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1  Introduction

The explosion of military weapons, involving shock wave 
propagation, fragmentation, and their impact on vehicles 
and personnel, is of critical importance in both national 
defense and engineering. These strong fluid structure inter-
action problems are highly nonlinear and complex, mak-
ing them difficult to solve analytically. While experimental 
methods can be used to study such explosion problems, they 
are time-consuming and prone to human error, which can 
lead to inconsistent results. Therefore, developing a robust 
and efficient fluid–structure interaction solver for accu-
rately predicting the behavior of compressible flows and the 
resulting damage to solid structures is essential for advanc-
ing both defense and engineering applications.

Several numerical studies have been conducted on the 
simulation of compressible fluid flow and its interac-
tion with solid structures using conventional mesh-based 
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Abstract
Shock wave propagation from explosive detonations and its damaging effects on adjacent structures involve complex 
compressible fluid flows and intense fluid–structure interactions (FSI), posing significant computational challenges. This 
paper proposes a novel GPU-accelerated hybrid framework that couples multi-material finite volume method (FVM) with 
smoothed particle hydrodynamics (SPH) to simulate the entire process of shock wave dynamics and structural response, 
including fracture propagation and fragmentation. The FVM efficiently resolves explosive detonation and shock propaga-
tion in fluids using a six-equation model with adaptive Riemann solvers, while SPH captures large structural deforma-
tions and material failure in a meshless Lagrangian framework. The immersed boundary method (IBM) enables robust 
two-way coupling between FVM and SPH domains, ensuring accurate momentum and energy transfer across fluid–struc-
ture interfaces. Leveraging GPU parallelization, the framework achieves high computational efficiency, enabling simula-
tions with millions of nodes/particles. Five benchmark cases—shock–bubble interaction, 2D/3D underwater explosions, 
reinforced concrete damage under blast loads, and dynamic fracture of steel tubes—are used to validate the method. 
Simulation results show strong agreement with experimental data. The GPU acceleration achieves a 350 times speedup 
over CPU-based SPH, making the framework practical for large-scale FSI problems. This work demonstrates the unified 
FVM–SPH–IBM approach is capable of handling multi-material compressible flows, extreme structural deformations, and 
fragmentation, offering a powerful tool for defense and engineering applications.
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methods [1–4]. For example, Wang et al. [5] presented a 
local Riemann solver for strongly nonlinear equations of 
state (EOS) such as the Jones–Wilkins–Lee (JWL) EOS 
and investigated the entire process of the detonation of the 
TNT and aluminized explosives. Saurel et al. [1] proposed 
efficient relaxation methods for interfaces separating com-
pressible fluids, cavitating flows, and shocks in multiphase 
mixtures, demonstrating that the finite volume method 
(FVM) can efficiently capture two-phase flow. Chen et al. 
[4] used the finite element method (FEM) in LS-DYNA to 
simulate the expansion and dynamic fracture of cylindrical 
shells under blast loading, analyzing failure modes, fracture 
mechanisms, and fragment distribution of metal shells. Zak-
risson et al. [3] performed numerical simulations of blast 
loads and structural deformation resulting from near-field 
explosions in air. However, when addressing explosion and 
impact problems involving large deformations, these mesh-
based methods can suffer from mesh distortions, leading 
to issues such as mass loss, unphysically negative density, 
negative energy, or even computational failure. In contrast, 
meshless methods-such as the material point method (MPM) 
[6], smoothed particle hydrodynamics (SPH) [7], reproduc-
ing kernel particle method (RKPM) [8], and peridynamics 
[9–11]—have been proposed to better handle large defor-
mation problems, avoiding the limitations of mesh-based 
approaches.

In this paper, the smoothed particle hydrodynamics 
(SPH) method is employed to investigate the dynamic 
behavior and damage characteristics of solid structures for 
several reasons. First, since the SPH method does not rely 
on a mesh, it is well-suited to handle large deformations in 
a pure Lagrangian framework. This allows for natural treat-
ment of interfaces between different materials. Addition-
ally, SPH makes it easy to implement complex constitutive 
models that account for new physical phenomena. Origi-
nally proposed by Monaghan [12] and Lucy [13], SPH has 
been successfully applied to free surface flow and granular 
flow problems. Over time, it has been extended to simulate 
high-velocity impacts and explosive detonation events. For 
example, Liu et al. [14] developed an SPH-based approach 
to model explosive detonation and shock wave propaga-
tion in water. Libersky et al. [15] used SPH to simulate the 
dynamic response of solid structures, including fracture and 
fragmentation, and to predict fracture patterns and mass dis-
tributions in metal shells. Feng et al. [16] modified SPH to 
simulate three-dimensional shaped charge detonations and 
the resulting damage to nearby steel slabs, showing that 
the method accurately captures the high-velocity metal jet 
and fragmentation of steel plates. Chen et al. [17, 18] has 
also developed a GPU-accelerated SPH solver for simulat-
ing 3D high-velocity impacts and soil explosion problems. 
This solver has been successfully applied to capture soil 

fragmentation [17, 18], shaped charge detonation [19], and 
non-ideal explosive detonation [20].

While mesh-based methods can accurately capture shock 
wave propagation in air, the SPH method encounters several 
challenges in this regard. First, modeling the air domain to 
capture shock wave propagation requires millions of SPH 
particles, which significantly increases computational time. 
Second, the large density ratio between air and the explosive 
gaseous products can lead to numerical instability or even 
computational termination. Third, mesh-based methods 
tend to be more accurate and computationally efficient than 
meshless methods in capturing shock wave propagation. As 
a result, some researchers have proposed hybrid approaches 
that combine mesh-based and particle methods to address 
fluid–structure interaction problems. For instance, Tsuji et 
al. [21] proposed a hybrid method that integrates SPH with 
mesh-based ALE (Arbitrary Lagrangian–Eulerian) schemes 
to simulate material fracture and cracking in high-explo-
sive-driven experiments, using appropriate damage or fail-
ure models in SPH. Zhang et al. [22] developed a combined 
RKDG-FEM approach for simulating underwater explo-
sion (UNDEX) problems involving shock–bubble–struc-
ture interactions and cavitation. Sun et al. [23] coupled the 
multi-resolution δ+-SPH model with the Total Lagrangian 
SPH model to simulate the complex three-dimensional (3D) 
Fluid Structure Interaction (FSI) problems. Liu et al. [24, 
25] proposed a novel smoothed-interface SPH multiphase 
model to simulate fiber orientation in blood vessels. These 
results show that the smoothed-interface SPH multiphase 
model can eliminate non-physical gaps at interfaces, greatly 
enhancing interface continuity and stability. Huang et al. 
[26] coupled the peri-dynamics (PD) with SPH for fracture 
analysis of fluid–structure interaction (FSI) problems. In 
our current work, we couple the mesh-based FVM method 
with the meshless SPH method to simulate the entire pro-
cess of shock wave propagation and its interaction with 
solid structures. The multi-material FVM method is used 
to capture explosive detonation and shock wave propaga-
tion, while the SPH method predicts the dynamic behavior 
of solid structures. To transfer physical information between 
the fluid and solid domains, we use the immersed boundary 
method (IBM) developed by Peskin et al. [27] to couple the 
SPH and FVM approaches, enabling accurate simulations 
of fluid–structure interactions.

To significantly increase computational efficiency, the 
Compute Unified Device Architecture (CUDA) parallel 
computing platform and programming model developed by 
NVIDIA was employed in the FVM–SPH solver. Several 
researchers have previously employed GPUs within the SPH 
framework. For example, Hérault et al. [28] implemented an 
SPH solver for free surface flows on a graphical processing 
unit (GPU) using the CUDA platform, achieving substantial 

1 3



Computational Mechanics

speed-ups. Mokos et al. [29] demonstrated the acceleration 
of a multi-phase SPH method using a GPU, enabling sim-
ulations with large particle numbers (10–20 million) on a 
single GPU card. Consequently, in our current research, the 
GPU parallel computing technique is applied to the multi-
material FVM–SPH solver, harnessing the power of GPUs 
to dramatically enhance computational efficiency.

The paper is organized as follows: Sections 2 to 4 pro-
vide a brief introduction and solution procedure for the 
SPH and FVM methods. Section 5 presents five benchmark 
numerical cases, including shock–bubble interaction, two-
dimensional underwater explosion in free field, underwater 
explosion near a steel plate, damage to a reinforced concrete 
slab under blast loading, and two-dimensional dynamic 
fracture of a steel tube under shock loading to validate the 
accuracy of the multi-material FVM–SPH method. Finally, 
the novelties and conclusions are summarized in Sect. 6.

2  Fundamentals of the SPH and FVM 
method

2.1  Function approximation in SPH

The SPH method is used for the prediction of the dynamic 
response of solid structures under blast and impact loads. 
The basic idea of the SPH method is to interpolate physical 
variables based on neighboring particles. The first step is the 
kernel approximation. An arbitrary field ⟨f(x)⟩ is written as 
a convolution with the smoothing function W.

⟨f(x)⟩ =
ˆ

Ω

f(x′)W (x − x′, h)dx′.� (1)

The Wendland kernel function [30], which can mitigate ten-
sile instability and particle penetration, is employed in the 
SPH method

W (q, h) = αd

{ (
1 − q

2
)4 (2q + 1) 0 ≤ q < 2;

0 q ≥ 2.
� (2)

 where the normalization constant αd = 7
/(

4πh2)
 in two 

dimensions and αd = 21
/(

16πh3)
 in three dimensions; 

q = |x|
h  is the normalized distance. The smoothing length 

can be updated using the time derivative, as given by [14]. 
It follows that the support domain radius decreases as the 
density increases:

dhi

dt
= −1

d

hi

ρi

dρi

dt
.� (3)

 Afterwards, the integral form of an arbitrary physical vari-
able is approximated using a summation over particles.

⟨f(xi)⟩ =
N∑

j=1
f(xj)Wij

mj

ρj
.� (4)

Based on the kernel approximation and particle approxi-
mation, the discretized form of the governing equation 
(Navier–Stokes) can be obtained as



dρ
dt =

N∑
j=1

mj (vi − vj) · ∇iWij (a)

dvi

dt =
N∑

j=1
mj

(
σi + σj

ρiρj
+ ΠijI

)
· ∇iWij (b)

dei

dt = 1
2

N∑
j=1

mj
pi + pj

ρiρj
(vi − vj) · ∇iWij + 1

2ρi
Siεi (c)

pi = p(ρi, ei) (d)

� (5)

 where ρi, mi, vi, ei and pi are the density, mass, veloc-
ity, energy, and pressure of particle i, respectively; Πij  is 
artificial viscosity; σ is stress tensor; S is deviatoric stress 
tensor; εi is the strain rate tensor.

In the SPH solver, the Monaghan type artificial viscos-
ity [31] is employed to dampen numerical oscillations and 
prevent particles penetration,

Πij =

{
−αcijϕij+βϕ2

ij

ρij
, vij · xij < 0;

0 , vij · xij ≥ 0.
� (6)

 Here, ϕij = hijvij ·xij

|xij |2+(φ)2 , cij = 1
2 (ci + cj), ρij = 1

2 (ρi + ρj), 
hij = 1

2 (hi + hj), vij = vi − vj , and xij = xi − xj ,

The boundary treatment is an important issue in the 
SPH method. In our current research, ghost particles are 
employed for the boundary treatment. The symmetrical 
boundary and fixed boundary are applied for the SPH par-
ticles within the solid domain. For the implementation of 
the symmetrical boundary, the velocity of a ghost particle 
tangent to the boundary (shear velocity) is set equal to that 
of the corresponding real particle, while the velocity com-
ponent normal to the boundary is set to the negative of the 
velocity of the real particle. The stress tensor of the ghost 
particles is determined in accordance to the following rela-
tions [32].

σαβ
G =

{
σαβ

R , α = β;
−σαβ

R , α ̸= β.
� (7)

 where σαβ
R  and σαβ

G  are the components of the stress ten-
sor of the real particles and ghost particles, respectively. 
As for the fixed boundary implementation, the velocity 
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 in which, Ωi,j,k is the volume of the element (i, j, k); 
F̂i+ 1

2 ,j,k = Fi+ 1
2 ,j,k ∗ Si+ 1

2 ,j,k; Si+ 1
2 ,j,k is the surface area 

of the element (i, j, k); The numerical flux Fi+ 1
2 ,j,k can be 

obtained based on UL and UR using the Riemann approx-
imation solver. UL and UR can be obtained based on the 
MUSCL difference scheme, which can be referred to [33]. 
Additionally, in order to predict the explosive detonation 
and shock wave propagation in air and water medium, three 
different equation of states (EOSs), namely the ideal gas 
EOS, stiffened gas EOS, and the Jones-Wilkins-Lee (JWL) 
equation are employed in this work. For the ideal gas, the 
pressure is determined as

p = (γ − 1) ρe ,� (12)

 in which, γ is a constant parameter. For the prediction of the 
high explosive detonation, the Jones-Wilkins-Lee (JWL) is 
used,

p = A

(
1 − w

R1v

)
e−R1v + B

(
1 − w

R2v

)
e−R2v + wρe ,� (13)

 in which, A, B, w, R1, and R2 are constant parameters. 
For the numerical prediction of underwater explosin, the 
siffened gas equation, which accounts for both the pressure-
volume-temperature relationship and the internal energy 
associated with the material’s "stiffness" (the resistance to 
compression), is employed,

p = (γ − 1) ρe − Pc ,� (14)

 where γ and Pc are constant parameters. It should be noted 
that, there are only nine equations that include one volume 
fraction condition (Eq. 8), three EOSs (Eqs. 14 and 13), 
and six equations in the governing equation (Eq. 9) to solve 
eleven physical variables (α1, α2, ρ1, ρ2, p1, p2, e1, e2, u, v, 
and w). Consequently, three different equations are required 
to be added for the closure of the governing equation.



∂α1
∂t + ∇ · (α1v) − α1∇ · v = µ (p1 − p2) ;

∂α1ρ1e1
∂t + ∇ · (α1ρ1e1v) − α1p1∇ · v = −pIµ (p1 − p2) ;

∂α2ρ2e2
∂t + ∇ · (α2ρ2e2v) − α2p2∇ · v = pIµ (p1 − p2) ,

� (15)

 where pI  is the pressure of different phases; The pressure 
relaxation rate µ = ∞. The key aspect of the two-phase 
FVM method is solving the transport equation using opera-
tor splitting. The first step involves solving the transport 
equation with the HLLC approximate Riemann solver, 
without considering the pressure equilibrium between the 
two phases. Following this, Newton’s iteration method is 
applied to solve for the equilibrium pressure. The com-
putation details of solving the transport equation will be 

components of three layers of the real particles near the 
physical bounday are determined as zero.

2.2  Multi-material finite volume method

2.2.1  Discretization of the governing equation

Since the main goal of this paper is to develop a coupled 
approach for the simulation of multiphase flow (explosive 
gaseous products and air medium)–structure interaction, the 
compressible Eulerian equation considering two different 
phases is employed [1]. Different volume fractions of dif-
ferent phases αn should satisfy

2∑
n=1

αn = 1.� (8)

This six equation model (Eq. 9) that can be used to deter-
mine different physical variables including fractions, 
densities, and energies of two phases can be obtained by 
substituting the fraction condition mentioned above (Eq. 8) 
to the continuity, momentum, and energy equation.

∂U

∂t
+ ∂F 1

∂x
+ ∂F 2

∂y
+ ∂F 3

∂z
= ϕ,� (9)

 where

U =




α1ρ1
α2ρ2
ρu
ρv
ρw
ρE




, F 1 =




α1ρ1u
α2ρ2u

ρu2 + p
ρuv
ρuw

(ρE + p)u




, F 2 =




α1ρ1v
α2ρ2v
ρuv

ρv2 + p
ρvw

(ρE + p)v




,

F 3 =




α1ρ1w
α2ρ2w
ρuw
ρvw

ρw2 + p
(ρE + p)w




, ϕ =




0
0
fx
fy
fz

fxu + fyv + fzw




,

� (10)

in which, the pressure p = α1p1 + α2p2; The total energy 
E = Y1e1 + Y2e2 + 1

2
(
u2 + v2 + w2)

; pn and en are the 
pressure and energy of phase n, respectively. The mass 
fraction of phase n is Yn = αnρn/ρ; The total density 
ρ = α1ρ1 + α2ρ2. u, v, and w represent the velocities in 
the x, y, and z directions, respectively. The source terms ϕ 
include body forces and external forces, such as gravity.

The flux derivative with respect to x, y, and z directions 
in Eq. (9) can be determined using the following equation,

∂F

∂x
=

F̂i+ 1
2 ,j,k − F̂i− 1

2 ,j,k

Ωi,j,k
,� (11)
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where K = L or K = R. Therefore, the fluxes F ∗L and 
F ∗R can be completely determined using the following 
equation,

F hllc
i+ 1

2
=




F L 0 ≤ SL;
F ∗L = F L + SL (U∗L − UL) SL ≤ 0 ≤ S∗;
F ∗R = F R + SR (U∗R − UR) S∗ ≤ 0 ≤ SR;
F R 0 ≥ SR

� (19)

Davis [35] suggested the simple estimate for wave speed 
SL and SR in the solution of the Riemann problem directly,

SL = min {uL − aL, uR − aR} ,

SR = max {uL + aL, uR + aR} .
� (20)

where aL and aR are sound speeds. In consequence, the S∗ 
can be determined based on the wave speed SL and SR,

S∗ = pR − pL + ρLuL (SL − uL) − ρRuR (SR − uR)
ρL (SL − uL) − ρR (SR − uR) � (21)

The mixture sound speed can be calculated as,

a2
f = Y1a2

1 + Y2a2
2� (22)

in which a1 and a2 are sound speeds of different materials. 
The sound speed in a material can be determiend based on 
the partial derivative of pressure with respect to the den-
sity using an equation of state (EOS). In consequence, for 
the sound speed of explosive detonation, a is given by the 
relationship,

a2
k (ρk, p) =

(
∂p

∂ρk

)

s

=
(

∂p

ρk

)

e

+ p

ρ2
k

(
∂p

∂ek

)

ρ
� (23)

The subscript s indicates that the derivative is taken at 
constant entropy (isentropic condition). The term 

(
∂p

∂ek

)
ρ
 

accounts for the energy dependence of pressure. The equa-
tion of the sound speed of an ideal gas is [36],

a2
k = γk

p

ρk
� (24)

Following the wave speeds, the physical variables in the star 
region (αn)∗K , (ρn)∗K  and (en)∗K  can also be determined 
using the following relations,

(αn)∗K = (αn)K � (25)

(ρn)∗K = (ρn)∗K

SK − uK

SK − S∗
� (26)

(en)∗K = EOSn {(ρn)∗K , (pn)K}� (27)

elaborated in the following sections. At the end, the third-
order Runge–Kutta method is used to update physical vari-
ables in the governing equation,




U (1) = (I + ∆tL)Un;
U (2) = 3/4Un + 1/4(I + ∆tL)U (1);
Un+1 = 1/3Un + 2/3(I + ∆tL)U (2).

� (16)

 where I  is the identity matrix; the operator 
L(U) = ∂U

∂t = −
(

∂F 1
∂x + ∂F 2

∂y + ∂F 3
∂z

)
+ ϕ.

2.2.2  The HLLC approximate Riemann solver

The HLLC scheme [34] considering the contact and shear 
waves for solving the Riemann problem approximately 
is employed in the FVM solver. The HLLC approxima-
tion Riemann solver can be used to find approximations to 
the flux function directly. Figure 1 shows the structure of 
approximate solution of the Riemann problem in Eq. (17).

U (x, t) =




UL 0 ≤ SL;
U∗L SL ≤ 0 ≤ S∗;
U∗R S∗ ≤ 0 ≤ SR;
UR 0 ≥ SR

� (17)

 where SL, SR, and S∗ are speed of the left-moving shock, 
right-moving shock, and contact discontinuity, respectively. 
UL and UR are left and right states before the wave inter-
action. U∗L and U∗R are left and right intermediate states. 
The solution vector in the Star Region in the HLLC approxi-
mate Riemann solver is determined as,

U∗K = ρk

(
Sk − uk

Sk − S∗

)




1
S∗
vK
wK

EK

ρK
+ (S∗ − uK)

[
S∗ + pK

ρk(SK −ρK)

]


 ,

� (18)

Fig. 1  The structure of the approximation of the Riemann problem
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peq =
ρe −

[∑2
n=1 αngn (ρn)

]
∑2

n=1 αnfn (ρn)
.� (29)

fn (ρn) and gn (ρn) are functions of density that depend on 
the material properties in a Mie-Grüneisen-type equation of 
state (EOS): ρe = fn (ρn) p + gn (ρn). Once the mixture 
pressure is determined, the internal energies of the different 
phases are reinitialized with the help of their respective EOS 
before going to the next time step,

en (ρn, peq) = fn (ρn) peq + gn (ρn)
ρn

.� (30)

 Once the relaxed pressure in found, the correspond-
ing fractions, densities, and energy for each phase can be 
determined.

3  Coupling of the FVM and SPH method

The coupling of the FVM and the SPH method is an impor-
tant issue in the fluid–structure interaction problems. In 
our current research, the immersed boundary method is 
employed to handle the fluid–structure interface and trans-
fer physical information between the solid domain and fluid 
domain. First, as shown in Fig. 2, the computational domain 
must be divided into three distinct regions: the fluid region, 
the solid region, and the fluid–structure interface. The pure 
fluid region and the pure solid region are treated using the 
two-phase FVM solver and the SPH solver, respectively. 

Consequently, the solution vector (α1v, α1ρ1e1v, α2ρ2e2v) 
in the star region for the transport equation (Eq. (15)) can 
be determined from the intermediate states (αn)∗K , (ρn)∗K  
and (en)∗K . Similarly, the third-order Runge–Kutta method 
can be used to update fractions αn, energies of the different 
phases en in Eq. (15).

2.2.3  Iteration

Subsequently, the relaxation method is applied to ensure 
pressure equilibrium in the transport equation (Eq. 15) 
[1]. This relaxation step is crucial for maintaining pressure 
equilibrium at the multimaterial interface within the FVM 
method. The input parameters include the densities and 
phase fractions of the different materials. To solve for the 
phase fractions and energies, Newton’s iteration method can 
be employed, as described in Eq. (28).



en (ρn, p) − e0
n

(
ρ0

n, p0
n

)
+ p

(
1

ρn
− 1

ρ0
n

)
= 0;

2∑
n=1

Cn

ρ0
= 1 ,

� (28)

 in which, Cn = αnρn is a constant during the iteration pro-
cess. e0

n, ρ0
n, and p0

n represent values before the iteration. In 
order to consider the conservation of energy, the pressure 
should be initialized by considering fluids governed by EOS 
again.

Fig. 2  Classification of three different regions: fluid region, solid region, and fluid–structure interface in the developed FVM–SPH method
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Fi = 1
6

F1
i + 2

3
F2

i + F3
i .� (35)

This approach can be applied to ensure the accuracy of the 
velocity boundary implementation and the conservation of 
the momentum equation.

Additionally, as shown in Fig. 3, in simulations involv-
ing fluid–structure interaction with a moving structure, a 
solid node (located in the solid domain) may transition into 
a fluid node (within the fluid domain) at a given timestep 
directly. While it is unnecessary to interpolate physical vari-
ables within the solid region at the nth time step, a different 
approach is required when this region is converted to fluid. 
If the solid region (shaded green in Fig. 3) is directly con-
verted to fluid at the (n+1)th step, its physical variables can-
not be updated using the standard fluid integration method. 
Therefore, these variables must be initialized through direct 
interpolation. In such cases, all physical variables ψ associ-
ated with the fluid node-originating from the solid node in 
the previous timestep-should be consistently interpolated. 
This includes velocity components and other relevant vari-
ables, and the interpolation should be performed using the 
neighboring nodes, as described in Eq. (32).

4  Solution procedure of the FVM–SPH 
method

The solution procedure for the GPU-accelerated FV-SPH 
method is summarized as follows. The main steps of the 
multi-material FVM are illustrated in Fig. 4. Initially, all 
data are stored in the CPU memory and then transferred to 
the GPU memory for computation.

The first step in the GPU computation is the classifica-
tion of three distinct regions: the fluid region, solid region, 
and the fluid–solid interface. The next step involves han-
dling the physical and immersed boundaries. The velocity 
of the immersed boundary nodes is interpolated based on 
the velocities of the SPH particles in their corresponding 
cells. Other physical variables are interpolated using the 
neighboring nodes. The MUSCL scheme is applied as the 
difference scheme to determine UR and UL. The HLLC 
Riemann approximate solver is then used to compute the 
numerical flux based on UR and UL. To update the physical 
variables, the third-order Runge–Kutta integration method 
is employed. Finally, Newton’s iteration method is used to 
reinitialize the equilibrium pressure, volume fractions, den-
sities, and internal energies of the different phases, ensuring 
energy conservation and pressure equilibrium between the 
two phases. The external forces acting on the SPH particles 
are calculated based on the mass flux increments between 
the two different phases. The SPH method is then used to 

More details with regards to the classification of three dif-
ferent regions can be referred to [33]. For the multi-material 
interface between the solid and fluid domains, the velocity 
of the interface node vib

c  is interpolated based on the veloci-
ties of the particles vi within the corresponding cell.

vib
c =

N∑
i=1

1
N

vi.� (31)

All of the other physical variables ψI  of the nodes on the 
multi-material interface can be obtained based on the value 
of the quantity ψN  at neighboring node N.

ψI =
∑

w(dN )ψN∑
w(dN )

.� (32)

w(dN ) is a weighting function, typically based on the dis-
tance dN  between points N and I. The closer N is to I, the 
higher the weight. Correspondingly, based on the conserva-
tion of momentum, the external forces acting on the SPH 
particles can be derived from the numerical flux increments 
[33].

fk
i = −

(∆ (ρv))k
c − vib

c (∆ρ)k
c

∆t

=αk
(

vib
c RHSk

c (ρ) − RHSk
c (ρv)

)
,

� (33)

where RHSk
c (ρ) and RHSk

c (ρv) are increments of the mass 
flux and momentum flux, respectively. The external force 
exerted on each SPH partcle is determined as

Fk
i = 1

nc
fk

i Vc.� (34)

where nc is the total number of particles in one cell; Vc is 
the volume of each cell. The total external force exerted on 
each SPH particle can be determined based on the third-
order Runge–Kutta method [33],

Fig. 3  Treatment of the physical variables of the moving structures
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simulation replicates the experimental work of Haas and 
Sturtenment [37–39], where a planar shock wave with 
a Mach number of 1.5 propagates into air at atmospheric 
conditions and interacts with a helium bubble. The primary 
objective of the experiment [37–39] is to investigate how 
the shock wave, propagating through a random medium, 
affects the structure of the mixing fluid flow.

The initial schematic of the computational domain 
is shown in Fig. 5. The dimensions of the computational 
domain are 325 × 89, and the dimensionless radius of the 
helium bubble (highlighted in red) is 25. The initial physical 
conditions for the air and helium regions are summarized 
in Eq. (36). The computational mesh has an initial size of 
0.25, with a total of 939,322 nodes used in the simulation. 
The following boundary conditions are applied to the flow 
domain: the top and bottom boundaries are treated as solid 
walls with a standard reflecting boundary condition, the left 
boundary is set as a non-reflecting boundary, and the right 
side has specified inflow conditions based on the exact flow 
parameters. The ideal gas equation of state (EOS) is used to 
compute the pressure for both the helium and air media. The 
values of the adiabatic index, γ, for the air and helium are 
1.4 and 1.67, respectively.

(ρ, u, v, p, γ)

=

{ (1, 0, 0, 1.0, 1.4) , for air ;
(1.3764, −0.394, 0, 1.5698, 1.4) , for shock wave;
(0.138, 0, 0, 10.8, 1.67) , for helium bubble.

� (36)

predict the dynamic behavior of solid structures. Once the 
numerical results are obtained, they are transferred from the 
GPU back to the CPU for occasional data storage.

5  Numerical examples

In this section, numerical simulations of five benchmark 
problems are presented to verify the accuracy of the GPU-
accelerated multi-material FVM–SPH method. These prob-
lems include: shock–bubble interaction, two-dimensional 
underwater explosions in a free field, three-dimensional 
underwater explosions near steel structure, damage to rein-
forced concrete slabs under blast loading, and the dynamic 
fracture of steel tubes under shock loading. Since the sin-
gle SPH solver has already been validated in our previ-
ous research through high-velocity impact and explosive 
detonation benchmarks [19], this study focuses solely on 
the verification of the multi-material FVM solver and the 
coupling of SPH and FVM. All of the numerical cases are 
executed on a single GeForce RTX 4090 Graphics Card.

5.1  Shock–bubble interaction

Firstly, the simulation of the two-dimensional shock–bubble 
interaction problem was performed to validate the accuracy 
of the multi-material finite volume method. This numerical 

Fig. 4  Solution procedure of the multi-material FVM–SPH method
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constant velocity. Table 1 shows the comparison of the cor-
responding numerical velocities of the upstream edge Vdi 
and downstream edge Vj  of the helium bubble derived from 
Fig. 8 for the He cylinder case obtained from the FVM–
SPH solver with those measured experimentally by Haas 
and Sturtevant [37]. It can be found that all of the relative 
errors are less than 10%. This numerical case demonstrates 
that the GPU-accelerated FVM method is highly effective at 
capturing the dynamics of multi-phase flow.

Additionally, as shown in Table 2, the computational 
efficiency of the multi-material FVM method is evaluated 
using the 2D shock–bubble interaction case. As the number 
of nodes increases, the computational time grows gradually 
from 40.0 to 1520.0 s. Despite this, the frames per second 
(FPS) for the simulation with 3,750,642 nodes remains 
high, demonstrating that the GPU-accelerated FVM method 
is effective for efficiently simulating two-phase flows. 
Moreover, the computational efficiency of the GPU-accel-
erated SPH method has been extensively examined in our 

The pressure and density distributions from the 2D shock–
bubble interaction problem, obtained using the multi-mate-
rial FVM solver at different times 67.6 and 180.4 µs, are 
shown in Fig. 6. Initially, the shock wave propagates freely 
toward the helium bubble. Upon impact, a reflected shock 
wave and a refracted shock wave are generated. As shown 
in Fig. 7, a series of numerical schlieren images at different 
times 62, 82, 245, and 257 µs are compared to experimental 
shadowgraphs from [37, 39]. After the incident shock wave 
hits the helium bubble, a curved reflected shock wave forms 
outside the bubble, while a refracted shock wave propagates 
within the bubble. This behavior occurs because the sound 
speed in helium is higher than that in the surrounding air. 
The change in shape is further influenced by the vorticity 
generated at the bubble’s edge. Over time, the bubble adopts 
a kidney-shaped form and spreads laterally.

The x-t path of the typical points for the shock wave 
interaction with the helium bubble in shown in Fig. 8. Note 
that the measured flow features move more or less in a 

Fig. 6  Temporal evolution of the pressure and density distributions for shock bubble interaction at different times 67.6 and 180.4 µs

 

Fig. 5  The initial configuration of the 
2D shock–bubble interaction, in which 
region a, region b, and region c are air at 
atmosphere condition, shock wave, and 
helium bubble, respectively. All of the 
lengths are dimensionless
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interaction (FSI) problems can be efficiently addressed 
using the GPU-accelerated FVM–SPH method.

5.2  Two-dimensional underwater explosion in a 
free field

In this section, we simulate a two-dimensional underwater 
explosion in a free field, a scenario also examined in [22, 36], 
to validate the effectiveness of this compressible multiphase 
algorithm for underwater explosions. As shown in Fig. 9, 
the computational domain spans (x, y) ∈ [−1, 1] × [−1, 1], 
with a mesh size of 0.0005 mm, resulting in a total of 321,602 
nodes in the simulation. The initial physical conditions and 
parameters for both the water and explosive are summarized 
in Eq. (37). The ideal gas equation of state (EOS) is used to 
model the gaseous products, while the stiffened gas EOS is 
employed to describe the motion of the water. The constant 
parameters of the stiffened gas EOS for the water medium γ 
and Pc are 4.4 and 6.0 ×108 Pa, respectively. All boundaries 
of the 2D underwater explosion are treated as non-reflecting 
boundaries.

previous work, which focused on sand collapse and shaped 
charge detonation scenarios [19, 40]. It was found that the 
GPU-accelerated SPH method is 350 times faster than the 
sequential SPH code [19, 40]. In summary, fluid–structure 

Table 1  A comparison of the numerical velocities of the upstream Vdi 
and downstream edges Vj  of the helium bubble obtained from the 
FVM–SPH solver with those measured experimentally by Haas and 
Sturtevant [37]
Velocity (ms−1) Computation Experiment Discrepancy (%)

Vdi
154 145 6.2

Vj
252 230 9.5

Table 2  Computational efficiency of the GPU-accelerated FVM–SPH 
solver for the shock–bubble interaction in 100 timesteps
Case Node size Nodes number FPS (s−1) T (s)
1 1.0 59,332 174.0 40.0
2 0.5 235,661 64.6 161.0
3 0.25 939,322 14.40 569.0
4 0.125 3,750,642 4.30 1520.0

Fig. 8  x-t diagram for the typical points A and B, namely the upstream 
and downstream edges of the helium bubble

 

Fig. 7  Comparison of the (a1–a4) numer-
ical schlieren of density distribution of 
shock–bubble interaction at different 
times with the (b1–b4) experimental data 
obtained from [37]
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explosion, while Tait’s EOS is used in [22]. The Tait EOS is 
designed for fluids like water, which are weakly compress-
ible. Compared with the Tait EOS, the stiffened gas EOS 
is more suitable to address compressible fluid flows with 
high-pressure, high-temperature, such as underwater explo-
sions. In conclusion, the numerical results demonstrate that 
the GPU-accelerated FV-SPH method effectively captures 
shock wave propagation and explosive dynamics in under-
water explosions.

5.3  3D Underwater explosion near steel plate

To validate the effectiveness of the developed FVM–SPH 
solver in simulating structural damage caused by 3D under-
water explosions, and to further investigate the flow char-
acteristics and dynamic behavior of metal structures, the 
underwater explosion near steel plate is simulated. The ini-
tial geometry of the underwater explosion near cylindrical 
steel structure is shown in the Fig. 14, which is identical 
to the numerical configuration in [22]. The dimensions of 

(ρ, u, v, p, γ) =
{ (

1000, 0, 0, 1.0 × 105, 7.15
)

, for water;(
1630, 0, 0, 7.81 × 109, 1.4

)
, for bubble. � (37)

The numerical prediction of pressure distribution from the 
underwater explosion at different times—0.01, 0.05, 0.1, 
and 0.15 ms—is shown in Fig. 10. Following the ignition of 
the TNT explosive, the shock wave propagates through the 
water medium. By around 0.14 ms, the shock wave reaches 
the boundary of the fluid domain. Additionally, the numeri-
cal data for pressure, velocity, and density distributions at 
the cross-section y = 0 along the x-axis at time t = 0.0001 s 
is compared with the exact solution of the problem as pre-
sented in [22] (Figs. 11, 12, 13). The comparison shows that 
the distributions of pressure, density, and velocity are gener-
ally in agreement with the analytical results from [22]. The 
discrepancies observed in the numerical results are primar-
ily due to the use of different equations of state (EOS). For 
instance, the density magnitude in the interval [−0.75, −0.4] 
is higher than that reported in [22]. The stiffened gas EOS is 
used in our calculation of water pressure in the underwater 

Fig. 11  Spatial distribution of the velocity of underwater explosion

 

Fig. 10  Temporal evolution of the pressure distribution of the two-dimensional underwater explosion at different times 0.01, 0.05, 0.1, and 0.15 ms

 

Fig. 9  Initial configuration of the 2D underwater explosion in a free 
field. All of the dimensions are in mm

 

1 3



Computational Mechanics

Firstly, we investigated the shock wave propagation in 
the water medium induced by the underwater explosion. 
The temporal evolution of the pressure contours and veloc-
ity distribution at various times (0.4, 1.6, and 2.4 ms) is 
shown in Fig. 15. It is observed that the shock wave reaches 
the bottom surface of the steel plate at 0.6 ms, where it 
undergoes both reflection and refraction. Part of the shock 
wave subsequently propagates through the steel plate. As a 
result of the transfer of internal energy from the explosive to 
the kinetic energy of the steel plate, the velocity of the plate 
increases gradually. Furthermore, the temporal evolution of 
the pressure at a typical point A (see Fig. 14) is depicted in 
Fig. 16. The pressure obtained from the GPU-accelerated 
FVM–SPH solver rapidly reaches its peak value of 0.82 GPa 
at 0.63 ms, after which it gradually decreases. The temporal 
evolution of the pressure from the FVM–SPH is generally 
consistent with the numerical results from the RKDG-FEM 
method [22], with the exception of the peak pressure. This 
discrepancy is likely due to the use of different equations of 
state (EOSs) for modeling the water medium—specifically, 
the stiffened gas EOS in the FVM–SPH solver versus Tait’s 
EOS in the RKDG-FEM method.

The components of the stress tensor distribution of the 
steel structure caused by the underwater explosion at 5.0 
ms are shown in Fig. 17. It is observed that the stress tensor 

the computational domain are 10.0 m × 10.0 m × 12.0 m. 
The distance between the center of the explosive and the 
bottom surface of the steel structure is 2.0 m. The diameter 
of this spherical explosive is 0.5 m, and the thickness of 
the steel plate is 0.068 m. The initial pressure of the explo-
sive gaseous product is set as 6 GPa. The parameters for the 
Johnson-Cook constitutive model and EOS of the steel plate 
are listed in Tables 3 and 5, respectively. The initial mesh 
size is 0.0625 m. The initial particle spacing is 0.017 m, and 
a total of 815,131 partcles are involved in this simulation. 
All of the boundary conditions for the fluid domain are set 
as outlet boundaries, and the boundary of the steel structure 
is fixed.

Table 3  Johnson-Cook model parameters of steel [22]
A (MPa) B (MPa) C n k Troom (K) Tmelt (K)
950 560 0.014 0.26 1.03 273 1793

Fig. 14  Initial configuration of the damage of the steel plate subjected 
to the underwater explosion. All of the dimensions are in m
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Fig. 13  Spatial distribution of the pressure of underwater explosion

 

Fig. 12  Spatial distribution of the density of underwater explosion
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explosive, the shock wave propagates in the water medium. 
At time 1.5 ms, the shock wave impacts the steel plate, and 
the plate begins to deform. Since part of the internal energy 
is transferred to the kinetic energy of the steel plate, it can be 
found that the velocity magnitude of the steel plate increases 
rapidly to around 150 m s−1 (see Fig. 18). After the velocity 
magnitude of the steel plate reaches the maximum value, the 
velocity decreases gradually. The numerical results show 
that the developed FV-SPH method can provide a good 
prediction of the damage of solid structures under nearby 
underwater explosion.

The temporal evolution of the displacement at the cen-
ter of the top surface of the steel plate is shown in Fig. 19. 

component on the x-y plane is symmetric with respect to 
the line x = y. The stress tensor component on the y-z 
plane exhibits symmetry with respect to the line x = 0. The 
maximum value of the stress component on the x-y plane 
is 450 MPa. Overall, the stress distribution on the steel 
plate surface is smooth without any spikes, indicating that 
that developed FVM–SPH solver is capable of providing 
high-precision results when handling complex mechanical 
problems, especially in capturing stress variations without 
generating unnatural sharp fluctuations or noise.

The temporal evolution of the velocity distribution of the 
steel structure subjected to underwater explosion at 2.5, 4.0, 
5.0, and 7.5 ms is shown in Fig. 18. After the ignition of the 

Fig. 15  Spatial distribution of the stress tensor components of the steel plate subjected to underwater explosion
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approach. Additionally, further numerical studies will be 
conducted to explore the deformation of composite struc-
tures subjected to 3D underwater shock loading, expanding 
the scope of the analysis in future work.

5.4  Damage of reinceforced concrete slab under 
blast loading

The three-dimensional damage of a reinforced concrete slab 
under TNT explosive detonation is simulated to further val-
idate the fluid–structure interaction and the calculation of 
the external force applied to SPH particles. As described in 
Eq. (35), the external force is determined based on the mass 
flux increments of different phases. The initial configuration 
of the reinforced concrete slab and blast loads is shown in 
Fig. 20, which is identical to the experimental setup in [41]. 
The dimensions of the reinforced concrete slab are 1.0 m × 
1.0 m × 0.04 m, with steel reinforcement having a length 
of 1.0 m and a diameter of 0.006 m. The distance between 
the steel reinforcements is set at 0.075 m. The air domain 
is discretized using FVM, while the solid structure is mod-
eled with SPH particles. For the fluid domain, symmetrical 
boundary conditions are applied on the planes x = 0, y = 0, 
and z = 0, with non-reflecting boundary conditions applied 
to the remaining boundaries. For the reinforced concrete, 
symmetrical boundary conditions are applied to the planes 
x = 0 and y = 0. The top and bottom surfaces are treated as 
free boundaries, and the back two boundaries are fixed. The 

At 0.6 ms, the shock wave impacts the plate. As part of 
the internal energy from the explosive is transferred to the 
kinetic energy of the steel plate, the displacement begins to 
increase significantly after 0.8 ms. Once the displacement 
reaches its maximum magnitude, it gradually stabilizes, 
approaching a steady state. For validation, the temporal 
evolution of the steel plate’s deformation is compared with 
numerical results obtained using a combined RKDG-FEM 
approach [22], which shows general agreement. This com-
parison demonstrates the accuracy of the current simulation 

Fig. 17  Top view (a1–c1) and side view (a2–c2) of the spatial distribution of the stress tensor components of the steel plate subjected to underwater 
explosion

 

Fig. 16  Temporal evolution of the pressure at typical point subjected 
underwater explosion
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initial particle spacing is 0.006 m, and a total of 640,001 
particles are used in this numerical case. The initial mesh 
size is 0.0025 m. The parameters of the HJC and Johnson-
Cook constitutive models, along with the Grüneisen EOS 
for modeling the dynamic behavior of reinforced concrete, 
are summarized in Tables 4, 5, and 6. The parameters for 
the JWL EOS of the TNT explosive are provided in Table 7.

We first simulated the TNT explosive detonation in the 
air medium to verify the implementation of the two-phase 
FVM solver for solving ideal explosive detonation prob-
lems. The temporal evolution of the total energy, pressure, 
and shock wave velocity propagation at different times (80, 
120, 160, and 240 µs) is shown in Fig. 21. The results dem-
onstrate that the developed two-phase FVM method effec-
tively reproduces explosive detonation and shock wave 
propagation. Furthermore, we simulated the response of 
reinforced concrete slabs under close-in blast loading to 
analyze the damage modes and mechanisms of the structure, 
comparing the numerical predictions with experimental data 
from Wang et al. [41]. The damage to the reinforced con-
crete caused by shock wave propagation at times 140, 180, 
240, and 300 µs is shown in Fig. 22. After the TNT explo-
sive is ignited, the shock wave propagates through the air 
medium. When the shock wave reaches the bottom surface 
of the reinforced concrete, some of the internal energy is 
transferred to the kinetic energy of the concrete, causing the 
concrete to crack. The damage coefficient distribution of the 
reinforced concrete slab under blast loading, obtained from 
the GPU-accelerated multi-material FVM–SPH method, is 
shown in Fig. 23. Several cracks in both radial and circum-
ferential directions are generated. The numerical damage 
contours of the reinforced concrete quarter-section, on both 
the top surface (a–e) and the bottom side (g), obtained using 
the multi-material FVM–SPH method, show good overall 
agreement with the experimental data (top surface (f) and 
the bottom side (h)) [41]. The present concrete model does 
not fully reproduce the tensile cracking and surface damage 

Fig. 20  The initial configuration of the damage of reinforced concrete 
slab under blast loading
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Fig. 19  Temporal evolution of the displacement of the center point at 
the top surface of the steel plate using the the developed FVM–SPH 
solver and RKDG-FEM method [22]

 

Fig. 18  Temporal evolution of the velocity distribution of the steel plate subjected to underwater explosion at 2.5, 4.0, 5.0, and 7.5 ms
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of explosive gaseous products and shock wave propagation 
has been extensively studied by several researchers [21, 42]. 
For example, Libersky et al. [42] examined fragment pat-
terns and mass distribution of metal materials using the SPH 
method. The simulation of dynamic fracture in steel tubes 
under blast loading involves fracture and fragmentation of 
materials, which is challenging for mesh-based methods. 
Techniques such as element erosion or element death in grid 
methods can lead to significant mass loss, negative density, 
and negative volume. In our current research, the developed 
FVM–SPH method is used to predict the physical process of 
dynamic fracture in a steel tube under blast loading.

As shown in Fig. 24, a quarter of the steel tube under blast 
loading is modeled in this study. For the fluid domain, sym-
metrical boundary conditions are applied to the left and bot-
tom boundaries, and outlet boundary conditions are applied 
to the right and top boundaries. For the solid domain, the 
left and bottom sides of the steel tube (modeled using SPH 
particles) are treated with symmetrical boundary conditions. 
To replicate the experiment from [42], the air and explosive 
domains are discretized using a uniform structured mesh, 
while the steel tube is discretized using SPH particles. As 
depicted in Fig. 24, the radius of the explosive is set to 
30 mm, and the thickness of the steel tube is 4  mm. The 
JWL EOS is applied to model the TNT explosive detona-
tion, while the ideal gas EOS is used for the air medium. For 
material strength, the Johnson-Cook strength model in con-
junction with the Mie-Grüneisen EOS is used to predict the 
dynamic behavior and fracture of the steel. The parameters 

observed on the top face. Ongoing work focuses on devel-
oping and implementing more advanced cracking treatment 
methods to better capture complex fracture behavior in the 
concrete medium. In addition, as illustrated in Table 8, we 
also compared the numerical deflection of the center point 
of the reinforced concrete with the experimental data, it is 
found that the relative error is less than 15%, indicating that 
the GPU-accelerated FVM–SPH methodology is highly 
effective at capturing explosive detonation, shock wave 
propagation, and the deformation and damage of solid struc-
tures induced by shock wave propagation.

5.5  Dynamic fracture of steel tube under shock 
loading

The last strong fluid–structure interaction case used to vali-
date the coupling of the FVM and SPH methods and check 
the robustness of the developed FVM–SPH solver is the 
2D dynamic fracture of a steel tube under shock loading. 
During the explosion, the shock wave compresses the sur-
rounding metal structure, generating numerous structural 
fragments and creating multiple fluid–structure interaction 
interfaces. This complexity can lead to issues such as nega-
tive energy and density, potentially resulting in program ter-
mination during simulation. Therefore, this case is designed 
to evaluate the effectiveness of the developed FVM–SPH 
solver in handling fluid–structure interactions between the 
explosive shock wave and high-speed moving debris. The 
dynamic fracture of a steel tube driven by the expansion 

Table 4  Johnson-Cook model parameters of steel [19]
A (MPa) B (MPa) C n k Troom (K) Tmelt (K)
792 510 0.014 0.26 1.03 273 1793

Table 5  Parameters used for the Mie-Grüneisen EOS for steel [33]
ρ0 (kg m−3) C0 (km s−1) S1 S2 S3 γ α E0 (J)
7830 4.569 1.49 0 0 2.17 0.46 0

Table 6  Parameters of the HJC model for the concrete structure [33]
Basic parameters Value Strength parameters Value Damage parameters Value EOS parameters Value
ρ0 (kg m−3) 2,700 A 0.79

D1
0.04 pcrush(MP a) 16

G(GP a) 28.0 B 1.60
D2

1.00 µcrush
0.001

fc(MP a) 39.5 N 0.61 efmin
0.0008 plock(GP a) 0.80

C 0.007 T(MPa) 4.2 µlock
0.10

ε̇0
1.0 K1(GP a) 85

smax
7.00 K2(GP a) −171

K3(GP a) 208

Table 7  Coefficients of the JWL model for TNT explosive [33]
ρ0 (kg m−3) A (Pa) B (Pa) R1 R2 w E0 (J kg−1)
1630 3.712×1011 3.21×109 4.15 0.95 0.3 4.29×106
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Fig. 22  The physical process of the shockwave propagation and its damage to nearby concrete

 

Fig. 21  The temporal evolution of the total energy, pressure, and velocity distributions of the 3D TNT explosive detonation in the air medium using 
multi-material FVM–SPH
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for the Johnson-Cook model, and the JWL EOS are sum-
marized in Tables 4, 5, and 7.

The temporal evolution of dynamic fracture in a steel 
tube under blast loads is shown through snapshots at vari-
ous times—10, 20, 40, and 60 µs—in Fig. 25. Follow-
ing the ignition of the explosive, the steel tube undergoes 

Table 8  A comparison of the numerical results for the reinforced con-
crete obtained from the FVM–SPH solver with those measured experi-
mentally by [41]
Damage (mm) Computation Experiment Discrepancy (%)
Center deflection 30.6 35 12.5

Fig. 24  Initial configuration of the dynamic fracture of steel tube under the expansion of explosive gaseous products and shock wave propagation. 
All of the dimensions are in mm

 

Fig. 23  Comparison of the temporal evolution of damage distribution in a quarter-section of reinforced concrete obtained from the FVM–SPH 
solver and experimental data [41]
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enhance computational efficiency. As shown in Table 9, 
the relative errors are all less than 15 %, indicating that the 
average width and length of the steel tube fragments are 
in good agreement with experimental data from [44] (cal-
culated using Error = |Experiment-Simulation|

Experiment ). The average 
value of the thickness and length can be determined using (∑N

i=1 Li

)
/N , where N is the total number of fragments; 

Li is the thickness or length of the ith fragment.
Additionally, the temporal evolution of total energy, 

kinetic energy, and internal energy of the steel tube is 
depicted in Fig. 27. After the shock wave impacts the 
cylindrical steel tube, the internal energy of the explosive 

compression due to the shock wave and the expanding gas-
eous products. The figure illustrates the progression of frac-
ture in the steel tube, resulting from a combination of shear 
and tensile stresses. It can be observed that the maximum 
velocity magnitude of the fragments reaches around 1000 m 
s−1.

The velocity distribution of the dynamic fracture at dif-
ferent time intervals—10, 20, 40, and 60 µs—is presented 
in Fig. 26. The developed FVM–SPH solver effectively 
captures key physical phenomena such as shockwave 
propagation, reflection, fragmentation of the steel tube, and 
pressurized gas leakage. In comparison with results from 
the pure meshless MPM (Material Point Method) approach 
used in [33, 43], the multi-material FVM–SPH method 
offers a better prediction of shock wave sharpness, pres-
sure relief, and gas leakage. This improvement arises from 
the fact that the pure meshless approach neglected the sur-
rounding air medium to simplify the initial modeling and 

Table 9  Comparison of the numerical results and experimental data 
[44] in terms of the average width and thicknesses of the fragments

Simulation Experiment Error
Width 7.23 mm 7.86 mm 8%

Thickness 3.7 mm 3.3 mm 12%

Fig. 26  The velocity distribution of the steel tube subjected to blast loading at different times 10, 20, 40, and 60 µs

 

Fig. 25  The temporal evolution of the fragment distribution of the steel tube at different times 10, 20, 40, and 60 µs
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problems requiring high resolution, a cost exacerbated by 
frequent particle-mesh data exchange. This may limit appli-
cability to real-time or large-domain simulations. Third, the 
treatment of material failure and fracture in the SPH com-
ponent is simplified; more sophisticated constitutive models 
are required for realistic damage prediction.

Future work will focus on extending the methodology to 
address more complex scenarios. This includes implement-
ing advanced constitutive models for heterogeneous mate-
rials (e.g., anisotropic composites, strain-rate-dependent 
ceramics) to improve damage prediction in composite struc-
tures, as well as investigating explosive-driven granular 
jets and their interaction with armored surfaces. Addition-
ally, adaptive resolution techniques could be integrated to 
enhance computational efficiency in localized deformation 
zones, while experimental benchmarking using high-speed 
imaging and pressure sensors would further validate tran-
sient FSI predictions. By bridging computational mechanics 
with real-world applications, this framework establishes a 
foundation for advancing simulations in aerospace, marine 
engineering, and hazard mitigation, offering transformative 
potential for understanding and mitigating extreme fluid–
structure interactions.

Appendix A: EOSs and constitutive models

Appendix A.1: Grüneisen equation of state

The Grüneisen EOS is used to describe the thermodynamic 
properties of materials under varying pressure and tempera-
ture conditions. This EOS is particularly useful in modeling 

is converted into the kinetic energy of the steel tube frag-
ments, causing the kinetic energy to rapidly increase to 0.52 
MJ. Simultaneously, the internal energy of the steel tube 
decreases. After 60 µs, the total and kinetic energy stabilize 
and maintain nearly constant values. This case demonstrates 
that the developed GPU-accelerated FVM–SPH method can 
effectively reproduce the dynamic fracture of a steel tube 
under blast loads.

6  Conclusion

In this paper, a GPU-accelerated multi-material FVM–SPH 
framework coupled with the immersed boundary method 
(IBM) has been developed to simulate shock wave propaga-
tion and its interaction with solid structures. The solver was 
rigorously validated through five benchmark cases: shock–
bubble interaction, 2D/3D underwater explosions, blast-
induced damage to reinforced concrete slabs, and dynamic 
fracture of steel tubes. The methodology integrates the finite 
volume method (FVM) for resolving compressible fluid 
dynamics and smoothed particle hydrodynamics (SPH) for 
capturing large structural deformations, with IBM enabling 
seamless two-way coupling to address challenges in fluid–
structure interaction (FSI), such as pressure equilibrium and 
momentum transfer. Notably, the GPU-accelerated imple-
mentation achieved a 350× speedup over CPU-based SPH, 
allowing efficient simulations at scales involving millions of 
nodes and particles while preserving numerical stability. To 
the authors’ knowledge, this work represents the first unified 
framework combining multi-material FVM, SPH, and IBM 
for high-fidelity modeling of explosive detonation, shock 
propagation, and structural damage.

Validation results demonstrated strong quantitative 
agreement with experimental data. The solver successfully 
reproduced complex phenomena such as shock reflection/
refraction, cavitation in underwater explosions, and fracture 
propagation in metals, underscoring its capability for multi-
phase, multi-material problems. These outcomes highlight 
the framework’s practical relevance for defense and engi-
neering applications, such as evaluating blast resistance of 
infrastructure or optimizing containment designs for haz-
ardous materials.

Although the present FVM–SPH framework shows 
promise in modeling shock–structure interactions, several 
limitations must be acknowledged. First, the FVM–SPH 
coupling introduces inherent numerical diffusion and inter-
face inconsistencies, especially near complex boundaries. 
While the immersed boundary method partially mitigates 
this issue, future refinements are needed to reduce spurious 
oscillations and improve conservation. Second, the method 
remains computationally expensive for large-scale 3D 

Fig. 27  Temporal evolution of the total energy, kinetic energy, and 
internal energy of the steel tube subjected to blast loading
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temperatures, is employed to describe the plastic behavior 
of metal materials under dynamic loading conditions.

σY =
[
A + B(εp)n

] [
1 + C ln

(
ε̇p

ε̇0

)] [
1 − (T ∗)k

]
,� (A.6)

 The dimensionless temperature T ∗ is determined by

T ∗ = T − Troom

Tmelt − Troom
,� (A.7)

 where T, Troom, and Tmelt are temperature, room tempera-
ture, and melt temperature, respectively.

Appendix 3: HJC concrete model

The Holmquist-Johnson-Cook (HJC) constitutive model, 
developed by Holmquist, Johnson, and Cook [45], is well-
suited for describing the dynamic behavior of concrete 
and similar brittle materials subjected to large strains, high 
strain rates, and high pressures. The normalized equivalent 
stress is defined as

σ∗
y = σy

fc
� (A.8)

where σy is the actual equivalent stress; fc is the quasi-static 
uniaxial compressive strength. The specific expression for 
normalized equivalent stress is

σ∗
y = [A(1 − D) + Bp∗N ](1 + Clnε̇∗)� (A.9)

where D is the damage (0 ≤ D ≤ 1.0); p∗ = p/fc; 
ε̇∗ = ε̇/ε̇0 is the dimensionless strain rate; A, B, C, N are 
material constants. This HJC constitutive model accumu-
lates damage from both plastic volume strain ∆µp and 
equivalent plastic strain ∆εp, and is expressed as,

D =
∑ ∆εp + ∆µp

εp
f + µp

f
� (A.10)

εf
p + µf

p = D1(p∗ + T ∗)D2 � (A.11)

where D1 and D2 are constants; T ∗ = T/fc, T is the maxi-
mum tensile hydrostatic pressure the material can with-
stand. The pressure in the three different regions (linear 
elastic region, transition region, and fully dense region) can 
be determined based on the volumetric strain.
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high-temperature and high-pressure systems, such as shock 
waves or in understanding the behavior of materials in 
extreme conditions.

p =





ρ0C2
0 µ[1+(1− γ

2 )µ− αµ2
2 ]

[1−(S1−1)µ− S2µ2
µ+1 − S3µ3

(µ+1)2 ]2
+ (γ + αµ)E µ > 0

ρ0C2
0 µ + (γ + αµ)E µ ≤ 0

� (A.1)

 where µ = ρ
ρ0

− 1, ρ0 is the initial density, E is the current 
specific internal energy. γ, α, S1, S2, S3 and C0 are the 
coefficients of the material.

Appendix A.2. Elastic-perfectly plastic constitutive 
model

The elastic-perfectly plastic constitutive model is employed 
within the GPU-accelerated FVM–SPH solver to simulate 
and predict the dynamic behavior of metallic materials. To 
ensure that the material response remains independent of 
the reference frame, the Jaumann rate of the Cauchy stress 
is used. The Jaumann rate is a frame-independent measure 
of stress rate, which effectively accounts for rotations and 
deformations in the material without introducing spurious 
effects due to the choice of coordinate system. This is espe-
cially important in simulations of high-strain-rate phenom-
ena where the material undergoes significant deformation, 
such as in impact or shock-wave simulations.

Ṡαβ = Ṡαβ
J + Sαγẇβγ + Sγβẇαγ .� (A.2)

 The components of trial elastic deviatoric stress Sαβ
e  can be 

determined on the basis of Eq. (A.2) and Hook’s law,

Sαβ
e = ∆t

(
2G

(
ε̇αβ − 1

3
δαβ ε̇γγ

)
+ Sαγẇβγ + Sγβẇαγ

)
+ Sαβ

(n),� (A.3)

 where Sαβ
(n) is the component of deviatoric stress at nth time 

step. The second invariant J2 of the deviatoric part of the 
elastic trial stress Sαβ

e  is

J2 = 1
2

Sαβ
e Sαβ

e .� (A.4)

This model assumes that the material exhibits elastic behav-
ior up to a certain yield stress σY , beyond which it under-
goes perfectly plastic deformation without hardening,

Sαβ =

{
Sαβ

e , if J2 ≤ σ2
Y /3;√

σ2
Y

3J2
Sαβ

e , if J2 > σ2
Y /3.

� (A.5)

 in which J2 is the second invariant of the stress tesnor. 
The Johnson-Cook visco-plastic constitutive model, which 
accounts for large strains, high strain rates, and elevated 
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