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A B S T R A C T

The phase-field method (PFM) offers a robust framework for fracture simulation by transforming discrete cracks 
into continuous phase-field representations, thereby eliminating geometric complexities associated with tradi-
tional fracture modeling. While the finite volume method (FVM) has emerged as a promising approach for 
implementing PFM in multi-physics fracturing problems, its scalability remains constrained by inherent 
computational inefficiencies. This paper presents a full-process GPU-parallelized finite volume framework 
designed to accelerate PFM-based fracture computations, enabling large-scale, high-resolution simulations and 
integration of multi-physics couplings. The framework is rigorously verified against three benchmark crack 
propagation scenarios, confirming its numerical accuracy and computational performance. A comprehensive 
comparative analysis demonstrates that the full-process GPU-parallelized FVM achieves a significant speedup (up 
to 12 times) compared to conventional CPU-parallelized implementations. Furthermore, its extensibility is 
showcased through two two-phase hydraulic fracturing case studies, where it is coupled with a two-phase 
computational fluid dynamics (CFD). The results highlight the framework’s capacity to resolve coupled multi- 
physics fracturing phenomena without compromising computational efficiency. This advancement opens new 
avenues for high-fidelity, computationally tractable simulations of complex fracture-dominated systems in en-
gineering and geoscience applications.

1. Introduction

Fracture is a common failure mode in engineering materials, driven 
by the competition between elastic energy release and the material’s 
resistance to crack growth, as described by energy-based fracture me-
chanics (Griffith, 1921). Computational modeling has become an 
indispensable tool for understanding and predicting fracture behavior, 
particularly when full-scale experiments are prohibitively expensive or 
impractical (Wu et al., 2020). These models not only aid in forecasting 
the failure of cracked structures but also provide valuable insights into 
fracture processes across diverse materials, including concrete, rock, 
and ceramics. However, modeling crack propagation remains a signifi-
cant challenge due to the discontinuous nature of cracks and the 
intrinsic heterogeneity of materials (Wu et al., 2020).

Existing fracture simulation methods can be broadly classified into 
discontinuous and continuous approaches, each facing inherent chal-
lenges. Discrete methods require additional criteria to define crack 
initiation, propagation, direction, and bifurcation in dynamic fracture 

problems (Griffith, 1921, Irwin, 1957, Dugdale, 1960, Barenblatt, 
1962). Moreover, explicitly tracking complex crack paths remains a 
significant challenge, particularly in three-dimensional cases (Bordas 
et al., 2008, Sukumar et al., 2015). Traditional continuous approaches 
encounter difficulties in introducing displacement discontinuities into 
an otherwise continuous displacement field (Wu et al., 2020, Rashid, 
1968, Wu et al., 2015, Belytschko and Lin, 1987, Xu and Needleman, 
1994, Wang et al., 2020a) and some of them still necessitate explicit 
tracking of crack surfaces (Moës et al., 1999, Wells and Sluys, 2001, Wu 
and Li, 2015). As a continuous approach, Peridynamics (PD) (Silling, 
2000, Fan et al., 2022) offers a natural framework for handling 
displacement discontinuities. However, its computational cost is 
significantly higher than FEM, and it lacks direct compatibility with 
traditional mechanics-based methods such as FEM and CFD.

To address the challenges associated with discrete crack modeling, 
the phase field method (PFM) (Bourdin et al., 2008, Miehe et al., 2010) 
has been developed to automatically determine crack paths (Ambati 
et al., 2015, Tanné et al., 2018). PFM integrates fracture mechanics and 
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damage mechanics, extending Griffith’s theory (Griffith, 1921) by 
simultaneously solving for both the displacement field and the crack set 
through the minimization of the material’s total potential energy. 
Formulated using partial differential equations (PDEs) (Ambati et al., 
2015), PFM is particularly effective in capturing complex fracture be-
haviors (Amor et al., 2009, Miehe et al., 2010) and can be seamlessly 
coupled with traditional numerical methods, such as CFD (Yi et al., 
2024). It has been adopted to study fracture modes and dynamic crack 
propagation in various materials, including the rock materials (Zhang 
et al., 2017, Fei and Choo, 2020), composite materials (Li et al., 2023), 
and piezoelectric materials (Kiran et al., 2023).

However, in solving the coupled displacement and phase-field 
equations in PFM, the primary computational cost arises from the 
need to resolve the regularization length scale, which necessitates fine 
spatial discretization throughout the domain (Yue et al., 2023, Tian 
et al., 2020). This requirement is intrinsic to all numerical frameworks 
employed in phase-field models, including both FEM (Tian et al., 2020) 
and FVM (Yang et al., 2024b). In addition, the staggered solution 
scheme (Seleš et al., 2019), widely adopted for its robustness, involves 
alternating updates between displacement and phase-field fields, often 
requiring a large number of iterations to achieve convergence. When 
combined with a high-resolution mesh, this iterative procedure imposes 
a significant computational burden, making simulation speed a key 
bottleneck in large-scale fracture modeling (Yang et al., 2024b). Existing 
approaches to accelerating the PFM primarily focus on algorithm opti-
mization, such as the high order scheme (Nguyen-Thanh et al., 2020) 
and the hybrid isotropic-anisotropic scheme (Ambati et al., 2015). 
Recently, the FVM has been explored for solving PFM, achieving sig-
nificant efficiency improvements (Yang et al., 2024b, Yang et al., 
2024c). Compared to the FEM, which requires assembling a global 
stiffness matrix with high computational costs, the FVM constructs a 
sparser matrix with lower computational complexity, making it more 
suitable for large-scale and parallel computations (Yang et al., 2024b, 
Yang et al., 2024c). Additionally, FVM is naturally compatible with CFD, 
facilitating seamless coupling between the two methods. However, 
further improving computational efficiency from the perspective of al-
gorithm optimization within the FVM and PFM has become increasingly 
difficult.

In recent years, GPU parallel acceleration has been increasingly 
applied to scientific computing, a paradigm known as General-Purpose 
Graphics Processing Unit (GPGPU) computing (Michalakes and Vach-
harajani, 2008). Leveraging the massive parallelism with thousands of 
cores, GPU-based acceleration has demonstrated substantial efficiency 
improvements over CPU parallelism. Currently, GPU acceleration is 
being extensively adopted in both particle-based methods (Peng et al., 
2019, Xia and Liang, 2016, Xiong et al., 2013, Tubbs and Tsai, 2011, Shu 
et al., 2020, Wang et al., 2023, Zhang et al., 2023b, Wang et al., 2020b, 
Gao et al., 2018) and structured mesh-based methods (Aissa et al., 2017, 
Kuo et al., 2020). For particle-based methods, each particle can be 
assigned an independent GPU thread, a strategy that aligns well with the 
GPU hardware architecture. Similarly, for structured mesh-based algo-
rithms, retrieving information from neighboring cells is straightforward 
during the independent computation of each mesh cell, further 
enhancing computational efficiency. However, this algorithm is chal-
lenging to extend to problems with complex geometries.

Recent advances have demonstrated the great potential of GPU- 
based parallel computing in accelerating fracture simulations across 
different numerical paradigms. In particular, mesh-free methods such as 
the discrete element method (DEM) (Liu et al., 2021), peridynamics 
(Zhong et al., 2024), and the finite point method (FPM) (Zhao et al., 
2020, Kang et al., 2024) have all been successfully adapted to GPU ar-
chitecture, leading to significant performance gains. Extended finite 
element methods have also benefited from GPU acceleration. For 
instance, Shin et al. (2023) developed a GPU-parallelized framework 
based on the GraFEA model to simulate both impact and quasi-static 
fractures efficiently. While these studies confirm the effectiveness of 

GPU computing in fracture modeling, most existing work focuses on 
mesh-free strategies.

Despite the increasing adoption of GPU acceleration, its application 
in implicit, unstructured mesh-based methods, such as the FVM, remains 
relatively limited. Recent studies have explored heterogeneous 
computing that integrates both CPU and GPU parallelism (Lei et al., 
2019, Afzal et al., 2021) to leverage existing CPU-parallelized algo-
rithms, where GPU parallelism is primarily employed for solving linear 
systems (Jespersen, 2010, Zhang et al., 2023a). However, this approach 
necessitates frequent data transfers between the CPU and GPU during 
iterative computations, thereby limiting the full potential of GPU ac-
celeration. In this work, we present, for the first time, a fully GPU- 
parallelized finite volume framework for the phase-field method and 
apply it to fracture simulations. The proposed framework completely 
abandons the original domain decomposition-based CPU-parallelized 
algorithm and adopts an innovative design fully optimized for GPU 
hardware architecture.

The full-process GPU-parallelized FVM for the PFM overcomes three 
major challenges in fracture simulations. First, conventional PFM suffers 
from high computational costs due to the extensive iterations required to 
solve both the phase-field and solid mechanics equations, rendering 
large-scale simulations impractical without acceleration. Second, in 
coupled fracture-fluid flow simulations, the computational bottleneck 
shifts predominantly to fracture modeling, significantly limiting the ef-
ficiency and feasibility of multiphysics simulations. Third, developing a 
robust and extensible multiphysics framework necessitates a unified 
numerical approach capable of efficiently handling multiple governing 
equations. In summary, the proposed full-process GPU-parallelized FVM 
offers a computationally efficient solution that not only accelerates 
fracture simulations but also seamlessly integrates with CFD within a 
unified numerical framework, enabling large-scale multiphysics 
modeling.

Fracture processes in geomaterials, such as rock cracking, hydraulic 
fracturing, and desiccation cracking in unsaturated soils, are of funda-
mental interest in geotechnical engineering (Xu et al., 2018). These 
problems often involve highly nonlinear fracture propagation under 
complex loading and multiphase fluid conditions, posing significant 
computational challenges. The proposed framework is particularly well- 
suited for such applications, as it enables efficient and robust simulation 
of large-scale three-dimensional fracture processes in porous and frac-
tured geomaterials. This highlights the relevance of the method to a 
broad range of geotechnical applications, including CO2 sequestration 
(Stevens et al., 1999) and reservoir stimulation (Economides and Nolte, 
1989).

The remainder of this paper is organized as follows. Section 2 in-
troduces the PFM for the crack simulation and the full-process GPU- 
parallelized FVM for the PFM. This section provides a detailed expla-
nation of the full-process GPU-parallelized computational framework, 
including the grid structure, sparse matrix handling, explicit term 
computation, governing equation discretization and assembly, linear 
solver, and iterative algorithms. Section 3 presents three verification 
cases to demonstrate the accuracy and efficiency of the proposed algo-
rithm, along with two two-phase hydraulic fracturing examples to 
showcase its potential for coupling with two-phase CFD. A detailed 
performance comparison between full-process GPU-parallelized FVM 
for PFM (GPU-PFM) and CPU-accelerated FVM for PFM (CPU-PFM) is 
provided, demonstrating the significant acceleration achieved by the 
fully GPU-parallel approach. Finally, Section 4 concludes the study.

2. Methodology: Full-process GPU-parallelized FVM for PFM

The phase-field method (PFM) is a widely recognized approach for 
simulating brittle fractures, where cracks are represented as diffuse in-
terfaces characterized by a continuous phase-field variable d. This var-
iable ranges from 0 to 1, with d = 0 indicating intact material and d = 1 
representing fully damaged regions. This section provides an overview 
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of a typical PFM formulation, primarily based on the variational 
framework introduced by Miehe et al. (2010), which ensures that crack 
evolution minimizes the total free energy while adhering to irrevers-
ibility constraints. Additionally, the finite volume implementation of the 
PFM proposed by Yang et al. (2024b), coupled with an innovative GPU- 
accelerated framework, will be introduced.

2.1. Phase field method for brittle fractures

2.1.1. Problem description
Consider an embedded fracture Γ in a linear elastic solid Ω⊂Rn 

(where n denotes the number of dimensions). Fig. 1 shows the fracture 
region Γ and a solid region Ω in a single-edge notched tension test. The 
outer boundary of the solid Ω is ∂Ω⊂Rn− 1 and is subjected to two con-
ditions: prescribed displacement on ∂Ωu and prescribed force/stress on 
∂Ωt , which are called as Dirichlet boundary condition and Neumann 
boundary condition, respectively. Regions ∂Ωu and ∂Ωt satisfy ∂Ωu ∪

∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅. The body force per unit volume acted on 
the solid Ω is denoted by b. The embedded fracture Γ is denoted by the 
phase field variable d.

2.1.2. Governing equations
The applied phase-field model for a purely solid phase is based on the 

variational principle outlined by Miehe et al. (2010) and rooted in 
classical fracture theory (Griffith, 1921) and the minimum energy 
variational method (Francfort and Marigo, 1998). The potential energy 
functional for the crack fracturing process can be written as: 

Π(u,Γ) =
∫

Ω
Ψ(ε)dΩ+

∫

Γ
GcdΓ −

∫

Ω
b⋅udΩ −

∫

∂Ωt

t⋅udS (1) 

where Ψ is the elastic strain energy density, ε is the small strain tensor, 
Gc is the critical energy release rate of the material, t is the surface 
traction, b is the body force, and u is the displacement.

The strain tensor ε and the strain energy Ψ are functions of the 
displacement u. For an isotropic linear elastic material, they are defined 
by the following expressions: 

ε(u)= ((∇u)T
+∇u)/2 (2) 

Ψ(ε) = λ
2

tr(ε(u) )2
+ με(u) : ε(u) (3) 

where λ and μ are the Lamé constants.
In the phase-field method, the crack surface Γ(d) is denoted by the 

phase field variable d and is calculated by the following equation: the 
crack surface energy density per unit volume of the solid is calculated 
(Miehe et al., 2010) 
∫

Γ
dΓ =

∫

Ω
γ(d)dΩ (4) 

γ(d) =
d2

2l0
+

l0
2
|∇d|2 (5) 

where γ is the crack surface density per unit volume, ∇d is the spatial 
gradient of the phase field, and l0 ∈ R+ is the characteristic length that 
controls the width of the diffuse crack transition region.

The total crack surface energy of the elastic solid in Eq. (1) can be 
expressed as: 
∫

Γ
GcdΓ ≈

∫

Ω
Gc

(
d2

2l0
+

l0
2
|∇d|2

)

dΩ (6) 

Further considering the effect of cracks on reducing the stored en-
ergy within the solid, the total energy functional (Eq. (1)) can be written 
as: 

Π(u, d) =
∫

Ω
g(d)Ψ(ε(u) )dΩ+

∫

Ω
Gc

(
d2

2l0
+

l0
2
|∇d|2

)

dΩ 

−

∫

Ω
b⋅udΩ −

∫

∂Ωt

t⋅udS (7) 

where g(d) is the stress degradation function and g(d) =
[
(1 − d)2

+k
]

(Wu et al., 2020). k = 10− 6 is a constant to avoid numerical singularity 
as d approaches 1.

Taking the first variation with respect to two variations (u and d) in 
Eq. (7), two governing equations can be obtained: 

∇⋅σ +b = 0inΩ (8) 

− Gcl0∇2d+
[
Gc

l0
+2Ψ(ε)

]

d = 2Ψ(ε)inΩ (9) 

with the following boundary conditions: 

σ⋅n = ton ∂Ωt (10) 

u = uon ∂Ωu (11) 

∇d⋅n = 0on ∂Ω (12) 

where t and u are the traction and displacement acted on the boundary, 
respectively. n is the outward normal vector of the boundary, and σ is 
the stress.

The spectral decomposition approach proposed by Miehe et al. 
(2010) is used to avoid crack development under compression. This 
approach adopts the spectral decomposition of strain to calculate the 
effective stress σ. 

σ =
[
(1 − d)2

+ k
]{

λ〈tr(ε)〉+I+ 2με+
}
+ λ〈tr(ε)〉− I+ 2με− (13) 

where ε+ and ε− represent the positive and negative parts of elastic 
strain, respectively, satisfying ε = ε+ + ε− . They are calculated based on 
the principal strains εp and principal directions np as following: 

ε± =
∑n

p=1
〈εp〉±np⊗np (14) 

where the Macaulay brackets 〈 〉± are expressed as: 〈x〉± = (x ± |x|)/2.
To avoid crack healing in the elastic solid under compression or 

unloading, a history state variable H is adopted, which is expressed as: 

Hn+1(x) = max
(
Hn(x),Ψ+

(
εn+1(x)

) )
(15) 

where Ψ+ is the positive part of elastic strain energy derived from the 
spectral decomposition approach: 

Ψ+ =
λ
2
〈tr(ε)〉2

+ + μtr
[
ε2
+

]
(16) 

Fig. 1. Schematic illustration of cracks and boundary conditions.
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The history state variable H is assumed to be constant within each 
finite volume cell and is updated once at every time step. This treatment 
ensures that H accurately captures the maximum driving energy up to 
the current time. This assumption aligns with the conventional finite 
volume framework, wherein field variables are represented as cell- 
averaged quantities and assumed constant within each control vol-
ume. While this may introduce mesh-dependent approximation errors, 
such a treatment has been widely adopted in the literature (Yang et al., 
2024b; Cardiff et al., 2017; Jasak and Weller, 2000) and has been 
shown, through extensive benchmark studies and verification cases, to 
yield sufficiently accurate results for a broad range of brittle and hy-
draulic fracture problems. Therefore, the assumption is considered both 
reasonable and computationally efficient within the context of the cur-
rent implementation.

Eq. (7) can be further rewritten as Eq. (17) by replacing the elastic 
energy Ψ(ε) with the history state variable H. 

− Gcl0∇2d+
[
Gc

l0
+2H

]

d = 2HinΩ (17) 

Jasak and Weller (2000) proposes a separation solution algorithm to 
stabilize the numerical oscillations of Eq. (8), which is expressed as: 

Kf∇
2u

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
implicit

− Kf∇
2u +∇⋅σ + b

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
explicit

= 0 (18) 

where the coefficient Kf is selected as Kf = λ+2μ in this work (Cardiff 
et al., 2017), controlling the smoothing effect. In this context, “implicit” 
means that the unknown variable will be adopted to discretize this term 
and assemble the algebraic linear system, while “explicit” means that 
only the variable at the last time step or iteration will be used for the 
discretization process.

The separation solution algorithm adopted in this work follows 
established practices (Cardiff et al., 2017, Jasak and Weller, 2000, Yang 
et al., 2024b) for solving PFM using the FVM. In particular, the implicit 
formulation is known to potentially suffer from checker-boarding arti-
facts, manifesting as spurious oscillations in the displacement field 
(Cardiff and Demirdžić, 2021). To suppress these non-physical modes, a 
stabilizing diffusion term, analogous to the Rhie-Chow correction orig-
inally proposed for pressure–velocity coupling in fluid dynamics (Rhie 
and Chow, 1983), is introduced. This term appears as the first two terms 
of Eq. (40) and effectively mitigates displacement oscillations by 
enhancing numerical coupling between adjacent control volumes.

It is worth noting that this stabilization technique typically requires a 
large number of iterations to achieve convergence, especially in regions 
with strong phase-field gradients or evolving crack fronts. This iterative 
burden significantly contributes to the overall computational cost and 
partially explains the increased runtime observed in FVM-based PFM 
solvers. Nevertheless, upon sufficient convergence, the method satisfies 
the mechanical equilibrium condition ∇⋅σ + b = 0, ensuring a physi-
cally consistent solution.

Eqs. (17) and (18), in conjunction with boundary conditions (Eqs. 
(10)–(12)), comprise the governing equations of the phase-field model, 
including the displacement field u and the phase field d.

To further account for the transient nature of hydraulic fracturing 
and the fluid-induced forces acting on the solid, Eq. (18) can be extended 
to the following form. 

∂2

∂t2 (ρsu) + Kf∇
2u

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
implicit

− Kf∇
2u +∇⋅σ − αbiot∇p − k

(
uf − vs

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
explicit

= 0 (19) 

where ρs is the density of the solid, and b = − αbiot∇p − k
(
uf − vs

)
is the 

source term representing the combined effects of fluid pressure and the 
drag force induced by the relative motion between the fluid and the 
solid. αbiot is the Biot’s coefficient, a dimensionless parameter (typically 
between 0 and 1) that quantifies the proportion of fluid pressure 

transmitted to the solid matrix in porous media (Miehe et al., 2010). p 
denotes the fluid pressure, and k is the drag coefficient, determined from 
a relative permeability model (Carrillo and Bourg, 2021). uf and vs are 
the fluid and solid velocities, respectively. The solid velocity vs is 
approximated as vn

s =
(
un − un− 1)/Δt, representing the incremental 

displacement of the solid over one time step.

2.2. Two-phase CFD with porous media

2.2.1. Two-phase model with porous media
Two-phase flow in porous media is typically modeled using the 

Volume of Fluid (VOF) method in conjunction with the Multidimen-
sional Universal Limiter for Explicit Solution (MULES) algorithm 
(Roenby et al., 2017, Rusche, 2002). This method tracks the distribution 
of individual fluid phases through phase volume fractions αi, and in-
troduces a compressive flux term within the advection equation to 
enhance the sharpness of the fluid interface. The evolution of the volume 
fraction field is governed by the following continuity equation, which 
includes the compressive flux contribution (Eq. (20)), as proposed in 
Carrillo et al. (2020). The fluids are considered incompressible, and their 
continuity behavior is described by: 

∂ϕαi

dt
+∇ •

(
αiuf

)
+∇ • (ϕαi(1 − αi)uc ) = 0, (20) 

where ϕ is porosity of porous media, uf is the fluid velocity, and uc is the 
compressed velocity.

The evaluation of the compressive flux term is context-dependent, 
varying between pure fluid regions and porous media. In regions occu-
pied by pure fluids, the term is computed using the standard MULES 
algorithm. In contrast, within porous domains, a modified formulation is 
employed following the method proposed by Carrillo et al. (2020), 
which accounts for the effects of porosity and permeability on interface 
capturing. 

uc =

⎧
⎪⎨

⎪⎩

c|u|∇αi/|∇αi|, inpurefluidregions,

ϕ− 1
[

−

(
Mi

αi
−

Mj

αj

)

∇p +

(
ρiMi

αi
−

ρjMj

αj

)

g
]

, inporousmedia,

(21) 

where c ∈ [0, 1] is a coefficient that controls the magnitude of the 
compressive velocity. The symbols g, M and ρ represent the gravitational 
acceleration, fluid mobility, and fluid density, respectively. Subscripts i 
and j correspond to fluid phases i and j, respectively.

The mobility M is computed using relative permeability models. In 
this study, we employ the formulations proposed by Van Genuchten 
(1980), as defined in Eqs. (22)–(24). These relative permeability ex-
pressions are derived by combining Mualem’s model (Mualem, 1976) 
with the van Genuchten water retention function (Van Genuchten, 
1980). The van Genuchten model, although originally developed within 
the framework of unsaturated soil mechanics, is highly relevant to the 
geotechnical hydraulic fracturing problems addressed in this work. 
Specifically, the scenarios considered involve water–gas two-phase flow 
in unsaturated geomaterials, where the permeability-saturation rela-
tionship plays a central role in governing the flow behavior. This model 
offers a well-established and widely adopted constitutive relation for 
capturing these effects and has been previously employed in hydraulic 
fracturing studies involving fractured unsaturated media (Carrillo and 
Bourg, 2021). 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mi =
k0

μi
kri

Mj =
k0

μj
krj

, (22) 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kri = α
1
2
i,eff

(

1 −

(

1 − α
1
m
i,eff

)m )2

krj =
(
1 − αi,eff

)1
2

(

1 − α
1
m
i,eff

)2m
, (23) 

αi,eff =
αi − αi,irr

1 − αj,irr − αi,irr
(24) 

where k0 is the absolute permeability of the porous media. m is a model 
parameter that reflects the heterogeneity of the pore structure. A smaller 
m value indicates greater heterogeneity, meaning there is a wider vari-
ation in pore sizes. μ is the fluid viscosity. αirr denotes the irreducible 
saturation of the fluid phase.

In this study, the van Genuchten model is utilized primarily as a 
hydraulic model, providing a functional dependence of the absolute 
permeability coefficient on the local saturation. This formulation allows 
for realistic representation of multiphase transport processes in unsat-
urated porous media. It is worth emphasizing that the primary contri-
bution of this work lies in the development of a fully GPU-accelerated 
coupled computational framework. Within this framework, the van 
Genuchten model serves as one possible closure relation for unsaturated 
permeability. It can be readily replaced by alternative models in future 
studies without affecting the structure, modularity, or general applica-
bility of the overall computational methodology. In particular, replacing 
this model would only influence the local evaluation of the 
permeability-induced body force in the momentum equations, without 
requiring changes to the coupling algorithm or numerical 
implementation.

The effective density ρ and viscosity μ throughout the computational 
domain are updated based on the Volume of Fluid (VOF) method, in 
conjunction with the relative permeability model. 

ρ =

{
α1ρ1 + α2ρ2, in pure fluid regions ,

(M1 + M2)
− 1
(M1ρ1 + M2ρ2), in porous media, (25) 

μ = α1μ1 +α2μ2 (26) 

2.2.2. Governing equations
Based on the Navier-Stokes equations, the following momentum 

equation is developed to incorporate key physical effects, including the 
presence of porous media characterized by porosity ϕ, surface tension, 
and interaction forces between the fluid and the porous matrix. 

ϕ− 1
(

∂
∂t
(
ρuf
)
+∇⋅

(
ϕ− 1ρuf ⊗ uf

)
)

=

− ∇p+ ρg+∇⋅
(
ϕ− 1μ⋅

(
∇uf

) )
+ϕ− 1cσ|∇α1|n − k

(
uf − vs

)
(27) 

Here, ρ, uf and p denote the fluid density, velocity, and pressure, 
respectively. g is gravitational acceleration. The surface tension coeffi-

cient is denoted by σ, and the curvature of the fluid-gas interface is 
represented by c, defined as c = − ∇ • n, where n is the unit normal 
vector at the interface. For a free surface, n is computed as n =

∇α1/|∇α1|, with α1 being the volume fraction of the fluid phase.
The coefficient k is determined in accordance with the Van Gen-

uchten model, expressed as: 

k = k− 1
0

(
kri

μi
+

krj

μj

)− 1

, (28) 

where coefficients kri and krj can be calculated using Eq. (23).
The Pressure-Implicit with Splitting of Operators (PISO) algorithm 

(Issa, 1986) is adopted to solve the momentum equation. This method is 
a widely validated approach for pressure–velocity coupling in transient 
flow simulations. As the primary focus of this study is not on solving the 
CFD equations themselves, the discretization and solution procedures 
are not discussed in detail.

It is worth noting that both the CFD and PFM modules are imple-
mented within a unified finite volume method (FVM) framework on the 
GPU. They operate on the same computational mesh and utilize a 
common memory layout. All physical quantities, including those 
required for coupling (e.g., pressure, velocity, and displacement fields), 
reside in global memory and are directly accessible to all computational 
kernels. Consequently, the exchange of interaction forces incurs no 
additional memory transfer or inter-process communication overhead. 
This architecture avoids the performance penalties typically associated 
with heterogeneous or loosely coupled implementations and represents 
a major advantage of the proposed fully GPU-accelerated FVM frame-
work, particularly in the context of tightly coupled multiphysics prob-
lems such as hydraulic fracturing.

2.3. Full-process GPU-parallelized finite volume method

The finite volume method (FVM) is a numerical technique widely 
used for solving partial differential equations (PDEs) that arise in engi-
neering and physical sciences, particularly in fluid dynamics and heat 
transfer. The FVM discretizes control equations by integrating their 
conservation form over a finite control volume and approximating the 
resulting integrals. It is a robust and versatile method that emphasizes 
the conservation of physical quantities, such as mass, momentum, or 
energy, across discrete control volumes. Fig. 2 illustrates two hexahe-
dron control volumes used in FVM, in conjunction with a neighboring 
face f .

Eqs. (29) and (30) can be obtained by integrating Eqs. (17) and (18)
over the cell ΩP and applying the divergence theorem. 
∮

∂ΩP

Kf
(
∇un+1)

f dΓf −

∮

∂ΩP

Kf (∇un)f dΓf +

∮

∂ΩP

σf dΓf +

∫

ΩP

bdΩ = 0 (29) 

−

∮

∂ΩP

Gcl0∇dn+1dΓf +

∫

ΩP

[
Gc

l0
+2Hn

]

dn+1dΩ =

∫

ΩP

2HndΩ (30) 

By adopting the integration in each FVM control volume, Eqs. (29) 
and (30) can be further rewritten as: 
∑

Kf
(
∇un+1)

f • Γf −
∑

Kf (∇un)f • Γf +
∑

σf • Γf +bV = 0 (31) 

−
∑

Gcl0
(
∇dn+1)

f • Γf +

[
Gc

l0
+2Hn

]

Vdn+1 = 2HnV (32) 

where V is the volume of the control cell ΩP, Γf is the area normal 
vector of face f, and the subscript denotes the value at the face f, as 
shown in Fig. 2.

Fig. 3 presents the overall flowchart of the full-process GPU-paral-
lelized FVM for PFM in this study. Details involved will be elaborated in 
the subsequent subsections. Iterations are required to solve two gov-
erning equations as they are dependent on each other and more 

Fig. 2. Schematic illustration of hexahedron control volumes in FVM.
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iterations can lead to higher accuracy. The relative residual tolerance for 
iterations is set to rmin = 10− 4, and the maximum number of iterations is 
set to nmax = 1,000.

2.3.1. Data structure of mesh
In the GPU-parallelized finite volume method (FVM), the dis-

cretization and assembly of equations, as well as the GPU parallel al-
gorithm, strongly depend on the mesh data structure. Therefore, it is 
essential to first introduce the storage scheme for the mesh information 
in GPU memory.

There are two typical data structures to describe the mesh informa-
tion, i.e., the cell-based structure and the face-based structure. Specif-
ically, the cell-based structure is widely used in the structured mesh, 
where the surrounding cell indices can be easily obtained according to 
the current cell index due to the regular distribution of the structured 
mesh (Kuo et al., 2020). However, the structured mesh is hard to be used 
in cases with complex geometry, such as complex topography and me-
chanical structures. Face-based structure is commonly used in the 

unstructured mesh, which is suitable for arbitrary geometry.
In this study, the face-based structure commonly used in OpenFOAM 

is employed to support complex computational domains and facilitate 
direct coupling with CFD. Three lists of basic information are selected to 
describe the mesh topology, including the point coordinates, the point 
indices of faces, and the boundary information, and two lists of face 
relationships, including the owner and neighbor cells of faces, as shown 
in Fig. 4. Note that, there is no neighbor cell for the boundary face as 
there is only one cell adjacent to the boundary face and this cell is 
defined as the owner cell. By iterating all the faces, the connection 
relationship between the cells can be obtained.

Different from the CPU parallel algorithm, where the computational 
domain should be divided into multiple subdomains for each CPU 
thread, the proposed GPU parallel algorithm sets a new corresponding 
relation, i.e., one GPU thread is responsible for one cell/face. Therefore, 
in the subsequent GPU parallel algorithm, the required computations 
can be efficiently performed by directly iterating over each mesh cell or 
face. It means that extra treatment for domain decomposition is not 

Fig. 3. Overall flowchart of the full-process GPU-parallelized FVM-based phase-field model.
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required in the proposed GPU-accelerated finite volume framework and 
slow communications between CPU threads can be further avoided and 
replaced by the fast global memory in GPU.

2.3.2. Interpolation term
The interpolation scheme is required to calculate the terms ((∇u)f , 

(∇d)f , and σf ) in Eqs. (31) and (32) for the further equation discretiza-
tion and assembly. In this work, a linear interpolation scheme is adopted 
to calculate a variable at the face center, which means that the variable 
is assumed to vary linearly within a cell. Take the stress σ for example: 

(σ)f ≈ γf (σ)P +
(

1 − γf

)
(σ)N (33) 

where the weight γf is calculated based on the following formula: 

γf =

(
xN − xf

)
• df

(xN − xP) • df
(34) 

where xP and xN are the center coordinates of the cells P and N, 
respectively. xf is the center coordinate of the shared face f between cells 
P and N, as shown in Fig. 2. Δ = cosθ

⃒
⃒df
⃒
⃒.

Algorithm 1 shows the steps to calculate the interpolation term (Eq. 
(33)) using the GPU parallel algorithm. (∇un)f , σf , and (∇dn)f in Eqs. 
(31) and (32) are calculated using this algorithm. Since a boundary face 
has only one owner cell, whereas an inner face has both an owner cell 
and a neighbor cell, two separate GPU kernels are utilized to process 
inner faces and boundary faces, respectively.

Algorithm 1. Computation of the interpolation term

1: 1st GPU kernel: Iterate over inner faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3: Calculate the weight γf using Eq. (34);
4: Calculate the interpolation f(x): f(x) = γf x[IDo] +

(
1 − γf

)
x[IDn];

5: 2nd GPU kernel: Iterate over boundary faces
6: Get the owner cell index IDo for inner face i;
7: Calculate the interpolation f(x): f(x) = fb(x);

Note: fb(x) means the boundary value of the variable, which is dominated by the 
boundary condition shown in Eqs. (10)–(12).

2.3.3. Explicit gradient term
The gradient scheme is required to calculate the terms (∇u and ∇d) 

in Eqs. (31) and (32) for the further equation discretization and as-
sembly. There are two typical algorithms in FVM to calculate the 
gradient term, including the Green-Gauss gradient scheme and the least- 
square gradient scheme. The least-square gradient scheme gets more 
accurate results than the Green-Gauss gradient scheme, especially for 
the unstructured mesh. Take displacement for example, its gradient 
calculated by the least-square gradient scheme is shown in Eq. (35)

(∇u)P ≈

[
∑

f
w2

f df df

]− 1
∑

f

[
w2

f df (uN − uP)
]

(35) 

where df is the vector from the cell center P to the cell center N, as 
shown in Fig. 2. wf is the weight and is taken as 

⃒
⃒df
⃒
⃒− 1 (Jasak and Weller, 

2000) n this work.
Algorithm 2 shows the steps to calculate the explicit gradient term 

(Eq. (35)) using the GPU parallel algorithm. ∇un and ∇dn in Eqs. (31) 
and (32) are calculated using this algorithm. Two GPU kernels are 
adopted to calculate two terms in Eq. (35). Two GPU kernels are 
employed to compute Eq. (35) in a stepwise manner. First, 
[∑

f w2
f df df

]− 1 
is computed using the 1st GPU kernel, and then it is used 

as a known value to solve the entire equation for (∇u)P.
Algorithm 2. Computation of the gradient term

1: 1st GPU kernel: Iterate over faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3: Calculate the coefficient CΔ : CΔ [i] + = w2

f df df using the atomic operation;

4: 2nd GPU kernel: Iterate over inner faces
5: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
6: Calculate ∇x : ∇x+ =

[
w2

f df (x[IDn] − x[IDo])
]
/CΔ using the atomic operation;

7: 3rd GPU kernel: Iterate over boundary faces
8: Get the owner cell index IDo for boundary face i;
9: Calculate ∇x : ∇x+ =

[
w2

f df (x[i] − x[IDo])
]
/CΔ [i] using the atomic operation;

Fig. 4. Schematic illustration of the face-based structure of mesh: (a) the face indices and cell indices; (b) the owner cell indices and neighbor cell indices for the 
inner face; (c) the owner cell indices for the neighbor faces.
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2.3.4. Implicit gradient term
FVM adopts a face-based gradient scheme to implicitly discrete the 

gradient term at the face f. Take a structured mesh for example, i.e., the 
directions of the face vector Γf and the cell vector df are the same, the 
displacement gradient 

(
∇un+1)

f of the displacement at the face f can be 
discretized as: 

(
∇un+1)

f • Γf ≈
un+1

N − un+1
P

⃒
⃒df
⃒
⃒2

df • Γf =
un+1

N − un+1
P⃒

⃒df
⃒
⃒

(36) 

However, for the unstructured mesh, the discretization of the Im-
plicit gradient term cannot be simplified as Eq. (36). An extra non- 
orthogonal treatment called overrelaxation scheme is commonly used 
to improve discretization accuracy. The basic idea is to discretize the 
face vector Γf using Eq. (37), as shown in Fig. 5. 

Γf = Anf = A(n‖+n⊥) (37) 

where A is the face area. nf is the normalized face vector. n‖ is the vector 
parallel to the nd, which is the normalized cell vector df . n⊥ is the vector 
perpendicular to the nd. θ is the angle between nf and df . n‖ satisfies 
n‖ = nd/cosθ and n⊥ satisfies n⊥ = nf − nd/cosθ.

Therefore, the implicit gradient term in Eq. (36) can be rewritten as 

Eq. (38). The term 
(
∇dn+1

)

f
• Γf in Eq. (32) can be calculated in the 

same way. 
(
∇un+1)

f • Γf =
(
∇un+1)

f A(n‖+n⊥)

≈ A
un+1

N − un+1
P

⃒
⃒df
⃒
⃒2

df • n‖+A(∇un)f n⊥

= A
un+1

N − un+1
P

cosθ
⃒
⃒df
⃒
⃒

+A(∇un)f

(

nf −
df

cosθ
⃒
⃒df
⃒
⃒

)

= A
un+1

N − un+1
P

Δ
+A(∇un)f

(

nf −
df

Δ

)

(38) 

where Δ = cosθ
⃒
⃒df
⃒
⃒ and (∇un)f means the explicit gradient term of the 

displacement calculated from the current displacement field.
For the two classical boundary conditions, Dirichlet and Neumann 

boundary conditions, Eq. (38) can be simplified as follows: 
(
∇un+1)

f

• Γf

=

⎧
⎪⎨

⎪⎩

∇ubforNeumannboundary

A
ub − un+1

P

Δ
+ A(∇un)P

(

nf −
df

Δ

)

forDirichletboundary

(39) 

Where ∇ub represents the displacement gradient at the Neumann 
boundary and ub denotes the displacement at the Dirichlet boundary. 
The term Δ = cosθ

⃒
⃒df
⃒
⃒, where 

⃒
⃒df
⃒
⃒ is the distance from the boundary face 

center to the owner cell center.

2.3.5. Algebraic linear equation
By incorporating the explicit interpolation and gradient terms, along 

with the implicit gradient term, as presented in Eqs. (35), (38), and (33), 
the two governing equations (Eqs. (31) and (32)) can be reformulated as 
follows: 

∑
Kf A

un+1
N − un+1

P

Δ
=
∑

Kf A(∇un)f
df

Δ
−
∑

σf • Γf − bV (40) 

[

1+
2Hl0
Gc

]

Vdn+1
P −

∑ l20A
Δ
(
dn+1

N − dn+1
P
)
=
∑

l20A(∇dn)f (nf −
df

Δ
)+

2HV
Gc

(41) 

where the left-hand side denotes the implicit part, and the right-hand 
side denotes the explicit part.

Eqs. (40) and (41) can be finally rewritten as two algebraic linear 
equations (Eqs. (42) and (43)). 

Fig. 5. The overrelaxation scheme of non-orthogonal treatment. nd is the normalized direction of df and nf is the normalized direction of Γf .

Fig. 6. A transition example from a dense matrix to a sparse matrix with CSR format.
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[Au][u] = [Bu] (42) 

[
Ad][d] =

[
Bd] (43) 

where [Au] and 
[
Ad] are the assembled coefficient matrices. [Bu] and 

[
Bd] are the constant vectors.

In this study, a sparse matrix format called Compressed Sparse Row 
(CSR) is adopted to store the coefficient matrix [A], e.g., [Au] and 

[
Ad]. 

CSR is an efficient storage format for sparse matrices that is optimized 
for memory saving, fast row slicing and matrix–vector products. In the 
CSR format, the coefficient matrix [A] is represented by three arrays: 
value VA, index IA, and pointer PA (Dutto et al., 2000).

Value array VA stores all the non-zero elements of the coefficient 
matrix [A]. Index array IA stores the column indices of the non-zero el-
ements in the value array VA. Pointer array PA stores the starting posi-
tion of each row in the value array. Specifically, PA[0] is zero, and 
PA[n+1] − PA[n] is the number of non-zero elements in the nth row of the 
coefficient matrix [A]. Fig. 6 shows a simple example of the transition 
from a dense matrix to a sparse matrix with CSR format. The size of the 
pointer array PA is (nrow + 1), where nrow is the row number of the dense 
matrix. The size of the index array IA and the value array VA is the 
number of non-zero elements of the dense matrix.

It should be noted that the point array PA and index array IA are only 
related to the mesh topology, which means that these two arrays can be 
calculated in advance. This is because the non-zero elements only occur 
when two cells are connected. Algorithm 3 lists the process to calculate 
the point array PA and index array IA based on the mesh data using the 
GPU parallel algorithm. Fig. 7 further presents the flowchart for the 
construction of the index array and pointer array, highlighting the GPU 

Fig. 7. Flowchart for the construction of the index array and pointer array.

Table 1 
AmgX setup for the displacement equation and the phase-field equation.

Variable Solver Max PCG iterations Convergence mode PCG tolerance Preconditioner Max AMG levels

u PCG 100 Absolute 10− 5 AMG 100
d PCG 100 Absolute 10− 15 AMG 100

Fig. 8. Schematic illustration of the single-edge notched plate.
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kernels from Algorithm 3 used in each step. Here, the number array NA 
serves as a temporary variable used to determine the position of values 
within the index array IA, thereby preventing read-write conflicts during 
the GPU parallel execution.

Algorithm 3. Construction of the index array and pointer array

1: Initialize the pointer array PA;

2: 1st GPU kernel: Iterate over inner faces
3: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
4: Compute PA: PA[IDo] += 1 and PA[IDn] += 1 using the atomic operation;

5: Use the inclusive scan algorithm from the thrust library to update PA;
6: Initialize the index array IA and the number array NA;

7: 2nd GPU kernel: iterate over cells
8: Initialize index array IA with IA[PA[i] ] = i for cell i;

9: 3rd GPU kernel: Iterate over inner faces
10: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
11: Compute NA: NA[IDo]+= 1 and NA[IDn]+= 1 using the atomic operation;
12: Update IA: IA[PA[IDo] +NA[IDo] ]=IDn and IA[PA[IDn ] +NA[IDn] ]= IDo;

13: 4th GPU kernel: iterate over cells
14: Sort the array (IA[PA[i] ] to IA[PA[i + 1] − 1 ]) in ascending order;

Eqs. (40) and (41) are utilized to assemble two algebraic linear equa-
tions (Eqs. (42) and (43)) within the GPU-parallelized framework. The 
following algorithms outline the detailed steps for computing the value 
arrays (Vu

A and Vd
A), as well as the constant vectors (Bu and Bd), based on 

Eqs. (40) and (41) using the GPU parallel algorithm. It is important to 
note that the constant vector Bu consists of three components, corre-
sponding to the three displacement components.

The governing equations (Eqs. (40) and (41)) for both displacement 
and the phase field contain an implicit gradient term, differing only in 
their coefficients. Therefore, the same discretization and assembly 
strategy can be applied to both. By iterating over inner faces and 
boundary faces separately and utilizing the implicit gradient dis-
cretization formula from Eq. (38), the coefficient contributions corre-
sponding to the owner or neighbor cells of each face can be directly 
assembled into the coefficient matrix (1st and 2nd GPU kernels in Al-
gorithm 4 and Algorithm 5). Specifically, the contribution of the implicit 
gradient term to the owner cell is A

(
un+1

N − un+1
P
)
/Δ, while its contri-

bution to the neighbor cell is − A
(
un+1

N − un+1
P
)
/Δ, where the negative 

sign for the neighbor cell arises from the convention that the positive 
direction of the face normal is defined as pointing from the owner cell to 
the neighbor cell.

Compared to the displacement equation, the phase-field equation 
includes an additional implicit linear term. Consequently, an extra GPU 
kernel is introduced to handle the assembly of the implicit linear term 
(3rd GPU kernel in Algorithm 5). Additionally, in the face-based parallel 
algorithm, atomic operations must be utilized when writing data asso-
ciated with either the owner or neighbor cells. This prevents memory 
read-write conflicts, which could otherwise result in erroneous compu-
tations.

Algorithm 4. Computation of the coefficient matrix [Au ] for the displacement equation

1: 1st GPU kernel: Iterate over inner faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3: Find IA[j] = IDo for j ∈ [PA[IDo],PA[IDo]);
4: Calculate Vu

A : VA[j] − = Kf A/Δ using the atomic operation;
5: Find IA[j] = IDnfor j ∈ [PA[IDo],PA[IDo]);
6: Calculate Vu

A : Vu
A[j] + = Kf A/Δ using the atomic operation;

7: Find IA[j] = IDo for j ∈ [PA[IDn],PA[IDn ]);
8: Calculate Vu

A : Vu
A[j] + = Kf A/Δ using the atomic operation;

9: Find IA[j] = IDnfor j ∈ [PA[IDn],PA[IDn]);
10: Calculate Vu

A : Vu
A[j] − = Kf A/Δ using the atomic operation;

(continued on next column)

(continued )

Algorithm 4. Computation of the coefficient matrix [Au ] for the displacement equation

11: 2nd GPU kernel: Iterate boundary faces
12: Get the owner cell index IDo for boundary face i;
13: Find IA[j] = IDo for j ∈ [PA[IDo ],PA[IDo ]);
14: If the boundary condition = Dirichlet:
15: Calculate Vu

A : Vu
A[j] − = Kf A/Δ using the atomic operation;

16: Calculate Bu : Bu [IDo ] − = Kf Aub/Δ using the atomic operation;
17: If the boundary condition = Neumann:
18: Calculate Bu : Bu [IDo ] − = Kf A∇ub using the atomic operation;

Algorithm 5. Computation of the coefficient matrix 
[
Ad] for the displacement equation

1: 1st GPU kernel: Iterate over inner faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3: Find IA[j] = IDo for j ∈ [PA[IDo ],PA[IDo ]);
4: Calculate Vd

A : Vd
A[j] + = l20A/Δ using the atomic operation;

5: Find IA[j] = IDnfor j ∈ [PA[IDo ],PA[IDo ]);
6: Calculate Vd

A : Vd
A[j] − = l20A/Δ using the atomic operation;

7: Find IA[j] = IDo for j ∈ [PA[IDn ],PA[IDn ]);
8: Calculate Vd

A : Vd
A[j] − = l20A/Δ using the atomic operation;

9: Find IA[j] = IDnfor j ∈ [PA[IDn ],PA[IDn ]);
10: Calculate Vd

A : Vd
A[j] + = l20A/Δ using the atomic operation;

11: 2nd GPU kernel: Iterate boundary faces
12: Get the owner cell index IDo for boundary face i;
13: Find IA[j] = IDo for j ∈ [PA[IDo ],PA[IDo ]);
14: If the boundary condition = Dirichlet:
15: Calculate Vd

A : Vd
A[j] + = l20A/Δ using the atomic operation;

16: Calculate Bd : Bd[IDo] + = l20Adb/Δ using the atomic operation;
17: If the boundary condition = Neumann:
18: Calculate Bd : Bd[IDo] + = l20A∇db using the atomic operation;

19: 3rd GPU kernel: Iterate cells
20: Calculate Vd

A : Vd
A[i] + = [1+2Hl0/Gc]V for cell i;

The sources of the constant vectors in both the displacement and phase- 
field equations can be categorized into two types based on their storage 
locations. The first type is stored on the mesh faces, including the non- 
orthogonal correction of the implicit gradient term Kf A(∇un)fdf/Δ 
and the face stress σf . The second type is stored at the cell centers, 
including the body force b and the history state variable H. In the GPU- 
parallel algorithm, the former requires face-based iteration, where the 
contributions from each face are accumulated into the corresponding 
owner or neighbor cell, as implemented in the 1st GPU kernel in Algo-
rithm 6 and Algorithm 7. In contrast, the latter is more straightforward, 
as it directly accumulates the contribution of each cell through cell- 
based iteration, as executed in the 2nd GPU kernel in Algorithm 6 and 
Algorithm 7.

Algorithm 6. Computation of the constant vector [Bu ] for the displacement equation

1: 1st GPU kernel: Iterate over faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3:

Calculate Bu : Bu [IDo] + =

(

Kf A(∇un)f
df

Δ
− σf • Γf

)

using the atomic 

operation;
4:

Calculate Bu : Bu [IDn] − =

(

Kf A(∇un)f
df

Δ
− σf • Γf

)

using the atomic 

operation;

5: 2nd GPU kernel: Iterate over cells
6: Calculate Bu : Bu [i] − = b[i]V[i] for cell i;

Algorithm 7. Computation of the constant vector 
[
Bd] for the phase field equation

1: 1st GPU kernel: Iterate over faces
2: Get the owner cell index IDo and neighbor cell index IDn for inner face i;
3:

Calculate Bd : Bd[IDo ] + = l20A(∇dn)f (nf −
df

Δ
) using the atomic operation;

(continued on next page)
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(continued )

Algorithm 7. Computation of the constant vector 
[
Bd] for the phase field equation

4:
Calculate Bd : Bd[IDn ] − = l20A(∇dn)f (nf −

df

Δ
) using the atomic operation;

5: 2nd GPU kernel: Iterate over cells
6: Calculate Bd : Bd[i] + = 2H[i]V[i]/Gc for cell i;

2.3.6. Linear solver
The solver of two algebraic linear equations (Eqs. (42) and (43)) 

dominates the total efficiency of the GPU-accelerated FVM framework. 
In this work, the algebraic multigrid solver (AmgX) library is imple-
mented to solve the linear equation, and the CUDA version is 12.1. 
AmgX is a high-performance library developed by NVIDIA that provides 
accelerated core solver technology on NVIDIA GPUs.

For the following cases in this paper, the algebraic multigrid method 
(AMG) with a V-cycle is selected as a preconditioner of the conjugate 
gradient method when solving the linear equation. Table 1 shows the 
AmgX setup used for solving the displacement equation and the phase- 
field equation. Since the absolute convergence mode is employed, the 
selection of tolerance is based on the magnitude of the coefficient matrix 

in the equation. According to the test results of the TFluid software (http 
s://www.t-fluid.com), the time cost of solving two linear equations al-
ways accounts for around 80 % of the total time cost.

2.3.7. GPU implementation considerations
The proposed full-process GPU-accelerated finite volume framework 

is designed to minimize CPU-GPU communication by transferring all 
mesh data and initialization information to the GPU’s global memory at 
the beginning of the simulation. During the computation phase, no 
further data transfer between CPU and GPU is required, except for 
exporting selected variables such as displacement, velocity, and pressure 
fields. This approach significantly reduces the communication overhead 
and improves computational throughput. Besides the input information, 
memory management across mesh scales is handled through a pre- 
allocated strategy. All memory allocations are performed once at the 
start of the simulation and remain in global memory throughout the run. 
This avoids the costly allocation and deallocation operations during time 
stepping. Data structures primarily consist of quantities stored at cell 
centers and face centers, whose total sizes are determined by the number 
of cells and faces in the unstructured mesh. These memory demands can 
thus be predicted and allocated in advance.

Fig. 9. Simulation results of crack patterns in single-edge notched tension test at displacements (l0/h = 8.2): (a) u = 5.40× 10− 3mm, (b) u = 5.70× 10− 3mm, (c) 
u = 6.01× 10− 3mm.

Fig. 10. Force-displacement curves of the single-edge notched tension test: (a) Comparison with existing simulation results; (b) Results for four different cell sizes.
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Throughout the assembly of governing equations and variable up-
dates, all data are accessed and manipulated in global memory. Notably, 
due to the irregular access patterns associated with unstructured meshes 
and the absence of highly localized, reuse-heavy computation blocks, 
shared memory or coalesced memory strategies were not found to offer 
measurable advantages in our current implementation. Instead, we 
adopt direct global memory access. To avoid race conditions when 
updating shared quantities, such as face contributions to cell-centered 
values, we employ atomic operations, as illustrated in Algorithm 2.

In the context of unstructured mesh data structures, synchronization 
presents additional challenges. While the computation within a single 
cell can proceed independently, operations involving face-cell re-
lationships require traversing mesh faces to obtain complete topological 
information. This contrasts with structured grids, where neighboring 
cell access is trivial. In the proposed framework, many computational 
procedures are split into multiple GPU kernels to enforce synchroniza-
tion points, ensuring consistency of intermediate quantities. This strat-
egy is exemplified in Algorithm 1 to Algorithm 3.

For solving the resulting sparse linear systems, the NVIDIA AmgX 
library is integrated. The assembled matrices are stored in CSR format to 
match AmgX’s data interface requirements. The solution process is fully 
GPU-resident, with the CSR row pointer, column index, and value ar-
rays, along with the right-hand-side vector, directly passed to AmgX as 
described in Section 2.3.5. This avoids the need for host-device data 
exchange and allows efficient parallel linear solves.

3. Numerical simulations

This chapter presents three benchmark cases to verify the accuracy of 
the proposed GPU-accelerated finite volume framework for phase field 
modeling. Specifically, by comparing the results with those reported in 
previously published studies, we demonstrate the significant improve-
ments in computational efficiency achieved by the GPU-accelerated 
algorithm.

3.1. Single-edge notched tension test

3.1.1. Comparison of simulation results
The single-edge notched plate is a classic benchmark problem 

commonly used for verification in various studies (Wu et al., 2020, Yang 
et al., 2024b), as shown in Fig. 8. The problem in this work consists of a 
plate with an initial crack located at the left-center, with a length of 0.5 
mm and a width of 0.001 mm. The bottom of the plate is fixed, while the 
top is subjected to a vertical displacement-constrained load. The vertical 
displacement increment is Δu = 10− 5 mm during the loading steps. The 
initial crack is modeled as a gap in the mesh domain. The model is 
truncated with a uniformly wide (0.001 mm) region designated as the 
initial crack, meaning that no mesh is applied in this region, as shown in 
Fig. 8. The material properties are characterized by a Young’s modulus 
of E = 210GPa, a Poisson’s ratio of v = 0.3, a critical energy release rate 
of Gc = 2.7N/mm, and a characteristic length of l0 = 0.015mm. To 
facilitate the comparison of GPU performance under different numbers 
of grid points, this study employs fixed uniform mesh.

Fig. 9 illustrates the simulated crack development process as 
displacement increases, with a characteristic length-to-minimum cell 
size ratio (l0/h) of 8.2. The crack initiates at a displacement of approx-
imately 5.40× 10− 3 mm. As the displacement increases, the crack 
rapidly propagates and eventually penetrates the entire specimen at a 
displacement of 5.70× 10− 3 mm. This process is further depicted in 
Fig. 10(a), where a significant decrease in force is observed when the 
displacement reaches 5.40 × 10− 3 mm.

The simulation results obtained using GPU-FVM-PFM align closely 
with those reported in the literature (Yang et al., 2024b, Miehe et al., 
2010). Specifically, Specifically, we uniformly divided the force values 
into 130 intervals and extracted the corresponding 130 displacement 
values for comparison. The root mean square error (RMSE) of the 
displacement values is computed using Eq. (44). The results indicate 
that, compared to the solutions of Yang et al. (2024b) and Miehe et al. 
(2010), the RMSE of the present results is 2.47 % and 2.32 %, respec-
tively. Additionally, the peak force calculated by GPU-FVM-PFM is 
698.6 N, while Yang et al. (2024b) reported a peak force of 702.4 N 
using CPU-FVM-PFM, representing a difference of only 0.5 %. Moreover, 
the displacement corresponding to the peak force is 5.40 × 10− 3 mm for 
GPU-FVM-PFM and 5.47 × 10− 3 mm for CPU-FVM-PFM, with a 
discrepancy of approximately 1 %. Considering these results and ac-
counting for differences in mesh resolution, it can be concluded that 
GPU-FVM-PFM achieves accuracy comparable to that of CPU-FVM-PFM. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
130

∑130

i=1

(
uref

i − ui

uref
i

)2
√
√
√
√ (44) 

where ui represents the displacement obtained in the present study, 
while uref

i denotes the displacement reported by Yang et al. (2024b) or 
Miehe et al. (2010).

Fig. 10(b) further investigates the influence of mesh size on the 
simulation results. Four different mesh sizes were selected, with char-
acteristic length ratio to cell size l0/h of approximately 2.1, 4.1, 8.2, and 
16.4, representing a near-doubling progression for better representa-
tiveness. The results show that as the mesh is refined, the force-
–displacement curves gradually converge. In particular, the curves 
corresponding to l0/h = 8.2 and 16.4 are nearly identical, indicating 

Fig. 11. GPU parallel acceleration ratio for different numbers of cells.

Table 2 
Comparison of computational time between CPU and GPU parallel FVM-PFM.

Algorithm Device Mesh 
number

Run 
time 
[s]

Acceleration 
ratio R

CPU-FVM-PFM (
Yang et al., 
2024b)

AMD® Ryzen® 
CPU R7-5800X (1 
CPU core)

22,308 5790 1

GPU-FVM-PFM 
(this work)

RTX 3060 Ti 22,540 117 12
87,584 148 39
324,324 260 80
703,888 456 100
1,240,420 704 114
2,073,116 1130 119
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that a mesh resolution of one-eighth the characteristic length is suffi-
cient to ensure accuracy and convergence of the results.

3.1.2. Performance of the GPU-accelerated framework
To further compare the efficiency of GPU-FVM-PFM and CPU-FVM- 

PFM, we use the results reported in Yang et al. (2024b) as a reference. 

In their study, Yang et al. (2024b) performed simulations using a single- 
core CPU (AMD® Ryzen® R7-5800X) for a test case with 22,308 mesh 
elements, completing the single-edge notched tension test in 5790 s. For 
a fair comparison, we selected the NVIDIA RTX 3060 Ti for bench-
marking. This GPU was released in late 2020, around the same release 
time of AMD® Ryzen® R7-5800X CPU, and is priced slightly lower than 
the CPU.

In this study, we define a parameter, the parallel acceleration ratio R, 
to evaluate the efficiency of GPU parallelization. The parallel accelera-
tion ratio is given by R = tCPU/tGPU, where tCPU and tGPU represent the 
computational time per unit grid on the CPU and GPU, respectively. 
According to Yang et al. (2024b), tCPU is computed as tGPU = 5790/
22308 = 0.26. For the GPU, tGPU is calculated as tGPU = t/Nc , where Nc 
is the number of mesh cells and t is the total runtime. This ratio quan-
tifies the equivalent computational capacity of the GPU in terms of the 
number of CPU cores.

To ensure a fair comparison, three key points are emphasized: (1) 
Comparable baseline performance: In CPU parallelization, the perfor-
mance of each core is influenced by the number of mesh elements it 
processes. With each core handling tens of thousands of elements, the 
single-core CPU performance for 22,308 elements represents an efficient 
and fair baseline for comparison, avoiding comparisons with less 
optimal scenarios. (2) Consistent algorithms and models: The GPU-FVM- 
PFM and CPU-FVM-PFM simulations share the same underlying algo-
rithms and model settings, with results that align closely. The only dif-
ference lies in the parallelization approach, ensuring the comparison is 
fair. (3) Suitability for large-scale computation: Considering that GPU 
parallelization is particularly well-suited for large-scale computations, 
we compare GPU parallel efficiency across varying mesh sizes while 
keeping other settings constant to provide a comprehensive evaluation.

Fig. 11 illustrates the variation in the parallel acceleration ratio 
across different grid sizes, with detailed results summarized in Table 2. 
The data indicates that the parallel acceleration ratio increases steadily 
with the grid size, eventually reaching a peak. This growth is more 
pronounced for grid sizes below 1 million. For example, at a grid size of 
approximately 20,000, the parallel acceleration ratio is around 25, 

Fig. 12. (a) Average computation time distribution across different computational modules, based on the benchmark case with 2.07 million cells. (b) GPU memory 
usage per million cells for each module. The total memory consumption is approximately 1.2 GB, obtained from the same 2.07 million-cell case.

Fig. 13. Schematic illustration of the L-shaped panel test.
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Fig. 14. Simulation results of crack patterns (a-c) and displacement fields (e-f) in L-shaped panel test at different displacements. (d) Experimental crack profile 
(Ambati et al., 2015) and simulated crack profile at displacement u = 1mm from the literature (Yang et al., 2024b).
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whereas for a grid size of 2 million, the ratio rises to 250, reaching a 
tenfold difference.

These findings further validate that GPU acceleration is particularly 
advantageous for large-scale computations, such as those involving over 
2 million grids. For instance, in the 2-million-grid case, a single NVIDIA 
RTX 3060Ti GPU demonstrates computational capability equivalent to 
119 cores of the AMD® Ryzen® CPU R7-5800X. Given that this CPU has 
8 cores, a single RTX 3060Ti is effectively comparable to 15 AMD® 
Ryzen® R7-5800X processors. In terms of cost efficiency, the launch 
price of the RTX 3060Ti is $399, while the AMD® Ryzen® R7-5800X is 
priced at $449. The hardware cost for GPU parallelization is only 6 % of 
that for CPU parallelization with equivalent computational power.

It is also worth emphasizing that the reported parallel acceleration 
ratio represents a conservative estimate. As the number of CPU cores 
increases, communication overhead between cores often limits perfor-
mance scalability. For example, a 32 CPU cores does not typically ach-
ieve a 32-fold speedup over one CPU core, making GPU-based 
parallelization even more advantageous in practice.

To provide a clearer understanding of the performance characteris-
tics of the proposed framework, we further decompose the computa-
tional procedure for detailed analysis. The case involving 2.07 million 
cells, as listed in Table 2, is selected as a representative benchmark, as it 
fully utilizes the GPU’s parallel computing capabilities and is thus well- 
suited for in-depth performance profiling. Throughout the entire 
computation, the GPU achieves an average occupancy of approximately 
91 %, indicating a high level of parallel resource utilization.

Due to the unstructured nature of the mesh and the fine-grained 
design of the computational routines, a large number of kernel func-
tions are invoked, each typically exhibiting very short execution times. 
Consequently, kernel-level profiling would offer limited insight while 
introducing excessive verbosity. For this reason, we do not report kernel- 
level timing or memory bandwidth statistics for individual kernels. 
Instead, we focus on profiling the major computational stages to more 
effectively capture the overall performance characteristics.

Fig. 12a presents the average computation time distribution and GPU 
memory usage across the main stages of the solution process, as outlined 
in the flowchart in Fig. 3. It is evident that solving the displacement and 
phase-field equations dominates the total runtime, accounting for 
approximately 86 %. This confirms that, in implicit methods, the solu-
tion of large-scale linear systems constitutes the primary computational 
bottleneck. The second most time-consuming stage involves the evalu-
ation of stress, strain, and energy terms, which contributes around 8 % 
to the total runtime. This relatively high cost arises from the strain 
decomposition procedure (see Eq. (13)), which involves more complex 
operations than standard assembly routines. In contrast, the assembly of 
the governing equations requires only about 6 % of the total runtime, 
reflecting the high parallel efficiency enabled by our atomic-operation- 
based implementation. Finally, residual norm evaluation, which in-
volves global extrema computations, accounts for approximately 1 % of 
the runtime.

Fig. 12b shows the breakdown of GPU memory usage into four pri-
mary categories: Input mesh data (15 %), Preprocessed mesh data (33 
%), PFM variables (30 %), and AmgX-related variables (22 %). The 
“Input mesh data” category includes the basic unstructured mesh in-
formation described in Section 2.3.1. “Preprocessed mesh data” com-
prises auxiliary geometric and topological data derived from the input 
mesh, which are precomputed and stored prior to simulation to avoid 
redundant computations. “PFM variables” encompass all simulation- 
dependent quantities, such as displacement, strain, and stress. Lastly, 
“AmgX-related variables” refer to the temporary data structures gener-
ated during the linear system solution via the AmgX library, including 
coarse-level matrix representations and interpolation operators required 
by the AMG algorithm.

3.2. L-shaped panel test

The L-shaped panel test is a common benchmark in fracture me-
chanics used to evaluate crack propagation and stress intensity factors. 

Fig. 15. (a) Schematic illustration and (b) mesh discretization of the notched plate with a hole (Case I). To better capture the fractures around the hole, FVM mesh is 
refined in its vicinity and added three boundary layers.
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Fig. 13 shows a concrete L-shaped panel subjected to a progressively 
increasing point displacement constraint. In the simulation, the point 
constraint is simplified by applying the displacement constraint over a 
region with a small width, equivalent to two mesh sizes. The vertical 
displacement increment is Δu = 3.33 × 10− 4 mm, applied until the 
displacement reaches 10 mm. The material properties are characterized 
by a Young’s modulus of E = 25.85GPa, a Poisson’s ratio of v = 0.18, a 
critical energy release rate of Gc = 0.089N/mm, and a characteristic 
length of l0 = 1.1875mm. Uniform mesh is adopted in this case and the 
mesh size is 0.25 mm.

Fig. 14 presents the simulation results of the L-shaped panel test, 
along with comparisons to experimental results (Ambati et al., 2015) 
and simulated results (Yang et al., 2024b) from previous studies. The 
PFM enables high-fidelity simulations of the discontinuous displacement 
field across the fracture surfaces (Fig. 14(e) and (f)). The crack trajectory 
obtained using the GPU-PFM is highly consistent with the experimental 
results and the simulated results from the earlier studies. Naturally, 
minor and acceptable discrepancies, such as those in crack length and 
width, are observed between the two sets of simulation results. Specif-
ically, when the displacement reaches 1 mm, the crack lengths in the x- 

Fig. 16. Simulation results of crack patterns (a-b) and displacement fields (d-f) in notched plate with a hole at different displacements. (c) Experimental crack profile 
(Ambati et al., 2015).
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direction are 193 mm and 200 mm, respectively, yielding an error of 
only 3.5 %. Similarly, the crack lengths in the z-direction are 38.5 mm 
and 39.9 mm, respectively, also corresponding to an error of 3.5 %. 
These discrepancies are likely attributable to differences in mesh types. 
Previous study employed an adaptive refinement approach with a mesh 
size of 0.3125 mm in the crack propagation region, whereas this study 
used a uniform mesh with a minimum size of 0.25 mm.

3.3. Notched plate with a hole

The plate shown in Fig. 15(a) contains an initial crack and three 
holes. The hole at the bottom left is fixed (with displacement constrained 
to zero), a displacement load is applied to the hole at the top left, and the 
hole on the right serves as a free boundary. This experiment test was 
presented by Ambati et al. (2015). Two different displacement loading 
conditions were investigated. In Case I, a vertical displacement incre-
ment of Δu = 0.001 mm was applied until complete failure, as illustrated 
in Fig. 15(a). Case II builds upon Case I by additionally introducing a 
horizontal displacement increment, resulting in a total displacement 
vector oriented at a 45◦ angle with respect to the x-axis, as shown in 
Fig. 17(a). The material parameters used in both cases are identical, 
characterized by a Young’s modulus of E = 4.9GPa, a Poisson’s ratio of 
v = 0.22, a critical energy release rate of Gc = 2.28N/mm, and a 
characteristic length of l0 = 0.1mm. Fixed non-uniform mesh is adopted 
in this case to save the computational cost.

The entire computational domain is divided into three sections based 
on the z-coordinate: 0− 0.04 m, 0.04− 0.07 m, and 0.07− 0.12 m. The 
region 0.04− 0.07 m, where cracks may develop, is a refined mesh region 
with a uniform mesh size of 0.037 mm. In the other two regions, the 
mesh size is 0.037 mm in the x-direction and 0.074 mm in the z-direc-
tion. Additionally, three layers of boundary layer mesh are applied 
around the circular domain to ensure smoothness and continuity at the 
boundaries. The boundary layer mesh thickness is 0.02 mm for the cir-
cular domain in the second region, and 0.033 mm for the circular do-
mains in the other two regions. The mesh distribution is shown in Fig. 15
(b).

Fig. 16 presents the crack propagation process from the simulation 
alongside the experimental results. The outcomes demonstrate that 
GPU-PFM accurately replicates the crack growth trajectory, confirming 

the robustness and reliability of the GPU-PFM model. It is worth noting 
that, unlike discrete methods, PFM, as a continuum-based approach, 
may predict a gradually expanding crack region over time, as exempli-
fied by the left-side crack in Fig. 16. This behavior aligns with findings 
reported in previously published studies (Ambati et al., 2015, Yang 
et al., 2024b) on PFM methodologies. Specifically, the observed crack 
initiation points on the center hole in the simulation are located at (33.5 
mm, 59.9 mm) and (46.5 mm, 51.5 mm), while the experimentally 
measured crack initiation points are (32.7 mm, 59.9 mm) and (46.2 mm, 
51.6 mm). The corresponding errors are 2.4 %, 0 %, 0.6 %, and 0.2 %, 
respectively, all within an acceptable range. Upon completion of the 
through-crack propagation, a notable difference in the displacement 
field between the upper and lower regions becomes evident (Fig. 16f). 
The lower region shows minimal displacement due to constraints, while 
the upper region, being unconstrained, experiences significantly larger 
displacements.

The accuracy of the adopted numerical algorithm is validated by 
comparing the simulation results of Case I with the corresponding 
experimental observations. Additionally, a comparative analysis be-
tween Case I and Case II, as illustrated in Fig. 17, allows for a deeper 
investigation into the fracture patterns of the specimen under different 
loading directions. In Case II, the introduction of a horizontal 
displacement component means that the resulting cracks are no longer 
solely attributed to tensile failure. The shear effect induced by the hor-
izontal displacement causes a pronounced inclination in the fracture 
paths, particularly on the right side of the specimen. The displacement 
fields and vectors shown in Fig. 18 and Fig. 19 further clarify the 
mechanisms by which different loading directions result in distinct 
fracture patterns.

Even before crack formation, the displacement distributions in Case I 
and Case II show significant differences (Fig. 18). Particular attention is 
given to Region I and Region II, where cracks are subsequently observed. 
In Case I, which is subjected solely to vertical tensile loading, the 
displacement field is relatively uniform, with displacements predomi-
nantly oriented in the vertical direction throughout the specimen, 
including both Region I and Region II. In contrast, Case II introduces a 
horizontal displacement component, which notably alters the displace-
ment directions. In Region I, the displacement direction shifts from the 
upper-left in Case I to the upper-right in Case II. The difference is even 

Fig. 17. (a) Schematic illustration of the notched plate with a central hole (Case II), showing a different loading direction compared to Fig. 15(a). (b–c) Simulated 
crack patterns for Case II under varying displacement levels. (d–e) Simulated crack patterns for Case I under varying displacement levels.
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more pronounced in Region II, where the upward displacement 
component observed in Case I nearly vanishes in Case II. This change is 
attributed to the horizontal displacement introducing a compressive 
effect in Region II, counteracting the vertical tensile effect and thereby 
suppressing the upward displacement in that area. This compensating 
effect persists even after cracks have formed in Region I (Fig. 19c), 
resulting in a delayed onset of cracking in Region II for Case II compared 
to Case I, as shown in Fig. 17(c and e).

3.4. KGD hydraulic fracturing test

The KGD model, proposed by Geertsma and De Klerk (1969), is a 
classical analytical solution for hydraulic fracture propagation in an 
impermeable, linear elastic medium under plane strain conditions. It 
combines linear elasticity, fracture mechanics, and lubrication theory to 
describe fluid-driven crack growth. Fig. 20 shows the schematic illus-
tration of the KGD hydraulic fracturing test adopted in this study. 
Fracture propagation can be classified as toughness-dominated or 
viscosity-dominated, depending on whether energy is primarily 
consumed by creating new fracture surfaces or by fluid viscous 

Fig. 18. Simulated results of the x- and z-components of the displacement field, as well as the displacement vectors, for Case II at applied displacements of ux =

0.04 mm and uz = 0.04 mm (a–c), and for Case I at uz = 0.04 mm (d–f).
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dissipation. When injecting low-viscosity Newtonian fluids such as 
water, the fracture typically remains in the toughness-dominated regime 
without transitioning from viscosity-dominated behavior (Bunger et al., 
2005). This study focuses on such toughness-dominated fractures, using 
the analytical expressions for fracture length and injection pressure 
provided in Bunger et al. (2005). 
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where q represents the injection flow rate, t is the time elapsed since 
injection began, and Kʹ denotes the plane strain modulus. The modulus 
Kʹ is given by: 

Kʹ = 4
̅̅̅
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π

√

KIC (47) 

where KIC is the mode-I fracture toughness and KIC = 1.88MPa • m0.5 in 

Fig. 19. Simulated results of the x- and z-components of the displacement field, as well as the displacement vectors, for Case II at applied displacements of ux =

0.72 mm and uz = 0.72mm (a–c), and for Case I at uz = 0.72 mm (d–f).
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this case.
The simulation setup is illustrated in Fig. 20. The model consists of a 

200 mm × 150 mm solid domain representing a typical brittle material 
(Aliha et al., 2016). The material properties are characterized by a 
Young’s modulus of E = 2.8GPa, a density of 1180 kg/m3, a Poisson’s 
ratio of v = 0.37, a critical energy release rate of Gc = 1079N/m, and a 
characteristic length of l0 = 1mm. The porosity and absolute perme-
ability of the solid are 0.01 and 3 × 10− 16 m2, respectively. The density 
and viscosity of water are 1000 kg/m3 and 10-6 m2/s, respectively, while 
those of air are 1 kg/m3 and 1.48 × 10-5 m2/s, respectively. The Biot’s 
coefficient is 1. A compressive stress of 1 MPa is applied along the x- 
direction, while the upper boundary is constrained in the z-direction to 
suppress rigid body motion caused by fluid injection. Water is intro-
duced through a tube positioned at the top surface, and an initial crack, 
10 mm in length and 1 mm in width, is pre-inserted at the center of the 
upper boundary. The mesh size is uniformly set to 0.125 mm across all 
materials. The injection velocity is specified as 0.8 m/s, corresponding 
to a volumetric flow rate of 0.0008 m3/s (Yang et al., 2024a). The 
simulation is conducted over a total duration of 0.1 s with a time step of 
1 × 10− 6 s.

Fig. 21 depicts a comparison of injection pressure at the injection 
point and fracture length across three approaches: the analytical solu-
tion (Bunger et al., 2005), prior PD simulations (Yang et al., 2024a), and 

the present model. At injection onset, fluid pressure rapidly builds up, 
reaching the fracture initiation threshold (8.6 MPa) at 4 ms. This peak 
marks fracture nucleation, triggering a sharp pressure drop due to sud-
den fracture opening. Subsequently, as injection continues, pressure 
briefly rises when fluid fills the new void space, then declines gradually 
alongside stable fracture extension. Critically, the fracture propagation 
rate decelerates over time, evidenced by the flattening slope in Fig. 21
(b), while the pressure decay rate moderates concomitantly (Fig. 21a).

Overall, fracture length and pressure evolution align well with both 
the analytical solution and prior PD results. In this study, the RMSE 
between the simulated and analytical injection pressure is 0.43 MPa, 
while that for the fracture length is 0.13 mm. Fig. 22 further illustrates 
this agreement by comparing fracture contours, fluid phase distribution, 
and pressure fields at four representative time instants between the 
present model and PD results, also demonstrating high consistency. 
Notably, the present model generates a smoother pressure profile than 
the PD approach, exhibiting reduced oscillations and superior numerical 
stability. The analytical solution, assuming a fully fluid-filled fracture, 
yields a monotonic pressure decrease, overlooking transient effects 
captured in our simulation. This contrast underscores our model’s 
capability to resolve dynamic fluid–structure interactions essential to 
hydraulic fracturing.

3.5. Three-dimensional two-phase hydraulic fracturing example

Fig. 23 further illustrates a three-dimensional two-phase hydraulic 
fracturing example, demonstrating the potential of the proposed algo-
rithm in coupling with the two-phase CFD. Note that this coupled al-
gorithm is implemented within the GPU-parallelized CFD-DEM software 
TFluid (https://www.t-fluid.com). It leverages the GPU-accelerated 
FVM framework in TFluid for solving two-phase flow in porous media, 
thereby achieving a unified GPU-accelerated FVM framework for the 
coupled two-phase CFD and PFM.

In this case, roller boundary conditions are applied in all three di-
rections, restricting displacement in the normal direction while allowing 
free movement in the tangential directions. The computational domain 
measures 0.8 m × 0.8 m × 0.2 m, with a through-hole along the z-axis 
located at the center of the domain, as shown in Fig. 23(b). The rest of 
the domain is solid. Initially, the hole is filled with air, and water is 
injected from the top of the hole at a velocity of 0.5 m/s.

The material properties are characterized by a Young’s modulus of 

Fig. 20. Schematic illustration of the KGD hydraulic fracturing test.

Fig. 21. Comparison of (a) injection pressure at the injection point and (b) fracture length among the analytical solution (Bunger et al., 2005), existing PD simulation 
results (Yang et al., 2024a), and the present study.
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E = 25GPa, a density of 2000 kg/m3, a Poisson’s ratio of v = 0.3, a 
critical energy release rate of Gc = 50N/m, and a characteristic length of 
l0 = 2mm. The porosity of the solid is 0.5. The Biot’s coefficient is 1. The 
fluid properties, including the density and viscosity of both water and 
air, are consistent with those employed in the preceding KGD test. The 
van Genuchten (Van Genuchten, 1980) model shown in Eqs. (22)–(24) is 
chosen as the permeability model, with a permeability coefficient k0 of 
1 × 10-14 m2 and a non-dimensional coefficient m of 0.99.

As fractures are expected to form in the central region along the x- 
direction, the mesh in this area is refined in a stepwise manner, with the 
finest grid size reaching 2.5 mm. In the y and z directions, a uniform 
mesh is employed, also with a grid size of 2.5 mm. The model consists of 
1.55 million mesh elements, and the time step is set to 0.005 s. Given the 
transient nature of the simulation, the maximum number of iterations 
for the PFM is limited to 1. The average computational time per time 
step is 1.95 s using the RTX 3060Ti, with approximately 0.61 s allocated 
to the two-phase CFD component, which includes the porous media 
module, and 1.34 s dedicated to the PFM component. The PFM 
computation time is 2.2 times that of the CFD component, making it the 
primary performance bottleneck of the coupled two-phase CFD-PFM 

algorithm.
Performance analysis indicates that the high computational cost of 

PFM mainly arises from solving four equations: three displacement 
equations and the phase-field equation. Additionally, the strain 
decomposition process further contributes to the overall computational 
burden. Notably, increasing the number of maximum PFM iterations 
would lead to a significant rise in PFM computation time, making it the 
dominant factor in the overall performance of the coupled two-phase 
CFD-PFM algorithm. Consequently, GPU acceleration for PFM is 
crucial for efficiently solving two-phase hydraulic fracturing problems, 
substantially improving the computational efficiency of the coupled 
two-phase CFD-PFM framework.

Hydraulic fracturing involves complex physical phenomena, 
including two-phase flow, porous flow, solid mechanics, and fracture 
propagation. However, in existing simulations, two-phase flow and 
porous flow are often approximated as an equivalent pressure to 
simplify computations and avoid solving the Navier-Stokes (N-S) equa-
tions (Zhou et al., 2018, Lu et al., 2025). While this simplification re-
duces computational costs, it fails to accurately capture the distribution 
of fluid phase fractions and flow velocities. In contrast, the application of 

Fig. 22. Fracture development and fluid infiltration at various time steps. (a) Fracture and fluid phase contours from PD simulations (Yang et al., 2024a); (b–d) 
Results from the present simulation showing fracture contours (b), fluid phase distribution (c), and pressure field (d), respectively.
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the coupled two-phase CFD-PFM algorithm can overcome this limitation 
while significantly enhancing computational efficiency.

Fig. 24 illustrates the variations in fluid phase distribution and ve-
locity during the 3D hydraulic fracturing process. As the fracture 

propagates, significant changes in the fluid velocity field are observed. 
At 0.5 s, water has not yet fully filled the initial fracture, resulting in the 
formation of noticeable vortices within the trapped air. By 6 s, the 
fracture is filled with water, which begins to permeate into the 

Fig. 23. Schematic illustration of the two-phase hydraulic fracturing example: (a) three-dimensional model; (B) cross section A-A in (a).

Fig. 24. 3D evolution of the fluid profile (a-c) and crack profile (d), with arrows indicating the fluid velocity vectors. The water profile and crack profile are defined 
by the contours at a water fraction of 0.5 and a phase field value of 0.9, respectively.
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surrounding solid. As water infiltration progresses, the fracture gradu-
ally expands. At 12 s, the fracture has visibly widened, and new vortices 
emerge within it.

Fig. 25 further presents the streamlines of fluid velocity and solid 
displacement. It is evident that in the region surrounding the fracture, 
the displacement streamlines closely align with the fluid velocity 
streamlines. However, near the boundaries, the direction of the 
displacement streamlines is more significantly influenced by the 
constraints.

Combining Fig. 24 and Fig. 25, this evolving fluid velocity field 
provides a critical foundation for further exploration of the complex 
mechanisms underlying hydraulic fracturing.

Fig. 26 and Fig. 27 illustrate the phase field, water volume fraction 
field, and pressure field at 0.5 s, 6 s, and 12 s on the top surface and on 
the half section, respectively. As time progresses, the fluid initially in-
filtrates the fracture until it is filled and subsequently penetrates into the 
solid. The resulting permeability-induced drag force causes the solid to 
displace, and once a critical state is reached, the fracture begins to 
propagate. Due to space constraints, details of the coupled CFD-PFM 
algorithm and more verification examples will be presented in future 
work. Here, this example serves solely to demonstrate the potential of 
the proposed GPU-PFM algorithm in three-dimensional models and 
multiphysics simulations.

4. Conclusions

This work presents an original full-process GPU-parallel FVM 
framework for solving phase field methods (PFM) to simulate cracks. 
First, the theory of phase field methods and the FVM-based phase field 
solution framework are introduced in detail. Based on this framework, 
we implemented GPU parallelization for mesh post-processing, dis-
cretization and assembly of the governing equations, linear system 
solvers, and iterative algorithms, and provided a detailed description of 
the algorithm’s implementation process. The full GPU parallelization 
was achieved for the entire process, excluding mesh reading and result 
exporting, to fully utilize the computational power of the GPU, avoiding 
frequent data exchange between the CPU and GPU during the compu-
tation. Three classical test cases were used to verify the accuracy of the 
GPU-parallel FVM framework in solving phase field methods, including 
the single-edge notched tension test, the L-shaped panel test, and the 
notched plate with a hole. Two two-phase hydraulic fracturing examples 
are further conducted to showcase its potential for three-dimensional 
models and coupling with two-phase CFD. In particular, the perfor-
mance of GPU and CPU in the single-edge notched tension test was 
compared in detail, and the acceleration ratio of the GPU was tested for 
cases with different numbers of mesh. The results show that GPU par-
allelization is more suitable for large-scale cases with over 2 million 
grids. For cases with fewer than 2 million grids, the acceleration ratio 

Fig. 25. Streamlines of fluid velocity (a-c) and solid displacement (d-f) on top surface.
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decreases with the number of grids, and especially in cases with only 
hundreds of thousands of grids, the GPU’s computational power cannot 
be fully utilized. When the grid number exceeds 2 million, the tested 
RTX 3060Ti GPU is equivalent to 15 AMD® Ryzen® CPU R7-5800X 
cores, or 120 CPU cores in total. Based on this equivalence, the hard-
ware cost of GPU parallelization is only 6 % of that for CPU paralleli-
zation, given the same computational power.

Therefore, utilizing full-process GPU parallelization can significantly 
reduce the computational cost of simulations and expand the application 
scope of the algorithm, such as enabling larger-scale simulations, more 
complex physical models, and even coupling various algorithms (e.g., 
computational fluid dynamics and phase field methods) within a unified 

GPU-parallel framework for more accurate and realistic multiphase 
hydraulic fracturing simulations.

The high efficiency and scalability of the full-process GPU-paral-
lelized FVM framework provide strong support for its application in 
industrial scenarios, such as hydraulic fracturing and CO2 fracturing in 
the energy sector, while also paving a feasible path for future real-time 
simulations. Moreover, since artificial intelligence (AI) relies on GPU 
computation, the proposed framework can leverage the same hardware 
to rapidly generate large volumes of training data for AI models. This not 
only reduces the cost of data collection from experiments and engi-
neering applications but also minimizes the expenses associated with 
acquiring CPU-based supercomputing resources.

Fig. 26. Phase field, volume fraction field of water, and pressure field at 0.5 s, 6 s, and 12 s on the top surface.

T. Yu et al.                                                                                                                                                                                                                                       Computers and Geotechnics 187 (2025) 107481 

24 



However, this method also faces the common limitation of other 
GPU-parallel methods, namely, memory constraints. Currently, a GPU- 
PFM simulation with 1 million grids requires 1.2 GB of GPU memory, 
so even with the RTX 4090 GPU, only up to 20 million grids can be 
computed. Future work will focus on developing multi-GPU parallel 
algorithms to overcome this limitation. Further extensions of this 
method, such as coupling with CFD methods, will be examined and 
discussed in greater detail in future studies.
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