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A B S T R A C T

Handling contact problems in the Material Point Method (MPM) has long been a challenge.
Traditional grid-based contact approaches often face issues with mesh dependency, while
material point-based methods can be computationally intensive. To address these challenges,
this study develops a novel mortar segment-to-segment frictional contact approach for MPM.
We first introduce boundary vertices and propose an innovative kinematic update scheme
for precise representation of the boundaries of the continuum media and their continuously
evolving contact normals throughout the contact process. Then, we construct a weak form
of contact constraints based on the mortar method to facilitate a stable segment-to-segment
contact detection. To rigorously ensure the non-penetration condition, the energetic barrier
method is further adopted and implemented in MPM for enforcing the contact constraints. The
proposed kinematic update scheme for boundary vertices is first verified through a cantilever
beam benchmark test. The verified framework is further examined through a wide range of
contact scenarios, including rolling, sliding, collision of two rings, and multi-body contacts, in
both small and finite deformations. The simulation results are thoroughly discussed, highlighting
the significant improvements in accuracy and versatility. Potential limitations of the proposed
method are also examined.

1. Introduction

Since its first introduction by Sulsky et al. [1,2] nearly three decades ago, MPM has evolved as a powerful and versatile
computational tool for modeling complex engineering problems involving large deformations, where traditional finite element
method (FEM) often struggles, like capturing the distinctive behavior of granular media [3–6], modeling snow anticrack formation
and avalanche dynamics [7–10], complex solid-to-fluid transition of granular materials [11,12], fluid flow simulations [13–17], and
the intricate hydro-mechanical coupling in porous media [18–25]. This success is largely attributed to the inherent flexibility of
its innovative dual discretization: a Lagrangian description that represents the continuum using a set of material points tracked
throughout the calculation, and a background grid employed to efficiently solve the continuum equations [26–28]. However,
accurately modeling contact scenarios remains a prevalent challenge in MPM, limiting its applicability in various engineering
problems where contact interactions play a crucial role.

Due to the single-value velocity field of the background mesh, MPM can naturally handle non-slip and impenetration interactions
between different objects. However, this inherent feature can hardly account for free separation and frictional contact, thus falling
short in comprehensively handling contact mechanics. The contact algorithm for MPM is pioneered by Bardenhagen et al. [29,30].
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In this approach, the nodal velocity field of a specific body is compared with the combined nodal velocities from multiple bodies,
and the nodes that exhibit influences from multiple bodies are identified as contact nodes. Owing to its straightforward and
efficient nature, this grid-based contact strategy is followed by many [31–35] to gradually improve the performance of MPM
contact. Nevertheless, these grid-based contact algorithms exhibit several noteworthy limitations. Firstly, they suffer from the
issue of mesh dependency where contact is incorrectly detected due to shared influencing nodes, even when actual contact does
not occur [36,37]. This issue is particularly prevalent in MPM variants with larger support domains, e.g., B-spline MPM [38,39],
CPDI [40,41]. Additionally, these methods often rely on mass or volume gradients to estimate the contact normal, which can lead
to inaccuracies due to evolving particle positions and their distribution. Furthermore, accurately resolving contact in quasi-static
cases is highly challenging, as the velocity variation is negligible [36,37,42].

In recent years, there has been a growing trend of using material points themselves or alternative representations to determine
the contact surface. For instance, Nairn et al. [37] employs a statistical model, logistic regression (LR), to distinguish point clouds
of contacting bodies and construct contact normal vectors. Although accurately retrieving contact pressures and areas remains
challenging in scenarios involving small deformations between stiff objects, this approach largely mitigates the aforementioned
limitations of grid-based contact methods. Chen et al. [36] and de Vaucorbeil and Nguyen [43], following the principles of the
Discrete Element Method (DEM), directly utilize material points from contacting bodies to establish point-to-point contacts and
evaluate the contact response. This approach offers an effective and intuitive pathway. However, it also inherits the computationally
intensive nature of DEM, with the contact cost potentially scaling as (𝑛2), where 𝑛 denotes the number of material points.

lternatively, Liu and Sun [44] introduces a level-set approach to identify an unbiased contact surface and generate the contact gap
unction. Guilkey et al. [42] defines the contact domain continuum using boundary material points and employs a penalty method for
ontact forces. Coupling MPM with methods like DEM also presents an alternative for modeling multi-body interactions, particularly
n scenarios involving both soft and rigid bodies [45,46]. However, our focus remains on MPM-specific contact algorithms, and these
ybrid approaches are out the scope of the current study.

In this study, we propose an innovative mortar segment-to-segment frictional contact approach for MPM to accurately model a
road range of contact problems in either small to finite deformations, including rolling, sliding, collision and multi-body contacts.
rawing inspiration from the prior work of Guilkey et al. [42], we introduce a set of boundary vertices and corresponding line

egments to precisely represent the boundaries of the contact domain and their contact normals. To account for the dynamically
volving contact geometry, we propose the weighting function augmentation and a new kinematic update scheme tailored for these
oundary vertices to improve their interpolation with the background mesh. With the boundary segments, we employ the mortar
ethod, which has demonstrated substantial efficacy in other continuum methods [47–51], to construct segment-to-segment contact
etection between bodies in potential contact, bypassing the reliance on grid-based velocity fields. This treatment converts the strong,
ointwise contact constraints to a weak form across contact interfaces, offering more stable and robust predictions for the contact
esponse. Finally, we deploy an energetic barrier method to rigorously enforce the non-penetration constraint without introducing
enalty parameters. In fact, the barrier method is gaining popularity as an approach for coupling MPM with other methods, such as
PM-FEM [46], MPM-DEM [52], coupled MPM and level set methods [53], as well as in soil–structure interactions modeling [54].

The paper is organized as follows: Section 2 describes the formulations of MPM. Section 3 presents rigorous details of the proposed
ontact algorithm, including the introduction of boundary vertices, mortar method-based discretization, contact enforcement via
he barrier method, as well as the complete computational procedure, while Section 4 demonstrate the capabilities of the proposed
ontact algorithm through several examples. The paper concludes in Section 5. Throughout this work, the following notation is
dopted: subscript 𝑝, 𝐼 and 𝑣 denote the variables associated with material point, grid node and boundary vertex respectively; □̇
nd □̈ represent first and second-order material time derivatives; ⊗ indicates the dyadic product; ⋅ and ∶ denote single and double
ontraction of tensor indices, respectively.

. Formulation of MPM

.1. Governing equations

As illustrated in Fig. 1, we consider two deformable bodies denoted as the slave body 𝑠 and the master body 𝑚, undergoing
arge deformations and contact interaction. Their current configurations are represented by 𝑡

𝑠 and 𝑡
𝑚, respectively. The boundaries

f each body include the contact surfaces 𝛤 𝑠
𝑐 for the slave and 𝛤𝑚

𝑐 for the master, along with the Dirichlet boundary 𝛤𝑑 , and the
eumann boundary 𝛤𝑡. The kinematics and deformation of each continuum body in its current configuration are governed by the
onservation of momentum, expressed as follows:

D𝜌
D𝑡

= 0, (1)

𝜌𝒂 = ∇ ⋅ 𝝈 + 𝜌𝒈, (2)

where 𝜌 is the density, 𝒂 denotes the acceleration, 𝝈 is the Cauchy stress tensor, and 𝒈 is the gravitational acceleration. In MPM,
he continuum domain is discretized into a number of Lagrangian material points which carry mass, momentum, and other internal
ariables, e.g., deformation gradient 𝑭 . Since these material points retain their mass throughout the computation, the conservation
2

f mass is automatically satisfied.
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Fig. 1. Illustration of contact analysis in large deformation.

Following the standard weighted residual procedure, the momentum conservation can be written in below the variational form:

∫𝛺
𝜌𝒂 ⋅ 𝛿𝒗 𝑑𝛺 + ∫𝛺

𝝈 ∶ ∇𝛿𝒗 𝑑𝛺 = ∫𝛺
𝜌𝒈 ⋅ 𝛿𝒗 𝑑𝛺 + ∫𝛤𝑐

𝒕𝑐 ⋅ 𝛿𝒗 𝑑𝑆 + ∫𝛤𝑡
𝒕 ⋅ 𝛿𝒗 𝑑𝑆, (3)

where 𝛿𝒗 is an admissible velocity field variation, 𝒕𝑐 and 𝒕 denotes the contact traction and the ordinary boundary traction,
respectively. Herein, we distinguish the contact traction from the other forms of boundary traction for better clarity.

2.2. Particle to grid interpolation

In this study, the updated Lagrangian formulation is adopted. At the beginning of each step, the mass and momentum of each
particle are mapped to the background grid to obtain the nodal velocity. In the current work, the APIC scheme proposed by
Jiang et al. [55,56] is adopted. This scheme considers the affine velocity field of material points and also transfers them onto
the background mesh, realizing more stable simulations and overcoming the dissipation of angular momentum in PIC:

𝑚𝐼 =
𝑛𝑝
∑

𝑝=1
𝑆𝐼𝑝𝑚𝑝, (4)

𝒑𝑡𝐼 =
𝑛𝑝
∑

𝑝=1
𝑆𝐼𝑝𝑚𝑝

(

𝒗𝑡𝑝 + 𝑩𝑡
𝑝 ⋅ (𝑫

𝑡
𝑝)

−1 ⋅ (𝒙𝐼 − 𝒙𝑡𝑝)
)

, (5)

𝒗𝑡𝐼 =
𝒑𝑡𝐼
𝑚𝐼

, (6)

where 𝑚𝐼 , 𝒑𝑡𝐼 , and 𝒗𝑡𝐼 represent the mass, momentum, and velocity of node 𝐼 , respectively, 𝑛𝑝 is the number of material points,
𝑆𝐼𝑝 ∶= 𝑆𝐼 (𝒙𝑡𝑝) is the nodal weighting function evaluated at 𝒙𝑡𝑝 [57], and 𝑩𝑡

𝑝 and 𝑫𝑡
𝑝 are two additional material point properties

related to the surrounding velocity field that are defined as follows:

𝑩𝑝 =
𝑛𝑝
∑

𝑝=1
𝑆𝐼𝑝𝒗𝑝 ⊗

(

𝒙𝐼 − 𝒙𝑝
)

, (7)

𝑫𝑝 =
𝑛𝑝
∑

𝑝=1
𝑆𝐼𝑝

(

𝒙𝐼 − 𝒙𝑝
)

⊗
(

𝒙𝐼 − 𝒙𝑝
)

. (8)

These two matrices are update at the end of each step as shown later in Eq. (25) and (26). It is noted that Nakamura et al.
58] recently presents a variant of the APIC scheme named Taylor-PIC (TPIC), which combines affine velocity fields based on the
irst-order Taylor series approximation with traditional PIC transfer, i.e.,

𝒑𝐼 =
𝑛𝑝
∑

𝑝=1
𝑆𝐼𝑝𝑚𝑝

(

𝒗𝑝 + ∇𝒗𝑝 ⋅ (𝒙𝐼 − 𝒙𝑝)
)

. (9)

It is expected that this alternative method can yield similar result as APIC and is not explored in this work.
3
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2.3. Deformation and stress update

Using the nodal velocity, the velocity gradient 𝑳 and deformation gradient 𝑭 for each material point can be updated as follows:

𝑳𝑡
𝑝 =

𝑛𝑛
∑

𝐼=1
∇𝑆𝐼𝑝𝒗𝑡𝐼 , (10)

𝑭 𝑡
𝑝 = (𝛥𝑡𝑳𝑡

𝑝 + 𝑰)𝑭 𝑡−1
𝑝 , (11)

where 𝑰 is the identity matrix and ∇𝑆𝐼𝑝 ∶= ∇𝑆𝐼 (𝒙𝑡𝑝) denotes the gradient of the weighting function.
Employing linear elastic models, the Cauchy stress for each particle can be computed incrementally as follows:

𝛥𝜺𝑡𝑝 =
1
2
𝛥𝑡

(

𝑳𝑡
𝑝 +𝑳𝑡

𝑝
𝑇
)

, (12)

𝝈𝑡
𝑝 = 𝝈𝑡−1

𝑝 + D ∶ 𝛥𝜺𝑡𝑝, (13)

where D is the elastic tensor. In the case of finite deformations with significant rigid rotations, an appropriate objective stress rate
should be used. By employing the Jaumann stress rate [59], i.e., 𝝈▿𝐽 = 𝝈̇ + 𝝈 ⋅𝑾 −𝑾 ⋅ 𝝈, the Cauchy stress can then be computed
by integrating over time as follows:

𝝈𝑡
𝑝 = 𝝈𝑡−1

𝑝 + D ∶ 𝛥𝜺𝑡𝑝 + 𝛥𝑡(𝑾 𝑡
𝑝 ⋅ 𝝈

𝑡−1
𝑝 − 𝝈𝑡−1

𝑝 ⋅𝑾 𝑡
𝑝), (14)

where 𝑾 𝑡
𝑝 is the skew part of the velocity gradient, commonly denoted the spin tensor, and is computed as below:

𝑾 𝑡
𝑝 =

1
2

(

𝑳𝑡
𝑝 −𝑳𝑡

𝑝
𝑇
)

. (15)

Regarding the material point domain, various update schemes are available, including static domain (uGIMP), deformation
proportional to det(𝑭 ) [57], updates based on principal components of the deformation gradient 𝐹𝑖𝑖 [40], and updates using principal
components of the stretch tensor 𝑈𝑖𝑖 [60]. Given that static domains (uGIMP) can hardly handle volume changes, and updating with
𝐹𝑖𝑖 can cause domains to diminish under large rotations (see [40]), we resort to the diagonal components of the stretch tensor 𝑈𝑖𝑖
for particle domain updates. This approach is particularly suitable for cases involving potential large deformations, rotations, and
complex interactions among deformable bodies during contact interaction.

𝑙𝑡𝑖 = 𝑈 𝑡
𝑖𝑖𝑙

0
𝑖 , (𝑖 = 𝑥, 𝑦 and no implied sum on 𝑖) (16)

where 𝑙𝑖 denotes the material point extend along the 𝑖-direction, 𝑈𝑖𝑖 represents the diagonal components of the stretch tensor which
associated with the deformation gradient via 𝑼 =

(

𝑭 𝑇𝑭
)

1
2 [4].

2.4. Grid update

After discretization, the weak form of the momentum equation (Eq. (3)) can be expressed on the background mesh as follows:

𝒑̇𝐼 = 𝒇 int
𝐼 + 𝒇 ext

𝐼 + 𝒇 con
𝐼 + 𝒇damp

𝐼 (17)

with

𝒇 int
𝐼 = −

𝑛𝑝
∑

𝑝=1
𝝈𝑝 ∶ ∇𝑆𝐼𝑝𝑉𝑝, (18)

𝒇 ext
𝐼 =

𝑛𝑝
∑

𝑝=1
𝑚𝑝𝒃𝑆𝐼𝑝 + ∫𝜕𝛺

𝑁𝐼 𝒕 𝑑𝑆, (19)

𝒇damp
𝐼 = −𝛼damp𝑚𝐼

√

𝐸
𝜌ℎ2

𝒗𝑡𝐼 . (20)

Here, 𝒇 int
𝐼 and 𝒇 ext

𝐼 are the internal and external nodal forces, respectively, and 𝒇 con
𝐼 denotes the contact force, which will be

detailed in Section 3. Additionally, a damping force [50] is considered to reduce stress fluctuations in modeling quasi-static problems.
Here, 𝛼damp is a non-dimensional damping coefficient, ℎ is the element width of the background mesh, and 𝐸 and 𝜌 are the Young’s
modulus and density of the material being modeled, respectively. Note that, multi-layer background mesh is adopted in current
study which permits interpenetration between two colliding objects if 𝒇 con

𝐼 is not evaluated.

2.5. Kinematic update

Upon obtaining the nodal solution for the momentum equation (Eq. (17)), the updated nodal information is transferred back to
the material points for facilitating the update of their respective positions and velocities. The particle velocity is updated as follows:

𝒗𝑡+1 = 𝛼 𝒗𝑡+1 + (1 − 𝛼 )𝒗𝑡+1, (21)
4
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𝒗𝑡+1pic =
𝑛𝑛
∑

𝐼=1
𝒗𝑡+1𝐼 𝑆𝐼𝑝, (22)

𝒗𝑡+1flip =𝒗𝑡𝑝 + 𝛥𝑡
𝑛𝑛
∑

𝐼=1
𝒂𝑡+1𝐼 𝑆𝐼𝑝, (23)

where 𝑛𝑛 is the number of nodes, 𝒗𝑡+1𝐼 represents the updated velocity at node 𝐼 . The terms 𝒗pic and 𝒗flip represent the updated particle
velocities based on the PIC [61] and FLIP [62] schemes, respectively, and 𝛼pic denotes the proportionate contribution of the PIC
velocity within this linear combination. The PIC scheme directly employs nodal velocities to overwrite the existing particle velocities,
providing better numerical stability but with excessive energy dissipation [63]. In contrast, the FLIP method incrementally updates
the material point velocities using nodal accelerations, mitigating the issue of energy dissipation at the expense of introducing
computational noise and potentially reducing stability [63]. The combination of these two approaches aims to inherit their respective
advantages.

The material point position, 𝒙𝑝, is updated based on the convection of the background mesh:

𝒙𝑛+1𝑝 = 𝒙𝑛𝑝 + 𝛥𝑡
𝑛𝑛
∑

𝐼=1
𝒗𝑡+1𝐼 𝑆𝐼𝑝. (24)

Lastly, the affine matrices 𝑩𝑡+1
𝑝 and 𝑫𝑡+1

𝑝 used in APIC scheme are updated as follows [55,56,64]:

𝑩𝑡+1
𝑝 =

𝑛𝑛
∑

𝑝=1
𝑆𝐼𝑝𝒗𝑡+1𝑝 ⊗

(

𝒙𝐼 − 𝒙𝑡𝑝
)

, (25)

𝑫𝑡+1
𝑝 =

𝑛𝑛
∑

𝑝=1
𝑆𝐼𝑝

(

𝒙𝐼 − 𝒙𝑡𝑝
)

⊗
(

𝒙𝐼 − 𝒙𝑡𝑝
)

. (26)

3. Contact algorithm

3.1. Boundary vertex

One pivotal prerequisite for effectively resolving the contact interaction is the precise identification of the boundary for each
body potentially in contact. Previous grid-based contact algorithms rely on the background grid, where the momentum equation
is solved, for contact detection, exhibiting a dependency on the mesh resolution. To address this, we introduce boundary vertices
to represent the surface of the continuous body with desired accuracy, as shown in Fig. 2. Unlike internal material points, these
boundary vertices do not carry state variables such as volume, mass, stress, or strain. Instead, they are designed to move with
the continuum body in a conforming manner and serve to delineate the boundary of the domain solely. This treatment not only
facilitates precise contact detection and determination of the contact normal vector but also aids in enforcing contact forces and
other generic types of Neumann boundary conditions shown in Fig. 1.

3.1.1. Augmented weighting function
Due to the dual representation (i.e., particles and background mesh) in MPM, the boundary vertices still rely on the weighting

function to interact with the background mesh, including imposing contact constraints and updating their own kinematics. Similar
to ordinary material points, we define the unmodified weighting function for a boundary vertex as 𝑆𝐼𝑣 ∶= 𝑆𝐼 (𝒙𝑣), where 𝒙𝑣 is the
coordinate of a boundary vertex. As shown in Fig. 2, the support of the weighting functions for the boundary vertices can extend
beyond the physical domain of the body and be larger than those of all material points. This mismatch results in several fringe
nodes, which only interact with the boundary vertices but are null in any physical field like mass and momentum. Consequently,
involving those fringe nodes in the mapping would inevitably lead to erroneous or unstable computations.

To address this issue, we propose an augmented weighting function for the data transfer between the boundary vertex and the
mesh, expressed as:

𝑆̄𝐼𝑣 =
𝑆𝐼𝑣𝑚𝐼

∑𝑛𝐼
𝐼 𝑆𝐼𝑣𝑚𝐼

. (27)

Here, 𝑆̄𝐼𝑣 represents the augmented weighting function, and 𝑚𝐼 is the nodal mass. This augmentation strategically uses the nodal
ass to truncate its support, effectively preventing it from extending beyond the physical domain, while simultaneously maintaining

ompliance with the partition of unity requirement. Although the velocity modification reported by Guilkey et al. [42] could achieve
similar purpose, our proposed method offers a more foundational improvement, as the augmented weighting functions can also
5

e utilized for other purposes, such as distributing concentrated forces from the vertex to associated nodes.
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Fig. 2. Schematic of boundary vertices and their supporting domain in standard MPM.

.1.2. Affine kinematic update
Since these boundary nodes do not carry mass, they cannot directly apply the APIC update scheme [55,56] as the internal

aterial points do (see Eq. (5)). This limitation could lead to an increasing discrepancy in their configuration against the continuum
omain, especially in the presence of large rotations, as demonstrated in Section 4.1. To address this discrepancy and ensure that
he boundary vertices move in alignment with internal material points, we propose a new affine-type kinematic update scheme for
he boundary vertices.

Firstly, we approximate the angular velocity field for a node via a weighted average of the angular velocities of neighboring
aterial points:

𝝎𝑡
𝐼 = 1

𝑚𝐼

𝑛𝑝
∑

𝑝
𝑆𝐼𝑝𝝎𝑡

𝑝𝑚𝑝, (28)

where 𝝎𝑡
𝑝 is the angular velocity of material point 𝑝, obtained from the spin tensor (Eq. (15)), and 𝝎𝑡

𝐼 represents the effective
angular velocity at node 𝐼 , calculated as a weighted average. While a more mathematically rigorous approach could involve using
the moment of inertia, the current choice provides a sufficiently accurate result and does not require determining an additional
nodal quantity.

Upon obtaining the nodal angular velocity field, the velocity of a boundary vertex 𝒗𝑡+1𝑣 is then determined based on 𝒗𝐼 and 𝝎𝑡
𝐼 ,

taking into account the surrounding affine velocity field and following the core idea of APIC transfer:

𝒗𝑡+1𝑣 =
𝑛𝐼
∑

𝐼
𝑆̄𝐼𝑣

(

𝒗𝑡𝐼 + 𝝎𝑡
𝐼 × (𝒙𝑡𝑣 − 𝒙𝐼 )

)

, (29)

𝒙𝑡+1𝑣 = 𝒙𝑡𝑣 + 𝒗𝑡+1𝑣 𝛥𝑡. (30)

As will be demonstrated later, this new update scheme, together with the weighting function augmentation, effectively handle
the motion of boundary vertices, ensuring their alignment with the overall deformation of the material body, even in simulations
involving large rotations, and laying a solid foundation for the subsequent contact detection and enforcement.

3.2. Contact constraint

We define a gap function 𝑔(𝒙𝑠, 𝑡) on the slave surface (note that the master and slave surfaces can be defined interchangeably)
as the fundamental measure of the distance between the slave and master bodies in their current configuration (Fig. 3(a)). The gap
function is defined as follows:

̄

6

𝑔(𝒙𝑠, 𝑡) = −𝒏(𝒙𝑠) ⋅ (𝒙𝑠 − 𝒙𝑚), (31)
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Fig. 3. Schematic of segment-to-segment contact in MPM: (a) contact detection between master body and slave body, (b) unit normal vector 𝒏 on the slave
surface (c) numerical integration for each mortar segment.

where 𝒏 is the outward unit normal vector at 𝒙𝑠 on the slave surface, and 𝒙̄𝑚 denotes the projection of 𝒙𝑠 onto the master surface
long 𝒏. The negative sign is added to ensure that the gap function is positive when non-penetration condition is hold.

The contact between two deformable bodies follows the classical Karush–Kuhn–Tucker (KKT) conditions, which can be stated
s:

𝑔(𝒙𝑠, 𝑡) ≥ 0, Impenetrability (32)

𝑡𝑐𝑛(𝒙𝑠, 𝑡) ≤ 0, Non-tension (33)

𝑔 ⋅ 𝑡𝑐𝑛 = 0, Complementarity (34)

here 𝑡𝑐𝑛 is the normal component of contact pressure 𝒕𝑐 , which must be non-positive (indicating compression) when contact occurs.
To enforce the contact constraint, we introduce a Lagrange multiplier and use it to represent the negative of the contact traction:

𝝀 = 𝜆𝑛𝒏 + 𝜆𝜏𝝉 = −𝒕𝑐 , (35)

here 𝝉 is the unit shear vector as shown in Fig. 1.
Substituting the Lagrange multiplier into Eq. (32) and integrating over the slave surface, we obtain the weak form of the

mpenetration condition as follows:

∫𝛤 𝑠
𝑐

𝛿𝜆𝑛𝑔(𝒙𝑠, 𝑡)d𝛤 ≥ 0, ∀𝛿𝜆𝑛 ∈ 𝛿𝛬 (36)

here 𝛿𝛬 denotes the test space for the variation 𝛿𝜆𝑛.

.3. Spatial discretization

Following the standard FEM discretization, the gap can be interpolated by the displacement on the slave and master surfaces,
hich can be expressed as:

𝑔(𝒙𝑠) = 𝒏𝑠(𝒙𝑠) ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
𝑁𝑖(𝒙𝑠)𝒙𝑖 −

𝑛𝑚𝑣
∑

𝑗=1
𝑁𝑗 (𝒙̄𝑚)𝒙𝑗

⎤

⎥

⎥

⎦

, (37)

here 𝑛𝑠𝑣 and 𝑛𝑚𝑣 are the numbers of boundary vertices on the slave and master surfaces, respectively, 𝒙□ represents the coordinate
f boundary vertex and 𝑁□ is the standard linear shape function.

Likewise, the Lagrange multiplier defined on the slave surface can be discretized in terms of the nodal values. As reported
n [49,65], different basis functions can be chosen for the Lagrange multiplier to form dual Lagrange interpolation, which could
mprove the condition of the system matrix. Since the current study focuses on explicit MPM without intensive matrix operations,
dopting standard FEM shape functions that are identical to those used in the displacement interpolation is considered sufficient:

𝝀(𝒙𝑠) =
𝑛𝑠𝑣
∑

𝑁𝑘(𝒙𝑠)𝝀𝑘, (38)
7
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By substituting the displacement and Lagrange multiplier expressions into the weak form of the non-penetration condition
utlined in Eq. (36) and interchanging the integral and summation, we obtain the discretized condition, which is expressed as
ollows:

∫𝛤 𝑠
𝑐

𝑔(𝒙𝑠, 𝑡)𝛿𝜆𝑛d𝛤 ≥ 0

= ∫𝛤 𝑠
𝑐

𝒏𝑠(𝒙𝑠) ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
𝑁𝑖(𝒙𝑠)𝒙𝑖 −

𝑛𝑚𝑣
∑

𝑗=1
𝑁𝑗 (𝒙̄𝑚)𝒙𝑗

⎤

⎥

⎥

⎦

𝑛𝑠𝑣
∑

𝑘=1
𝑁𝑘(𝒙𝑠)𝛿𝜆𝑛𝑘d𝛤

=
𝑛𝑠𝑣
∑

𝑘=1
𝒏𝑠(𝒙𝑠) ⋅

⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑖(𝒙𝑠)𝒙𝑖d𝛤 −
𝑛𝑚𝑣
∑

𝑗=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑗 (𝒙̄𝑚)𝒙𝑗d𝛤
⎤

⎥

⎥

⎦

𝛿𝜆𝑛𝑘 ≥ 0

(39)

Considering the arbitrariness of 𝛿𝜆𝑛𝑘 at all boundary vertices 𝑘 ∈ [1, 2,… , 𝑛𝑠𝑣], the above equation can be reformulated as a discrete
gap for a single boundary vertex 𝒙𝑘 as:

𝑔𝑘 = 𝒏𝑘 ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑖(𝒙𝑠)𝒙𝑖d𝛤 −
𝑛𝑚𝑣
∑

𝑗=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑗 (𝒙̄𝑚)𝒙𝑗d𝛤
⎤

⎥

⎥

⎦

= 𝒏𝑘 ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
𝐷𝑘𝑖𝒙𝑖 −

𝑛𝑚𝑣
∑

𝑗=1
𝑀𝑘𝑗𝒙𝑗

⎤

⎥

⎥

⎦

≥ 0, 𝑘 ∈ [1, 2,… , 𝑛𝑠𝑣]

(40)

Here, the continuous normal vector 𝒏𝑠(𝒙𝑠) is replaced with a discrete vertex value 𝒏𝑘. As shown in Fig. 3(c), 𝒏𝑘 can be evaluated
as:

𝒏𝑘 =
𝒏1𝑘𝑙1 + 𝒏2𝑘𝑙2

‖𝒏1𝑘𝑙1 + 𝒏2𝑘𝑙2‖
, (41)

where 𝒏□𝑘 and 𝑙□ are, respectively, the outward normal vector and the length of line segment connected to boundary vertex 𝑘 as
shown in Fig. 3(c). While 𝐷𝑘𝑖 and 𝑀𝑘𝑗 are components of the mortar matrices  ∈ R𝑛𝑠𝑣×𝑛

𝑠
𝑣 and  ∈ R𝑛𝑠𝑣×𝑛

𝑚
𝑣 , respectively, which are

defined as:

𝐷𝑘𝑖 = ∫𝛤 𝑠
𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑖(𝒙𝑠)d𝛤 , for 𝑘, 𝑖 ∈ [1, 2,… , 𝑛𝑠𝑣] (42)

𝑀𝑘𝑗 = ∫𝛤 𝑠
𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑗 (𝒙̄𝑚)d𝛤 , for 𝑘 ∈ [1, 2,… , 𝑛𝑠𝑣], 𝑗 ∈ [1, 2,… , 𝑛𝑚𝑣 ] (43)

In numerical implementation, the integration domain 𝛤 𝑠
𝑐 will be decomposed into simpler, manageable parts named mortar

segments, based on the slave vertices and the projected master vertices as depicted in Fig. 3(c). The integral is subsequently evaluated
using the Gauss–Legendre quadrature over all mortar segments, which is expressed as:

𝐷𝑘𝑖 =
𝑛𝑠𝑒𝑔
∑

𝑙=1

(𝑛𝑔𝑝
∑

𝑔=1
𝑤𝑔𝑁𝑘(𝜉𝑠(𝜂𝑔))𝑁𝑖(𝜉𝑠(𝜂𝑔))𝐽𝑙

)

, (44)

𝑀𝑘𝑗 =
𝑛𝑠𝑒𝑔
∑

𝑙=1

(𝑛𝑔𝑝
∑

𝑔=1
𝑤𝑔𝑁𝑘(𝜉𝑠(𝜂𝑔))𝑁𝑗 (𝜉𝑚(𝜂̄𝑔))𝐽𝑙

)

(45)

Here, 𝜂 ∈ [0, 1] defines the parametrization of a mortar segment, 𝜉𝑠𝑎 and 𝜉𝑠𝑏 , as well as 𝜉𝑚𝑎 and 𝜉𝑚𝑏 denote the local element
coordinates of the endpoints of the mortar segment on the slave and master surfaces, respectively, as shown in Fig. 3(c). 𝑛𝑠𝑒𝑔
represents the number of decomposed mortar segments, 𝑛𝑔𝑝 is the number of Gaussian points used within each mortar segment,
which is set to 2 in the current study. 𝐽𝑙 denotes the Jacobian of the 𝑙-th mortar segment. The numerical evaluation of the mortar
matrices  and  is demonstrated in Algorithm 1. For additional information on the numerical evaluation of the mortar matrix,
readers can refer to [66].

To ensure that the weighted gap distance 𝑔̄𝑘 has the correct unit, we could perform regularization by normalizing 𝑔𝑘 with the
weighted segment length (2D) or area (3D) on boundary vertex 𝑘 which is computed by the summation over the corresponding row
of the mortar matrix :

𝑔̄𝑘 = 𝑔𝑘∕
𝑛𝑠𝑣
∑

𝑖=1
𝐷𝑘𝑖 (46)
8
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Algorithm 1 Numerical evaluation of mortar matrices
1: Construct the unit normal vectors 𝒏 on the slave surface.
2: Project all master vertices onto the slave surface along 𝒏 to obtain the projected master vertices 𝒙̄𝒔.
3: Construct mortar segment based on the projected master vertices 𝒙̄𝒔 and slave vertices 𝒙𝒔, and evaluate the Jacobian determinant

for each mortar segment.
4: Determine Gaussian points with coordinate 𝜂𝑔 , and obtain 𝜉𝑠(𝜂𝑔) and 𝑁(𝜉𝑠(𝜂𝑔)) with respect to the slave vertices. Project gaussian

points onto master surface to obtain 𝜂̄𝑔 , and compute 𝜉𝑚(𝜂̄𝑔) and 𝑁(𝜉𝑚(𝜂̄𝑔)) with respect to the master vertices.
5: Compute 𝐷𝑘𝑖 and 𝑀𝑘𝑗 of the mortar matrices  and .

Fig. 4. The relationship between barrier energy and contact pressure with respect to gap distance.

3.4. Contact enforcement

3.4.1. Normal contact enforcement via barrier method
Up to now, we have transformed the continuum contact constraint into a weak form constraint for boundary vertices using the

mortar segment-to-segment approach. To enforce these contact constraints, various methods can be utilized. One common approach
is the penalty method, which permits interpenetration to some extent and derives the contact force by multiplying the contact
overlap with a penalty factor [42]. Alternatively, we resort to the energetic barrier method for contact enforcement. Compared to
the penalty method, the barrier method allows for a very small gap between two contacting surfaces, acknowledging that a small
gap realistically exists in the real world due to microscopic asperities [67]. The energy associated with this gap is defined by a
barrier energy function 𝐵(𝑔) [67,68], which reads as:

𝐵(𝑔) ∶=

⎧

⎪

⎨

⎪

⎩

−𝜅(𝑔 − 𝑔𝑐 )2 ln
(

𝑔
𝑔𝑐

)

, for 0 < 𝑔 ≤ 𝑔𝑐 ,

0, otherwise,
(47)

where 𝑔𝑐 denotes the critical gap which controls the threshold for establishing a contact pair, 𝑔 is the gap between the master and
slave surfaces, and is selected as the weighted gap 𝑔̄ (Eq. (46)) in this study. Additionally, 𝜅 indicates the stiffness of the barrier
(contact) and has the unit of pressure per length.

By taking the derivative of barrier energy with respect to the gap distance, the normal contact pressure can be obtained as
follows:

𝜆𝑛 ∶= −
𝜕𝐵(𝑔)
𝜕𝑔

=

⎧

⎪

⎨

⎪

⎩

𝜅(𝑔 − 𝑔𝑐 )
[

2 ln
(

𝑔
𝑔𝑐

)

−
𝑔𝑐
𝑔

+ 1
]

, for 0 ≤ 𝑔 ≤ 𝑔𝑐 ,

0, otherwise.
(48)

Fig. 4 presents the relationship between barrier energy and contact pressure against the gap distance. As observed from Eqs. (47),
(48), and Fig. 4, it is evident that as the gap 𝑔 approaches zero, both the potential energy and the contact pressure increase
towards infinity (𝐵(𝑔) → +∞, 𝜆𝑛 → +∞). This behavior effectively prevents the gap from further reduction, thereby fulfilling
9
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the non-penetration constraint prescribed in Eq. (32). Additionally, this characteristic renders the parameter selection less sensitive,
facilitating robust contact enforcement.

Remark. From a numerical implementation perspective, to ensure that the barrier energy and the associated contact pressure
approach infinity as the gap closes when employing the barrier method, the temporal resolution must be sufficiently high to capture
the sharp gradient. This treatment, however, inevitably increases the overall computational cost. In the current study, we have
implemented a simple yet effective adaptive time step, i.e., 𝛥𝑡 = min(min(𝑔̄𝑘)∕𝑔𝑐 , 1)𝛥𝑡0 for addressing this issue. Despite its simplicity,
this approach has demonstrated an efficacy in balancing computational costs and accuracy, making it a practical solution for complex
contact problems.

3.4.2. Tangential frictional behavior
In this work, frictional contact is considered. The tangential contact behavior is described using Coulomb’s friction law, which

can be expressed as:

𝜆𝜏 ≤ 𝜇𝜆𝑛, (49)

where 𝜇 is the friction coefficient. When the tangential stress is less than the allowable (slip) frictional stress, the contact surface
will be in a sticking state. Here, we utilize the simplest penalty method to constrain relative sliding, and Eq. (49) can be rewritten
as:

𝜆𝜏 = min(𝜅𝜏𝑢𝜏 , 𝜇𝜆𝑛) (50)

where 𝜅𝜏 is the contact stiffness along the tangential direction, and 𝑢𝜏 represents the sliding displacement. For 𝑢𝜏 , it can be computed
similarly to the weighted gap distance shown in Eq. (40) and (46), but in an incremental form:

𝑢̇𝜏𝑘 = 𝝉𝑘 ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑝
∑

𝑖=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑖(𝒙𝑠)𝒖̇𝑖d𝛤 −
𝑛𝑚𝑝
∑

𝑗=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑗 (𝒙̄𝑚)𝒖̇𝑗d𝛤
⎤

⎥

⎥

⎦

= 𝝉𝑘 ⋅
⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑖=1
𝐷𝑘𝑖𝒖̇𝑖 −

𝑛𝑚𝑣
∑

𝑗=1
𝑀𝑘𝑗 𝒖̇𝑗

⎤

⎥

⎥

⎦

, 𝑘 ∈ [1, 2,… , 𝑛𝑠𝑣]

(51)

3.4.3. Contact force mapping
Upon determining the contact pressure for the contact surfaces, represented as 𝝀 = 𝜆𝑛𝒏 + 𝜆𝜏𝝉, the next step involves computing

the equivalent contact forces acting on the boundary vertices on the slave and the master surfaces, which can be accomplished via
the contact virtual work. In the current configuration, the contact virtual work is written as:

𝛿𝛱𝑐 (𝒖, 𝛿𝒖, 𝜆) = ∫𝛤 𝑠
𝑐

𝝀 ⋅ (𝛿𝒖𝑠 − 𝛿𝒖𝑚)d𝛤 (52)

Substituting the discretization of gap distance (Eq. (37)) into the above expression, the contact virtual work is written as:

𝛿𝛱𝑐 (𝒖, 𝛿𝒖, 𝜆)

=
𝑛𝑠𝑣
∑

𝑖=1

⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑘=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑖(𝒙𝑠)𝝀𝑘d𝛤
⎤

⎥

⎥

⎦

𝛿𝒖𝑖 −
𝑛𝑚𝑣
∑

𝑗=1

⎡

⎢

⎢

⎣

𝑛𝑠𝑣
∑

𝑘=1
∫𝛤 𝑠

𝑐

𝑁𝑘(𝒙𝑠)𝑁𝑗 (𝒙̄𝑚)𝝀𝑘d𝛤
⎤

⎥

⎥

⎦

𝛿𝒖𝑗

= 𝑠
𝑐𝛿𝒖𝑠 − 𝑚

𝑐 𝛿𝒖𝑚

(53)

with

 𝑠
𝑐 = 𝝀, (54)

𝑚
𝑐 = 𝑇 𝝀, (55)

where  𝑠
𝑐 ∈ R𝑛𝑠𝑣×dim and 𝑚

𝑐 ∈ R𝑛𝑚𝑣 ×dim represent the vectors of forces acting on all boundary vertices on the slave and master
surfaces, respectively (i.e.,  𝑠

𝑐 =
[

𝒇 𝑐
1,𝒇

𝑐
2,… ,𝒇 𝑐

𝑛𝑠𝑣

]𝑇
).

Finally, the vertex forces exerted on each body are mapped to their corresponding layer of background mesh via the augmented
weighting function:

𝒇 con
𝐼 =

𝑛𝑣
∑

𝑘=1
𝑆̄𝐼𝑘𝒇 𝑐

𝑘 (56)

where 𝒇 con
𝐼 denotes the nodal contact forces at node 𝐼 , and 𝒇 𝑐

𝑘 is the contact force at vertex 𝑘. With the nodal contact force, the
10

nodal momentum equation (Eq. (17)) can be solved accordingly.
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3.5. Multi-body contact

As the number of contacting bodies increases, the segment-to-segment contact detection method may become computationally
emanding and hinder the overall performance. To address this limitation, we propose using the Axis-Aligned Bounding Boxes
AABB) algorithm, which is widely adopted in DEM [69–71], for broad-phase contact detection. Compared to the original AABB
lgorithm, we construct an expanded AABB for each body  to account for a critical gap 𝑔𝑐 introduced in the barrier method. The

expanded AABB for a body  is defined as follows:

𝐴𝐴𝐵𝐵() =
{

[

min
𝑥
() − 1

2
𝑔𝑐 ,max

𝑥
() + 1

2
𝑔𝑐
]

,
[

min
𝑦
() − 1

2
𝑔𝑐 ,max

𝑦
() + 1

2
𝑔𝑐

]}

. (57)

After constructing the AABBs for all bodies, the overlap test is performed. If 𝑠 and 𝑚 overlap on all two axes, they are
onsidered potentially in contact, and the aforementioned segment-to-segment approach is invoked for a more precise detection.
mploying the expanded AABB method significantly enhances computational efficiency by reducing the number of detailed analyses
equired, particularly in scenarios with numerous bodies, as demonstrated in our last numerical experiment (Section 4.6).

.6. Computational procedure

The computational procedure for the proposed contact algorithm is summarized in Algorithm 2 as shown below:

Algorithm 2 Computational procedure of segment-to-segment frictional contact in MPM
1: if 𝑡 = 0 then
2: Initialize material points and boundary vertices.
3: end if
4: while 0 < 𝑡 < 𝑡end do
5: Material point to grid interpolation, (Eqs. (4)–(6)).
6: Weighting function augmentation for boundary vertex, (Eq. (27)).
7: Update particle state variables, e.g., strain and stress, (Eqs. (10)–(16)).
8: if Pass broad-phase contact detection (Section 3.5) then
9: Segment-to-segment contact detection and obtain gap distance, (Eqs. (46) and (51)).

10: Apply contact constraints and get contact pressure, (Eqs. (50), (54)–(55)).
11: Map vertex contact forces to grid nodes, (Eq. (56)).
12: end if
13: Solve the motion equations on the background mesh, (Eq. (17)).
14: Update kinematics and positions for particles, (Eqs. (21)–(24)).
15: Update kinematics and positions for boundary vertex, (Eqs. (29)–(30)).
16: end while

4. Numerical examples

In this section, we will examine the overall capability of the proposed framework through five numerical examples with increasing
omplexity, with each focusing on a specific aspect of the proposed algorithm. These examples include the elastic cantilever beam,
ertz contact problem, disk on an inclined plane, collision of two rings, ironing test, and compaction of soft grain packing. Some

imulation animations can be found at https://github.com/WeijianLiang/mpm-mortar-contact.

.1. Elastic cantilever beam

Prior to discussing the contact algorithm in detail, we first verify the accuracy of the MPM framework by the well-studied elastic
antilever beam [40,72], placing particular emphasis on the weighting function augmentation and the kinematic updating scheme
or boundary vertices.

The model setup is shown in Fig. 5. The beam is 4 m in length and 1 m in height, and it is discretized into 64 quadrilateral
lements with an element width of ℎ = 0.25 m. Each element consists of 9 material points (PPC = 9). The beam is modeled using a

linear elastic material with the following properties: Young’s modulus 𝐸 = 106 Pa, Poisson’s ratio 𝜈 = 0.3, density 𝜌 = 1050 kg/m3,
and a simulated time of 𝑡 = 3 s. The gravitational acceleration is ‖𝒈‖ = 10.0 m/s2. The damping coefficient 𝛼damp is set to 0, and the
PIC fraction 𝛼pic is also 0. For verification purpose, we also conduct FEM analysis under the same conditions using the commercial
FEM package Abaqus taking large deformations into account.

Fig. 6 illustrates the vertical deflection of the lower-rightmost material point of the beam. While there is a minor discrepancy
against FEM, mainly resulting from differences in the positions of the monitored points, the MPM provides a satisfied prediction. This
11

is particularly evident when compared with the CPDI results from [40], indicating the desired accuracy of the overall code.. Due to
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Fig. 5. Model setting for the elastic cantilever beam problem.

Fig. 6. Vertical deflection for the lower-right most material point.

Fig. 7. Contour of vertical stress, 𝜎𝑦𝑦, and boundary vertex positions for the cantilever beam at 𝑡 = 1.5 s: (a) FEM (Abaqus) result, (b) MPM with weighting
function augmentation and affine-type kinematic update, (c) MPM with weighting function augmentation, (d) MPM with affine-type kinematic update.

the absence of external traction, the evolution of vertex configuration does not affect the position of material points. Consequently,
the simulation results without weighting function augmentation or affine kinematic update are not presented for brevity.

Fig. 7 shows the contour of vertical stress 𝜎𝑦𝑦 and the boundary vertex positions for the cantilever beam at 𝑡 = 1.5 s.
Specifically, we focus on how the vertex configuration is influenced by weighting function augmentation and affine-type kinematic
12
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Fig. 8. Model setting for two-dimensional Hertz contact problem: (a) geometry, and (b) discretization around the contact region.

pdates. As can be observed, weighting function augmentation and affine-type kinematic updates are essential for maintaining the
onforming geometry evolution between boundary vertices and the internal material points, particularly in problems involving
arge deformations and rotations. Omitting weighting function augmentation (Fig. 7(d)) would induce significant errors in vertex
ositioning, as indicated by the irregular intervals between vertices on the top surface of the beam and the scattered vertices that
eviate from the main body. This discrepancy is attributed to the violation of the partition of unity for the vertices, especially those
ocated on the rear side of the beam, which become increasingly distant from the main body and eventually locate beyond the
upport domain of all material points. In contrast, the impact of neglecting the affine-type kinematic update is less severe, primarily
ffecting the vertices at the corners, which exhibit a noticeable delay in their swinging motion. The proposed affine-type kinematic
pdate properly accounts for the local affine velocity field, thus ensuring a more accurate representation of the beam boundary,
articularly at the corners where large rigid rotations occur.

.2. Hertz contact problem

We then proceed to verify the proposed contact scheme in the small deformation regime using the classical Hertz contact problem.
he model setup for the Hertz contact problem is illustrated in Fig. 8, where a semicircle of radius 𝑅 is positioned above a flat

surface. The top surface of the semicircle is subjected to a constant pressure 𝑝. Under the assumption of small displacement, the
normal contact pressure 𝑝𝑐 and the width of the contact area 𝑏 are determined according to [73] as follows:

𝑝𝑐 =
4𝑅𝑝
𝜋𝑏2

√

𝑏2 − 𝑥2, (58)

𝑏 =2

√

2𝑅2𝑝(1 − 𝜈2)
𝐸𝜋

, (59)

here 𝐸 and 𝜈 are the Young’s modulus and Poisson’s ratio, respectively, while 𝑥 denotes the position along the 𝑥-axis with the
rigin at the contact point between the semicircle and the flat surface. In the current study, we select the simulation parameters
pecified in [50]. The radius of the semicircle is set to 𝑅 = 8 m, with an applied pressure 𝑝 = 0.625 Pa on the upper surface, ensuring
ompliance with the small deformation criterion. The linear elastic model is adopted with the following material properties: 𝐸 = 200
a and 𝜈 = 0.3. Under such setting, the width of the contact area is calculated as 𝑏 = 0.681 m [73]. To accurately capture the behavior
n areas of concentrated strain, we carry out a finer discretization (more material points) around the contact area as shown in
ig. 8(b). The whole semicircle comprises a total of 49,332 material points, with an average vertex segment size of 0.04 m. The
ackground mesh size is ℎ = 0.1m. To mitigate stress oscillation during contact, we introduce a small damping with 𝛼damp = 0.01
nd a PIC value 𝛼pic = 0.1. For the contact algorithm, the initial gap between the semicircle and the bottom body is 𝑔0 = 0.05, the
ritical gap for contact detection is 𝑔𝑐 = 0.05, and the contact stiffness coefficient is 𝜅 = 1500. Friction is not considered in this
imulation, and the simulation is terminated when 𝑡 = 50 s.

Fig. 9 presents a comparison of the contact pressure distribution obtained from the numerical simulation and the analytical
olution. While minor discrepancies are observed at the boundary of the contact area, attributable to mesh and particle resolution,
he numerical results show good agreement with the analytical solution. Fig. 10 shows the contours of vertical displacement 𝑢𝑦
nd vertical stress 𝜎𝑦𝑦. The smoothness of these contours collectively indicates the robustness of the proposed schemes, being free
f numerical instability. Notably, the stress contour reveals a concentrated stress profile, with the maximum value located at the
enter of the contact area. This peak in stress diminishes symmetrically towards both ends, aligning well with the predictions of
ertzian contact mechanics. This example effectively demonstrates the capability of the proposed contact scheme to accurately
apture pressure distributions during contact.
13
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Fig. 9. Comparison of contact pressure between numerical simulation and analytical solution [73].

Fig. 10. Contour of (a) vertical displacement 𝑢𝑦, and (b) vertical stress 𝜎𝑦𝑦, at the final state.

4.3. Disk on inclined plane

We advance our verification of the proposed contact algorithm within dynamic scenarios. Here, we revisit another classical
example where a rigid disk is positioned on an inclined plane. Upon commencement, the disk may either roll down the inclined
plane with or without slippage, depending on the inclination angle of the plane 𝜃 and the coefficient of friction 𝜇. Specifically,
the transition between pure rolling (stick) and rolling with slipping (slip) is determined by the inequality condition: tan(𝜃) > 3𝜇. If
this condition is satisfied, it means the slope is too steep, and the disk will undergo a composite motion consisting of both rolling
and slipping. Conversely, if the condition is not met, the disk will maintain a pure rolling motion without any slippage. For both
scenarios, the horizontal displacement of the disk (measured at the center of mass), 𝑢𝑥, can be quantified as a function of time [29]
as:

𝑢𝑥 =

⎧

⎪

⎨

⎪

⎩

1
2
‖𝒈‖𝑡2(sin 𝜃 − 𝜇 cos 𝜃), for slip, tan 𝜃 > 3𝜇

1
3
‖𝒈‖𝑡2 sin 𝜃, for stick, tan 𝜃 ≤ 3𝜇

(60)

where ‖𝒈‖ denotes the magnitude of gravity.
The simulation setup is depicted in Fig. 11. A disk with a radius of 𝑅 = 0.5 m is positioned on a plane inclined at an angle

𝜃 = 30◦ to the horizontal. The gravitational acceleration is set to ‖𝒈‖ = 9.81 m/s2. For ease of simulation, the 𝑥-axis is aligned
parallel to the plane orientation while the 𝑦-axis is orthogonal to it. The linear elastic model is adopted for both the disk and the
inclined plane, with a Young’s modulus of 𝐸 = 250 kPa, a Poisson’s ratio of 𝜈 = 0.3, and a density 𝜌 = 300 kg/m3. These parameters
are selected to prevent excessive deformation at the contact zone, which could result in undesired rolling resistance and influence
the comparison with the analytical solution. The background mesh size is ℎ = 0.1 m. The disk is discretized by 2236 material points
and 64 vertices, with an average segment size of 0.05 m. The PIC value is set to 𝛼pic = 0.001, and no damping is applied. The critical
gap for contact is 𝑔𝑐 = 0.04 m, and the initial gap is 𝑔0 = 0.02 m. The friction coefficient 𝜇 is taken as 0.1 or 0.3 for the slip and
stick conditions, respectively. The contact stiffness parameters are 𝜅 = 1 × 104 and 𝜅 = 1 × 106. The simulation is performed in two
14
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Fig. 11. Model setting for modeling a disk on inclined plane.

Fig. 12. Displacement along 𝑥 direction for slip and stick conditions (the analytical solution is from Ref. [29]).

stages: initially, only the 𝑦-axis component of gravity is applied to achieve an equilibrium stress state, and in the second stage, both
𝑥- and 𝑦-axis components of gravity are activated. This approach helps to prevent rebounding of the disk on the inclined surface
during mobilization, in compliance with the analytical solution assumption.

Fig. 12 depicts the evolution of the displacement along the 𝑥-axis, 𝑢𝑥, for both friction regimes. The simulation results match well
with the analytical solutions for both stick and slip conditions, accurately capturing the gradual acceleration of the disk. Fig. 13
presents snapshots of the velocity field, 𝒗, at 𝑡 = 1.8 s, providing insight into the kinematic behavior under varying frictional
conditions. In the slip condition, the velocity is distributed more uniformly across the disk, and its direction of mobilization is
more aligned with the inclined plane, emphasizing the dominant translational motion. In contrast, in the stick condition, the disk
undergoes pure rolling motion, with the rolling center located at the contact point between the disk and the inclined plane. This
numerical example again showcases the robustness of the proposed contact scheme under different frictional conditions.

4.4. Collision of two elastic rings

The two preceding numerical examples have showcased the effectiveness of the proposed contact algorithm for MPM within
the small deformation regime. This example focuses on large deformation scenarios and involves the collision of two elastic rings.
This example is initially designed to highlight the potential tensile instability issue in SPH [74,75], and has subsequently been
widely adopted to evaluate the overall performance of various contact algorithms [32,46,76] and the numerical stability of new
schemes [2,77].

The model setup is illustrated in Fig. 14, with dimensions taken from [76]. The two identical rings are modeled using a
compressible Neo-Hookean material under plane strain conditions, with a bulk modulus 𝐾 = 121.7 MPa, shear modulus 𝐺 =
26.1 MPa, and density 𝜌 = 1010 kg/m3. The background mesh size is ℎ = 0.1 m. Each ring is discretized using 4056 material
points, and its outer boundary is discretized using 127 vertices, with an average segment size of 6.9 × 10−3 m. The PIC value is set
to 𝛼pic = 0, and no damping is applied to avoid excessive energy dissipation. The critical gap for contact is 𝑔𝑐 = 5 × 10−3 m. The
friction coefficient 𝜇 is taken as 0.1. The contact stiffness parameters are set as 𝜅 = 4 × 107 and 𝜅𝑡 = 1 × 106.

Fig. 15 presents snapshots of the mean stress 𝜎𝑚 at various time instances, while Fig. 16 shows the evolution of the contact force
throughout the collision. It is clear that the two rings collide at 𝑡 = 0.25 ms and separate at 𝑡 = 3.25 ms, with the contact force
15
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Fig. 13. Contour of velocity field, 𝒗 for slip and stick conditions at 𝑡 = 1.8 s (the arrow indicates the direction of the velocity).

Fig. 14. Model setting for modeling the collision of two elastic rings.

reaching up to 250 kN. The overall deformation pattern is qualitatively consistent with the results obtained using the generalized
particle in cell method for the same problem [76]. Notably, the gap between the two rings during the collision is narrower than
that reported by [76] (which is not shown here), despite using the same background mesh size. This difference is mainly attributed
to the fact that, in the current study, the proposed algorithm relies on the boundaries of the two bodies rather than the background
mesh for contact detection.

We also track the time history of energy transfer during the collision process, as shown in Figure 17, where kinetic energy is
defined as 𝐸𝑘 = 1

2
∑

𝑝 𝑚𝑝𝒗2𝑝, strain energy as 𝐸𝑠 = 1
2
∑

𝑝 𝑉𝑝𝝈𝑝 ∶ 𝜺𝑝, and total energy as 𝐸𝑡 = 𝐸𝑘 + 𝐸𝑠. The current research exhibits
good agreement with the FEM results by [76] for both 𝐸𝑘 and 𝐸𝑠, while showing some discrepancy in the total energy 𝐸𝑡. This
discrepancy is primarily due to the fact that the FEM also considers hourglass energy in this problem.

4.5. Ironing test

In this subsection, we model an ironing test to evaluate the performance of the proposed algorithm under conditions of large
deformation and sliding. This numerical example is widely adopted in the literature [47,49,50,78].

The geometry and boundary conditions of the model are shown in Fig. 18(a). The soft block is 12 m in width and 4 m in height.
The bottom surface of the soft block is fixed. A rigid indenter, composed of a 2 m × 1 m rectangle and a semicircle with a radius
16
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Fig. 15. Snapshots of mean stress 𝜎𝑚 at various time instances during the collision.

Fig. 16. Contact force evolution.

𝑅 = 1 m, is positioned 0.2 m above the elastic block and 0.2 m from the left edge of the block. During the simulation, the indenter
is first pressed to a depth of 1.0 m into the block, and subsequently displaced horizontally towards the right edge until it leaves the
block. The prescribed velocity for the indenter is delineated in Fig. 18(b). To avoid undesired impulse-induced stress, the velocity is
ramped at the early stage of the loading. In this study, the block is simulated using a linear elastic model with a Young’s modulus
of 𝐸 = 600 kPa, a Poisson’s ratio of 𝜈 = 0.32, and a density of 𝜌 = 2000 kg/m3. The density is selected to be relatively large to
permit larger time steps. The background mesh size is ℎ = 0.2 m. The block is represented by 10,800 material points, while the
indenter is discretized by 1809 material points. The average segment size for vertices is 0.1 m. The PIC parameter 𝛼pic is set to 0.1,
and damping coefficient 𝛼damp is set to 0.05. The contact stiffness parameters are 𝜅 = 1000 and 𝜅𝑡 = 1×104. The critical contact gap
is set as 𝑔𝑐 = 0.04 m, and the friction coefficient 𝜇 is examined at values of 0.1 for the frictional case and 0 for the frictionless case.

Fig. 19 presents the reaction force exerted on the indenter over time. As highlighted by previous analyses [49,50], discrete
contact detection, particularly in particle-based numerical methods, can lead to significant oscillations in contact forces in ironing
problems, potentially resulting in convergence issues or computational failures. Notably, the proposed contact algorithm, which
conducts contact detection in a segment-to-segment weak form, yields a stable reaction force without significant oscillations under
both frictional and frictionless conditions. For the vertical reaction force, both frictional and frictionless cases yield nearly identical
results, with the vertical reaction force rapidly rising to 500 N during the initial phase of pressing the indenter into the soft block.
As the indenter moves horizontally, the vertical reaction force increases slightly before stabilizing. As the indenter approaches the
right edge of the block, the vertical reaction force quickly drops to zero. Conversely, the horizontal reaction force is significantly
17



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117294W. Liang et al.
Fig. 17. Energy evolution during the collision. The FEM results are extracted from [76], where the total energy 𝐸𝑡 includes not only the kinetic energy 𝐸𝑘 and
strain energy 𝐸𝑠, but also the hourglass energy.

Fig. 18. Model setting for the ironing test: (a) geometry and boundary conditions; (b) prescribed velocity of the indenter.

Fig. 19. Reaction force exerted at the indenter.
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Fig. 20. Contour of vertical displacement, 𝑢𝑦, during the loading process: (a) 𝑡 = 60 s, 𝜇 = 0.1; (b) 𝑡 = 155 s, 𝜇 = 0.1; (c) 𝑡 = 260 s, 𝜇 = 0.1; (d) 𝑡 = 260 s,
𝜇 = 0.

smaller than the vertical one, and friction causes a considerable difference in the horizontal force. In the frictionless case, despite
the absence of friction, a leftward reaction force is generated due to the rightward motion of the indenter. In the case with friction,
the horizontal reaction force is comparatively larger due to the additional frictional resistance. Interestingly, as the indenter is about
to depart from the soft block, the elastic block experiences a leftward slippage under the compression of the indenter, generating a
leftward reaction force, which is more pronounced in the frictionless case (as can be observed from Figs. 20(c) and (d)).

Fig. 20 presents snapshots of the vertical displacement at various time instances and friction coefficients. The simulation
effectively captures the deformation of the soft block, with no signs of instability observed throughout. For the frictionless case,
the slippage of the soft block is clearly observed (Figs. 20(c) and (d)). Specifically, the detailed view in Fig. 20(a) illustrates the
configuration of the indenter and the block in the contact area, showing that the soft block deforms in a manner conforming to
the shape of the indenter, with a smooth transition between the deformed and undeformed regions. Additionally, the gap between
the indenter and the soft block is significantly smaller than the grid size ℎ, without showing any mesh dependency issues that is
commonly encountered in prior grid-based contact algorithms. Furthermore, despite the close proximity of the contact surfaces, no
penetration occurs due to the rapidly increasing contact force facilitated by the adoption of the barrier method (see Fig. 4). This
characteristic highlights the superior performance of the kinematic update scheme for vertices and the proposed contact algorithm
in maintaining accuracy irrespective of the mesh resolution. Fig. 21 presents the contours of vertical and shear stresses, 𝜎𝑦𝑦 and 𝜎𝑥𝑦,
at 𝑡 = 155 s. Despite minor oscillations beneath the indenter, the overall stress distribution remains stable and smooth. For 𝜎𝑥𝑦, the
active side of the block undergoes greater shearing due to the rightward movement of the indenter.

4.6. Compression of deformable grain packing

To further demonstrate the effectiveness of the proposed contact algorithm in handling multi-body contact, we simulate the
compaction of a soft grain packing. Similar problems are also investigated by [44,79,80]. The model setup for the compaction
simulation is shown in Fig. 22, where Fig. 22(a) depicts the geometry and boundary conditions, and Fig. 22(b) shows the initial
discretization for all involved grains. In the simulation, 16 irregularly shaped deformable grains are positioned inside a container
with dimensions of 10 × 13 m, with a rigid loading plate at the top. Notably, all grains have varying shapes, with some featuring
concave geometries. This setting also implies that multiple pairs of contacts could simultaneously occur between neighboring grains.
Gravity is not taken into consideration, and grains are not in contact with each other initially. As will be demonstrated later, this
setup leaves sufficient space for particle rearrangement and thus purposely showcases the capability of the proposed framework in
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Fig. 21. Contour of stresses for the ironing process during 𝑡 = 155 s: (a) 𝜎𝑦𝑦; (b) 𝜎𝑥𝑦.

Fig. 22. Model setting for modeling the compaction of deformable grains packing: (a) geometry and boundary conditions, (b) discretization of sixteen deformable
grains and the loading plate.

modeling complex particle motion and interaction. As the simulation commences, the rigid loading plate is moved downward with
a constant velocity 𝑣 = 0.1 m∕s from the top, gradually compacting the grain assembly. The lateral and bottom boundaries of the
container are modeled as frictionless walls, which restrict normal displacement but allow for tangential movement.

The linear elastic model with the following parameters is adopted for all grains: Young’s modulus 𝐸 = 60 kPa, Poisson’s ratio
𝜈 = 0.32, and density 𝜌 = 500 kg/m3. The element size of the background mesh is ℎ = 0.2 m and the average particle size is 0.054 m,
resulting in a total of 26,916 material points. The average segment size for the boundary vertices is 0.1 m. To ensure numerical
stability and mitigate stress oscillations during grain collisions, we select a PIC parameter 𝛼pic = 0.1 and a damping coefficient
𝛼damp = 0.1. The critical contact gap is defined as 𝑔𝑐 = 0.085 m, and the normal and tangential contact stiffness coefficients are set
to 𝜅 = 7 × 104 and 𝜅𝑡 = 1 × 105, respectively. A friction coefficient 𝜇 = 0.2 is used between grains as well as between the grains and
the loading plate. The simulation is terminated when the loading plate reaches a maximum displacement of 0.49 m.

Fig. 23 presents the reaction force exerted on the loading plate during compression. The reaction force exhibits moderate
fluctuations, which can be attributed to collisions among the grains and the propagation of stress waves within the material. Despite
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Fig. 23. Reaction force exerted on the loading plate.

these variations, the loading curve can be approximated by a bilinear curve, indicating two distinct phases of the compaction process.
In the initial phase (𝑡 < 30 s), the slope of the curve is relatively gentle, suggesting that the early stage of compaction mainly involves
the repositioning of grains with minimal resistance. During this period, the suspended grains are pushed downward and rearrange
themselves without undergoing significant deformation, and the mobilized grains have not yet come into contact with the bottom
of the container. After 𝑡 = 30 s, the compacted grains reach the bottom of the container (as shown in the inserted configuration of
the packing in Fig. 23), leading to the formation of a dense packing where the grains begin to interlock and deform to fill the voids
between them. This results in a sharp increase in resistance. The pronounced change in slope marks a shift from the initial grain
rearrangement to a phase dominated by grain deformation and load-bearing interactions. Conversely, the horizontal force stabilizes
around zero throughout the compression process. Such a response is expected since the compaction process is primarily uniaxial,
and the lateral boundaries are frictionless.

Fig. 24 presents snapshots of the stress fields, 𝜎𝑦𝑦 and 𝜎𝑥𝑦, at displacements of 𝑑 = −0.25 m and 𝑑 = −0.49 m, along with the
corresponding FEM results. At the early stage of loading, as the plate moves downward, force chains begin to form, transmitting the
interaction forces. However, due to the sparse positioning of the grains, which allows for relatively free movement, the force chains
are not fully developed, resulting in a noticeably heterogeneous stress distribution. As compaction enters the late stage (𝑡 > 30 s), the
grains come into tight contact with the bottom of the container, enhancing the force chain network. The more interconnected force
chains lead to a more uniform distribution of 𝜎𝑦𝑦 across the grain packing, indicating that the grains are now behaving collectively,
resisting the loading plate as a single unit rather than as individual grains. Meanwhile, the magnitude of 𝜎𝑥𝑦 stress remains at a
similar level as before, indicating the establishment of a stable grain structure with minimal sliding or shearing. In comparison to
the FEM results, the structure of the packing, including the grain configuration and the force chain network, shows good agreement.
However, the resulting stress is observed to be higher than that predicted by the FEM. This discrepancy primarily arises from the
different contact enforcement approaches used in the two methods. In the current study, contact enforcement is implemented using
the barrier method, which assumes a small gap between the contacting bodies and applies a repulsive force to prevent penetration.
In contrast, the FEM relies on the penalty method, which allows for some overlap between the contacting bodies and determines the
contact pressure based on the amount of penetration. This difference is particularly pronounced under conditions of compression
with horizontal confinement. Furthermore, it is worth noting that the MPM result appears more fluctuated than that of the FEM. This
is due to the combined effect of cell crossing noise and stress wave generation and rebounding. Implementing the Total Lagrangian
MPM [43,81] could be a promising pathway for addressing this issue.

Fig. 25 presents a comparison of the displacement field against the FEM result at the final state of compaction (𝑑 = −0.49 m). As
previously mentioned, the prepared packing has no initial contacts, providing enough space for particle rearrangement under the
influence of multiple contacts with surrounding grains. Despite experiencing large rigid rotations, translations, and deformations,
the current study demonstrates good agreement with the FEM results in the packing configuration. To further illustrate the complex
motion that grains undergo during the compaction process, we track the configuration and velocity field of a representative grain,
as shown in Fig. 26. The selected grain first rotates counterclockwise, navigating through the open spaces created by the two grains
above. As the compaction process continues, it begins to fill the gap between them and effectively finds its way into a more stable
position, coming into contact with the loading plate. Simultaneously, its top surface becomes flatter due to the pressure exerted by
the loading plate pressing down upon it, reflecting the adaptability of the soft grain to external compression in a confined space and
resulting in a compacted and stable grain structure. Despite significant deformation and a diverse range of motions, the algorithm
can readily capture the contact interactions between the grains and with the loading plate, as well as the complex behaviors and
shape changes of the grain with precision.
21



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117294W. Liang et al.
Fig. 24. Snapshots of stress field, 𝜎𝑦𝑦 and 𝜎𝑥𝑦, during the compaction. The right column shows the FEM result at the final state 𝑑 = 0.49 m.

Fig. 25. Comparison of displacement field against FEM result at the final state of compaction 𝑑 = 0.49 m.
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Fig. 26. (a) The initial position of the selected grain, (b) configuration and velocity field for the probed deformable grain.

5. Conclusion

In this study, we have developed a novel mortar segment-to-segment frictional contact approach for MPM to address limitations
in traditional contact modeling techniques. Our proposed approach addresses these limitations by introducing boundary vertices to
accurately represent the boundaries of the continuum media and their contact normals. We have also incorporated an augmented
weighting function and a new kinematic update scheme to capture the dynamically evolving geometry. By utilizing the mortar
method for segment-to-segment contact detection and an energetic barrier method for enforcing non-penetration conditions,
our framework provides a robust solution capable of handling a wide range of contact scenarios, ranging from small to finite
deformations that involve rolling, sliding, and multi-body contact interactions. We have demonstrated the effectiveness and
versatility of our proposed contact algorithm through rigorous benchmark tests and complex applications, including the ironing
test and compaction of soft packing, and highlighted the potential of our approach for broad engineering applications.

While our contact algorithm is effective for small to finite deformations, it may encounter challenges in scenarios involving
massively large deformations, such as debris flows. In these cases, the configuration undergoes drastic changes, and severe distortion
of boundary segments can lead to numerical instabilities and reduced accuracy. Future work will focus on extending our method
to such regimes by adaptively refining and repositioning the boundary vertices. Additionally, the framework can be readily utilized
to couple with FEM, offering a promising approach for modeling contact against thin wall structures, which is an ongoing study by
the authors.
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