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A B S T R A C T   

The coupled thermo-hydro-mechanical (THM) response of liquid-infiltrated porous media un-
derpins the safe operation and maintenance of key engineering infrastructure. Challenges remain 
in modeling and understanding the complicated multiphysics processes of porous media subjected 
to THM loads and undergoing large deformation. In this study, we develop a stabilized material 
point method (MPM) for modeling the THM responses of large deformation problems in biphasic 
solid–fluid mixtures. A novel and efficient staggered solution scheme is proposed to solve the 
governing equations of the coupled system formulated in terms of four primary variables: solid 
displacement (u), liquid velocity (v), pore pressure (p), and temperature (T). The scheme solves 
the energy balance equation first and employs the resulting temperature to further advance the 
calculation of the momentum and mass balance equations using a semi-implicit fractional step 
method to facilitate equal-order interpolations. Both the incompressible and weakly compressible 
fluid are considered in the presented fractional step formulations. We also develop the axisym-
metric form of the coupled MPM to increase the applicability and efficiency of the method in THM 
problems. The validity, stability, and robustness of the proposed method are demonstrated 
through three benchmark problems, including the heating of a saturated half-space, the non- 
isothermal consolidation of a soil column, and a three-dimensional axisymmetric problem per-
taining to the thermoelastic response around a point heat source. The predictive capability of the 
proposed method for large deformation problems is further showcased by the simulation of the 
progressive failure process of a thermal-sensitive slope.   

1. Introduction 

Climate change and energy crisis pose challenges to the design and operation of key infrastructure in civil engineering in tackling 
complicated coupled thermo-hydro-mechanical (THM) conditions. Pertaining examples in geotechnical engineering are the 
geothermal pile foundations [1], the marine gas hydrate exploitation [2], the radioactive waste disposal [3], and the geothermal 
reservoirs recovery [4]. Natural geohazards, such as permafrost thawing or hydrate dissociation-induced landslides, are frequently 
triggered by changes in thermal or hydraulic conditions [5–9]. Underpinned to these diversified processes and applications is the 
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coupled thermo–hydro–mechanical behavior of liquid-infiltrated porous media, which is infamously challenging to model and un-
derstand either experimentally or analytically. Over the past decades, continuous efforts have been devoted to the development of 
advanced numerical approaches to gain a better understanding of the THM responses of saturated granular media. More recent focus 
has been placed on understanding large deformation and post-failure behaviors of saturated porous media subjected to multifield 
external loads. 

Among the existing numerical methods, mesh-based methods, such as the finite element method (FEM) and the finite volume 
method (FVM), have been widely used for tackling multiphysics coupling problems. The Eulerian-based FVM is known to be not 
particularly suitable for modeling time-dependent behaviors of granular materials. FEM formulates the material motions with a 
Lagrangian description and has been extensively applied for the THM coupling analysis of porous media [10–18]. However, FEM is 
susceptible to mesh distortion in large strain regimes on a fixed mesh topology. Another alternative mesh-based method is the particle 
finite element method (PFEM), which employs a set of particles as nodes to discretize the continuum domain and construct a new mesh 
based on Delaunay triangulation [19]. The application of adaptive meshing or remeshing techniques may serve as a remedy to the 
mesh distortion issue but inevitably incur increased computational costs. 

The past three decades also witnessed the emergence and development of various meshless or mesh-free methods that are popularly 
used for tackling large deformation problems. Among many, the material point method (MPM) is distinguished by its ability to 
leverage both the merits of mesh-based and meshless approaches, through a hybrid utilization of Lagrangian particles and Eulerian 
background mesh. Since proposed by Sulsky et al. [20,21], it has been effectively employed in diverse engineering and industrial 
scenarios that involve large deformations ranging from landslide dynamics to snow simulations [22–24]. In recent years, MPM has also 
been successfully extended to hydro-mechanical coupling [25–38], thermo-mechanical coupling [39–41], and more recent attempts 
for THM modeling [8,42]. In particular, Pinyol et al. [8] employed an explicit coupled THM MPM to investigate the dilation caused by 
frictional heat generation in the fast motion of landslides. Lei et al. [42] further developed an explicit generalized interpolation 
material point (GIMP) method to simulate the climate-driven slope failure process involving both temperature variation and rainfall 
infiltration. These studies help to showcase the capability of MPM in modeling the coupled response of porous media. Great varieties 
and diversities are also observed in these approaches, from formulations to time integration, spatial discretization, and stabilization 
algorithms. It remains highly desirable and practically necessary to develop a stabilized and efficient MPM featured by rigorous THM 
coupling to treat thermal-related large deformation engineering problems. 

Two formulations are commonly followed to treat THM coupling for saturated porous media, namely, the u-p-T formulation [8] and 
the u-v-p-T formulation [42], where u, v, p, and T stand for the solid displacement, the liquid velocity, the pore pressure, and the 
temperature, respectively. Though widely adopted in FEM due to simplicity, the u-p-T formulation neglects the relative motions of 
liquid and solid phases and is hence unsuitable for fast loading and rapid motions [43]. In contrast, the u-v-p-T formulation retains all 
features of the liquid phase and is preferable for modeling large strain and dynamic problems with high-frequency solid–liquid in-
teractions [33,44]. Two strategies are available to solve the governing PDEs of the system: (a) monolithic scheme and (b) staggered 
scheme, also known as the sequential or partitioned scheme [15,18,45]. The monolithic strategy solves the system of PDEs simulta-
neously, whereas the staggered strategy partitions the system into several subproblems and solves each subproblem sequentially. The 
staggered solution schemes have been found to provide optimal rates of convergence with respect to mesh and time step refinement 
compared to monolithic solution schemes [46]. The applicability of different solution schemes is dependent on the degree of coupling 
between the thermal field and other fields [18]. 

MPM can be viewed as a variation of FEM in conjunction with a static finite-element mesh. Thus it suffers the same numerical 
problem of pathological volumetric locking and checker-boarding pressure oscillation when using low-order elements in the limit of 
undrained deformation or incompressible flow [13,26,47–49]. It is commonly handled by interpolating the pressure with one order 
lower than that of the velocity for consistency. To relax the interpolation restrictions, various stabilization schemes have been pro-
posed, such as the reduced integration method [27,28,35], the polynomial pressure projection method [31,50,51], and the fractional 
step method [33,52], and among others. The fractional step method, also known as operator splitting or projection method, can 
fundamentally address the issue in dynamic problems with incompressible fluid limits. It decouples the unfavorable volume balance 
from the momentum equations by advancing each time step via intermediate steps. This allows the separation of the pore-pressure 
solution from the kinematical unknowns, thereby avoiding unphysical pressure oscillations [53–58]. 

In this study, we aim to develop stabilized MPM with an efficient staggered solution scheme for THM coupling analysis of saturated 
porous media. To better capture the large deformation behavior, we formulate a four-variable u-v-p-T formulation in the framework of 
single-point two-phase MPM. To avoid using mixed-order interpolations for pressure and displacement, which is a crucial requirement 
in the monolithic solution scheme, we develop a staggered solution procedure where the energy equation and the hydromechanical 
equations are solved sequentially. To further proceed with equal order interpolations, we solve the hydromechanical part with a semi- 
implicit fractional step method in which some of the advantages of the pure explicit and pure implicit schemes are realized while the 
drawbacks are reduced. In the proposed fractional step method, we consider both the incompressible flow and the weakly compressible 
flow which is seldom treated in previous work. The partitioned governing equations after operator-splitting are spatially discretized 
following standard GIMP procedure. Axisymmetric forms of the THM-coupled MPM are also derived to facilitate efficiently solving 
such axisymmetric problems that are common in thermal-related engineering settings [59–61]. Solution procedures for the fully 
explicit method are also presented as complementation of its semi-implicit counterpart. To the best of our knowledge, this is the first 
attempt at developing an oscillation-free and relatively computational-efficient THM-coupled GIMP method for solving a wide range of 
problems, from multidimensional to axisymmetric problems, from weakly compressible flow to incompressible flow, and most 
importantly, from small deformations to large deformations. 

The manuscript is structured as follows. Section 2 presents the governing equations for THM-coupled problems in saturated porous 
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media. Section 3 presents the numerical schemes, including the temporal integration scheme, spatial discretization, and the completed 
solution procedures. In Section 4, we validate the proposed formulations by conducting three benchmark examples. In Section 5, we 
further conduct an engineering application problem involving large deformation, focusing on the failure of a slope caused by tem-
perature changes. Section 6 gives some concluding summaries. 

2. Governing equations 

The governing equations for a fully coupled THM system of saturated porous media are derived in the framework of single-point 
two-phase MPM based on u-v-p-T formulation as outlined in the following. 

2.1. Volume fractions, partial stresses, and strains 

According to the theory of mixture [62,63], each phase α ∈ {s, l} (solid, liquid) in a representative volume element (RVE) of a 
saturated porous medium is characterized by its volume fraction nα, and the partial density ρ̄α of each phase is characterized by the 
average density with the volume fraction, which read,  

nα =
dVα

dV
, ρ̄α = nαρα, ρm = nsρs + nlρl = (1 − n)ρs + nρl (1)  

where dV is the volume of the RVE, dVα is the volume of α phase, ρα is the intrinsic density of α phase, ρm is the average density of the 
mixture, and n is the porosity, interchangeable with the liquid volume fraction nl. 

In mixture theory, the partial stress σs and σl on solids and liquids are defined as follows [64,65],  

σs = σ′ − nspI, σl = − nlpI (2)  

where p is the pore liquid pressure (assumed to be positive in compression), σ′ is the effective stress (positive in tension), and I is the 
identity tensor. The effective stress theory is utilized to characterize the coupled mechanics of the solid skeleton and the liquid, in 
which the total stress tensor σ is expressed as the sum of the stress of each phase,  

σ = σ′ − pI (3)  

The effective stress of the solid is then linked with its strain by a constitutive law. For non-isothermal conditions, the constitutive 
relation considering the thermal effect is expressed as,  

σ̇′
= D : ε̇, with ε̇ = ε̇s + ε̇T (4)  

where σ̇′ is the rate of effective stress, ε̇ is the rate of total strain, D is the tangent matrix that defines the relationship between the 
effective stress and the strain, and ε̇s and ε̇T are the rate of mechanical strain and thermal strain, respectively, calculated by,  

ε̇s =
(
Ls + LT

s

)/
2 (5a)  

ε̇T = − βsṪI (5b)  

where Ls = ∇vs is the velocity gradient, vs is the solid velocity, Ṫ is the time derivative of temperature, and βs is the volumetric thermal 
expansivity of solids. 

2.2. Conservation of mass 

In single-point multi-phase MPM, all constituents are represented by the same Lagrangian material point in the current configu-
ration. By considering an Eulerian description for the liquid with the solid being a reference, the material time derivative of the liquid 
phase is described with respect to the motion of the solid phase as follows,  

Dl(*)
Dt

=
Ds(*)

Dt
+ (vl − vs) ·∇(*) (6)  

where vα is the velocity and Dα(*)
Dt =

∂(*)
∂t + vα∇(*) is the material time derivative of (*) regarding α phase. 

By assuming there is no phase transition between constituents, the mass balance equations for solid and liquid phases are written as, 

Dsρ̄s

Dt
+ ρ̄s∇ · vs = 0 (7a)  

Dsρ̄l

Dt
+ (vl − vs) ·∇ρ̄l + ρ̄l∇ · vl = 0 (7b) 
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In view of ns + nl = 1, the mass balance equation of the solid–liquid mixture can be formulated as,  

ns

ρs

Dsρs

Dt
+

nl

ρl

Dsρl

Dt
+

1
ρl
(vl − vs) ·∇ρ̄l + ns∇ · vs + nl∇ · vl = 0 (8) 

Further development of Eq. (8) requires state equations that relate the intrinsic density to pressure and temperature [11]. The 
required relationship is derived based on the truncated Taylor series expansion, expressed as follows,  

1
ρα

Dsρα
Dt

= − βα
DsT
Dt

+ γα
Dspα

Dt
(9)  

where βα = − 1
ρα

∂ρα
∂T and γα = 1

ρα

∂ρα
∂pα

, defined as the coefficients of thermal expansion and compressibility, respectively, T is the tem-
perature of the mixture, and pα is the pressure on α phase. In the balance of mass, the influence of solid compressibility is not 
considered (i.e., γs = 0). Substituting the state equation of each phase into Eq. (8) and neglecting the spatial difference of liquid density 
(i.e., ∇ρl = 0) yield the following balance equation of mass of mixture,  

− βm
DsT
Dt

+ nlγl
Dsp
Dt

+ nl∇· vl + ns∇· vs = 0 (10)  

where βm = nsβs + nlβl. 

2.3. Conservation of momentum 

The motion of the liquid-saturated porous media is controlled by the momentum balance equations for the solid phase and the 
liquid phase, respectively,  

ρ̄s
Dsvs

Dt
= ∇· σs + ρ̄sb + f s (11a)  

ρ̄l
Dsvl

Dt
+ ρ̄l(vl − vs)∇ · vl = ∇· σl + ρ̄sb + f l (11b)  

where σα is the Cauchy stress tensor of α phase, defined in Eq. (2), b is the body force vector, and f α is the interaction force vector 
between phase α and other phases. The exchange of momenta between solid and liquid constituents is an internal behavior. Thus, the 
sum of the interaction forces of all phases is zero, i.e., 

∑
αf α = 0. The convective term ̄ρl(vl − vs)∇ · vl in Eq. (11b) is small compared to 

the interaction force, thereby being neglected [52,65]. The momentum balance equation for the mixture can be obtained by summing 
the equation of each constituent as follows,  

ρ̄s
Dsvs

Dt
+ ρ̄l

Dsvl

Dt
= ∇·(σ′ − pI) + ρmb (12)  

Assuming that the pore fluid is laminar and fulfills Darcy’s law for either small or large deformation conditions [8,42], the 
interaction force vectors are calculated by,  

f s = − f l = − p∇nl + n2
l
ρlg
k

(vl − vs) (13)  

where g is the gravitational acceleration, and k is the hydraulic conductivity. p∇nl is the so-called buoyance force, and n2
l

ρlg
k (vl − vs) is 

the drag force. Note that the assumption of laminar flow is valid on the concept of average, implying that the pore fluid may be in a 
turbulent state somewhere but overall displays a laminar flow in an RVE. 

By substituting Eq. (13) into Eq. (11a), the final expression of the momentum balance equation for each phase can be formulated as, 

ρ̄s
Dsvs

Dt
= ∇· σ′ − ns∇p + ρ̄sb + n2

l
ρlg
k

(vl − vs) (14a)  

ρ̄l
Dsvl

Dt
= − nl∇p + ρ̄lb − n2

l
ρlg
k

(vl − vs) (14b)  

2.4. Conservation of energy 

Assuming the temperature in an RVE is uniform for both the liquid and the solid and there is no phase transition between com-
ponents, the energy balance equation for each phase can be formulated as,  
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ρ̄scs
DsT
Dt

+∇ ·ϕs = Qs (15a)  

ρ̄lcl
DsT
Dt

+ ρ̄lcl(vl − vs) ·∇T +∇·ϕl = Ql (15b)  

where cα is the specific heat capacity, ϕα is the conductive heat flux, and Qα is the heat source. ϕα is computed based on Fourier’s law, 

ϕα = − nακα∇T (16)  

where κα is the coefficient tensor of thermal conductivity. For simplification, the thermal conductivity is assumed to be isotropic. Eqs. 
(15a) and (15b) are finally combined into one single equation for the porous medium as a whole,  

Cm
DsT
Dt

+ ρ̄lcl(vl − vs) ·∇T +∇ ·( − κm∇T) = Q (17)  

where Cm = nlρlcl + nsρscs, κm = nlκl + nsκs, and Q is the heat source of the system. The heat source Q is present in diverse circum-
stances such as plastic dissipation (= θσ′ : ε̇p, where ε̇p is the plastic strain rate, and θ is the coefficient of plastic work transferring into 
heat dissipation), and the convective or radiative heat from external sources. It should be noted that although plastic dissipation is not 
a focus of current work, the treatment of this coupling term as a source term is nontrivial since it may destabilize the heat equation 
numerically [66,67]. Readers may refer to the relative works on how to treat the plasticity term in loose or tight coupling conditions 
[8,40,42,68,69]. 

2.5. Boundary conditions 

The n-dimensional domain in the current configuration is denoted by Ω ∈ Rn, and the boundary of the domain is denoted by ∂Ω. 
The boundary is decomposed into the velocity boundary ∂vΩ, the pore pressure boundary ∂pΩ, the temperature boundary ∂TΩ, the 
traction boundary ∂tΩ, the Darcy flux boundary ∂qΩ, and the heat flux boundary ∂ϕΩ. The time dimension of the problem is denoted by 
T = (0,T] with T > 0. Together with the above governing equations, a general problem is collectively subjected to the following 
boundary conditions,  

vα = v̂α on ∂vΩ × T (18a)  

p = p̂ on ∂pΩ × T (18b)  

T = T̂ on ∂T Ω × T (18c)  

σ · n = t̂ on ∂tΩ × T (18d)  

− q · n = q̂ on ∂qΩ × T (18e)  

− ϕ · n = ϕ̂ on ∂φΩ × T (18f)  

where v̂α, p̂, and T̂ are the prescribed boundary velocity, pore pressure, and temperature on ∂vΩ, ∂pΩ, and ∂TΩ, respectively, and ̂t, q̂, 
and ϕ̂ are the prescribed traction vector, Darcy flux, and heat flux on ∂tΩ, ∂qΩ, and ∂ϕΩ, respectively. Eqs. (18a), (18b), and (18c) are 
the Dirichlet boundary conditions, and Eqs. (18d), (18e), and (18f) are the Neumann boundary conditions. 

3. Numerical schemes for THM-coupled MPM 

To balance the numerical stability and the computational efficiency, a staggered solution scheme is adopted to solve the coupled 
equations. The temperature is first solved with explicit time integration while other variables remain constant, and the remaining 
kinematical unknowns are advanced with the updated temperature using a semi-implicit fractional step method. The spatial dis-
cretization of the partitioned governing equations follows the standard GIMP method. 

3.1. Temporal discretization 

The choice of a staggered solution scheme is motivated by the following considerations. The implicit monolithic solution scheme 
requires the use of mixed-order finite elements to avoid the volumetric locking and the spurious pressure field. This is not preferable for 
MPM as all the standard MPM formulations are low order. Besides, the rate of convergence for the monolithic solution scheme is also a 
problem in MPM simulation where the large deformation dominates. In geotechnical engineering, the temperature usually changes at a 
low rate, which makes it a weak coupling with the kinematical variables. Thus, it is accessible to partition the fully coupled equations 
into two subsets to promote a weak coupling between thermal fields and hydro-mechanical fields. Finally, the utilization of the 
operator-splitting technique further decouples the pore pressure and kinematical variables in the momentum equations to facilitate the 
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equal-order interpolation of pressure and displacement fields in MPM. Previous practices in FEMs indicate that the strategy offers a 
satisfactory convergence rate and accuracy [18,46]. 

The energy balance equation is solved by the explicit forward Euler scheme,  

Cm
Tk+1 − Tk

Δt
= − ρ̄lcl

(
vk

l − vk
s

)
· ∇Tk − ∇ ·

(
− κm∇Tk)+ Q (19)  

where the superscript k and k + 1 represent the current time step and next time step, and Δt is the time step size. The explicit scheme is 
cost-efficient, and the solution is adequately accurate for simulating the heat transfer in porous media in engineering problems. 

The fractional step scheme is implemented by splitting the momentum equation into a predicting step and a correcting step with the 
predicted velocity v*

α as an intermediate variable. The split momentum equations for velocity predicting are obtained as,  

ρ̄s
v*

s − vk
s

Δt
+ ρ̄l

v*
l − vk

l

Δt
= ∇ ·

(
σ′k − pkI

)
+ ρmb (20a)  

ρ̄l
v*

l − vk
l

Δt
= − nl∇pk + ρ̄lb − n2

l
ρlg
k
(
v*

l − v*
s

)
(20b)  

and the correcting step for each phase is obtained as,  

ρ̄α
vk+1

α − v*
α

Δt
= − nα∇

(
pk+1 − pk) (21) 

Substituting Eq. (21) into the mass balance equation yields the pressure Poisson equation,  

Δtξ∇2( pk+1 − pk) − nlγl
pk+1 − pk

Δt
= nl∇ · v*

l + ns∇ · v*
s − βm

Tk+1 − Tk

Δt
(22)  

where ξ = ns/ρs + nl/ρl. Note that the pore pressure is implicitly evaluated by solving the pressure Poisson equation, while the stress is 
still evaluated explicitly to avoid iteration associated with the elastoplastic stiffness matrix. It is also worth noting that in the previous 
fractional step scheme, the liquid phase in porous media is usually assumed to be incompressible (i.e., γl = 0), whereas in the presented 
formulation, the liquid can be weakly compressible (i.e., γl ∕= 0). The numerical results for incompressible and weakly compressible 
fractional step methods are compared in the numerical cases. 

Since the temperature equation is solved with explicit time stepping, the time interval should fulfill the Courant–Friedrichs–Levy 
(CFL) condition. The CFL condition for the energy equation is controlled by the thermal diffusivity of the porous media as follows,  

Δtcrit,T < l2
min

/
cT (23)  

where lmin is the minimum element size, and cT = κm/Cm is the thermal diffusivity. Also, due to the explicit treatment for effective stress 
in Eq. (20a), the time step size for saturated elastic media in undrained conditions is constrained by the elastic wave propagation speed, 
given by,  

Δtcrit,u < lmin
/

cu (24)  

where cu =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E(1 − v)/[ρm(1 + v)(1 − 2v) ]

√
is the elastic compressional wave speed in the porous medium, and E and v are the elastic 

modulus and the Poisson’s ratio, respectively. Since the drag force is evaluated implicitly, the critical time step size is not limited by the 
permeability [70]. 

3.2. Weak form 

To apply MPM discretization, the semi-discrete equations are transformed into weak form based on the standard Galerkin pro-
cedure. Considering the boundary conditions in Eq. (18), the virtual work equations can be obtained by multiplying corresponding 
equations with test functions δT (with zeros on ∂TΩ), δv (with zeros on ∂vΩ), and δp (with zeros on ∂pΩ), respectively, and integrating 
over the whole domain Ω. 

After applying the integral by part and the divergence theorem, the weak form of the energy balance equation is obtained as,  
∫

Ω
δT ·CmṪk+1dV = −

∫

Ω
δT · ρ̄lcl

(
vk

l − vk
s

)
∇TdV +

∫

Ω
∇δT ·( − κm∇T)dV −

∫

∂Ωh

δT · ϕ̂dS +

∫

Ω
δT ·QdV (25)  

where ϕ̂ is the prescribed boundary heat flux defined in Eq. (18f). 
By the same procedure, the weak form of the predicting step of momentum equations can be written as,  
∫

Ω
δv ·

ρ̄s

Δt
(
v*

s − vk
s

)
dV +

∫

Ω
δv ·

ρ̄l

Δt
(
v*

l − vk
l

)
dV =

∫

∂Ω
δv · t̂dS −

∫

Ω
∇δv :

(
σ′k − pkI

)
dV +

∫

Ω
δv · ρmbdV (26a)  
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∫

Ω
δv ·

ρ̄l

Δt
(
v*

l − vk
l

)
dV +

∫

Ω
δv · n2

l
ρlg
k
(
v*

l − v*
s

)
dV =

∫

∂Ω
δv ·( − nl p̂I) ·ndS −

∫

Ω
∇δv :

(
− nlpkI

)
dV +

∫

Ω
δv · ρ̄lbdV (26b)  

where ̂t and p̂ are boundary traction force and boundary pore pressure defined in Eq. (18). 
Similarly, the weak form of the correcting step of momentum equations can be written as,  
∫

Ω
δv ·

ρ̄α
Δt
(
vk+1

α − v*
α
)
dV = −

∫

Ω
δv · nα∇

(
pk+1 − pk)dV (27) 

The final one is the weak form of the pressure Poisson equation, which can be written as,  
∫

Ω
∇δp ·Δtξ∇

(
pk+1 − pk)dV +

∫

Ω
δp · nlγlΔt− 1( pk+1 − pk)dV  

=

∫

Ω
δp · βmṪk+1dV +

∫

Ω
∇δp · nsv*

s dV −

∫

∂Ω
δp · nsv*

s ·ndS  

+

∫

Ω
∇δp · nlv*

l dV −

∫

∂Ω
δp · nlv*

l · ndS +

∫

∂Ω
δp · ξΔt∇

(
pk+1 − pk) · ndS (28)  

Here, the variational form of the pressure Poisson equation is obtained with an artificial Neumann boundary condition 
∇
(
pk+1 − pk) · n, which is not required in the original balance equations. For drained and undrained conditions, this artificial incre-

mental pressure gradient boundary can be simplified as ∇
(
pk+1 − pk) ·n = 0, which is found to be automatically enforced by setting 

v*
l ·n = 0 [33]. More numerical issues related to the implementation of artificial pressure gradient boundary in the projection method 

can be found in previous work on the Navior-stokes equation [71,72]. 

3.3. Spatial discretization 

The semi-discrete weak formulations are then discretized in space based on MPM. Compared to FEM, the main difference is that the 
numerical integrations in the MPM are performed at the moving material points instead of fixed quadratures. In the original MPM, the 
spatial interpolation functions are identical to standard FE shape functions. To reduce the numerical noise when material points cross 
the cell boundary in the original MPM, the generalized interpolation material point (GIMP) method was developed by Bardenhagen 
and Kober [73] and adopted in this study in case of large deformation problems. In the GIMP method, the grid shape function Ni(x) is 
smoothed via the particle characteristic function χp(x) as follows,  

Sip =
1

Vp

∫

Ωp∩Ω
χp(x)Ni(x)dV, ∇Sip =

1
Vp

∫

Ωp∩Ω
χp(x)∇Ni(x)dV (29)  

where Sip is the smoothed shape function, or called the weighing function, ∇Sip is its spatial gradient, i and p denote ‘node’ and 
‘material point (particle)’, respectively, Ω and Ωp are the material domain and the influence domain of material point p, and Vp =
∫

Ωp
χp(x)dV is the material point volume. In this study, the linear shape functions are used for both pressure and displacement 

interpolations. 
With the weighing functions, the integral equations can be further discretized into summation forms. For the energy balance 

equation, the discretized equation can be written in the following compact form,  

C Ṫ
k+1

= E
int
+ E

ext (30)  

with  

C =
∑

p
ST

p CmpSp (31a)  

E
int

= −
∑

p
ST

p Vpρ̄lcl

(
vk

lp − vk
sp

)
∇Tk

p −
∑

p
∇ST

p Vpκm∇Tk
p (31b)  

E
ext

=
∑

p
ST

p VpQ +
∑

p
ST

p Vph− 1ϕ̄ (31c)  

where Ṫ k+1 is the array of nodal temperature rate Ṫk+1
i , C is the matrix of nodal heat capacity, E int and E ext are the arrays of nodal 

internal and external heats, respectively, h is the fictitious boundary thickness, Sp is the array of above-defined interpolation functions 
with regard to material point p, and ST

p is the transpose of Sp. To facilitate explicit integration, the lumped matrix is used for C . 
Similarly, the momentum balance equations can be discretized as,  
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{
M s
(
v*

s − vk
s

)
+ M l

(
v*

l − vk
l

)
= F int

m + F ext
m

M l
(
v*

l − vk
l

)
+ F d ( v*

l − v*
s

)
= F int

l + F ext
l

(32)  

and  
{

M s
(
vk+1

s − v*
s

)
= − F cor

s Δpk+1

M l
(
vk+1

l − v*
l

)
= − F cor

l Δpk+1 (33)  

with  

M α =
∑

p
ST

p Vpρ̄αΔt− 1Sp (34a)  

F int
m = −

∑

p
∇ST

p : Vp

(
σ′k

p − pk
pI
)

(34b)  

F
ext
m =

∑

p
ST

p Vph− 1 t̂p +
∑

p
ST

p Vpρmbp (34c)  

F int
l = −

∑

p
∇ST

p : Vp

(
− nlppk

pI
)

(34d)  

F ext
l =

∑

p
ST

p Vph− 1( − nl p̂kI
)
· n +

∑

p
ST

p Vpρ̄lbp (34e)  

F d =
∑

p
ST

p Vpn2
lp

ρlg
k

Sp (34f)  

F cor
α =

∑

p
ST

p Vpnαp∇Sp (34g)  

where v*
α, vk

α, vk+1
α , and Δpk+1 are the nodal arrays of v*

αj, vk
sj, v

k+1
αj , and Δpk+1

j , respectively, and M α, F d, F int
α , F ext

α , and F cor
α are the 

nodal matrices associated with mass, drag force, internal force, external force, and corrected force, respectively. 
Finally, the discretized pressure Poisson equation can be written as,  

L Δpk+1 = B Ṫ
k+1

+ N sv
*
s + N lv

*
l (35)  

with  

L =
∑

p
∇ST

p VpΔtξ∇Sp +
∑

p
ST

p VpnlpγlpΔt− 1Sp (36a)  

B =
∑

p
ST

p VpβmpSp (36b)  

N α =
∑

p
∇ST

p VpnαpSp (36c)  

where L , A , B , and N α are the nodal coefficient matrices of Laplacian multiplier, liquid compressibility, thermal expansion, and 
volume fraction. 

3.4. Solution procedure 

The typical procedure of MPM includes four main stages, as illustrated in Fig. 1. Detailed solution procedure for the semi-implicit 
THM-coupled MPM is presented in Section 3.4.1. For comparison, we also depict the solution procedure for explicit THM-coupled 
MPM and highlight the main differences between the two methods in Section 3.4.2. The proposed framework is implemented 
based on the open-source CB-Geo MPM code [74]. 

3.4.1. Semi-implicit THM-coupled MPM 
Fig. 2 illustrates the solution procedure of the semi-implicit THM-coupled MPM. Each sub-step is carried out as follows. 
(1) Assign the initial material point properties ρ0

αp, V
0
p , n0

αp, v0
αp, T

0
p , σ′0

p , and p0
p . 

(2) Initialize MPM background mesh and compute shape functions. 
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(3) Map the mass, momentum, heat capacity, and heat from material points to nodes, and compute nodal velocity vk
αi and nodal 

temperature Tk
i by,  

vk
αi =

∑

p
mk

αpvk
αpSip

/
∑

p
mk

αpSip (37)  

Tk
i =

∑

p
Vk

pCk
mpTk

pSip

/
∑

p
Vk

pCk
mpSip (38) 

(4) Compute the velocity gradient of material points based on the mapped nodal velocities, and then calculate particle incremental 
total stain Δεk+1

p ,  

Δεk+1
p =

1
2

[

Lk
sp +

(
Lk

sp

)T
]

− βsΔTk
pI (39)  

where Lk
sp =

∑
iΔvk

si∇Sip is the velocity gradient, and ΔTk
p =

∑
iΔTk

i Sip is the temperature increment. 

(5) Update material point stresses σ′k+1 and other material point variables. In case of large deformation with large rotations, an 
objective stress rate, i.e., Jaumann stress rate, is utilized,  

σ′k+1
p = σ′k

p + D : Δεk+1
p + σ′k

p ·Δωk+1
sp − Δωk+1

sp · σ′k
p (40)  

where Δωk+1
sp =

[

Lk
sp −

(
Lk

sp

)T
]/

2 is the spin tensor. The porosity and the volume of the material points can be updated using the total 

strain increment according to  

nk+1
lp = 1 − nk

lp

/(
1 + Δεk

p

)
, Vk+1

p = Vk
p

(
1 + Δεk

p

)
(41)  

where Δεk+1
p is the trace of Δεk+1

p . Furthermore, the intrinsic densities of the solid and the liquid can be updated according to Eq. (9) by 
explicit time stepping,  

ρk+1
sp = ρk

sp

(
1 − βsΔTk

p

)
, ρk+1

lp = ρk
lp

(
1 + γlΔpk

p − βlΔTk
p

)
(42) 

Fig. 1. Illustration of typical MPM procedure.  
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Other temperature and/or pressure dependent properties can also be updated, such as the liquid viscosity and the specific heat ca-
pacity, though not considered in this study. 

(6) Compute E int and E ext by Eq. (31), and calculate nodal temperature rate Ṫk+1
j by Eq. (30). Meanwhile, compute M α, F int

α , F ext
α 

and F d according to Eq. (34), and calculate nodal intermediate velocities v*
αj by Eq. (33). 

(7) Compute L , A , B , and N α according to Eq. (36), and solve pressure Poison equation Eq. (35) for nodal incremental pore 
pressure Δpk+1

j . 

(8) Compute the corrected nodal velocities vk+1
αj using Δpk+1

j by Eq. (33). 
(9) Update particle primary variables, including velocities, temperature, and pore pressure, by extrapolating nodal information. In 

MPM, extrapolating incremental or total nodal values naturally results in two types of schemes: Particle-In-Cell (PIC) and Fluid- 
Implicit-Particles (FLIP). It is known that the former introduces excessive numerical dissipation for dynamic problems, and the 
latter has instability issues. A combined approach using mixed PIC and FLIP is proposed by Hammerquist and Nairn [75] as follows, 

Fig. 2. Solution procedure of the semi-implicit THM-coupled MPM.  
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ψk+1
p = αψ

∑

i
ψk+1

i Sip + (1 − αψ )

(

ψk
p +

∑

i
Δψk+1

i Sip

)

(43)  

where ψ represents different particle variables (ψ = vα,T,p), and αψ is the PIC damping coefficient for ψ , ranging from 0 to 1. Eq. (43) 
can be reduced to the PIC method if αψ = 1, and the FLIP method if αψ = 0. Nairn and Guilkey [39] state that the PIC method for 
temperature updating suffers from numerical heat conduction, so it should not be adopted. The performance of the two schemes will be 
showcased in the following examples. 

(10) Update particle displacements and coordinates by mid-point integration,  

xk+1
p − xk

p = uk+1
p − uk

p = Δtvk
sp +

1
2
∑

i
Δvk+1

si Sip (44)  

(11) If tk+1 < tfinal, return to step (2) and enter the next loop; otherwise terminate the analysis. 
Moreover, to facilitate the simulation of THM-coupled axisymmetric problems, we also present the main modifications of the 

fractional step-based formulations with regard to cylindrical coordinates. Details can be found in Appendix. 

3.4.2. Explicit THM-coupled MPM 
The solutions procedure for a fully explicit scheme is shown in Fig. 3. The main differences compared to the proposed semi-implicit 

MPM are as follows. 
(1) The nodal velocities vk

αi are solved explicitly by,  
{

M s
(
vk+1

s − vk
s

)
+ M l

(
vk+1

l − vk
l

)
= F int

m + F ext
m

M l
(
vk+1

l − vk
l

)
+ F d ( vk

l − vk
s

)
= F int

l + F ext
l

(45) 

Fig. 3. Solution procedure of the fully explicit THM-coupled MPM.  
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Here the lumped mass matrix is used for M α and F d to facilitate explicit integration. 
(2) The fluid is assumed to be weakly compressible, and the pore pressure is treated as a secondary variable which is directly 

calculated on particles based on the liquid compressibility,  

pk+1
p = pk

p +
Δt

nk+1
lp γl

(
βmε̇k+1

Tp − nk+1
sp ε̇k+1

sp − nk+1
lp ε̇k+1

lp

)
(46)  

where ε̇k+1
Tp , ε̇k+1

sp , and ε̇k+1
lp are the rate of thermal strain, solid volumetric strain of and liquid volumetric strain, respectively. Due to the 

explicit integration of pore pressure and drag force, the time step size is constrained also by the liquid compressibility and the 
permeability of the porous media (cf. [33,70]). To stabilize the pressure field in the explicit scheme, a simple pressure smoothing 
technique is used by interpolating particle pressure to nodes and re-interpolating to particles. 

4. Numerical benchmarks 

The numerical examples presented in this section are intended to validate and demonstrate the performance of the proposed THM- 
coupled MPM formulations in simulating different boundary value problems. The first two examples focus on the one-dimensional 
THM response in porous media, including the heating of a saturated half-space and the non-isothermal consolidation of a saturated 
soil column. The thermo-elastic response around a deeply buried heat source is further considered to demonstrate the robustness of the 
proposed method in simulating three-dimensional axisymmetric problems. 

4.1. Heating of a saturated half-space 

The first example considers a saturated semi-infinite space with its top surface subjected to a constant temperature load. This 
problem has been analytically solved by McTigue [76]. The geometry and boundary conditions of the problem are shown in Fig. 4. To 
simplify the problem, the half-space is modeled as a 1D saturated soil column which needs to be set sufficiently high to minimize the 
effect of wave reflection from the bottom boundary on the topsoil. The prescribed velocity boundary condition, where the bottom 
boundary is totally fixed and the side boundaries are fixed horizontally, is to ensure the 1D consolidation. The pore water is allowed to 
drain from the top surface only, while the other boundaries are impermeable. The soil domain is discretized into a column of cubic cells 
with a unique size of 0.2 m, and each cell is uniformly arranged with four material points. A constant temperature T1 is applied 
instantaneously at the top boundary of the soil column at the start of the analysis. The soil column is modeled as a linear elastic 
material. The convective heat transfer is not considered by McTigue [76] so does it in our case. The analytical solution for saturated 
porous media with incompressible constituents under drained conditions is expressed as,  

T(h, t) = T1

[

1 − erf
(

h
2
̅̅̅̅
κt

√

)]

(47a)  

p(h, t) =
bT1

1 − c/κ

[

erf
(

h
2
̅̅̅̅
ct

√

)

− erf
(

h
2
̅̅̅̅
κt

√

)]

(47b)  

with T(h, t) and p(h, t) being the temperature and pore pressure at depth h and time t, respectively, and the surface displacement uy(0, t)
is given as,  

uy(0, t) = −

[
1 − 2ν

2G(1 − ν)
bT1

1 +
̅̅̅̅̅̅̅
c/κ

√ +
1 + ν

3(1 − ν)βsT1

]

2
̅̅̅̅̅̅̅̅̅
κt/π

√
(47c)  

where erf(*) is the error function, T1 is the surface temperature, κ = κm/Cm is the coefficient of thermal diffusivity, c = kM/(ρlg) is the 
coefficient of consolidation, b = 4Gβs/3+ Mnl(βl − βs), M = 2G(1 − ν)/(1 − 2ν) is the P-wave modulus, G is the shear modulus, and ν 
is the Poisson’s ratio. Detailed solutions for displacement and stress can be found in Ref. [76]. 

In this example, the applied surface temperature T1 = 50 ◦C, and the height of the soil column is set as 100 m. The material 
parameters are modified from [10], given as follows: Young’s modulus E = 6 kPa, Poisson’s ratio ν = 0.4, porosity n = 0.2, specific 
heat Cm = 167.2 kJ kg− 1 ◦C− 1 (implemented by setting ρs = ρl = 1000 kg m− 3 and cs = cl = 167.2 J kg− 1 ◦C− 1), thermal conductivity 
κm = κs = κl = 836 W m− 1 ◦C− 1, hydraulic conductivity k = 4× 10− 2 m s− 1, and volumetric thermal expansivity βs = βl = 9×

10− 7 ◦C− 1. The liquid compressibility is set as γl = 1 × 10− 9 Pa− 1 for explicit MPM and weakly compressible semi-implicit MPM. As 
inequal βs and βl can be considered in the analytical solution, two additional cases with βl = 0 and βl = 1.2 × 10− 6 ◦C− 1 are also 
benchmarked. Besides, the effect of information mapping strategies on the solution of temperature is investigated. The test conditions 
for all cases are summarized in Table 1. The time step size for the semi-implicit scheme is set as 8× 10− 2 s. Due to the influence of 
liquid compressibility on the critical time step, the time step size for the explicit scheme needs to be much smaller which is set as 2×

10− 4 s. All simulations are terminated at the simulated heating time up to 5× 104 s.  
Fig. 5 shows the time evolution of temperature, displacement, pore pressure, and effective stress at different soil depths. Both the 

numerical results by MPM and the analytical solutions are plotted in the same figure for comparison. As expected, the soil temperature 
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gradually increases over time, leading to the expansion of soil and positive surface displacement. It is interesting that at the initial stage 
of heating, the temperature rise is not quite significant, while the pore pressure increases rapidly to its peak, at which the temperature 
is only about 5 ◦C. This phenomenon arises from the fact that the pore pressure is dependent on the rate of temperature and defor-
mation rather than their accumulative values, as indicated by the mass balance equation. Upon comparing the simulation results 
obtained from semi-implicit MPM with the analytical solutions, it is evident that the proposed method can achieve accurate and stable 
THM responses of porous media under thermal loading. The same observation holds independent of the choice of liquid expansivity βl. 
It is notable that the magnitude of pore pressure is significantly affected by the value of βl, indicating that it could generate unrea-
sonable results if neglecting this factor during the THM coupling analysis. 

By contrast, the simulation results by explicit MPM (not presented) are found to undergo severe pressure instabilities once the 
pressure smoothing is not applied. It is common in explicit hydrodynamics, as documented in the literature [34,35,42], not only 
because of the restriction of interpolation order but also the weakly compressible flow assumption that brings in wave propagation and 
reflection. In this work, adopting a simple pressure smoothing technique [33] renders the predictions of explicit MPM more stable 
despite mild oscillations still observed during the initial stage of loading. It is worth noting that the pressure smoothing technique and 
other remedial measures, such as reduced integration or PIC damping method, cannot fundamentally address the pressure oscillation 
problem arising from the fluid incompressibility constraint. Moreover, the ensuing requirement of smaller time step sizes by such a 
technique renders it not as efficient as the fractional-step-based semi-implicit method. By contrast, the semi-implicit THM-coupled 
MPM shows a notable advantage in terms of both numeric accuracy and stability while offering acceptable efficiency. 

Although the fluid compressibility may lead to unwelcome pressure oscillations, we sometimes require such dynamic features. This 
inspires the development of weakly compressible fractional step formulation in this work. From Fig. 5(c), it is evident that given a small 
value of liquid compressibility (see case “MPM(semi γl = 1E− 9)”), the semi-implicit MPM based on weakly compressible fractional 
step formulation yields almost identical pore pressure as the case assuming incompressible fluid, indicating the correctness of the 
proposed formulation. The ability of the weakly compressible fractional step method to capture dynamic responses, such as the wave 
propagation in porous media caused by the instantaneous application of loads, is not shown due to limited space. Interested readers can 
refer to relevant literature by Jassim et al. [26] and Yuan et al. [44]. Another technical issue is concerned with the effect of different 
particle temperature mapping schemes on the resulting temperature field. Fig. 5(a) compares the particle temperatures updated by 
either incremental-based (i.e., αT = 0) or total-based (i.e., αT = 1) strategy. It is found that the obtained temperature using the latter 
strategy (see case “MPM(semi - αT = 1)”) shows serious deviations compared to the actual solution. The deviations further cause 
spurious errors in the resulting displacement and pore pressure fields (see Fig. 5(b) and (c)). The observed discrepancy in temperature 
is attributable to what is referred to as numerical heat transfer [39]. Therefore, the total-based temperature mapping strategy is not 
advisable for advancing the solution of the temperature equation.  

Fig. 6 further shows the primary variables versus soil depth in the semi-implicit base case. It is found the simulated results are 
stable in space and are all in excellent agreement with the analytical solution. This case demonstrates that the developed semi-implicit 
MPM is free of oscillations in both time and space despite using low-order interpolation functions. Overall, the proposed method can 
accurately consider a broad range of THM coupling effects while maintaining relatively high computational efficiency. 

Fig. 4. Geometry and boundary conditions for 1D heating.  
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4.2. Non-isothermal consolidation 

The second example revisits the problem of 1D non-isothermal consolidation of saturated soil. The example was initially designed 
by Aboustit et al. [77, 78]) and later adopted by other researchers such as Noorishad et al. [10], Lewis et al. [11], Cui et al. [17], Lei 
et al. [42], and Cui and Wong [18] to verify their FEM or MPM formulations and codes. The objective of this example is to evaluate the 
performance of the proposed THM-coupled formulations under combined thermal and mechanical loads. The geometry and boundary 
conditions are identical to the first example, except that the soil column is of a finite height of 7 m and is subjected to both a surface 
surcharge and a temperature load, as depicted in Fig. 7. The domain is discretized into 35 quadrilateral cells with a uniform size of 0.2 
m, and each cell is arranged with four material points. The applied vertical surface traction p1 and temperature T1 are 1 Pa and 50 ◦C, 

Table 1 
Summary of the test conditions for all simulated cases in the 1D heating example.  

Case ID Numerical scheme Temperature mapping Pressure smoothing γl [Pa− 1] βl [◦C
− 1] 

Semi - base Semi-implicit αT = 0 No 0 9E− 7 
Semi - αT = 1 Semi-implicit αT = 1 No 0 9E− 7 
Semi - γl = 1E− 9 Semi-implicit αT = 0 No 1E− 9 9E− 7 
Semi - βl = 0 Semi-implicit αT = 0 No 0 0 
Semi - βl = 1.2E− 6 Semi-implicit αT = 0 No 0 1.2E− 6 
Explicit- base Explicit αT = 0 Yes 1E− 9 9E− 7 
Anal. - base Analytical – – – 9E− 7 
Anal.- βl = 0 Analytical – – – 0 
Anal.- βl = 1.2E− 6 Analytical – – – 1.2E− 6  

Fig. 5. MPM solutions against analytical solutions for the 1D heating of a saturated half-space: (a) temperature versus time, (b) surface 
displacement versus time, (c) normalized pore pressure p/pmax versus time, in which pmax is the maximum pore pressure in the base case, and (d) 
normalized effective stress σx/|σxmax| versus time, in which σxmax is the maximum lateral stress. 
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respectively. For comparative purposes, cases with prescribed temperature or prescribed traction only are also performed. The three 
parallel cases are labeled as Case 1 (p1 = 1 Pa,T1 = 50 ◦C), Case 2 (p1 = 1 Pa,T1 = 0 ◦C), and Case 3 (p1 = 0 Pa,T1 = 50 ◦C). The soil 
is modeled as a linear elastic granular material with the same material parameters presented in the previous example. The time step 
sizes for semi-implicit and explicit schemes are set as 8 × 10− 2 s and 1× 10− 4 s, respectively.  

Fig. 8 displays the temperature evolution at the depths of 1 m, 3 m, and 5 m. Fig. 8(a) shows that the temperature gradually 
increases over time and eventually approaches 50 ◦C. The simulated temperatures by MPM at the depths of 3 m and 5 m match well 
with the predictions by Lewis et al. [11], while a minor discrepancy at the depth of 1 m is observed in the initial stage of the analysis. 
The discrepancy is also reported by Cui et al. [17] in their FEM analysis compared to Lewis et al. [11], whereas their results are 
consistent with ours. The deviation may be because Lewis et al. employ relatively larger time step intervals in their simulation (10 s per 
step after a simulation duration of 1.1 s).  

Fig. 9 displays the pore pressure evolution at the depths of 1 m and 3 m. Again, the result obtained by the explicit MPM is treated by 
pressure smoothing. In Case 2 (the isothermal case), the pore pressure initially equals the applied boundary traction and gradually 
decreases to zero over time. This indicates that the surcharge load is initially borne entirely by the pore water during consolidation and 
subsequently transferred onto the soil skeleton as the pore water drains away. Due to a shorter drainage path, the topsoil layer (e.g., 
h = 1 m) dissipates pore pressure faster than those farther away from the surface (e.g., h = 3 m). Case 3 involves thermal loading only, 
in which the pore pressure shows similar trends as that of the case in Section 4.1, except that the peak value, affected by the fixed 
bottom boundary, varies with the depth of soil (see the top-right subfigure in Fig. 9). Case 1 is simulated with combined thermal and 
mechanical loadings. However, since the thermal-induced pressure does not play a dominant role in this scenario (the peak pressure is 
observed to be no larger than 1% that of the surface surcharge), the resulting pore pressure nearly overlaps with that of the isothermal 
case. Overall, the pore pressure data, obtained from either the semi-implicit MPM or smoothed explicit MPM, are in good agreement 
with the FEM work by Lewis et al. [11] and Cui et al. [17].  

Fig. 10 further shows the consolidation (surface displacement) curves for both the isothermal and non-isothermal cases. A notable 
feature in Case 1 is the nonmonotonic consolidation behavior of soil changed from subsidence to expansion. This behavior is a 
characteristic of non-isothermal consolidation and is determined by the consolidation coefficient c (= kM/μ) and the thermal diffu-
sivity κ (= κm/Cm). The two factors control the rate at which the consolidation process proceeds and the rate of heat transfer of soil 
from the hot end to the cold end, respectively [79]. In this case, c (= 5.24× 10− 2) is about ten times greater than κ

(
= 5 × 10− 3), 

indicating that the rate of heat transfer or, deductively, the rate of expansion of soil, is slower than the rate of consolidation. This is 
responsible for the out-of-sync behavior observed in the pore pressure curves of Case 2 and Case 3. If given different properties of c and 
κ and different boundary conditions, the soil may exhibit different consolidation behaviors, from monotonic to nonmonotonic and 
cyclic responses [80,81]. The simulated displacements for all three cases demonstrate good agreement with FEM results, except that 
the maximum displacement differs slightly from the result of Lewis et al. [11]. This discrepancy may be attributed to their simplifi-
cation of the thermal coupling term βmṪ in the mass balance equation, which can lead to an overestimation in the rate of pore pressure 
dissipation. Like our approach, Cui et al. [17] also took the thermal coupling effect into consideration, and their outcomes are in 

Fig. 6. Spatial distributions of (a) temperature, (b) pore pressure, and (c) displacement at different time instances: t = 20 s, 100 s, 500 s, 2000 s, 
10 000 s, and 50 000 s, represented by lines from up (blue) to bottom (red), respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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excellent agreement with ours. To sum up, the proposed MPM formulations can effectively model the coupled THM responses of porous 
media under diverse boundary conditions. 

4.3. THM response around a point heat source 

The following example involves the thermoelastic response around a deeply buried point heat source, a classical problem 
frequently used to benchmark the THM-coupled FEM codes. This problem was solved analytically by Booker and Savvidou [82] and 
more recently corrected by Chaudhry et al. [83] with regard to the stress part of the analytical solution. The point heat source problem 
is a typical axisymmetric problem and is preferable to be solved in cylindrical coordinates. In this section, both 3D and axisymmetric 
MPM analyses are presented to demonstrate the robustness of the semi-implicit THM-coupled MPM. Explicit MPM is not used for this 
example due to its low efficiency. 

Fig. 11 shows the MPM model setup for 3D and axisymmetric analyses. For the 3D case, a 1/8 region of the entire space is simulated, 
considering the problem space is symmetric. The applied point heat source is located at the origin of the coordinate system. As the 
focus is the soil behavior around the heat source, it requires minimizing the effect of outer boundaries by simulating a relatively large 
domain with fine mesh sizes. After several tests, it was found that 10 m in each dimension with an element size growing from 10− 2 to 
2.5 m is enough to weaken the boundary effect. The use of increasing meshing size helps capture more accurate results near the heat 
source and, meanwhile, does not significantly increase the computation intensity. The modeling domain is then divided into 8000 
quadrilateral elements, each containing eight material points initially. A total number of 64 000 material points is simulated in the 3D 
case. In the axisymmetric case, the domain is divided into 400 rectangular elements, with four material points in each cell and totaling 
1600 material points. This could significantly reduce the computational cost compared to the 3D case. The prescribed boundary 
conditions require the normal displacements of both the liquid and the solid phases to be constrained to zero along the inner boundary, 
while at the outer boundary, the temperature and the pore water pressure remain unchanged throughout the simulation, i.e., T0 = 0 ◦C 
and p0 = 0 Pa. A point heat source of Qh = 1000 W is applied to propagate the transfer of heat. Some cautions should be taken for the 
axisymmetric case. First, nodes at the rotationally axisymmetric boundary (r = 0) should be strictly constrained in the normal di-
rection. Second, the input of the heat source should be in power per radian, which is 125/2π W in this case. Furthermore, the 
assignment of traction along the outer boundaries should be in force per radian and properly dependent on position, although this is 
not relevant to our case [39]. 

The soil is modeled as a linear elastic material with the following material properties: Young’s modulus E = 5× 103 Pa, Poisson’s 
ratio ν = 0.3, porosity n = 0.16, solid density ρs = 2290 kg m− 3, liquid density ρl = 1000 kg m− 3, solid specific heat capacity cs =

918 J kg− 1 ◦C− 1, liquid specific heat capacity cl = 4280 J kg− 1 ◦C− 1, solid thermal expansivity βs = 1.5× 10− 5 ◦C− 1, liquid thermal 
expansivity βl = 4× 10− 4 ◦C− 1, solid thermal conductivity κs = 1838 W m− 1 ◦C− 1, liquid thermal conductivity κs = 600 W m− 1 ◦C− 1, 
and hydraulic conductivity k = 2× 10− 4 m s− 1. The analytical solution is given as follows,  

Fig. 7. Geometry and boundary conditions for non-isothermal consolidation.  
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T(ρ, t) =
Q

4πκmρ
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p(ρ, t) =
bQ

4πκmρ(1 − c/κ)

[

erf
(

h
2
̅̅̅̅
ct

√

)

− erf
(

h
2
̅̅̅̅
κt

√

)]

(48b)  

where T(ρ, t) and p(r, t) are the temperature and pore pressure at time t and distance ρ with ρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2 + x2
3

√

, Q is the heat source, 
and other parameters are the same as Eq. (47). The solution for displacement and effective stress can be referred to Chaudhry et al. 
[83]. 

Fig. 8. Temperature versus time at the depths of 1 m, 3 m, and 5 m.  

Fig. 9. Pore pressure versus time at the depths of 1 m and 3 m.  
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Figs. 12 and 13 show the contour results of the 3D case and the axisymmetric case, respectively. To display the results more clearly, 
we post-treat the solution in the axisymmetric case by Delaunay triangulation. It is found both cases show nearly identical solutions. 
The resulting temperature displays a perfect circular distribution around the point heat source, which is a natural outcome of isotropic 
heat transfer in a symmetrical configuration. The same feature is observed in pore pressure and displacement magnitude since the 
hydraulic and mechanical responses solely arise from the thermal variation. However, differing from the temperature that changes 
monotonously in the radial direction, the pore pressure and the displacement show a peak value, and the peak shifts away from the 
heat source over time. Besides, in the axisymmetric case, the radial displacement ur is bilaterally symmetric with the axial 
displacement uz with respect to the 45-degree line, indicating the correctness of the axisymmetric formulation. Overall, both results in 
3D and axisymmetric cases demonstrate reasonable spatial distribution and time evolution of the primary variables at a qualitative 
level. Quantitive verifications of the numerical results are performed later by comparing them with analytical results.  

Fig. 14 presents the MPM results against the analytical solutions as a function of time at an arbitrarily chosen point 
P(0.561041 m,0.25531 m,0 m). It is found that the evolutions of the four fields in both the axisymmetric and 3D cases are in good 
agreement with the analytical solutions. Slight pressure oscillation at the initial stage of the simulation and minor deviations in stress 
components are observed. The deviations in stress components are probably attributed to the fact that the MPM uses material points 
instead of Gaussian points for stress integration. Fig. 15 further compares the spatial distribution of the axisymmetric results along the 
45-degree line at the time of 100 s. The major numerical errors are found in the region near the heat source. However, by using a finer 
mesh, for example, one in which the element size is half of that of the reference case (denoted as coarser mesh case), the accuracy of the 
simulation results can be improved, as indicated by the green lines in Fig. 15. It is also worth noting that the simulated heat source 
problem is a so-called singularity problem which means some variables, e.g., temperature and stresses, approach infinite when r and z 
tend to zero. That is why the simulation results near the heat source are not as good as those far away, even in the finer mesh case. The 
fluctuation observed in stress distribution is also a result of the inaccurate stress integration in low-order elements, which can be 
minimized by further employing stress or strain smoothing techniques, e.g., B̄ and F̄ method (cf. [84]). Overall, the developed coupled 
MPM can correctly simulate the 3D and axisymmetric problems involving multiphysics coupling. 

5. Application example: THM analysis of a slope 

Granular soils with ice-like cementation, such as frozen soils and gas hydrate-bearing sediments, are susceptible to changes in 
temperature [2,85]. For instance, the rising temperature may cause the melting and gasification of the ice-like bond and lead to the 
weakening or softening of the bearing soils [86–88]. This example focuses on the thermal response and failure of a thermally sensitive 
slope caused by temperature change. For simplification, the effect of temperature change on the material responses is incorporated into 
the soil constitutive models and the phase transition is not considered in the conservation equations. Further development of the 
method relevant to phase change problems will be conducted in the future.  

Fig. 16 depicts the geometry and boundary conditions of the saturated slope under consideration. The bottom boundary is rigidly 
fixed, and the left and right are roller boundaries. The top boundaries are free and drained. To further demonstrate the capability of the 
proposed approach in tackling diverse initial and boundary value problems, three typical geotechnical problems are simulated, 

Fig. 10. Surface settlement versus time for both non-isothermal and isothermal conditions.  
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including the self-weight consolidation, the THM response due to heating, and the slope slide triggered by temperature rise. The 
temperature boundary illustrated in the figure is set only for the latter two problems. The linear elastic model is used in the first two 
problems, and for the final problem, a thermal- and strain-softening Mohr–Coulomb model is adopted to capture the motion of the 
slope. 

5.1. Self-weight consolidation 

It is preferable to generate a stable in-situ stress field through self-weight consolidation before we proceed to the latter slope failure 
case [9,33]. The gravitational acceleration is taken as 9.81 m s− 2. The material properties are given as follows: Young’s modulus E =

2× 107 Pa, Poisson’s ratio ν = 0.3, porosity n = 0.2, intrinsic density of solid grains ρs = 2600 kg m− 3, intrinsic density of liquid ρl =

1000 kg m− 3, and hydraulic conductivity k = 1× 10− 8 m s− 1. To accelerate the seepage process, the hydraulic conductivity is 
amplified by a factor of 86400 s/day, making the simulation time of 1 s equivalent to the seepage duration of 1 day. The time in-
crements are chosen as 1 × 10− 3 s and 2 × 10− 5 s for semi-implicit and explicit MPM, respectively. It is observed the solutions exhibit 
periodical oscillations for both semi-implicit and explicit methods. This is a natural outcome of the instantaneous application of gravity 
on elastic media. To mitigate this issue, an artificial damping 

(
= − αdampvα

)
is added to the particle acceleration in each time step, with 

a damping factor αdamp = 5/s [28,42].  
Figs. 17 and 18 present the contour plots of pore pressure and displacement fields solved by two methods with and without 

Fig. 11. Model setups for (a) 3D and (b) axisymmetric analyses of the THM response around a deeply buried point heat source.  
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damping. Five points, i.e., A (0 m, 0 m), B (10 m, 0 m), C (5 m, 5 m), D (14 m, 4 m), and E (8 m, 10 m), are chosen to analyze the 
evolution of pore pressure and displacement qualitatively. The numerical results of the chosen points are shown in Fig. 19. As the two 
methods generate nearly identical simulation results, only the result for semi-implicit MPM is presented. It can be observed that 
without damping, the numerical oscillations in pressure and displacement could also shrink with time but at a rather low speed. 
However, with a damping of 5/s adopted, the oscillations are rapidly reduced. Despite the use of particle damping, the same state is 
obtained at the final stable stage of the consolidation as that of the non-damped case. The final stabilized state of consolidation will 
serve as the initial conditions of the slope failure problem in Section 5.3. 

5.2. Thermal transfer analysis 

Thermal transfer underpins many engineering applications, such as thermal piles and the heating of wellbores by hot water in-
jection [1,89]. The latter is also one of the main approaches to dissociating gas hydrate. In this case, we consider a vertical wellbore 
near the slope, where hot water is injected to heat the wellbore. The temperature of the injected water, denoted as T1, is kept constant 
at 50 ◦C. The height of the wellbore is 6 m, and the radial size of the borehole is neglected. The initial–boundary value problem can be 
simplified as shown in Fig. 16. The initial temperature is set as 0 ◦C, and the temperature of the inner boundaries remains unchanged 
during the heating process. The slope is modeled with the same material as the previous section. The thermal-related material 
properties are given as follows: specific heat capacity of solid cs = 837 J kg− 1 ◦C− 1, specific heat capacity of liquid cl =

4186 J kg− 1 ◦C− 1, volumetric thermal expansion coefficient of solid βs = 3× 10− 5 ◦C− 1, volumetric thermal expansion coefficient of 
liquid βl = 2.1× 10− 4 ◦C− 1, thermal conductivity coefficient of solid κs = 1.838 W m− 1 ◦C− 1, thermal conductivity coefficient of 
liquid κs = 0.6 W m− 1 ◦C− 1. Again, to accelerate the thermal transfer and pore pressure dissipation, both the thermal conductivity and 
permeability coefficients are amplified by 86400 s/day. Similar treatments have been adopted by Lei et al. [42] and Zhao et al. [88].  

Fig. 20 shows the contour plots of temperature and excess pore pressure for explicit and semi-implicit methods. It is observed that 
both methods give similar pore pressure distributions. At the initial stage of the heating process, the expansion of solid and water 
results in a rapid increase of excess pore pressure around the heating region. With the drainage of pore water, the excess pore pressure 
starts to dissipate after reaching its peak. Given a lower permeability, it exhibits a higher peak value and a slower rate of dissipation. 
The thermo-hydraulic responses of the slope during the heating process show the same trend as the previous one-dimensional example 
(see Section 4.1). Fig. 21 shows the contour plots of displacement components in both the x and y directions. It is observed that during 
the early stage of the heating process, the slope deforms toward the free sides in both lateral and vertical directions, exhibiting an 
expansive behavior. However, with the heating process continuing, the behavior of the slope changes from expansion to contraction, 
with a trend to reach a stable state. Again, this is attributed to the coupling effect of thermo-hydromechanics. Overall, the solutions of 
temperature, excess pore pressure, and displacement show very smooth spatial distributions, indicating that the proposed method can 
capture reasonable and stable THM responses for engineering-scale problems. 

Fig. 12. Contour results of temperature, pore pressure, and displacement magnitude |u| within 1 m around the point heat source in the 3D case.  
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5.3. Slope failure caused by temperature rise 

In engineering failure analysis, the contribution of purely thermal deformation is often negligible compared to temperature- 
induced material degradation. For instance, several studies have demonstrated that an increase in temperature leads to a decrease 
in cohesion and friction angle of ice- or hydrate-bonded soils as a result of the loss of ice/hydrate bond [2,87,90]. In this example, we 
adopt a non-associated elastoplastic Mohr–Coulomb model proposed by Monterey and Willam [91] and widely used in previous MPM 
studies (cf. [33,92]). The soil’s softening behavior caused by temperature rise and strain accumulations is considered by incorporating 
a softening model modified from [8,93], in which the effective cohesion c′ and effective friction angle φ′ decrease exponentially with 
temperature T and plastic deviatoric strain εd

p as follows,  

c′ = c′
res +

(
c′

0 − c′
res

)
exp
(
− ηεd

p − ηT(T − T0)
)

(49a)  

φ′ = φ′
res +

(
φ′

0 − φ′
res

)
exp
(
− ηεd

p − ηT(T − T0)
)

(49b)  

where c′
0 and φ′

0 are the effective cohesion and the effective friction angle at the reference temperature T0, c′
res and φ′

res are the residual 
values of c′ and φ′, and η and ηT are the shape coefficients which control the strain softening and thermal softening. In this example, the 
material properties used are given as follows: c′

0 = 20 kPa, c′
res = 1 kPa, φ′

0 = 27◦, φ′
res = 15◦, η = 100, ηT = 1, and T0 = 0 ◦C. Other 

elastic material properties and thermal properties are the same as in the previous sections. The boundary conditions are the same as in 
Section 5.2. The stable state after consolidation in Section 5.1 is chosen as the initial condition of the simulation. 

Figs. 22 and 23 present the numerical results obtained from the semi-implicit MPM and the explicit MPM, respectively. Both 
methods show highly similar simulation outcomes. The failure mechanism of the slope can be explained as follows. As the temperature 
increases, the cohesion and friction of the soil decline, resulting in the soil adjacent to the heat source yielding and forming a vertical 
shear band. With further temperature rise, the shear band extends downwards, creating a visible circular sliding surface that extends to 
the toe of the slope. Due to the consideration of strain softening, the material properties in the vicinity of the thermal-induced shear 

Fig. 13. Contour results of temperature, pore pressure, displacement magnitude |u|, radial displacement ur , and axial displacement uz within 1 m 
around the point heat source. 
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zone deteriorate further, leading to a global slipping, while soil within the sliding block is observed to exhibit little failure. It is 
noteworthy that during the early stage of the shear band formation, the pore pressure decreases within the shear band while it in-
creases outside the shear band. However, with the continued slide progression, the pore pressure of the internal soil near the fixed end 
begins to dissipate also, potentially due to the suction effect of the shear band and geometric changes after slope failure. The contour 
figures demonstrate that the simulation outcomes are both reasonable and stable, highlighting the potential success of the proposed 
method in the analysis of thermo-hydro-mechanically coupled large deformation problems.  

Remarks. This example illustrates the proposed framework’s capability to simulate the THM response of a slope during heating and 
the thermal-induced slope failure, indicating its adaptability to a wide range of problems, from small to large deformation regimes. The 
proposed method is also suitable for simulating the entire failure process of complex multiphysics coupling scenarios, from initiation 
and propagation to post-failure stages, which can be challenging for FEM. While the study focuses on the numerical aspects of the 
framework, it is noteworthy that the plastic dissipation term, representing mechanical plastic work converted into heat, is not 
considered in this example. Several studies have emphasized the significant impact of plastic dissipation on hydraulic and mechanical 
responses, indicating the need for its inclusion [8,66,67]. For instance, Seguí et al. [67] found that the movement of landslide causes 
friction in the shear band, raising the temperature of the clays until they become unstable and collapse catastrophically through a 
thermal runaway instability. It is also found that the nonlinear plasticity coupling term in the heat equation may introduce additional 
numerical instabilities and errors, requiring special treatment, especially when the sequential solution scheme is adopted [68,69]. The 
monolithic scheme is likely an effective way to improve the numerical accuracy when dealing with complex tightly coupled THM 
systems [18,46,94]. However, it remains challenging for THM-coupled MPM to ensure convergency and stability in the context of large 
deformation regimes. Additionally, the constitutive model used in this example is relatively simplistic, which may limit the fidelity of 
the simulation. Therefore, future research will consider investigating different solution schemes and alternative stress–strain updating 
techniques. 

Fig. 14. MPM results against analytical solutions: (a) temperature, (b) displacement components ur and uz, (c) pore pressure, and (d) effective stress 
components σrr , σzz, and σrz as a function of time at point (0.561041 m, 0.25531 m, 0 m). 
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Fig. 15. Spatial distribution of (a) temperature, (b) displacement components ur and uz, (c) pore pressure, (d) effective stress components σrr , σzz, 
and σrz along the 45-degree line at t = 100 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 16. Geometry and boundary conditions for the saturated slope.  
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6. Conclusions 

A THM-coupled material point method (MPM) has been developed for simulating large deformation problems in saturated porous 
media. The fully coupled governing equations are derived within the framework of one-point, two-phase MPM via u-v-p-T formulation. 
A simple and efficient staggered time integration scheme is proposed, in which the energy balance equation is solved explicitly, and the 
hydrodynamic part is solved based on the fractional step method. Both cases of compressible and weakly compressible fluid are 
considered. A fully explicit scheme for the coupled equations is also developed for comparison purposes. To facilitate the simulation of 
3D axisymmetric THM problems, the axisymmetric formulations are also derived after necessary modifications from the plane strain 
formulation. 

Fig. 17. Comparison of the pore pressure field for semi-implicit MPM and explicit MPM with and without damping at different time instances 
during the gravity loading. 

Fig. 18. Comparison of the displacement field for semi-implicit MPM and explicit MPM with and without damping at different time instances during 
the gravity loading. 
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The proposed THM-coupled MPM has been validated using two well-documented examples, including the heating problem of 
saturated half-space, which was analytically solved by McTigue [76], and the non-isothermal consolidation problem of a saturated soil 
column, which is well-benchmarked by many finite element analyses. Numerical results show that the particle temperatures updated 
based on incremental nodal temperatures are accurate, whereas the method by directly extrapolating nodal temperatures encounters 
unacceptable errors caused by numerical heat transfer. By employing the fractional time step, the issue of pore pressure oscillation can 
be effectively resolved. The explicit method is found prone to pressure oscillations even after using the pressure smoothing technique. 
The proposed axisymmetric formulation is further verified based on a 3D axisymmetric case, namely, the thermoelastic response 
problem around a deeply buried heat source. 

The performance of the proposed method in modeling large deformation problems has further been demonstrated by predicting the 
progressive failure of a saturated slope in which the soil properties (i.e., cohesion and frictional angle) are sensitive to temperature 
changes. This case highlights the significant potential of the coupled MPM in simulating the THM-involved large deformation process 
in regions containing thermally or mechanically sensitive soils, such as the submarine landslides or borehole breakout caused by 
methane hydrate exploitation and the thawing subsidence or collapse of permafrost caused by global warming. However, it is 
important to note that these engineering problems involve important phase transition processes that are not considered in the current 
method. The strong nonlinearity and tight coupling in such complex multiphase, multicomponent, and multiphysics porous systems 
may require more advanced MPM solvers, such as a high-efficiency stabilized monolithic solver, to improve the accuracy of the 

Fig. 19. Time evolution of (a) pore pressure at points A, B, and C, and (b) displacement at points D and E for semi-implicit THM-coupled MPM.  

Fig. 20. Temperature and pore pressure fields at different time instances during the heating process for both the semi-implicit and explicit MPM.  
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simulation results. Furthermore, the complexity of such granular materials necessitates the development of advanced constitutive 
models or alternative tools, such as the multiscale method as documented by the authors [37,41,95–98]. These scientific challenges 
will be addressed in future studies. 
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Fig. 21. Lateral and vertical displacement at different time instances during the heating process for both the semi-implicit and explicit MPM.  

Fig. 22. Contours of temperature, pore pressure, and deviatoric strain for semi-implicit MPM at t = 0.1 d, 0.5 d, 2 d, and 10 d.  
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Appendix. Axisymmetric formulations 

To facilitate modeling axisymmetric conditions that are often encountered in thermal coupled geological problems, such as en-
gineering processes involving point heat source, thermal pile, and wellbore, we also provide the axisymmetric form of THM-coupled 
MPM by modifying from the 2D plane strain formulations. Indeed, Sulsky and Schreyer [99] suggested that it is possible to directly use 
the planar shape functions for the axisymmetric problem in standard MPM. Nairn and Guilkey [39] further extended the formulation to 
GIMP by modifying the shape functions. Compared with Cartesian formulations, the key changes are to replace the volume integration 
by cylindrical volume integration and to account for cylindrical coordinates in gradient evaluations. 

A.1. Particle volume 

In axisymmetric MPM, the position of a material point p is characterized by 
(
rp, zp

)
, where rp and zp are the radial and the axial 

positions, respectively, interchangeable with xp and zp in Cartesian coordinate, and the third dimension, angular coordinate θp, is taken 
as 1 radian. The subdomain of a material point in axisymmetric MPM is no longer a plane but a one-radian wedge, and its volume is 
calculated by,  

Vp =

∫

Ωp

χp(r, z)rdrdz = Apr̄p (50)  

where Ap is the area of particle p, and ̄rp is the radial position of particle p. 

Fig. 23. Contours of temperature, pore pressure, and deviatoric strain for explicit MPM at t = 0.1 d, 0.5 d, 2 d, and 10 d.  

J. Yu et al.                                                                                                                                                                                                              



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116462

28

A.2. Shape functions 

For GIMP, the shape functions are calculated as follows,  

Sip =
1

Apr̄p

∫

Ω
χp(r, z)Ni(r, z)rdrdz (51a)  

∇Sip =
1

Apr̄p

∫

Ω
χp(r, z)∇Ni(r, z)rdrdz (51b)  

Tip =
1

Apr̄p

∫

Ω
χp(r, z)Ni(r, z)drdz (51c)  

An extra shape function Tip is needed for axisymmetric MPM. By selecting χp(r, z) = Apδ
(
rp, zp

)
, it results in Sip = Nip, ∇Sip = ∇Nip, and 

Tip = Nip/rp for standard MPM. 

A.3. Particle strains 

By evaluating the velocity gradient in cylindrical coordinate, one can obtain the strain increment Δεk
sp with each non-zero 

component given as,  
(

Δεk+1
sp

)

rr
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(
Δεk+1

sp

)

θθ
=
∑

i

(
Δvk

si

)

rTip (52d)  

where 
(
Δvk

si
)

r and 
(
Δvk

si
)

z are the radial and axial components of nodal velocity vk
si, and 

(
∇Sip

)

r and 
(
∇Sip

)

z are the radial and axial 

components of ∇Sip. The difference is the deformation has a hoop direction strain 
(

Δεk
sp

)

θθ 
compared with the plane strain problem. 

A.4. Nodal internal forces 

By evaluating the stress gradient, the internal force can be reformulated with components in each dimension calculated by,  

(
F int

α
)

r = −
∑

p
Vp

[(
σk

αp

)

rr

(
∇Sp

)
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(

σk
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)
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(
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(
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αp
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(53a)  
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α
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)
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(
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)

z

]

(53b)  

where 
(

σk
αp

)

θθ 
is the hoop stress. Note that r in cylindrical coordinates is interchangeable with x in Cartesian coordinates, so the only 

change is the consideration of the hoop stress term. Similarly, the corrected internal force should also be modified by evaluating F cor
α 

with each component calculated by,  
(
F cor

α
)

r = −
∑

p
ST

p Vαp

[(
∇Sp

)

r +
(
∇Sp

)

z + Tp

]
(54a)  

(
F cor

α
)

z = −
∑

p
ST

p Vαp

[(
∇Sp

)

r +
(
∇Sp

)

z

]
(54b)  

Apart from the above modifications, the boundary conditions, such as the heat source and the traction force, should also be correctly 
prescribed based on the particle or node positions. 
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