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Abstract

Shock wave propagation from explosive detonations and its damaging effects on adjacent structures involve complex
compressible fluid flows and intense fluid—structure interactions (FSI), posing significant computational challenges. This
paper proposes a novel GPU-accelerated hybrid framework that couples multi-material finite volume method (FVM) with
smoothed particle hydrodynamics (SPH) to simulate the entire process of shock wave dynamics and structural response,
including fracture propagation and fragmentation. The FVM efficiently resolves explosive detonation and shock propaga-
tion in fluids using a six-equation model with adaptive Riemann solvers, while SPH captures large structural deforma-
tions and material failure in a meshless Lagrangian framework. The immersed boundary method (IBM) enables robust
two-way coupling between FVM and SPH domains, ensuring accurate momentum and energy transfer across fluid—struc-
ture interfaces. Leveraging GPU parallelization, the framework achieves high computational efficiency, enabling simula-
tions with millions of nodes/particles. Five benchmark cases—shock—bubble interaction, 2D/3D underwater explosions,
reinforced concrete damage under blast loads, and dynamic fracture of steel tubes—are used to validate the method.
Simulation results show strong agreement with experimental data. The GPU acceleration achieves a 350 times speedup
over CPU-based SPH, making the framework practical for large-scale FSI problems. This work demonstrates the unified
FVM-SPH-IBM approach is capable of handling multi-material compressible flows, extreme structural deformations, and
fragmentation, offering a powerful tool for defense and engineering applications.

Keywords Multi-material finite volume method - Smoothed particle hydrodynamics - Fracture and fragmentation -
GPU - Shock wave

1 Introduction

The explosion of military weapons, involving shock wave
propagation, fragmentation, and their impact on vehicles
and personnel, is of critical importance in both national
defense and engineering. These strong fluid structure inter-
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action problems are highly nonlinear and complex, mak-
ing them difficult to solve analytically. While experimental
methods can be used to study such explosion problems, they
are time-consuming and prone to human error, which can
lead to inconsistent results. Therefore, developing a robust
and efficient fluid—structure interaction solver for accu-
rately predicting the behavior of compressible flows and the
resulting damage to solid structures is essential for advanc-
ing both defense and engineering applications.

Several numerical studies have been conducted on the
simulation of compressible fluid flow and its interac-
tion with solid structures using conventional mesh-based
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methods [1-4]. For example, Wang et al. [5] presented a
local Riemann solver for strongly nonlinear equations of
state (EOS) such as the Jones—Wilkins—Lee (JWL) EOS
and investigated the entire process of the detonation of the
TNT and aluminized explosives. Saurel et al. [1] proposed
efficient relaxation methods for interfaces separating com-
pressible fluids, cavitating flows, and shocks in multiphase
mixtures, demonstrating that the finite volume method
(FVM) can efficiently capture two-phase flow. Chen et al.
[4] used the finite element method (FEM) in LS-DYNA to
simulate the expansion and dynamic fracture of cylindrical
shells under blast loading, analyzing failure modes, fracture
mechanisms, and fragment distribution of metal shells. Zak-
risson et al. [3] performed numerical simulations of blast
loads and structural deformation resulting from near-field
explosions in air. However, when addressing explosion and
impact problems involving large deformations, these mesh-
based methods can suffer from mesh distortions, leading
to issues such as mass loss, unphysically negative density,
negative energy, or even computational failure. In contrast,
meshless methods-such as the material point method (MPM)
[6], smoothed particle hydrodynamics (SPH) [7], reproduc-
ing kernel particle method (RKPM) [8], and peridynamics
[9-11]—have been proposed to better handle large defor-
mation problems, avoiding the limitations of mesh-based
approaches.

In this paper, the smoothed particle hydrodynamics
(SPH) method is employed to investigate the dynamic
behavior and damage characteristics of solid structures for
several reasons. First, since the SPH method does not rely
on a mesh, it is well-suited to handle large deformations in
a pure Lagrangian framework. This allows for natural treat-
ment of interfaces between different materials. Addition-
ally, SPH makes it easy to implement complex constitutive
models that account for new physical phenomena. Origi-
nally proposed by Monaghan [12] and Lucy [13], SPH has
been successfully applied to free surface flow and granular
flow problems. Over time, it has been extended to simulate
high-velocity impacts and explosive detonation events. For
example, Liu et al. [14] developed an SPH-based approach
to model explosive detonation and shock wave propaga-
tion in water. Libersky et al. [15] used SPH to simulate the
dynamic response of solid structures, including fracture and
fragmentation, and to predict fracture patterns and mass dis-
tributions in metal shells. Feng et al. [16] modified SPH to
simulate three-dimensional shaped charge detonations and
the resulting damage to nearby steel slabs, showing that
the method accurately captures the high-velocity metal jet
and fragmentation of steel plates. Chen et al. [17, 18] has
also developed a GPU-accelerated SPH solver for simulat-
ing 3D high-velocity impacts and soil explosion problems.
This solver has been successfully applied to capture soil
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fragmentation [17, 18], shaped charge detonation [19], and
non-ideal explosive detonation [20].

While mesh-based methods can accurately capture shock
wave propagation in air, the SPH method encounters several
challenges in this regard. First, modeling the air domain to
capture shock wave propagation requires millions of SPH
particles, which significantly increases computational time.
Second, the large density ratio between air and the explosive
gaseous products can lead to numerical instability or even
computational termination. Third, mesh-based methods
tend to be more accurate and computationally efficient than
meshless methods in capturing shock wave propagation. As
a result, some researchers have proposed hybrid approaches
that combine mesh-based and particle methods to address
fluid—structure interaction problems. For instance, Tsuji et
al. [21] proposed a hybrid method that integrates SPH with
mesh-based ALE (Arbitrary Lagrangian—Eulerian) schemes
to simulate material fracture and cracking in high-explo-
sive-driven experiments, using appropriate damage or fail-
ure models in SPH. Zhang et al. [22] developed a combined
RKDG-FEM approach for simulating underwater explo-
sion (UNDEX) problems involving shock—bubble—struc-
ture interactions and cavitation. Sun et al. [23] coupled the
multi-resolution §T-SPH model with the Total Lagrangian
SPH model to simulate the complex three-dimensional (3D)
Fluid Structure Interaction (FSI) problems. Liu et al. [24,
25] proposed a novel smoothed-interface SPH multiphase
model to simulate fiber orientation in blood vessels. These
results show that the smoothed-interface SPH multiphase
model can eliminate non-physical gaps at interfaces, greatly
enhancing interface continuity and stability. Huang et al.
[26] coupled the peri-dynamics (PD) with SPH for fracture
analysis of fluid—structure interaction (FSI) problems. In
our current work, we couple the mesh-based FVM method
with the meshless SPH method to simulate the entire pro-
cess of shock wave propagation and its interaction with
solid structures. The multi-material FVM method is used
to capture explosive detonation and shock wave propaga-
tion, while the SPH method predicts the dynamic behavior
of solid structures. To transfer physical information between
the fluid and solid domains, we use the immersed boundary
method (IBM) developed by Peskin et al. [27] to couple the
SPH and FVM approaches, enabling accurate simulations
of fluid—structure interactions.

To significantly increase computational efficiency, the
Compute Unified Device Architecture (CUDA) parallel
computing platform and programming model developed by
NVIDIA was employed in the FVM—-SPH solver. Several
researchers have previously employed GPUs within the SPH
framework. For example, Hérault et al. [28] implemented an
SPH solver for free surface flows on a graphical processing
unit (GPU) using the CUDA platform, achieving substantial
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speed-ups. Mokos et al. [29] demonstrated the acceleration
of a multi-phase SPH method using a GPU, enabling sim-
ulations with large particle numbers (1020 million) on a
single GPU card. Consequently, in our current research, the
GPU parallel computing technique is applied to the multi-
material FVM-SPH solver, harnessing the power of GPUs
to dramatically enhance computational efficiency.

The paper is organized as follows: Sections 2 to 4 pro-
vide a brief introduction and solution procedure for the
SPH and FVM methods. Section 5 presents five benchmark
numerical cases, including shock—bubble interaction, two-
dimensional underwater explosion in free field, underwater
explosion near a steel plate, damage to a reinforced concrete
slab under blast loading, and two-dimensional dynamic
fracture of a steel tube under shock loading to validate the
accuracy of the multi-material FVM—-SPH method. Finally,
the novelties and conclusions are summarized in Sect. 6.

2 Fundamentals of the SPH and FVM
method

2.1 Function approximation in SPH

The SPH method is used for the prediction of the dynamic
response of solid structures under blast and impact loads.
The basic idea of the SPH method is to interpolate physical
variables based on neighboring particles. The first step is the
kernel approximation. An arbitrary field ( f (x)) is written as
a convolution with the smoothing function .

(f(x)) = /Q @)W (@ — 2, h)da'. (1)

The Wendland kernel function [30], which can mitigate ten-
sile instability and particle penetration, is employed in the
SPH method

wd%m:uw{él—94@q+n 25352; o

where the normalization constant oy = 7 / (47rh2) in two
dimensions and ay = 21 / (167rh3) in three dimensions;

q= % is the normalized distance. The smoothing length
can be updated using the time derivative, as given by [14].
It follows that the support domain radius decreases as the
density increases:

dhi 1 hidp;

dt  dp; dt’ 3)

Afterwards, the integral form of an arbitrary physical vari-
able is approximated using a summation over particles.

J
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Based on the kernel approximation and particle approxi-
mation, the discretized form of the governing equation
(Navier—Stokes) can be obtained as

N
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where p;, m;, v;, e; and p; are the density, mass, veloc-
ity, energy, and pressure of particle i, respectively; II;; is
artificial viscosity; o is stress tensor; S is deviatoric stress
tensor; €; is the strain rate tensor.

In the SPH solver, the Monaghan type artificial viscos-
ity [31] is employed to dampen numerical oscillations and
prevent particles penetration,

—aci;j i +BdY;
Oy={ — oy Vi %<0 ©6)
0 5 Vij * LTy Z 0.
hijvij-ij 1 1
Here,¢ij = gipiioiz:cis = 5(ci +¢;).pi = 5(pi + pj),
hij = %(hz + hj), Vij = Vi — vy, and T;; = x; — T4,

The boundary treatment is an important issue in the
SPH method. In our current research, ghost particles are
employed for the boundary treatment. The symmetrical
boundary and fixed boundary are applied for the SPH par-
ticles within the solid domain. For the implementation of
the symmetrical boundary, the velocity of a ghost particle
tangent to the boundary (shear velocity) is set equal to that
of the corresponding real particle, while the velocity com-
ponent normal to the boundary is set to the negative of the
velocity of the real particle. The stress tensor of the ghost
particles is determined in accordance to the following rela-
tions [32].

af
ap _ ) oog",  a =35
v ={ T 070 @

where JO‘Rﬁ and agﬁ are the components of the stress ten-
sor of the real particles and ghost particles, respectively.
As for the fixed boundary implementation, the velocity
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components of three layers of the real particles near the
physical bounday are determined as zero.

2.2 Multi-material finite volume method
2.2.1 Discretization of the governing equation

Since the main goal of this paper is to develop a coupled
approach for the simulation of multiphase flow (explosive
gaseous products and air medium)—structure interaction, the
compressible Eulerian equation considering two different
phases is employed [1]. Different volume fractions of dif-
ferent phases v, should satisfy

2
> an=1. (8)
n=1

This six equation model (Eq. 9) that can be used to deter-
mine different physical variables including fractions,
densities, and energies of two phases can be obtained by
substituting the fraction condition mentioned above (Eq. 8)
to the continuity, momentum, and energy equation.

U OF,  OF, 0Py o
ot ox Ay 0z ’
where
Q101 a1p1u a1 P11V
Q202 0422[)2“, Qi P2V
_| pu _| pP+p _ puv
U= pv F = puv Fa= pv? +p
pw puw pUW
pE (PE + p)u (pE + p)v
(10)
a1prw 0
Qg p2w 0
_ puw o I
Fy= pow = fz )
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(pE + p)w fau+ fyv+ fow

in which, the pressure p = a1p;1 + aap2; The total energy
FE =Yie; + Yoes + % (u2 +v? + w2); pn, and e, are the
pressure and energy of phase n, respectively. The mass
fraction of phase n is Y, = a,p,/p; The total density
p = a1p1 + agpsa. u, v, and w represent the velocities in
the x, y, and z directions, respectively. The source terms ¢
include body forces and external forces, such as gravity.

The flux derivative with respect to x, y, and z directions
in Eq. (9) can be determined using the following equation,
OF _Figjn—Fiijn

el 11
8:5 Qi,j,k ’ ( )
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in which, £2; ;5 is the volume of the element (i, 7,k);
Fi+%,j’k = Fi+%7j7k * SH%’]-JC; SH_%’M is the surface area

of the element (7, j, k); The numerical flux ;1 ; can be

obtained based on U, and Ug using the Riemann approx-
imation solver. Uy, and Ug can be obtained based on the
MUSCL difference scheme, which can be referred to [33].
Additionally, in order to predict the explosive detonation
and shock wave propagation in air and water medium, three
different equation of states (EOSs), namely the ideal gas
EOS, stiffened gas EOS, and the Jones-Wilkins-Lee (JWL)
equation are employed in this work. For the ideal gas, the
pressure is determined as

p=(—1)pe, (12)

in which, + is a constant parameter. For the prediction of the
high explosive detonation, the Jones-Wilkins-Lee (JWL) is
used,

in which, 4, B, w, R;, and Ry are constant parameters.
For the numerical prediction of underwater explosin, the
siffened gas equation, which accounts for both the pressure-
volume-temperature relationship and the internal energy
associated with the material’s "stiffness" (the resistance to
compression), is employed,

p=(—1)pe— P, (14)

where v and P, are constant parameters. It should be noted
that, there are only nine equations that include one volume
fraction condition (Eq. 8), three EOSs (Egs. 14 and 13),
and six equations in the governing equation (Eq. 9) to solve
eleven physical variables (a1, as, p1, p2, P1, P2, €1, €2, U, V,
and w). Consequently, three different equations are required
to be added for the closure of the governing equation.

%JFV'(QIPI("IU)*alplv'v:*PIN(Pl —p2); (15)

{ %+V-(a1v)fa1V~v:u(pl7p2):,
aa%%"‘v'(@zﬂzezv) —agpaV v =pru(p1 —pa),

where py is the pressure of different phases; The pressure
relaxation rate p = co. The key aspect of the two-phase
FVM method is solving the transport equation using opera-
tor splitting. The first step involves solving the transport
equation with the HLLC approximate Riemann solver,
without considering the pressure equilibrium between the
two phases. Following this, Newton’s iteration method is
applied to solve for the equilibrium pressure. The com-
putation details of solving the transport equation will be
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elaborated in the following sections. At the end, the third-
order Runge—Kutta method is used to update physical vari-
ables in the governing equation,

UMY = (I+ AtL)U™,

U® =3/4U™ +1/4(1 + AtL)YUW; (16)
Ut =1/3U0" 4 2/3(I + AtL)U ).
where I is the identity matrix; the operator

LU) =G =— (9 + %21 0 ) g,

2.2.2 The HLLC approximate Riemann solver

The HLLC scheme [34] considering the contact and shear
waves for solving the Riemann problem approximately
is employed in the FVM solver. The HLLC approxima-
tion Riemann solver can be used to find approximations to
the flux function directly. Figure 1 shows the structure of
approximate solution of the Riemann problem in Eq. (17).

U, 055
_ U.. S5.<0< S*;
Ut =9 u.p 5, <0< 55 ("
Ur 0>Sg

where Sp, Sg, and S, are speed of the left-moving shock,
right-moving shock, and contact discontinuity, respectively.
U and Uy, are left and right states before the wave inter-
action. U, and U .y are left and right intermediate states.
The solution vector in the Star Region in the HLLC approxi-
mate Riemann solver is determined as,

N Sk—uk
U*K—Pk <Sk—S*>

S, (18)

E
B (80— i) [0+ i

Sx

Ur Ug
0

Fig. 1 The structure of the approximation of the Riemann problem

where K = L or K = R. Therefore, the fluxes F'.; and
F.r can be completely determined using the following
equation,

hllc
Pl =

(19)

F*R:FR-FSR(U*R—UR)

Fy, 0<S1;

_ ) Fuu=F+S,(U.,,-UL) Sg Sy
S, ;

Fgr 0

Davis [35] suggested the simple estimate for wave speed
S, and Sg in the solution of the Riemann problem directly,

Sy =min{ur, —ar,ug — ar},
(20)
Sr =max{ur +ar,ur +ar}.

where ay, and ap are sound speeds. In consequence, the S,
can be determined based on the wave speed St and Sg,

_ Pr—pL+prur (Sp —ur) — prur (Sk — ur)

S 21
pL (Sp —ur) = pr (S — ur) @1

The mixture sound speed can be calculated as,

a} = Yiaf + Yaaj (22)

in which a; and ay are sound speeds of different materials.
The sound speed in a material can be determiend based on
the partial derivative of pressure with respect to the den-
sity using an equation of state (EOS). In consequence, for
the sound speed of explosive detonation, a is given by the
relationship,

Op ) <6p> P ( Op >

2

2 = - + == _—

ak (pk p) (8Pk . Pk . pi 3€k P (23)

The subscript s indicates that the derivative is taken at

constant entropy (isentropic condition). The term (%)

accounts for the energy dependence of pressure. The equa-
tion of the sound speed of an ideal gas is [36],

p
aj, =y —

Pk 24)

Following the wave speeds, the physical variables in the star
region (o), x» (Pn). i and (ey), 5 can also be determined
using the following relations,

(an)*K = (an)K (25)
S —

(0n)oxc = ()i 55 26)

(en)*K = EOS,, {(pn)*K ) (pn)K} 27)
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Consequently, the solution vector (a; v, a1 p1€1v, aapaesv)
in the star region for the transport equation (Eq. (15)) can
be determined from the intermediate states (v, ), x> (Pn) . i
and (en,), ;- Similarly, the third-order Runge—Kutta method
can be used to update fractions «,, energies of the different
phases e,, in Eq. (15).

2.2.3 lteration

Subsequently, the relaxation method is applied to ensure
pressure equilibrium in the transport equation (Eq. 15)
[1]. This relaxation step is crucial for maintaining pressure
equilibrium at the multimaterial interface within the FVM
method. The input parameters include the densities and
phase fractions of the different materials. To solve for the
phase fractions and energies, Newton’s iteration method can
be employed, as described in Eq. (28).

en (pnsp) = €5 (p5,05) +p (5 — ) = 0
2

> e,

n=1

in which, C,, = a,,p,, is a constant during the iteration pro-

cess. €2, p2, and p0 represent values before the iteration. In
order to consider the conservation of energy, the pressure
should be initialized by considering fluids governed by EOS
again.

2
pe = > =1 %ngn (Pn)

. 29)
Zn:l aﬂfn (pn)

p“?

fn (pn) and gy, (py,) are functions of density that depend on
the material properties in a Mie-Griineisen-type equation of
state (EOS): pe = fp, (pn) P+ gn (pn). Once the mixture
pressure is determined, the internal energies of the different
phases are reinitialized with the help of their respective EOS
before going to the next time step,

n TLpeq+ n n
en(pmpeq):f (pn) ; 9n (Pn)

(30)

Once the relaxed pressure in found, the correspond-
ing fractions, densities, and energy for each phase can be
determined.

3 Coupling of the FVM and SPH method

The coupling of the FVM and the SPH method is an impor-
tant issue in the fluid—structure interaction problems. In
our current research, the immersed boundary method is
employed to handle the fluid—structure interface and trans-
fer physical information between the solid domain and fluid
domain. First, as shown in Fig. 2, the computational domain
must be divided into three distinct regions: the fluid region,
the solid region, and the fluid—structure interface. The pure
fluid region and the pure solid region are treated using the
two-phase FVM solver and the SPH solver, respectively.

4 d 4

4

° g o ° | Fluid-Solid
Fluid region o o Particles o 47| interface . .
| L / L) ! Solid region
© 0% o/06 .| 8
|l L O 1 Ol Soavesion Fluid-Solid
° . (s . o o . interface
o O
00" | o | o [0%
- = = *—
% OO Oo o o N Fluid region
OO ~ o (5 olGrid
L — = . N
Node

Fig. 2 Classification of three different regions: fluid region, solid region, and fluid—structure interface in the developed FVM—SPH method
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More details with regards to the classification of three dif-
ferent regions can be referred to [33]. For the multi-material
interface between the solid and fluid domains, the velocity
of the interface node v is interpolated based on the veloci-
ties of the particles v; within the corresponding cell.

; 1
vl = Z N 3D

All of the other physical variables 1y of the nodes on the
multi-material interface can be obtained based on the value
of the quantity 1 at neighboring node N.

w(dy) is a weighting function, typically based on the dis-
tance dy between points N and /. The closer N is to /, the
higher the weight. Correspondingly, based on the conserva-
tion of momentum, the external forces acting on the SPH
particles can be derived from the numerical flux increments
[33].

o (Alpw)); — ol (Ap);
¢ At (33)

—a* (vI’RHSE (p) — RHSE (pv))

where RHS® (p) and RHS” (pv) are increments of the mass
flux and momentum flux, respectively. The external force
exerted on each SPH partcle is determined as

1
Fi=—fiVe. (34)

where n. is the total number of particles in one cell; V, is
the volume of each cell. The total external force exerted on
each SPH particle can be determined based on the third-
order Runge—Kutta method [33],

Fluid

(n+1)-th timestep

n-th timestep .-~
7

S|
Solid

Fig. 3 Treatment of the physical variables of the moving structures

1., 2
Fi= G Fl 4+ 3P+ F. (35)

This approach can be applied to ensure the accuracy of the
velocity boundary implementation and the conservation of
the momentum equation.

Additionally, as shown in Fig. 3, in simulations involv-
ing fluid—structure interaction with a moving structure, a
solid node (located in the solid domain) may transition into
a fluid node (within the fluid domain) at a given timestep
directly. While it is unnecessary to interpolate physical vari-
ables within the solid region at the nth time step, a different
approach is required when this region is converted to fluid.
If the solid region (shaded green in Fig. 3) is directly con-
verted to fluid at the (n+1)th step, its physical variables can-
not be updated using the standard fluid integration method.
Therefore, these variables must be initialized through direct
interpolation. In such cases, all physical variables v associ-
ated with the fluid node-originating from the solid node in
the previous timestep-should be consistently interpolated.
This includes velocity components and other relevant vari-
ables, and the interpolation should be performed using the
neighboring nodes, as described in Eq. (32).

4 Solution procedure of the FVM-SPH
method

The solution procedure for the GPU-accelerated FV-SPH
method is summarized as follows. The main steps of the
multi-material FVM are illustrated in Fig. 4. Initially, all
data are stored in the CPU memory and then transferred to
the GPU memory for computation.

The first step in the GPU computation is the classifica-
tion of three distinct regions: the fluid region, solid region,
and the fluid—solid interface. The next step involves han-
dling the physical and immersed boundaries. The velocity
of the immersed boundary nodes is interpolated based on
the velocities of the SPH particles in their corresponding
cells. Other physical variables are interpolated using the
neighboring nodes. The MUSCL scheme is applied as the
difference scheme to determine Upr and Up. The HLLC
Riemann approximate solver is then used to compute the
numerical flux based on Ui and Uy,. To update the physical
variables, the third-order Runge—Kutta integration method
is employed. Finally, Newton’s iteration method is used to
reinitialize the equilibrium pressure, volume fractions, den-
sities, and internal energies of the different phases, ensuring
energy conservation and pressure equilibrium between the
two phases. The external forces acting on the SPH particles
are calculated based on the mass flux increments between
the two different phases. The SPH method is then used to

@ Springer
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D CPU-GPU 1
I
Y\ Lowinidaldw ] memory ranster _ )
s s S L L B B B B F R N N el e o B b B b R b b b o B B R B R B R R o o
:GPU [ Region classification ]: :{ Neighbor particles search ] :
, v ! L —— ; :
I [ Boundary condition implementation ] : in tZ;I;(z):ZzttJ;'on :[ Boundary cond1t1$n implementation ] :
I

| G . .

: ! I :[ Particle interactions ] :
| [ Immersed boundary treatment ] I : v "
I v ! l[ Integration-Predictor ]M "i”:
: [ Uy and U, using MUSCL scheme ] " : v Loop|
" J | ,[ Neighbor particles search ] |
! [ HLLC Riemann approximation ] : : v :
: J IExternal forcel[ Boundary condition implementation ] |
| ion- | — ¥ |
| [ it panon \Jl/{unge L ] : I[ Particle interactions ] I
| 1 v I
: [ Newton iteration } : :[ Integration-Corrector ] :
P e —_—_SS=Z=ZZZZ=ZZZ=Z=ZZZ-Z=ZZZZ=ZzZzZ=-=Z%
I CPU [ Save computational data ] k.
\ transfer |

Fig.4 Solution procedure of the multi-material FVM—-SPH method

predict the dynamic behavior of solid structures. Once the
numerical results are obtained, they are transferred from the
GPU back to the CPU for occasional data storage.

5 Numerical examples

In this section, numerical simulations of five benchmark
problems are presented to verify the accuracy of the GPU-
accelerated multi-material FVM—SPH method. These prob-
lems include: shock—bubble interaction, two-dimensional
underwater explosions in a free field, three-dimensional
underwater explosions near steel structure, damage to rein-
forced concrete slabs under blast loading, and the dynamic
fracture of steel tubes under shock loading. Since the sin-
gle SPH solver has already been validated in our previ-
ous research through high-velocity impact and explosive
detonation benchmarks [19], this study focuses solely on
the verification of the multi-material FVM solver and the
coupling of SPH and FVM. All of the numerical cases are
executed on a single GeForce RTX 4090 Graphics Card.

5.1 Shock-bubble interaction
Firstly, the simulation of the two-dimensional shock—bubble

interaction problem was performed to validate the accuracy
of the multi-material finite volume method. This numerical
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simulation replicates the experimental work of Haas and
Sturtenment [37-39], where a planar shock wave with
a Mach number of 1.5 propagates into air at atmospheric
conditions and interacts with a helium bubble. The primary
objective of the experiment [37-39] is to investigate how
the shock wave, propagating through a random medium,
affects the structure of the mixing fluid flow.

The initial schematic of the computational domain
is shown in Fig. 5. The dimensions of the computational
domain are 325 x 89, and the dimensionless radius of the
helium bubble (highlighted in red) is 25. The initial physical
conditions for the air and helium regions are summarized
in Eq. (36). The computational mesh has an initial size of
0.25, with a total of 939,322 nodes used in the simulation.
The following boundary conditions are applied to the flow
domain: the top and bottom boundaries are treated as solid
walls with a standard reflecting boundary condition, the left
boundary is set as a non-reflecting boundary, and the right
side has specified inflow conditions based on the exact flow
parameters. The ideal gas equation of state (EOS) is used to
compute the pressure for both the helium and air media. The
values of the adiabatic index, +, for the air and helium are
1.4 and 1.67, respectively.

(p,u,v,p,7)
(1,0,0,1.0,1.4) , for air ; (36)
= { (1.3764,—0.394,0,1.5698, 1.4) , for shock wave;
(0.138,0,0,10.8,1.67) , for helium bubble.
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Fig. 5 The initial configuration of the

325

2D shock—bubble interaction, in which
region a, region b, and region c are air at
atmosphere condition, shock wave, and
helium bubble, respectively. All of the
lengths are dimensionless
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Fig. 6 Temporal evolution of the pressure and density distributions for shock bubble interaction at different times 67.6 and 180.4 s

The pressure and density distributions from the 2D shock—
bubble interaction problem, obtained using the multi-mate-
rial FVM solver at different times 67.6 and 180.4 us, are
shown in Fig. 6. Initially, the shock wave propagates freely
toward the helium bubble. Upon impact, a reflected shock
wave and a refracted shock wave are generated. As shown
in Fig. 7, a series of numerical schlieren images at different
times 62, 82, 245, and 257 s are compared to experimental
shadowgraphs from [37, 39]. After the incident shock wave
hits the helium bubble, a curved reflected shock wave forms
outside the bubble, while a refracted shock wave propagates
within the bubble. This behavior occurs because the sound
speed in helium is higher than that in the surrounding air.
The change in shape is further influenced by the vorticity
generated at the bubble’s edge. Over time, the bubble adopts
a kidney-shaped form and spreads laterally.

The x-t path of the typical points for the shock wave
interaction with the helium bubble in shown in Fig. 8. Note
that the measured flow features move more or less in a

constant velocity. Table 1 shows the comparison of the cor-
responding numerical velocities of the upstream edge Vy;
and downstream edge V; of the helium bubble derived from
Fig. 8 for the He cylinder case obtained from the FVM—
SPH solver with those measured experimentally by Haas
and Sturtevant [37]. It can be found that all of the relative
errors are less than 10%. This numerical case demonstrates
that the GPU-accelerated FVM method is highly effective at
capturing the dynamics of multi-phase flow.

Additionally, as shown in Table 2, the computational
efficiency of the multi-material FVM method is evaluated
using the 2D shock—bubble interaction case. As the number
of nodes increases, the computational time grows gradually
from 40.0 to 1520.0 s. Despite this, the frames per second
(FPS) for the simulation with 3,750,642 nodes remains
high, demonstrating that the GPU-accelerated FVM method
is effective for efficiently simulating two-phase flows.
Moreover, the computational efficiency of the GPU-accel-
erated SPH method has been extensively examined in our
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Fig.7 Comparison of the (al—a4) numer-
ical schlieren of density distribution of
shock—bubble interaction at different
times with the (b1-b4) experimental data
obtained from [37]
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Fig. 8 x-t diagram for the typical points A and B, namely the upstream
and downstream edges of the helium bubble

Table 1 A comparison of the numerical velocities of the upstream Vg;
and downstream edges V; of the helium bubble obtained from the
FVM-SPH solver with those measured experimentally by Haas and
Sturtevant [37]

Velocity (ms™!)  Computation  Experiment  Discrepancy (%)
Vi 154 145 6.2
V; 252 230 9.5

previous work, which focused on sand collapse and shaped
charge detonation scenarios [19, 40]. It was found that the
GPU-accelerated SPH method is 350 times faster than the
sequential SPH code [19, 40]. In summary, fluid—structure
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Table 2 Computational efficiency of the GPU-accelerated FVM—-SPH
solver for the shock—bubble interaction in 100 timesteps

Case Node size Nodes number FPS (s T (s)

1 1.0 59,332 174.0 40.0

2 0.5 235,661 64.6 161.0
3 0.25 939,322 14.40 569.0
4 0.125 3,750,642 4.30 1520.0

interaction (FSI) problems can be efficiently addressed
using the GPU-accelerated FVM—SPH method.

5.2 Two-dimensional underwater explosionin a
free field

In this section, we simulate a two-dimensional underwater
explosion in a free field, a scenario also examined in [22, 36],
to validate the effectiveness of this compressible multiphase
algorithm for underwater explosions. As shown in Fig. 9,
the computational domain spans (x,y) € [-1,1] x [-1,1],
with a mesh size of 0.0005 mm, resulting in a total of 321,602
nodes in the simulation. The initial physical conditions and
parameters for both the water and explosive are summarized
in Eq. (37). The ideal gas equation of state (EOS) is used to
model the gaseous products, while the stiffened gas EOS is
employed to describe the motion of the water. The constant
parameters of the stiffened gas EOS for the water medium ~
and P, are 4.4 and 6.0 x 10® Pa, respectively. All boundaries
of the 2D underwater explosion are treated as non-reflecting
boundaries.
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Non-reflecting boundary
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Explosive

2

Fig. 9 Initial configuration of the 2D underwater explosion in a free
field. All of the dimensions are in mm

1000, 0,0, 1.0 x 10°,7.15) , for water;

(pvuvvvp/)/) = { §1630,0,0, 781 x 1097 1.4 ,fOI“ bubble. (37)

The numerical prediction of pressure distribution from the
underwater explosion at different times—0.01, 0.05, 0.1,
and 0.15 ms—is shown in Fig. 10. Following the ignition of
the TNT explosive, the shock wave propagates through the
water medium. By around 0.14 ms, the shock wave reaches
the boundary of the fluid domain. Additionally, the numeri-
cal data for pressure, velocity, and density distributions at
the cross-section y = 0 along the x-axis at time £ = 0.0001 s
is compared with the exact solution of the problem as pre-
sented in [22] (Figs. 11, 12, 13). The comparison shows that
the distributions of pressure, density, and velocity are gener-
ally in agreement with the analytical results from [22]. The
discrepancies observed in the numerical results are primar-
ily due to the use of different equations of state (EOS). For
instance, the density magnitude in the interval [—0.75, —0.4]
is higher than that reported in [22]. The stiffened gas EOS is
used in our calculation of water pressure in the underwater
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~
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Fig. 11 Spatial distribution of the velocity of underwater explosion

explosion, while Tait’s EOS is used in [22]. The Tait EOS is
designed for fluids like water, which are weakly compress-
ible. Compared with the Tait EOS, the stiffened gas EOS
is more suitable to address compressible fluid flows with
high-pressure, high-temperature, such as underwater explo-
sions. In conclusion, the numerical results demonstrate that
the GPU-accelerated FV-SPH method effectively captures
shock wave propagation and explosive dynamics in under-
water explosions.

5.3 3D Underwater explosion near steel plate

To validate the effectiveness of the developed FVM-SPH
solver in simulating structural damage caused by 3D under-
water explosions, and to further investigate the flow char-
acteristics and dynamic behavior of metal structures, the
underwater explosion near steel plate is simulated. The ini-
tial geometry of the underwater explosion near cylindrical
steel structure is shown in the Fig. 14, which is identical
to the numerical configuration in [22]. The dimensions of
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Fig. 10 Temporal evolution of the pressure distribution of the two-dimensional underwater explosion at different times 0.01, 0.05, 0.1, and 0.15 ms
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Fig. 12 Spatial distribution of the density of underwater explosion

%10°

—-=- Analytical solution
81 = FVM-SPH 1

Pressure/(Pa)
N w [e)) ~N

w
T

—_
T

N

T
—— - — - — - — - -

L

Fig. 13 Spatial distribution of the pressure of underwater explosion

the computational domain are 10.0 m x 10.0 m x 12.0 m.
The distance between the center of the explosive and the
bottom surface of the steel structure is 2.0 m. The diameter
of this spherical explosive is 0.5 m, and the thickness of
the steel plate is 0.068 m. The initial pressure of the explo-
sive gaseous product is set as 6 GPa. The parameters for the
Johnson-Cook constitutive model and EOS of the steel plate
are listed in Tables 3 and 5, respectively. The initial mesh
size is 0.0625 m. The initial particle spacing is 0.017 m, and
a total of 815,131 partcles are involved in this simulation.
All of the boundary conditions for the fluid domain are set
as outlet boundaries, and the boundary of the steel structure
is fixed.

Table 3 Johnson-Cook model parameters of steel [22]

Water

N2

Sy

Explosive

Fig. 14 Initial configuration of the damage of the steel plate subjected
to the underwater explosion. All of the dimensions are in m

Firstly, we investigated the shock wave propagation in
the water medium induced by the underwater explosion.
The temporal evolution of the pressure contours and veloc-
ity distribution at various times (0.4, 1.6, and 2.4 ms) is
shown in Fig. 15. It is observed that the shock wave reaches
the bottom surface of the steel plate at 0.6 ms, where it
undergoes both reflection and refraction. Part of the shock
wave subsequently propagates through the steel plate. As a
result of the transfer of internal energy from the explosive to
the kinetic energy of the steel plate, the velocity of the plate
increases gradually. Furthermore, the temporal evolution of
the pressure at a typical point A (see Fig. 14) is depicted in
Fig. 16. The pressure obtained from the GPU-accelerated
FVM-SPH solver rapidly reaches its peak value of 0.82 GPa
at 0.63 ms, after which it gradually decreases. The temporal
evolution of the pressure from the FVM—-SPH is generally
consistent with the numerical results from the RKDG-FEM
method [22], with the exception of the peak pressure. This
discrepancy is likely due to the use of different equations of
state (EOSs) for modeling the water medium—specifically,
the stiffened gas EOS in the FVM—SPH solver versus Tait’s
EOS in the RKDG-FEM method.

The components of the stress tensor distribution of the
steel structure caused by the underwater explosion at 5.0
ms are shown in Fig. 17. It is observed that the stress tensor

A (MPa) B (MPa) C n

k Troom (K) Tmell (K)

950 560 0.014 0.26

1.03 273 1793
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Fig. 15 Spatial distribution of the stress tensor components of the steel plate subjected to underwater explosion

component on the x-y plane is symmetric with respect to
the line = =y. The stress tensor component on the y-z
plane exhibits symmetry with respect to the line z = 0. The
maximum value of the stress component on the x-y plane
is 450 MPa. Overall, the stress distribution on the steel
plate surface is smooth without any spikes, indicating that
that developed FVM-SPH solver is capable of providing
high-precision results when handling complex mechanical
problems, especially in capturing stress variations without
generating unnatural sharp fluctuations or noise.

The temporal evolution of the velocity distribution of the
steel structure subjected to underwater explosion at 2.5, 4.0,
5.0, and 7.5 ms is shown in Fig. 18. After the ignition of the
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explosive, the shock wave propagates in the water medium.
At time 1.5 ms, the shock wave impacts the steel plate, and
the plate begins to deform. Since part of the internal energy
is transferred to the kinetic energy of the steel plate, it can be
found that the velocity magnitude of the steel plate increases
rapidly to around 150 m s ! (see Fig. 18). After the velocity
magnitude of the steel plate reaches the maximum value, the
velocity decreases gradually. The numerical results show
that the developed FV-SPH method can provide a good
prediction of the damage of solid structures under nearby
underwater explosion.

The temporal evolution of the displacement at the cen-
ter of the top surface of the steel plate is shown in Fig. 19.
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Fig. 16 Temporal evolution of the pressure at typical point subjected
underwater explosion

At 0.6 ms, the shock wave impacts the plate. As part of
the internal energy from the explosive is transferred to the
kinetic energy of the steel plate, the displacement begins to
increase significantly after 0.8 ms. Once the displacement
reaches its maximum magnitude, it gradually stabilizes,
approaching a steady state. For validation, the temporal
evolution of the steel plate’s deformation is compared with
numerical results obtained using a combined RKDG-FEM
approach [22], which shows general agreement. This com-
parison demonstrates the accuracy of the current simulation

Stress XX
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(a2)

Stress XY

(b2)

approach. Additionally, further numerical studies will be
conducted to explore the deformation of composite struc-
tures subjected to 3D underwater shock loading, expanding
the scope of the analysis in future work.

5.4 Damage of reinceforced concrete slab under
blast loading

The three-dimensional damage of a reinforced concrete slab
under TNT explosive detonation is simulated to further val-
idate the fluid-structure interaction and the calculation of
the external force applied to SPH particles. As described in
Eq. (35), the external force is determined based on the mass
flux increments of different phases. The initial configuration
of the reinforced concrete slab and blast loads is shown in
Fig. 20, which is identical to the experimental setup in [41].
The dimensions of the reinforced concrete slab are 1.0 m x
1.0 m x 0.04 m, with steel reinforcement having a length
of 1.0 m and a diameter of 0.006 m. The distance between
the steel reinforcements is set at 0.075 m. The air domain
is discretized using FVM, while the solid structure is mod-
eled with SPH particles. For the fluid domain, symmetrical
boundary conditions are applied on the planes z = 0, y = 0,
and z = 0, with non-reflecting boundary conditions applied
to the remaining boundaries. For the reinforced concrete,
symmetrical boundary conditions are applied to the planes
x = 0 and y = 0. The top and bottom surfaces are treated as
free boundaries, and the back two boundaries are fixed. The

Stress YZ
-4.5e+08 -2e+8 0

—

2e+8 4.7e+08 2e+8 4.5e+08

—

(c2)

Fig. 17 Top view (al—c1) and side view (a2—c2) of the spatial distribution of the stress tensor components of the steel plate subjected to underwater

explosion
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Fig. 18 Temporal evolution of the velocity distribution of the steel plate subjected to underwater explosion at 2.5, 4.0, 5.0, and 7.5 ms
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Fig. 19 Temporal evolution of the displacement of the center point at
the top surface of the steel plate using the the developed FVM—-SPH
solver and RKDG-FEM method [22]
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Fig. 20 The initial configuration of the damage of reinforced concrete
slab under blast loading

initial particle spacing is 0.006 m, and a total of 640,001
particles are used in this numerical case. The initial mesh
size is 0.0025 m. The parameters of the HJIC and Johnson-
Cook constitutive models, along with the Griineisen EOS
for modeling the dynamic behavior of reinforced concrete,
are summarized in Tables 4, 5, and 6. The parameters for
the JWL EOS of the TNT explosive are provided in Table 7.

We first simulated the TNT explosive detonation in the
air medium to verify the implementation of the two-phase
FVM solver for solving ideal explosive detonation prob-
lems. The temporal evolution of the total energy, pressure,
and shock wave velocity propagation at different times (80,
120, 160, and 240 ps) is shown in Fig. 21. The results dem-
onstrate that the developed two-phase FVM method effec-
tively reproduces explosive detonation and shock wave
propagation. Furthermore, we simulated the response of
reinforced concrete slabs under close-in blast loading to
analyze the damage modes and mechanisms of the structure,
comparing the numerical predictions with experimental data
from Wang et al. [41]. The damage to the reinforced con-
crete caused by shock wave propagation at times 140, 180,
240, and 300 ps is shown in Fig. 22. After the TNT explo-
sive is ignited, the shock wave propagates through the air
medium. When the shock wave reaches the bottom surface
of the reinforced concrete, some of the internal energy is
transferred to the kinetic energy of the concrete, causing the
concrete to crack. The damage coefficient distribution of the
reinforced concrete slab under blast loading, obtained from
the GPU-accelerated multi-material FVM-SPH method, is
shown in Fig. 23. Several cracks in both radial and circum-
ferential directions are generated. The numerical damage
contours of the reinforced concrete quarter-section, on both
the top surface (a—e) and the bottom side (g), obtained using
the multi-material FVM—SPH method, show good overall
agreement with the experimental data (top surface (f) and
the bottom side (h)) [41]. The present concrete model does
not fully reproduce the tensile cracking and surface damage
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Table 4 Johnson-Cook model parameters of steel [19]

A (MPa) B (MPa) C n k Tmom (K) Tmelt (K)
792 510 0.014 0.26 1.03 273 1793
Table 5 Parameters used for the Mie-Griineisen EOS for steel [33]
po (kg m™) Co (km's ') 5, s, S, y a Eq (1)
7830 4.569 1.49 0 0 2.17 0.46 0
Table 6 Parameters of the HIC model for the concrete structure [33]
Basic parameters Value Strength parameters Value Damage parameters Value EOS parameters Value
=3
po (kgm™) 2,700 A 0.79 Dy 0.04 Perush (M Pa) 16
G(GPa) 28.0 B 1.60 Dy 1.00 Lorush 0.001
crus
fo(MPa) 39.5 N 0.61 € fmin 0.0008 Prock(GPa) 0.80
C 0.007 T(MPa) 42 0.10
Hiock
€0 1o K1(GPa) 85
Smax 7.00 K2 (GPG/) —171
K3(GPa) 208
Table 7 Coefficients of the JWL model for TNT explosive [33]
po (kg m™) A (Pa) B (Pa) R, R, w Eo (T kg™
1630 3.712x 10" 3.21x10° 4.15 0.95 0.3 4.29x10°

observed on the top face. Ongoing work focuses on devel-
oping and implementing more advanced cracking treatment
methods to better capture complex fracture behavior in the
concrete medium. In addition, as illustrated in Table 8, we
also compared the numerical deflection of the center point
of the reinforced concrete with the experimental data, it is
found that the relative error is less than 15%, indicating that
the GPU-accelerated FVM—-SPH methodology is highly
effective at capturing explosive detonation, shock wave
propagation, and the deformation and damage of solid struc-
tures induced by shock wave propagation.

5.5 Dynamic fracture of steel tube under shock
loading

The last strong fluid—structure interaction case used to vali-
date the coupling of the FVM and SPH methods and check
the robustness of the developed FVM—SPH solver is the
2D dynamic fracture of a steel tube under shock loading.
During the explosion, the shock wave compresses the sur-
rounding metal structure, generating numerous structural
fragments and creating multiple fluid—structure interaction
interfaces. This complexity can lead to issues such as nega-
tive energy and density, potentially resulting in program ter-
mination during simulation. Therefore, this case is designed
to evaluate the effectiveness of the developed FVM-SPH
solver in handling fluid—structure interactions between the
explosive shock wave and high-speed moving debris. The
dynamic fracture of a steel tube driven by the expansion
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of explosive gaseous products and shock wave propagation
has been extensively studied by several researchers [21, 42].
For example, Libersky et al. [42] examined fragment pat-
terns and mass distribution of metal materials using the SPH
method. The simulation of dynamic fracture in steel tubes
under blast loading involves fracture and fragmentation of
materials, which is challenging for mesh-based methods.
Techniques such as element erosion or element death in grid
methods can lead to significant mass loss, negative density,
and negative volume. In our current research, the developed
FVM-SPH method is used to predict the physical process of
dynamic fracture in a steel tube under blast loading.

As shown in Fig. 24, a quarter of the steel tube under blast
loading is modeled in this study. For the fluid domain, sym-
metrical boundary conditions are applied to the left and bot-
tom boundaries, and outlet boundary conditions are applied
to the right and top boundaries. For the solid domain, the
left and bottom sides of the steel tube (modeled using SPH
particles) are treated with symmetrical boundary conditions.
To replicate the experiment from [42], the air and explosive
domains are discretized using a uniform structured mesh,
while the steel tube is discretized using SPH particles. As
depicted in Fig. 24, the radius of the explosive is set to
30 mm, and the thickness of the steel tube is 4 mm. The
JWL EOS is applied to model the TNT explosive detona-
tion, while the ideal gas EOS is used for the air medium. For
material strength, the Johnson-Cook strength model in con-
junction with the Mie-Griineisen EOS is used to predict the
dynamic behavior and fracture of the steel. The parameters
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Fig.21 The temporal evolution of the total energy, pressure, and velocity distributions of the 3D TNT explosive detonation in the air medium using
multi-material FVM—-SPH
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Fig. 22 The physical process of the shockwave propagation and its damage to nearby concrete
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Fig. 23 Comparison of the temporal evolution of damage distribution in a quarter-section of reinforced concrete obtained from the FVM-SPH

solver and experimental data [41]

Table 8 A comparison of the numerical results for the reinforced con-
crete obtained from the FVM—SPH solver with those measured experi-
mentally by [41]

Damage (mm) Computation Experiment  Discrepancy (%)

Center deflection  30.6 35 12.5

Explosive

120

for the Johnson-Cook model, and the JWL EOS are sum-
marized in Tables 4, 5, and 7.

The temporal evolution of dynamic fracture in a steel
tube under blast loads is shown through snapshots at vari-
ous times—10, 20, 40, and 60 us—in Fig. 25. Follow-
ing the ignition of the explosive, the steel tube undergoes

Non-reflecting

Non-reflecting

Symmetrical
R d

Symmetrical// 60

Fig. 24 Initial configuration of the dynamic fracture of steel tube under the expansion of explosive gaseous products and shock wave propagation.

All of the dimensions are in mm

@ Springer



Computational Mechanics

Horizontal velocity (m/s)

-1.5e+03

—

\

} '

(@) (b)

-500 0 500

1.5e+03

l‘

(©) (d)

Fig. 25 The temporal evolution of the fragment distribution of the steel tube at different times 10, 20, 40, and 60 us
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Fig. 26 The velocity distribution of the steel tube subjected to blast loading at different times 10, 20, 40, and 60 ps

compression due to the shock wave and the expanding gas-
eous products. The figure illustrates the progression of frac-
ture in the steel tube, resulting from a combination of shear
and tensile stresses. It can be observed that the maximum
velocity magnitude of the fragments reaches around 1000 m
s,

The velocity distribution of the dynamic fracture at dif-
ferent time intervals—10, 20, 40, and 60 ps—is presented
in Fig. 26. The developed FVM-SPH solver effectively
captures key physical phenomena such as shockwave
propagation, reflection, fragmentation of the steel tube, and
pressurized gas leakage. In comparison with results from
the pure meshless MPM (Material Point Method) approach
used in [33, 43], the multi-material FVM—-SPH method
offers a better prediction of shock wave sharpness, pres-
sure relief, and gas leakage. This improvement arises from
the fact that the pure meshless approach neglected the sur-
rounding air medium to simplify the initial modeling and

Table 9 Comparison of the numerical results and experimental data
[44] in terms of the average width and thicknesses of the fragments

Simulation Experiment Error
Width 7.23 mm 7.86 mm 8%
Thickness 3.7 mm 3.3 mm 12%

enhance computational efficiency. As shown in Table 9,
the relative errors are all less than 15 %, indicating that the
average width and length of the steel tube fragments are

in good agreement with experimental data from [44] (cal-
riment-Simulation|
Experiment

value of the thickness and length can be determined using
(Zf\;l Li) /N, where N is the total number of fragments;
L; is the thickness or length of the ith fragment.

. E
culated using Error = X2

). The average

Additionally, the temporal evolution of total energy,
kinetic energy, and internal energy of the steel tube is
depicted in Fig. 27. After the shock wave impacts the
cylindrical steel tube, the internal energy of the explosive
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is converted into the kinetic energy of the steel tube frag-
ments, causing the kinetic energy to rapidly increase to 0.52
MJ. Simultaneously, the internal energy of the steel tube
decreases. After 60 us, the total and kinetic energy stabilize
and maintain nearly constant values. This case demonstrates
that the developed GPU-accelerated FVM—SPH method can
effectively reproduce the dynamic fracture of a steel tube
under blast loads.

6 Conclusion

In this paper, a GPU-accelerated multi-material FVM—-SPH
framework coupled with the immersed boundary method
(IBM) has been developed to simulate shock wave propaga-
tion and its interaction with solid structures. The solver was
rigorously validated through five benchmark cases: shock—
bubble interaction, 2D/3D underwater explosions, blast-
induced damage to reinforced concrete slabs, and dynamic
fracture of steel tubes. The methodology integrates the finite
volume method (FVM) for resolving compressible fluid
dynamics and smoothed particle hydrodynamics (SPH) for
capturing large structural deformations, with IBM enabling
seamless two-way coupling to address challenges in fluid—
structure interaction (FSI), such as pressure equilibrium and
momentum transfer. Notably, the GPU-accelerated imple-
mentation achieved a 350 speedup over CPU-based SPH,
allowing efficient simulations at scales involving millions of
nodes and particles while preserving numerical stability. To
the authors’ knowledge, this work represents the first unified
framework combining multi-material FVM, SPH, and IBM
for high-fidelity modeling of explosive detonation, shock
propagation, and structural damage.

Validation results demonstrated strong quantitative
agreement with experimental data. The solver successfully
reproduced complex phenomena such as shock reflection/
refraction, cavitation in underwater explosions, and fracture
propagation in metals, underscoring its capability for multi-
phase, multi-material problems. These outcomes highlight
the framework’s practical relevance for defense and engi-
neering applications, such as evaluating blast resistance of
infrastructure or optimizing containment designs for haz-
ardous materials.

Although the present FVM-SPH framework shows
promise in modeling shock—structure interactions, several
limitations must be acknowledged. First, the FVM—SPH
coupling introduces inherent numerical diffusion and inter-
face inconsistencies, especially near complex boundaries.
While the immersed boundary method partially mitigates
this issue, future refinements are needed to reduce spurious
oscillations and improve conservation. Second, the method
remains computationally expensive for large-scale 3D
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Fig. 27 Temporal evolution of the total energy, kinetic energy, and
internal energy of the steel tube subjected to blast loading

problems requiring high resolution, a cost exacerbated by
frequent particle-mesh data exchange. This may limit appli-
cability to real-time or large-domain simulations. Third, the
treatment of material failure and fracture in the SPH com-
ponent is simplified; more sophisticated constitutive models
are required for realistic damage prediction.

Future work will focus on extending the methodology to
address more complex scenarios. This includes implement-
ing advanced constitutive models for heterogeneous mate-
rials (e.g., anisotropic composites, strain-rate-dependent
ceramics) to improve damage prediction in composite struc-
tures, as well as investigating explosive-driven granular
jets and their interaction with armored surfaces. Addition-
ally, adaptive resolution techniques could be integrated to
enhance computational efficiency in localized deformation
zones, while experimental benchmarking using high-speed
imaging and pressure sensors would further validate tran-
sient FSI predictions. By bridging computational mechanics
with real-world applications, this framework establishes a
foundation for advancing simulations in aerospace, marine
engineering, and hazard mitigation, offering transformative
potential for understanding and mitigating extreme fluid—
structure interactions.

Appendix A: EOSs and constitutive models

Appendix A.1: Griineisen equation of state

The Griineisen EOS is used to describe the thermodynamic
properties of materials under varying pressure and tempera-
ture conditions. This EOS is particularly useful in modeling
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high-temperature and high-pressure systems, such as shock
waves or in understanding the behavior of materials in
extreme conditions.

poCauII+(1=F )~ ";‘23]
P=q =(Si—Dpu— 32— 28]
poCip+ (v +an)E

+(y+aun)E p>0

(A.1)
p<0

where p = p% — 1, po is the initial density, F is the current

specific internal energy. v, «, S1, S2, S3 and Cj are the
coefficients of the material.

Appendix A.2. Elastic-perfectly plastic constitutive
model

The elastic-perfectly plastic constitutive model is employed
within the GPU-accelerated FVM—SPH solver to simulate
and predict the dynamic behavior of metallic materials. To
ensure that the material response remains independent of
the reference frame, the Jaumann rate of the Cauchy stress
is used. The Jaumann rate is a frame-independent measure
of stress rate, which effectively accounts for rotations and
deformations in the material without introducing spurious
effects due to the choice of coordinate system. This is espe-
cially important in simulations of high-strain-rate phenom-
ena where the material undergoes significant deformation,
such as in impact or shock-wave simulations.
$98 = §98 1 54T 4 5Py (A2)
The components of trial elastic deviatoric stress S can be
determined on the basis of Eq. (A.2) and Hook’s law,

507 = At <2G (5”3

where S(anﬁ) is the component of deviatoric stress at nth time

1 s
- 55“%’“) + 8P 4 S”ﬁw’”) Sy (A3)

step. The second invariant J> of the deviatoric part of the
elastic trial stress S is

1
Jo = 553%35 : (A4)
This model assumes that the material exhibits elastic behav-
ior up to a certain yield stress oy, beyond which it under-
goes perfectly plastic deformation without hardening,

5P = { -

in which Js is the second invariant of the stress tesnor.
The Johnson-Cook visco-plastic constitutive model, which
accounts for large strains, high strain rates, and elevated

if Jo < 0% /3;

A.
ifJ2>0'32//3. ( 5)

temperatures, is employed to describe the plastic behavior
of metal materials under dynamic loading conditions.

oy = [A+ B(e,)"] [1 +Cn (Z)} [1— (T, (A6)

The dimensionless temperature 7 is determined by

T - Troom
Tmclt -

T = , (A7)

Troom

where 7T, Tyoom, and Tyl are temperature, room tempera-
ture, and melt temperature, respectively.

Appendix 3: HJC concrete model

The Holmquist-Johnson-Cook (HJC) constitutive model,
developed by Holmquist, Johnson, and Cook [45], is well-
suited for describing the dynamic behavior of concrete
and similar brittle materials subjected to large strains, high
strain rates, and high pressures. The normalized equivalent
stress is defined as

Ty

=7 (A3)

where o, is the actual equivalent stress; f. is the quasi-static
uniaxial compressive strength. The specific expression for
normalized equivalent stress is

oy = [A(1 - D) + Bp™N](1 + Clng")

: (A.9)

where D is the damage (0 <D <1.0); p* =p/fe
£* = ¢/¢¢ is the dimensionless strain rate; 4, B, C, N are
material constants. This HIC constitutive model accumu-
lates damage from both plastic volume strain AuP and
equivalent plastic strain AeP, and is expressed as,

Ae? + ApP
p=Y =5 (A.10)

ey 1
e +u) = Di(p" + %) (A.11)
where Dy and Dy are constants; T* = T'/ f., T is the maxi-
mum tensile hydrostatic pressure the material can with-
stand. The pressure in the three different regions (linear
elastic region, transition region, and fully dense region) can
be determined based on the volumetric strain.
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