonly used in the UL formulation:

𝑭 𝑡+1 = 𝜕𝒙𝑡+1

𝜕𝑋
= 𝜕𝒙𝑡+1

𝜕𝒙𝑡

𝜕𝒙𝑡

𝜕𝑿
=

𝜕
(
𝒙𝑡 + 𝒗Δ𝑡

)
𝜕𝒙𝑡

𝜕𝒙𝑡

𝜕𝑿
=

(
𝑰 + Δ𝑡

𝑛𝑛∑
𝐼=1

∇𝑥𝑆
𝑡
𝐼𝑝𝑣

𝑡
𝑠𝐼

)
𝑭 𝑡 (84)

With the updated deformation gradient available, the stress at each material point is then computed using the appropriate
constitutive model, such as the Neo–Hookean model detailed in Section 2.3.

4.5.3 | Nodal Solution

After updating the deformation and stress in each material point, the next step involves solving the momentum equation
and the pore pressure Poisson equation on the background mesh. This includes solving the split momentum equation,
computing the intermediate acceleration (or velocity) in Equation (60), solving the nodal pore pressure increment in
Equation (62), and finally updating the nodal kinematics in Equation (66). It should be noted that a Cholesky decompo-
sition is performed at regular intervals to efficiently accelerate the matrix solution process, as detailed in Section 4.2.

4.5.4 | Grid-to-Particle Mapping (G2P)

At the end of each step, the updated nodal quantities are transferred back to material points to update their positions and
velocities:

𝒙𝑡+1
𝑝 = 𝒙𝑡

𝑝 + Δ𝑡

𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝𝒗
𝑡+1
𝑠𝐼

(85)

𝒗𝑡+1
𝛼𝑝 = 𝒗𝑡

𝛼𝑝 + Δ𝑡

𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝𝒂
𝑡+1
𝛼𝐼

(86)

Here, the FLIP scheme is employed for the velocity update due to its better energy conservation properties compared
to PIC.
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ALGORITHM 1 | TLMPM.

if 𝑡 = 0 then
Compute particle volume 𝑉 0

𝑝 , volume fraction 𝜃0𝛼𝑝, particle mass 𝑚0
𝛼𝑝,shape function

𝑆𝐼𝑝 and its gradient 𝛻𝑆𝐼𝑝

Identify the boundary node set
end if
while 𝑡 ≤ 𝑡end do

if 𝑡 = 𝑡𝑘 then
Assemble coefficient matrix in Equations (60), (62), and (66)
Apply BCs
Cholesky decomposition

end if
P2G mapping, 𝑚𝛼𝐼, 𝒗𝛼𝐼

Compute particle deformation 𝑭 𝑝 and effective PK1 stress 𝑷 ′
𝑝

Compute intermediate accelerations, 𝒂∗
𝛼𝐼

Compute pore pressure increment, Δ𝑝𝑡+1
𝐼

Compute update accelerations, 𝒂∗∗
𝛼𝐼

Update particle velocity 𝒗𝛼𝑝, position 𝒙𝑝, and pressure 𝑝𝑝
𝑡 = 𝑡 + Δ𝑡

end while

Similarly, the pore pressure for material points can be updated by mapping the incremental nodal pore-pressure value as:

𝑝𝑡+1
𝑝 = 𝑝𝑡𝑝 +

𝑛𝑛∑
𝐼=1

𝑆𝐼𝑝(𝑝𝑡+1
𝐼

− 𝑝𝑡𝐼 ) (87)

Since the variation of permeability is already incorporated via Equation (37), an independent update of the permeability
is not required, in contrast with some ULMPM implementations.

The overall computational flow for the proposed TLMPM is summarized in Algorithm 1.

5 | Numerical Examples

5.1 | One-Dimensional Consolidation

5.1.1 | Small Deformation Consolidation

To validate the proposed TL formulation, we first consider the classical one-dimensional consolidation problem. As shown
in Figure 5, a saturated granular column with a height of 1 m is subjected to a constant surcharge 𝑞 = 10 kPa on the per-
meable top surface. The lateral boundaries and the bottom are constrained in the normal direction and are impermeable.
The column is discretized by 50 elements with an element size of Δℎ𝑒 = 0.02 m. The material properties are defined as
follows: Soil grain density 𝜌𝑠 = 2600 kg/m3, pore fluid density 𝜌𝑓 = 1000 kg/m3, initial porosity 𝜃𝑓 = 0.3, Young’s modu-
lus 𝐸 = 1 × 107 Pa, and Poisson’s ratio 𝜈 = 0.25. For the simulation parameters, we select the flip velocity update scheme,
stability parameter 𝜏 = 0, and time step Δ𝑡 = 1 × 10−4 s. The initial stress and pore pressure are set to zero, and the gravity
is neglected. Under these conditions, the soil column experiences only small deformations without cell-crossing noise,
and thus, standard MPM is employed for the simulation. Unless otherwise stated, we use the consistent mass matrix for
the TL simulation and the lumped mass matrix for the UL counterpart.

The analytical solution for one-dimensional consolidation is well established in Reference [62]. The evolution of pore
pressure 𝑝(𝑦, 𝑡) is given by:

𝑝(𝑦, 𝑡) =
4𝑝0

𝜋

∞∑
𝑀=0

1
2𝑀 + 1

sin
(
(2𝑀 + 1)𝜋𝑦

2𝐻

)
𝑒−(2𝑀+1)2𝜋2𝑇𝑣∕4 (88)
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1m

y

q = 10kPa

p = 0

FIGURE 5 | Schematic of the one-dimensional consolidation model.

𝑇𝑣 =
𝑘

𝛾𝑓𝑚𝑣

𝑡

𝐻2 (89)

where 𝑝0 is the surcharge exerted at the top of the column, 𝐻 is the column height, and 𝑇𝑣 is a dimensionless time factor
related to the constrained modulus of the solid phase 𝑚𝑣. The surface settlement 𝑢(𝑡) and the degree of consolidation
(normalized settlement) 𝑈 are computed as:

𝑢(𝑡) = 𝑚𝑣𝑝0𝐻

(
1 − 8

𝜋2

∞∑
𝑀=0

1
(2𝑀 + 1)2 𝑒

−(2𝑀+1)2𝜋2𝑇𝑣∕4

)
(90)

𝑈 = 𝑢(𝑡)
𝑢(+∞)

(91)

Figure 6 illustrates the evolution of pore pressure and the degree of consolidation over time. Given the relatively high stiff-
ness of the solid skeleton, the column experiences only a small settlement, and thus no particles cross element boundaries
during the simulation. As expected, both the TL and UL yield nearly identical results and agree well with the analytical
solution, thereby confirming the accuracy of the proposed approach in small deformation scenarios.

In the present study, to investigate whether the TL semi-implicit formulation can provide a larger critical time step com-
pared to the UL formulation [26], we conducted a series of modeling of consolidation. In this problem, the standard MPM
shape function is adopted, and the time step is adjusted to determine the critical time step sizes for both formulations
under varying permeability conditions. The results are summarized in Figure 7.

Our results show that, as expected, the TL semi-implicit formulation yields a critical time step of the same order as the
UL counterpart. While the critical time step size of TL formulation is slightly smaller than that of UL, it shows reduced
sensitivity to permeability variations. At high permeability levels, the TL formulation maintains more consistent sta-
bility characteristics, without the pronounced reductions observed in the UL formulation. Additionally, both TL and
UL semi-implicit formulations allow for significantly larger time steps compared to the explicit MPM, particularly in
low-permeability scenarios where the explicit method’s time step is severely constrained by permeability effects.

18 of 37 International Journal for Numerical Methods in Engineering, 2025
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FIGURE 6 | Pore pressure evolution (a) and degree of consolidation (b) for small deformation consolidation.

FIGURE 7 | Critical time step size versus permeability for the explicit and semi-implicit MPM.
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5.1.2 | Finite Strain Consolidation

To further evaluate the performance of the TL framework under finite strain conditions, Young’s modulus is reduced by a
factor of ten to𝐸 = 1 × 106 Pa, while all other material and control parameters remain unchanged from the previous setup.
Again, no pressure stabilization techniques are applied in this example. Both MPM and GIMP are employed to simulate
the consolidation process using the TL and UL formulations. To accurately assess the inherent numerical stability under
different settings, the artificial pore pressure smoothing technique is not applied in this and subsequent cases. Noted
that, although analytical solutions for finite strain consolidation are available (e.g., [63]), they are not used here as their
permeability-deformation relationship differs from the Kozeny–Carman function Equation (37) adopted in this study.
Instead, for consistency and simplicity, we use Terzaghi’s classical solution for comparison [62].

Figure 8 presents the evolution of pore pressure over time, while Figure 9 shows snapshots of pore pressure distribution
at selected time instances. As observed, the UL-MPM simulation terminates prematurely at approximately 𝑇𝑣 = 0.3 due
to numerical instability caused by material points crossing element boundaries. As pore pressure dissipates and settle-
ment progresses, material points in the upper region of the column, particularly in the second row from the top, begin to
cross element boundaries. This crossing induces abrupt changes in effective stress, leading to an erroneous pore pressure
field. Prior to termination, however, the pore pressure evolution in UL-MPM remains stable and agrees well with the
analytical solution. In contrast, the UL-GIMP formulation successfully completes the simulation but still exhibits pore
pressure instabilities under finite deformation conditions. While GIMP effectively reduces cell-crossing noise in purely
solid mechanics problems, it appears insufficient to fully prevent instability in coupled solid-fluid simulations by FSM
without additional stabilization techniques, such as pore pressure smoothing or mixed-order interpolation. On the other
hand, the TL-based simulations demonstrate superior numerical stability and produce results that closely match the ana-
lytical solution. This numerical robustness arises from a fundamental property of the TL formulation that shape functions
and their gradients are evaluated at the particles’ initial reference positions. Consequently, the downward motion, regard-
less of particle cell crossing, primarily updates the particles’ deformation gradients and the entries of the system matrices.
As the mapping between particles and nodes remains unchanged, this behavior in essence mirrors the small-deformation

FIGURE 8 | Pore pressure distribution at 𝑇 = 0.01, 0.04, 0.12, 0.21, 0.36, and 0.61. Note that some results for UL-MPM and
UL-GIMP are not presented due to simulation failure.
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FIGURE 9 | Snapshots of pore pressure distribution for finite strain consolidation at selected dimensionless times, using (a)
UL-MPM, (b) UL-GIMP, (c) TL-MPM, and (d) TL-GIMP. The red arrow highlights the initial location of material point cell-crossing
and the failure of analysis of the standard UL-MPM.

consolidation case. As a result, the TL-based MPM could achieve a satisfactory result without encountering any stability
issues.

5.2 | Mandel’s Problem

Next, we consider Mandel’s problem, one of the earliest engineering applications of Biot’s theory of poroelasticity. This
benchmark is intended to address the intricate coupling between solid deformation and pore pressure dissipation in a
poroelastic medium.

Figure 10 illustrates the schematic of Mandel’s problem. Herein, we consider a rectangular, fully saturated, and isotropic
porous medium with a width of 2𝑎 and a height of 2𝑏. The specimen is bounded by two rigid, impermeable, and frictionless
plates at the top and bottom, while its lateral sides are permeable. At time 𝑡 = 0, a vertical load of 2𝐹 (force per unit length)
is applied to the top and bottom plate, initiating the coupled process of deformation and pore pressure dissipation.

The analytical solutions for the pore pressure and the vertical displacement are given by

𝑝(𝑥, 𝑡) = 2𝑝0

∞∑
𝑛=1

sin 𝛽𝑛
𝛽𝑛 − sin 𝛽𝑛 cos 𝛽𝑛

(
cos

𝛽𝑛𝑥

𝑎
− cos 𝛽𝑛

)
exp

(
−
𝛽2
𝑛𝑐𝑡

𝑎2

)
(92)

𝑢𝑦(𝑦, 𝑡) = 𝑢𝑦,0 +

(
𝐹 (1 − 𝜈𝑢)

𝜇𝑎

∞∑
𝑛=1

sin 𝛽𝑛 cos 𝛽𝑛
𝛽𝑛 − sin 𝛽𝑛 cos 𝛽𝑛

exp

(
−
𝛽2
𝑛𝑐𝑡

𝑎2

))
𝑦 (93)

where the initial pore pressure 𝑝0 and the initial vertical displacement 𝑢𝑦,0 induced by 𝐹 are defined as:

𝑝0 = 1
3𝑎

𝐵(1 + 𝜈𝑢)𝐹 (94)

𝑢𝑦,0 = −
𝐹 (1 − 𝜈𝑢)𝑦

2𝜇𝑎
(95)

In above, 𝐵 = 𝛼𝑀∕𝐾𝑢 is Skempton’s coefficient, 𝛼 is Biot’s coefficient, 𝑀 =
(

𝜃𝑓

𝐾𝑓

+ 𝛼−𝜃𝑓
𝐾𝑠

)−1
is the Biot modulus with

𝐾𝑓 and 𝐾𝑠 being the bulk moduli of the pore fluid and solid grains, respectively. 𝑣𝑢 = (3𝜈 + 𝛼𝐵(1 − 2𝜈))∕(3 − 𝛼𝐵(1 −
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FIGURE 10 | Model setup for the two-dimensional Mandel’s problem.

2𝜈)) is the undrained Poisson’s ratio. The consolidation coefficient 𝑐 is defined as 𝑐 = 𝑘𝑀∕
(
𝜌𝑔 + 𝛼2𝜌𝑔𝑀𝑐𝑀

)
, 𝑘 is the

permeability, 𝑐𝑀 = (𝜆 + 2𝜇)−1 is the vertical uniaxial compressibility, 𝐾𝑢 = 𝜆 + 2
3
𝜇 + 𝛼2𝑀 is the undrained bulk modulus,

where 𝜆 and 𝜇 are the Lamé coefficients. The parameter 𝛽𝑛 is the positive root of the below nonlinear characteristic
equation

tan 𝛽𝑛 =
1 − 𝜈

𝜈𝑢 − 𝜈
𝛽𝑛 (96)

To exploit symmetry, only a quarter of the domain is modeled in the simulation, with 𝑎 = 15 m and 𝑏 = 10 m. The left
and bottom boundaries are constrained in the normal direction and are impermeable. A uniformly distributed vertical
load of 𝐹 = 15 kN/m is applied to the top surface, which is impermeable, while the right boundary remains permeable.
The domain is discretized by quadrilateral elements with a cell size of Δℎ𝑒 = 0.5 m, and each cell contains four material
points. The pore pressure stability coefficient is set to 𝜏 = 1. The time step is Δ𝑡 = 1 × 10−4 s and the total simulation time
is 200 s. The material properties are set as follows: Soil grain density 𝜌𝑠 = 2600 kg/m3, pore fluid density 𝜌𝑓 = 1000 kg/m3,
initial porosity 𝜃𝑓 = 0.3, Young’s modulus 𝐸 = 1 × 108 Pa and Poisson’s ratio 𝜈 = 0.25. Biot’s coefficient 𝛼 is taken as 1.
Under the assumption that both the solid grains and pore fluid are fully incompressible, it follows that 𝑀 → ∞, 𝐾𝑢 → ∞,
𝐵 → 1, and 𝑣𝑢 → 0.5. Standard MPM is adopted for both ULMPM and TLMPM.

Figure 11 displays the pore pressure and vertical displacement obtained using the TL method at 𝑡 = 20 s. The pore pres-
sure primarily decreases from the left to the right permeable boundary. The vertical settlement on the right side of the
domain exhibits slightly larger values due to dissipated pore pressure and higher effective stress. For further validation, six
monitoring points are selected along the 𝑥-axis (𝑥 = 1

4
𝑎, 1

2
𝑎, 3

4
𝑎) and 𝑦-axis (𝑦 = 1

4
𝑏, 1

2
𝑏, 3

4
𝑏). As shown in Figure 12a, both

the UL and TL simulations align well with the analytical solution and capture both pore pressure dissipation and displace-
ment evolution. A key observation is that, immediately after load application, the pore pressure (particularly at 𝑥 = 1

4
𝑎)

exceeds the initial pressure 𝑝0 before gradually decreasing. This non-monotonic behavior is known as the Mandel–Cryer
effect, is an intricate interaction between mechanical deformation and pore fluid dissipation. Upon loading, the sudden
compression of the porous medium induces an initial increase in pore pressure. However, due to the viscosity, the fluid
takes time to redistribute, resulting in a temporary pressure buildup in regions away from the drainage boundaries. As
time progresses, fluid flow towards the permeable boundaries facilitates pressure dissipation, causing the excess pore
pressure to decline.

As discussed in Section 4.2, the TL framework employs an update interval 𝑛𝑘 for regularly update the coefficient matrix


𝑡, which may influence both computational speed and simulation accuracy. To evaluate the effect of 𝑛𝑘, we performed a
series of simulations with different 𝑛𝑘. Figure 13 shows the normalized pore pressure discrepancyΔ𝑝∕𝑝0 = (𝑝sim − 𝑝ana)∕𝑝0
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FIGURE 11 | Normalized pore pressure 𝑝∕𝑝0 and vertical displacement 𝑢𝑦 by TL-MPM at 𝑡 = 20 s. (a) 𝑝∕𝑝0, (b) 𝑢𝑦.

FIGURE 12 | Pore pressure evolution and settlement for monitor particles. (a) Pore pressure evolution at monitor points at 𝑥-axis,
(b) Vertical displacement evolution at monitor points at 𝑦-axis.

at the point
(

1
2
𝑎, 0

)
for various 𝑛𝑘 values, while Figure 14 presents the runtime for each simulation scenario. For refer-

ence, results obtained using the UL method, which has a runtime of 138, 200 s, are also included. At the onset of loading,
significant oscillations in pore pressure are observed due to the sudden application of the external force 𝐹 . In the FSM,
the effective stress is treated explicitly, whereas pore pressure is handled implicitly, leading to a delay in re-balancing the
external load and resulting in these oscillations. After that, the influence of 𝑛𝑘 on pore pressure error is quite minimal,
at least for the consolidation problem. Remarkably, even when 𝑛𝑘 = 1, where no matrix factorization or decomposition
is performed, the TL method remains significantly faster than the UL method, with a runtime of 43, 550 s, achieving
approximately 3.17 speedup compared to UL. This advantage is attributed to the avoidance of computing shape functions,
identifying free surface nodes, and reusing intermediate variables, as previously mentioned. Furthermore, as 𝑛𝑘 increases,
the computational efficiency of TL continues to improve, achieving a speedup of nearly 40.7×. However, increasing 𝑛𝑘
beyond 100 does not yield substantial additional speedup, as the overall computational cost becomes dominated by other
steps of the MPM, such as G2P and P2G mapping, rather than by solving the linear matrix system. Based on our expe-
rience, the appropriate selection of 𝑛𝑘 depends on the nature of the problem being solved. In most cases, choosing 𝑛𝑘 in
the range of 5 to 100 provides a good balance between accuracy and performance. For dynamic and transient problems
involving large deformations, where rapid changes of deformation gradient may occur, it is better to use a smaller 𝑛𝑘 to
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FIGURE 13 | The influence of update interval on the pore pressure error.

FIGURE 14 | The influence of update interval on the computational time and corresponding speedup.

ensure frequent updates of the coefficient matrix to maintain accuracy. Conversely, for quasi-static problems, a larger 𝑛𝑘
is preferable to maximize computational efficiency without sacrificing accuracy.

5.3 | Wave Propagation

We now consider a dynamic problem involving wave propagation in an isotropic, saturated soil domain subjected to an
impulsive load. This problem has been widely studied by various numerical methods (e.g., [10, 29, 64–66]). The model
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setting is depicted in Figure 15. The saturated soil domain is 21 m in width and 10 m in height, and is discretized into
3360 quadrilateral elements with an element size of Δℎ𝑒 = 0.25 m, with each containing four material points. The lateral
and the bottom boundaries are constrained in their normal directions and set to be impermeable, while the top surface is
permeable. The time step isΔ𝑡 = 1 × 10−3 s and the total simulation time is 0.2 s. The material properties are set as follows:
Soil grain density 𝜌𝑠 = 2600 kg/m3, pore fluid density 𝜌𝑓 = 1000 kg/m3, initial porosity 𝜃𝑓 = 0.3, Young’s modulus 𝐸 =
1 × 108 Pa, and Poisson’s ratio 𝜈 = 0.25. The permeability 𝑘 is set as 1 × 10−2 m/s.

To trigger the wave, an impulsive load (in kPa) is applied at the center of the top surface (𝑥 ∈ [10, 11]) and is defined by

𝑓 (𝑡) = 100 sin(25𝜋𝑡)[1 −𝐻(𝑡 − 0.04)] + 100 (97)

where 𝐻(∘) is the Heaviside step function. As denoted in Figure 15, two monitoring points located at the domain surface,
Point A at (5, 10) and Point B at (10.5, 10), are selected to record the local response during wave propagation.

Figure 16a shows the trajectory of Point A. For comparison, solutions from FEM [10] and smoothed particle finite element
method (SPFEM) [65] are provided. It is clearly observed that various MPM simulations are capable of capturing the key

FIGURE 15 | Model setting for wave propagation.

FIGURE 16 | Trajectory for surface material point A (5, 10) and pore pressure evolution for material point C (8, 8).
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characteristics of the Rayleigh wave pattern at Point A. However, the UL-MPM and TL-MPM with a lumped mass matrix
tend to underestimate the rebound amplitude, resulting in trajectories that are shifted slightly downward relative to the
reference solution. These results are generally in agreement with the SPFEM result [65]. In contrast, TL-MPM with a
consistent mass matrix yields a more accurate prediction of the wave dynamics, although a slight discrepancy in the
lateral wave propagation remains when compared to FEM results [10]. This discrepancy is primarily attributed to mesh
resolution effects, which are discussed further below. In terms of pore pressure, the various MPM approaches produce
distributions that closely align with the reference models.

To assess the mesh sensitivity for the TL-MPM with a consistent mass matrix, we further conduct the simulation with
three mesh resolutions: Coarse (Δℎ𝑒 = 0.25 m), medium (Δℎ𝑒 = 0.20 m), and fine (Δℎ𝑒 = 0.125 m). Figure 17 presents the
results from this mesh sensitivity analysis at the monitoring points. As the mesh is refined, the MPM solution progressively
converges toward the reference solution.

Figures 18 and 19 present snapshots of the pore pressure field obtained using the TLMPM with lumped and consis-
tent mass matrices, respectively, while Figure 20 shows the difference in pore pressure Δ𝑝. Both methods successfully
capture the initiation and outward propagation of the pressure wave induced by the impulsive load. At the wavefront,
both approaches exhibit relatively smooth pressure variations. However, notable differences emerge in the wake of the
propagating wave. For the lumped mass matrix, pronounced oscillations are observed near the free surface, particularly at
𝑡 = 0.1 s and 𝑡 = 0.15 s. These oscillations are likely because the lumped mass matrix redistributes the off-diagonal compo-
nents, decouples the degrees of freedom, and inevitably introduces artificial high-frequency modes, leading to numerical
instability and spurious oscillations. This phenomenon has also been reported in Reference [67]. In contrast, the case with
the consistent mass matrix provides a more stable and smoother propagation of pore pressure, with significantly reduced
oscillations. The pressure distribution appears more consistent and physically reasonable, suggesting a better preserva-
tion of the underlying physics of the system. This comparison highlights a fundamental trade-off between the two mass
matrix formulations: While the lumped mass matrix may offer computational efficiency by reducing the cost of solving a
linear system, it introduces numerical instability and oscillations that can compromise solution accuracy.

5.4 | Self-Weight Slumping

In the final example, we examine the self-weight slumping problem to assess the performance of the proposed method
in the large deformation regime. This benchmark test has also been studied by [60, 68–69]. The problem settings are
illustrated in Figure 21.

FIGURE 17 | Mesh sensitivity analysis, coarse: Δℎ𝑒 = 0.25𝑚, medium: Δℎ𝑒 = 0.20𝑚, and fine: Δℎ𝑒 = 0.125 m.
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FIGURE 18 | Pore water pressure evolution for TLMPM with lumped mass matrix: (a) 𝑡 = 0.05 s, (b) 𝑡 = 0.10 s, (c) 𝑡 = 0.15 s, and
(d) 𝑡 = 0.20 s.

FIGURE 19 | Pore water pressure evolution for TLMPM with consistent mass matrix: (a) 𝑡 = 0.05 s, (b) 𝑡 = 0.10 s, (c) 𝑡 = 0.15 s,
and (d) 𝑡 = 0.20 s.

27 of 37

 10970207, 2025, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.70135 by H
ong K

ong U
niversity O

f, W
iley O

nline L
ibrary on [05/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 20 | Pore pressure difference between TLMPM with lump mass matrix and consistent mass matrix, where Δ𝑝 = 𝑝𝑙𝑢𝑚𝑝 −
𝑝𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, (a) 𝑡 = 0.05 s, (b) 𝑡 = 0.10 s, (c) 𝑡 = 0.15 s, and (d) 𝑡 = 0.20 s.

FIGURE 21 | Model setting for self-weight slumping test.

The problem involves a fully saturated elastic block with a width of 2𝑎 = 4 m and a height of 𝑏 = 2 m. By exploiting the
symmetry, only the right half of the block is modeled. The bottom and left boundaries are constrained in the normal
direction and are impermeable, whereas the top and right boundaries are permeable. The computational domain is dis-
cretized by quadrilateral elements with an element size of Δℎ𝑒 = 0.125 m. Each cell contains four material points. The
slumping is driven by the self-weight of the porous medium. To mitigate severe rebounding of the block, the gravity is
ramped linearly to 10 m/s2 over a period of 0.1 s. Material properties are chosen to be consistent with [68]: Young’s mod-
ulus for the solid phase 𝐸 = 100 kPa, Poisson’s ratio 𝜈 = 0.3, density for soil grain 𝜌𝑠 = 2650 kg/m3, density for the pore
fluid 𝜌𝑓 = 1000 kg/m3, the porosity 𝜃𝑓 = 0.4, and the permeability 𝑘 = 1.0 × 10−4 m/s. The time step for the simulation
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is set to Δ𝑡 = 2 × 10−3 s and the pore pressure stabilization coefficient is defined as 𝜏 = 1 for both UL- and TL-MPM. Both
standard MPM and GIMP methods are adopted, and again consistent mass matrix is applied in the TL-based simulations.

Figure 22 shows the contour of the displacement field at the final state 𝑡 = 0.5 s. All methods generally reproduce the
deformation pattern of the slumping block. However, upon closer examination, UL-MPM results exhibit minor insta-
bility and a lack of smoothness, with material points not mobilized uniformly. Instead of displaying a homogeneous
deformation, the UL-MPM case shows a staggered distribution of material points, indicating localized numerical errors
and fluctuations. This phenomenon is primarily attributed to cell-crossing noise in the effective stress and pore pressure,
which is discussed in detail later.

Figure 23 shows the evolution of pore water pressure at different time instances (𝑡 = 0.1 s, 0.3 s, 0.5 s). As indicated, the
UL-MPM result exhibits significant fluctuations and instability. Initially, fluctuations in pore pressure appear only in the
center of the domain; however, as the simulation progresses, these instabilities spread throughout the entire domain,
leading to strong oscillations and erroneous predictions. This instability arises primarily from cell-crossing effects, which
induce sudden changes in effective stress and subsequently alter the pore pressure distribution. Using a higher-order
shape function, UL-GIMP offers improved stability, as expected. However, minor unphysical pore pressure values are
observed in the lower right corner of the domain. This issue is likely caused by inaccuracies in detecting free surface
nodes as deformation progresses, as illustrated in Figure 24, which shows the active free surface nodes for all simulations.
In contrast, TL-MPM and TL-GIMP produce almost identical results, both yielding stable and physically consistent pore
pressure distributions. This is because the TL formulation focuses on the reference configuration, which inherently avoids
cell-crossing noise and ensures that free surface particles/nodes are well-defined and remain unchanged throughout the
computation. As a result, the TL approach facilitates accurate pressure evolution and effectively mitigates numerical
artifacts.

FIGURE 22 | Contour of displacement field at 𝑡 = 0.5 s.
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FIGURE 23 | Contour of pore water pressure at 𝑡 = 0.1 s, 𝑡 = 0.3 s, and 𝑡 = 0.5 s.

6 | Discussion

6.1 | Computational Efficiency

Computational efficiency is one of the core advantages of the proposed TLMPM. Table 1 summarizes the runtimes for
the numerical examples in this study. Note that the computational time is measured in average runtime per step. This
value accounts for all involved computational processes (including the numerical factorization) as it is obtained by divid-
ing the total elapsed time for the whole simulation by the number of steps. The results demonstrate that the TL-based
methods significantly outperform the UL counterpart across all cases, with a speedup factor reaching up to 63.82 for
the wave propagation simulation. This remarkable performance stems from the fact that the TL method operates in
the undeformed reference configuration. Unlike UL-based methods, which require repeated locating of the material
point (in which cell) and computing shape functions at every step, TL-based methods compute these quantities once
in the reference configuration. Consequently, the active degrees of freedom remain constant, thereby streamlining the
assembly of system matrices (see Section 4.2) and reducing the overhead associated with updating shape functions, gra-
dients, and related variables. The TLMPM also obviates the need for real-time detection of free-surface nodes to impose
pressure boundary conditions for solving the Poisson equation (see Figure 24). Furthermore, the invariance of the coeffi-
cient matrix over certain time intervals permits the use of Cholesky factorization, resulting in significant computational
acceleration.
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FIGURE 24 | Active free surface node at 𝑡 = 0.5 s.

TABLE 1 | Elapsed time for varying numerical examples.

Example Section Particles Shape func. 𝒏𝒌
a ULb TLb Speedup

1D consolidation 5.1 200 MPM 200 1.43 0.38 3.79
Mandel’s problem 5.2 2640 MPM 200 69.10 1.78 38.82
Wave propagationc 5.3 13,440 MPM 200 2740.00 42.94 63.82
Slumping 5.4 1024 MPM 5 14.55 1.24 11.73
Slumping 5.4 1024 GIMP 5 40.00 2.10 19.05

a For TL only.
b Computational time measured at runtime per step [ms/step].
c For the coarse mesh case, Δℎ𝑒 = 0.25 m.

From the conducted numerical examples, it is observed that the efficiency improvement is more pronounced in
larger-scale problems, as evidenced by the higher speedup in the wave propagation case compared to the simpler 1D
consolidation example. In the slumping cases, TL-GIMP demonstrates a higher speedup than TL-MPM despite the same
number of particles. This difference is attributed to the broader support domains of the GIMP shape functions, which lead
to a larger number of degrees of freedom in the assembled system, as well as additional computational overhead associ-
ated with detecting active free surface nodes. This finding also highlights the significant potential of TL-MPM in more
challenging 3D simulations, where computational costs for matrix assembly, free-surface detection, and matrix solving
become more substantial. Future work aims to investigate the performance of TL-MPM in 3D cases.
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6.2 | Limitation and Future Pathway

Although the proposed TLMPM demonstrates remarkable performance in the hydromechanical analysis of saturated
media, it still has some limitations in other unaddressed scenarios. The first limitation involves poroelastoplasticity and
the associated strain localization. In the current study, we focus primarily on poroelasticity, where the material topology
and particle connectivity are preserved. This assumption allows the method to operate based on the reference configura-
tion. For scenarios such as the formation of compaction bands [70], this framework remains applicable, as particle con-
nectivity is typically maintained despite localized deformation. However, in problems involving strain softening and shear
band formation [9], the material may undergo significant topological changes. Such changes challenge the assumption
of fixed connectivity and can compromise the accuracy of the simulation if not adequately addressed. To capture these
complex phenomena, it may be necessary to dynamically monitor material connectivity and adjust the update intervals as
well as shape function evaluations. A promising pathway could involve adaptively transitioning from a Total Lagrangian
to an Updated Reference Lagrangian formulation, as has been successfully implemented in SPH [71, 72]. Furthermore,
transitioning to an Eulerian formulation could also be a viable approach for extreme deformation scenarios [73].

Second, and closely related, modeling new boundaries that emerge under large deformations is non-trivial in TLMPM
and requires additional modeling and implementation efforts. This is because kinematics and quadrature are referenced
to the initial configuration. Therefore, the formation of interfaces not present in the reference state, the exposure of new
outward normals, or contact with previously unoccupied regions are not naturally accommodated. This can lead to bound-
ary condition enforcement errors (e.g., Dirichlet pore pressure boundaries) near newly created boundaries, particularly
in cases involving severe shear, tearing, fragmentation, or significant self-contact. Under these circumstances, periodic
re-referencing or the aforementioned mixed TL/UL scheme to better track evolving boundaries or activating boundary
detection functions, and reconstructing free surfaces could be employed. These numerical treatments are, to some degree,
compatible with the current framework and may provide a concrete path to handle emerging boundaries effectively.

Another challenge of TLMPM involves material breakage and fracture processes, such as rock fracture and hydraulic
fracturing [74, 75]. However, this limitation arises not from the TL formulation itself but from the inherent constraints of
the single-valued displacement field in MPM. To address this issue and enable accurate modeling of fracture mechanics,
multiple velocity fields can be incorporated into the implementation [76], or enriched shape functions could be introduced
[77]. These advancements would allow for the proper representation of discontinuities and fractures in the proposed
TLMPM framework.

7 | Closure

This study introduced and evaluated an efficient and stable TLMPM framework for modeling incompressible fluid flow
in deformable porous media, addressing key limitations inherent in conventional Updated Lagrangian formulations. By
employing a reference configuration to evaluate shape functions, their gradients, and the associated matrices, the TLMPM
effectively circumvents errors associated with changing material-point and background mesh connectivity, while at the
same time, eliminating the repetitive computational overhead of updating these quantities at every time step. As a result,
the TLMPM demonstrates marked numerical stability and enhanced computational efficiency even under large deforma-
tion scenarios. The main conclusions drawn from this study are as follows:

• The TLMPM consistently produces more stable and accurate predictions of both pore pressure evolution and mechan-
ical deformation across a broad range of loading conditions, from small deformations to finite strain regimes, primar-
ily due to its inherent ability to bypass cell-crossing noise and the use of optimally positioned quadrature points.

• For all examined examples, the method exhibits notable insensitivity to the choice of shape function. Results obtained
using standard MPM formulations are nearly identical to those acquired with higher-order shape functions, implying
significant potential for accurate and efficient analysis of large-scale systems.

• In the context of dynamic phenomena, the TLMPM achieves superior performance, particularly when a consistent
mass matrix formulation is employed. In comparison, the use of a lumped mass matrix may discard inter-node inter-
actions and introduce high-frequency oscillations.

• The TLMPM offers substantial computational speedups (e.g., up to 63×) compared to conventional Updated
Lagrangian formulations, with efficiency gains becoming more pronounced for larger problems. This advantage
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arises from the strategic use of the undeformed reference configuration, which permits the use of numerical fac-
torization and obviates the need for real-time detection of free-surface particles when enforcing boundary conditions
in the Poisson equation. This feature also highlights the immense potential of the TLMPM for tackling large, com-
putationally intensive problems in geomechanics and related fields, like 3D problems.
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Endnotes
1 While it is true that conformity of the boundary conditions cannot always be guaranteed—that is, when the material boundary

becomes nonconforming to the element boundary—the problems simulated in many MPM works still benefit significantly from
using conforming BCs (see [61]).
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Appendix A

Computational Procedure for Semi-Implicit ULMPM

The computational flow chart for ULMPM using a semi-implicit scheme is shown in Algorithm 2.
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ALGORITHM 2 | ULMPM.

if 𝑡 = 0 then
Compute particle volume 𝑉 0

𝑝 , volume fraction 𝜃0𝛼𝑝, particle mass 𝑚0
𝛼𝑝

end if
while 𝑡 ≤ 𝑡end do

Compute shape function 𝑆𝐼𝑝 and shape function gradient 𝛻𝑆𝐼𝑝

P2G mapping, 𝑚𝛼𝐼, 𝒗𝛼𝐼

Compute solid strain and effective stress
Update particle volume, density, volume fraction, and permeability
Assemble coefficient matrix in Equations (60), (62), and (66)
Detect free surface nodes and apply BCs
Compute intermediate accelerations, 𝒂∗

𝛼𝐼

Compute pore pressure increment, Δ𝑝𝑡+1
𝐼

Compute update accelerations, 𝒂∗∗
𝛼𝐼

Update particle velocity 𝒗𝛼𝑝, position 𝒙𝑝, and pressure 𝑝𝑝
𝑡 = 𝑡 + Δ𝑡

end while

Appendix B

Pore Pressure Stabilization

To investigate the sensitivity of the stabilization coefficient 𝜏 used in the PPP stabilization method (4.3), we perform additional slumping
tests with varying 𝜏. Figure B1 presents contours of the pore pressure at the final stage (𝑡 = 0.5 s) for different stabilization parameters.
It is observed that without stabilization (𝜏 = 0), pore pressure fluctuations occur, particularly on the right side of the slumping block. As
the value of 𝜏 increases, these fluctuations are progressively diminished. And the case with 𝜏 = 1 yields a smooth, stable, and physically
reasonable pore pressure distribution, indicating that selecting 𝜏 = 1 could effectively mitigate numerical instabilities without adversely
affecting the physical accuracy of the results.

FIGURE B1 | Contours of pore pressure for varying stabilization parameter 𝜏 at 𝑡 = 0.5 s.
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