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A B S T R A C T   

This paper presents a novel computational approach for modelling fluid-driven fracturing in 
quasi-brittle solids using peridynamics. The approach leverages a rigorous coupling of the total- 
and semi-Lagrangian formulations of peridynamics. Specifically, the total-Lagrangian formula-
tion, whch is based on classical peridynamics theory used for modelling fractures in solids, is 
combined with the semi-Lagrangian formulation to solve the Navier-Stokes equation using a non- 
local differential operator for weakly compressible fluid flow. The proposed approach offers a 
unified peridynamics-based framework that enables simulations of a wide range of fluid-driven 
fracturing problems in solids. The framework can model the solid as either an ordinary or non- 
ordinary material and quantify the fluid with different equations of state. To prevent unphys-
ical inter-penetration, a fluid-solid interaction scheme that assumes fictitious fluid points in the 
solid domain is proposed to quantify the forces at the fluid-solid interface. The proposed 
computational approach is validated through simulations of several classic problems, including 
the dam break and the Kristianovich-Geertsma-de Klerk (KGD) problem. The predictive capability 
of the proposed approach is further demonstrated by numerical examples of fractures induced by 
fluid injection in sandstone, which reasonably capture the fracture patterns compared to exper-
imental results. The presented approach offers an alternative to explicit modelling of fluid-driven 
fracturing processes and may find wide and useful applications to a variety of industrial and 
geophysical processes.   

1. Introduction 

Fluid-driven fractures are a common occurrence in both natural and industrial processes. For example, in volcanology, pressurized 
magma can cause fractures in the geological strata that eventually lead to eruptions. In the energy sector, hydraulic fracturing 
techniques are widely used to enhance oil production by injecting pressurized fluids into oil-bearing shales to create fractures and 
improve permeability [1]. Geologic sequestration of carbon dioxide is another application where the injection of gas or liquid CO2 can 
trigger fractures that alter the permeability of the underground geological formation to mitigate carbon emissions [2]. Blasting can also 
be considered as a type of fluid-driven fracture, where high-temperature and high-pressure explosive gas triggers fractures in solids. 
Therefore, modelling fluid-driven fractures is relevant to many scientific studies and industrial applications. However, the associated 
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challenges can be formidable, particularly when complex fracture patterns are present and complicated fluid-solid interaction (FSI) 
needs to be properly quantified. 

Existing computational methods for modelling fluid-driven fractures include the finite element method (FEM) based approaches 
[3–8] where the fracturing process is handled with either extended FEM or cohesive elements, and meshfree methods such as discrete 
element method (DEM) [9–10], smoothed particle hydrodynamics (SPH) [11–12], and peridynamics (PD) [13–15]. Fluids within the 
crack are often modelled with Reynolds lubrication equation [16] in conjunction with the Poiseuille’s law, where the former describes 
conservation of fluids within the crack and latter relates fluid influx with pressure. Alternatively, fluids can also be handled with 
simplified approaches, such as directly adding a pressure term into the momentum equations of solids [13] when modelling the 
propagation of fractures. 

Peridynamics (PD) theory, introduced by Silling et al. [17–18] as an alternative formulation of classical continuum mechanics, has 
emerged as a promising approach for modelling discontinuities in solids. PD replaces the partial differential operator of the 
displacement field with an integral operator, making it inherently suitable for handling discontinuities such as fractures. As a 
particle-based method, PD models fractures through the damage of bonds that connect material points and does not require explicit 
description of the crack surface. This feature makes it particularly advantageous when modelling complex fracture patterns. PD has 
been successfully applied to simulate mechanically and thermally induced fractures, including concrete [19], glass [20], geomaterials 
[21–22], and composite materials [23]. A though review of benchmark studies of PD is provided in [24]. 

The early version of PD is known as bond-based peridynamics (BBPD), which is restricted to a micro-polar material model with a 
fixed Poisson’s ratio of 0.25 [18]. Later, the state-based peridynamics (SBPD) largely overcame the drawbacks in BBPD, by postulating 
the force experienced by a bond dependant on not only the bond deformation but also the deformation at neighbouring bonds. SBPD 
can be further divided into ordinary and non-ordinary types. Ordinary SBPD is a pure peridynamic formulation of material, whereas 
non-ordinary SBPD approximates engineering stress and strain at the material points, offering convenience for implementing classical 
constitutive material models into the novel PD approach. PD theory has been extended to model fluid-driven fractures for various 
scenarios. For instance, Zhang et al. [15] employed ordinary SBPD to model hydraulic fracturing in rock-like materials by incorpo-
rating the fluid effect as a pressure term in the momentum equation in PD. To explicitly model both fluid and solid, immersed boundary 
method has been recently utilized to combine peridynamics with different mesh-based methods such as isogeometric analysis [25–27] 
and Lattice Boltzmann method [28]. A coupled SPH-PD approach was introduced by [29–31] for modelling jetting and blasting 
scenarios, where high-speed water and explosive gas are simulated by SPH while solids are simulated by PD. An apparent advantage of 
such approaches is that both solid and fluid are simulated by particle-based methods, so there is no need to explicitly describe the 
fracture geometry. 

The classical PD theory uses a total-Lagrangian formulation to compute the material response based on a reference configuration, 
making it suitable for modelling small strain behaviour of solid materials. However, a new branch of PD theory, based on a semi- 
Lagrangian formulation, has been developed for modelling fluids [32–37]. This theory computes the material response based on 
the deformed configuration rather than the reference configuration, and is therefore often referred to as a semi-Lagrangian or Eulerian 
type of PD. The semi-Lagrangian PD formulation employs a non-local integral operator to replace the differential operators in the 
Navier-Stokes equation for modelling fluids. Another recent approach for modelling fluids based on the PD theory involves the use of 
the peridynamics differential operator introduced by Madenci et al. [38]. The peridynamics differential operator is designed to 
transform differential equations of any order from local to non-local form, by constructing PD functions of polynomials with unknown 
coefficients using Taylor series expansion. These coefficients can be determined analytically or numerically by solving a system of 
linear equations according to the orthogonality property of PD functions. Although initially regarded as a purely mathematical 
manipulation, the peridynamics differential operator has been successfully applied by [39–40] to simulate water flow problems. Gao 
and Oterkus [41] have proposed a coupled PD-peridynamics differential operator scheme for modelling fluid-structure interaction 
with simulation of a water column collapse. However, the peridynamics differential operator requires neighbour searching at each 
time step and must be constructed for each material point to enable the nonlocal form of local differential equations, making it 
computationally more expensive than the semi-Lagrangian PD method. Indeed, neither semi-Lagrangian PD nor peridynamics dif-
ferential operator is fundamentally different from SPH, as both employ integrals rather than derivatives in their formulation. However, 
the semi-Lagrangian PD and peridynamics differential operator could offer a more consistent framework when coupling with the 
classical total-Lagrangian PD theory. For modelling fluid-driven fractures, coupling between the total- and semi-Lagrangian PD the-
ories appears a promising approach since both solid and fluid can be solved within the same computational framework. 

This study proposes a new approach for modelling fluid-driven fractures using a coupled total- and semi-Lagrangian PD approach. 
In this approach, fluids are modelled using the semi-Lagrangian formulation, while the solids with the classical total-Lagrangian 
formulation. A coupling algorithm is presented to quantify the FSI. The aim of this study is to develop a unified computational 
approach within the framework of peridynamics to handle both fluids, solids, and FSI. This paper is organized as follows: Section 2 
provides an overview of the peridynamics theory, including the total- and semi-Lagrangian formulations. Section 3 presents the 
coupling algorithm for modelling FSI. Section 4 presents a series of numerical simulations based on the presented methodology, 
including dam break problem, crack profile under hydrostatic pressure, KGD problem for fluid-driven fractures, and rock fracturing 
due to hydraulic pressure. Finally, Section 5 presents a summary and conclusion. 
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2. Peridynamics theory 

2.1. Total-Lagrangian formulation 

PD models a continuum domain as discretized material points that interact through peridynamic bonds. The extent of such 
interaction is defined by a radius termed horizon. All material points within the horizon are called neighbours or family of the centring 
point. These concepts are illustrated in Fig. 1. In the present study the SBPD has been employed for simulating solid materials. The 
equation of motion in the SBPD writes 

ρxüx =

∫

Ωx

[T < x′− x > − T < x− x′ > ]dVx′ + bx (1)  

where ρ represents material density at a material point, u represents material point deformation, Ωx defines the family of point x, and 
Vx′ represents the volume of a neighbouring point. b denotes body force density. T is a force state that maps the bond deformation into 
bond force density. The angle brackets are used to indicate the vector on which a state operates. For example, T〈x′ − x〉 represents the 
force state T operates on the vector x′ − x, which physically denotes the force exerted by neighbouring point x′ on master point x. 
Similarly, T〈x − x′〉 can be interpreted as the force of master point x acting on neighbouring point x′. The total bond force density at a 
material point is obtained by summarizing force densities of all neighbouring bonds. The integration presents a non-local approxi-
mation of the partial differential operator in classical continuum mechanics, and such feature makes the PD theory particularly suitable 
for modelling fracture related processes. 

For an ordinary material, there exists a scalar force state t such that the force state of a bond ξ = x′ − x can be computed by [18] 

T〈x′ − x〉 = t
Y

‖ Y ‖
(2)  

where Y is the deformed bond vector, representing the magnitude of the bond force density. It is apparent that for all ordinary ma-
terials the bond force acts along the bond direction. In the present study, we adopt the linear peridynamic solid (LPS) model [18] to 
simulate elastic brittle materials. In the LPS model, the scalar force state is obtained by 

t =
3Kϑ < x >

m < x >
ω < ‖ξ‖ > ‖ξ‖ +

15μ
m < x >

ω < ‖ξ‖ > ed (3)  

where K and μ are bulk and shear modulus, respectively. ω〈‖ ξ ‖〉 is the value of influence function at bond ξ. The influence function is 
selected in the form of a Gaussian function 

ω〈 ‖ ξ ‖ 〉 = e
−

(
‖ξ‖
αδ

)2

(4)  

where δ denotes the horizon which is selected as three times the element size and α is taken to be 0.4 in this study. By default, the bond 
length should be less than the horizon, so the value of the influence function reduces with increasing bond length. The weighted 
volume m and dilatation ϑ of at a material point is calculated by 

m < x >=

∫

Ωx

ω < ‖ξ‖ > ‖ξ‖2 dVx′ (5)  

ϑ < x >=
3

m < x >

∫

Ωx

ω < ‖ξ‖ > ‖ξ‖edVx′ (6)  

where e = ‖ Y ‖ − ‖ ξ ‖ represents the extension of a bond. It can be further divided into an isotropic part, ei, and a deviatoric part ed 

Fig. 1. Illustration of basic concepts in peridynamics.  
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where ei = ϑ〈x〉‖ ξ ‖/3 and ed = e − ei. 
The ordinary SBPD is a pure peridynamic formulation of materials and does not involve engineering stress and strain terms. In-

conveniences arise when complex material behaviours are to be modelled and when it is desirable to introduce classical constitutive 
models for their description. In addressing this issue, the non-ordinary SBPD theory [18] has been proposed to offer a framework for 
implementing material constitutive models based on engineering stress and strain relations. Material modelled with non-ordinary 
SBPD is often referred to as non-ordinary material. In the non-ordinary SBPD, the force state T is computed through 

T < x′ − x >= ω〈 ‖ ξ ‖ 〉PxK− 1
x ξ (7)  

where Px represents the first Piola-Kirchhoff stress tensor and Kx is a non-local shape tensor. They are computed by 

Px = det(Fx)σxF− 1
x (8)  

Fx =

[∫

Ωx

ω < ‖ξ‖ > Y ⊗ ξ dVx′

]

K− 1
x (9)  

Kx =

∫

Ωx

ω < ‖ξ‖ > ξ ⊗ ξ dVx′ (10)  

where σx refers to the Cauchy stress tensor and Fx is the non-local deformation gradient tensor. det(Fx) calculates the determinant of 
Fx. The symbol ⊗ denotes dyadic product between two vectors. The subscript refers to the point where the quantity is calculated. 
Classical constitutive material models can be conveniently implemented to compute the Cauchy stress based on the non-local 
deformation gradient, for assessing complex material behaviours. In this study, as we only address linear elastic solids, all solid 
materials are modelled as ordinary materials. 

2.2. Bond breakage and material damage 

The initiation and propagation of cracks are modelled by allowing the peridynamic bonds to break irreversibly. Once a bond is 
broken, the load originally borne on that bond is redistributed to neighbouring bonds and such process may trigger continuous 
breakage of peridynamic bonds which eventually simulates propagation of fractures. For elastic brittle materials that will be modelled 
in this study, a critical stretch damage model [42] is employed to simulate bond breakage. The model assumes that a bond breaks when 
its strain reaches a critical value. The critical bond strain can be related to the critical energy release rate of the material through 

sc =

̅̅̅̅̅̅̅̅̅
5Gc

9Kδ

√

(11)  

where Gc is a material constant representing the critical energy release rate. In the framework of peridynamics, damage of a material 
point can be expressed by a weighted percentage of broken bonds as 

Fig. 2. Schematic illustration of the difference between total- and semi-Lagrangian formulations in peridynamics.  
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φ = 1 −

∫

Ωx

g < ξ > dVx′

∫

Ωx

dVx′

(12)  

where g〈ξ〉 indicates the status of a bond. g〈ξ〉 equals 1 for all intact bonds and is set to zero for all broken bonds. Consequently, the 
damage φ equals zero for an intact material point and rises with increasing bond breakage to an upper limit of 1. The damage value can 
be used to locate fracture surfaces. 

2.3. Semi-Lagrangian formulation 

The classical PD theory is established on a total-Lagrangian formulation, such that the material response is calculated based on an 
initial, undeformed configuration. The formulation is naturally embedded with an assumption of small deformation and is not 
applicable for materials that undergo large deformation or for modelling fluid. The semi-Lagrangian formulation of PD has been 
developed as a remedy. With this formulation, the family of a material point maintains a constant shape regardless of the deformation. 
Consequently, the neighbours of a material point can continuously evolve with material deformation. This is illustrated in Fig. 2. It 
should be noted that the semi-Lagrangian formulation of PD is also referred to as Eulerian PD or updated Lagrangian particle hy-
drodynamics [32,35-36]. 

The semi-Lagrangian formulation of PD has been employed in the present work for modelling fluid. Its equation of motion writes 

ρxüx =

∫

Bx

[T < x′ − x > − T < x − x′ > ]dVx′ + bx (13)  

which is in the same form of Eq. (1) except that the family of a material point x, Bx, is being updated at each time step. To incorporate 
the constitutive relationship of fluids, the force state of semi-Lagrangian PD is calculated based on a non-ordinary SBPD form as 

T < x′ − x >= ω〈 ‖ Y ‖ 〉σxM− 1
x Y (14)  

where the influence function ω is the same as shown in Eq. (4). The Gaussian form of influence function is known to offer good nu-
merical stability [43]. For a fluid, the Cauchy stress σx is computed by 

σx = − pI + 2μs ϵ̇ (15)  

where p is the fluid pressure, μs denotes the viscosity, and ϵ̇ is the shear strain rate tensor defined by 

ϵ̇ =
1
2
(
Lx +LT

x

)
−

1
3
LtrI (16)  

Lx =

⎡

⎣
∫

Bx

ω〈 ‖ Y ‖ 〉Ẏ ⊗ YdVx′

⎤

⎦M− 1
x (17)  

where L represents a non-local spatial velocity gradient tensor. The trace of L, as denoted by Ltr, is the volumetric strain rate at a 
material point. Ltr is calculated at each time step to update material point volume. Mx represents the shape tensor corresponding to the 
current (deformed) configuration and is computed by 

Mx =

∫

Bx

ω〈 ‖ Y ‖ 〉Y ⊗ YdVx′ (18)  

Apparently, at each time step, the shape tensor of each material point needs to be updated. The semi-Lagrangian formulation is 
therefore computationally more expensive than the total-Lagrangian formulation. 

It is worth mentioning that the semi-Lagrangian PD can be seen as a non-local approach for solving the Navier-Stokes (NS) 
equations in the form of 

Dρ
Dt

+ ρ∇ ⋅ v = 0 (19)  

ρ Dv
Dt

= ∇ ⋅ σ + b (20)  

where ρ and v represent density and velocity at a material point, respectively, and ∇⋅ denotes the spatial divergence operator. Key to 
solve the NS equations in the semi-Lagrangian PD is to approximate the spatial divergence by a non-local spatial differential operator 
[34] in the form of 

C. Yang et al.                                                                                                                                                                                                           



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116580

6

∇ ⋅ (A) ≈
∫

Bx

ω〈 ‖ Y ‖ 〉 Δ ⋅ (A)
[
M− 1Y

]
dVx′ (21)  

where A is an arbitrary vector field and Δ ⋅ (A) = Ax′
− Ax is a finite difference operator. With the non-local spatial differential 

operator, the continuity equation and momentum equation of the NS equations are reformulated as 

Dρ
Dt

= − ρ
∫

Bx

ω〈 ‖ Y ‖ 〉v〈Y〉 ⋅
(
M− 1

x Y
)
dVx′ (22)  

ρ Dv
Dt

=

∫

Bx

ω〈 ‖ Y ‖ 〉
(
σxM− 1

x + σx′M− 1
x′
)
YdVx′ + bx (23)  

Solving Eq. (22) is essentially equivalent to solving the volumetric strain using Eq. (17) and updating the volume and density at 
each material point. Eq. (23) is identical to the equation of motion in peridynamics. Therefore, the formulations presented in Eqs. (13) 
through (18) can be regarded as a reformulation of the NS equations for fluid in a non-local integral form. 

The semi-Lagrangian formulation may experience pressure noise issue when simulating fluid, like what typically encountered in 
the SPH. To improve numerical stability, we apply a re-initialization of the fluid density field as following 

ρ =

∫

Bx
ω〈‖ Y ‖〉 dmx′

∫

Bx
ω〈‖ Y ‖〉 dVx′

(24)  

where mx′ and Vx′ represent the mass and volume of a neighbouring material point, respectively. This procedure is a smoothing of the 
density field using the neighbouring point information. The pressure field, which is calculated based on material density through an 
equation of state (EoS), is therefore smoothed by this procedure. In the present study, this procedure is implemented in the simulation 
of fluid injection at every two computational steps. 

To enhance numerical stability, an artificial viscosity is often needed [32]. The artificial viscosity is represented by a force density 
term computed by 

Tv =
υ2

γδ
(
Cqρ0ϕ2 − Clρ0c0Ẏ〈Y〉 ⋅ N〈Y〉

)
N〈Y〉 (25)  

which consists of a linear term and a quadratic term with two coefficients Cl and Cq, respectively. Parameter ρ0 and c0 refer to the 
reference (initial) density of the material and bulk wave speed, respectively. N〈Y〉 denotes the unit vector of the deformed bond. γ is an 
average volume calculated by 

γ =

∫

Ωx

ω〈‖ Y ‖〉 dVx′ (26)  

and υ represents relative volume, calculated by the ratio of initial and current density at the material point: 

υ =
ρ0

ρ (27) 

The current density can be obtained based on the volumetric strain at the point. Lastly, the effective velocity change within the 
family, as denoted by ϕ, is calculated by 

ϕ =
1
γ

∫

Bx

ω〈 ‖ Y ‖ 〉Ẏ〈Y〉 ⋅ N〈Y〉dVx′ (28)  

The artificial viscosity serves the same purpose as the viscous dissipative pressure term commonly added in SPH simulations [44]. It 
is added into the right side of the equation of motion of PD. The artificial viscosity in Eqs. (25) to (28) can also be applied in 
total-Lagrangian formulations by using the bond vector at the reference configuration rather than the deformed configuration. 

In particle-based methods, clustering of particles is a commonly known issue which hinders the numerical stability for long- 
duration simulations. In the case of SPH, particle clustering can result from both tensile instability and the choice of kernel func-
tion [45]. In the present study, to address the similar issue in semi-Lagrangian PD, a point shifting technique is introduced based on the 
method proposed by Xu et al. [45] in SPH, which adjusts the position vector of each material point by adding an artificial displacement 
Δxi and interpolates hydrodynamic variables at the new position based on first-order Taylor series. The modification term at each step 
can be expressed as 

C. Yang et al.                                                                                                                                                                                                           
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Δxi = CPSTvmaxdt
∑Ni

j=1

(

1
Ni

∑Ni
j=1‖ Y ‖

)2

‖ Y ‖2 N〈Y〉. (29)  

where CPST is a shifting coefficient, which directly determines the shifting distance. The shifting distance should be large enough to 
effectively prevent particle clustering and small enough not to cause numerical errors due to the Taylor series correction. It has been 
shown by test cases in Xu et al. [45] that values of CPST within the range of 0.01–0.1 meet the criteria mentioned above. However, one 
should determine specific value of CPST carefully based on the model size and deformation of fluid phase. Zero or a too small CPST 
cannot prevent particle clustering effectively and consequently the simulation terminates before expected due to zero bond length or 
infinite force. On the contrary, a too large CPST result in an excessive distance between particles which clearly deviates from the actual 
condition. vmax represents the maximum expected velocity of fluid material points throughout the computational domain. For instance, 
in the case of a dam break problem, vmax may be estimated as 

̅̅̅̅̅̅̅̅̅
2gH

√
, where H is the height of water column; in the case of hydraulic 

fracturing or jetting problem, vmax may be adopted as the velocity of injected or jetted fluid. dt is the time step. Ni denotes the number 
of neighbouring points for material point xi. 

3. Fluid-Solid interactions 

A key part in simulating fluid-driven fractures is the modelling of the interactions between solid and fluid material points. When 
both solid and fluid are simulated within the PD framework, FSI can be conveniently modelled by coupling the total- and semi- 
Lagrangian formulations of PD. At the interface, we assume that the solid material points to be fictitious fluid material points when 
they are located within the horizon of a fluid material point. This is illustrated in Fig. 3. The fictitious fluid material points are treated 
as a normal neighbouring point of the real fluid material point when calculating the shape tensor and spatial velocity gradient tensor in 
Eqs. (17) and (18). For any bond that crosses the solid-fluid interface, the bond force density is calculated by 

TFSI = Tf + Tr (30)  

where Tf is the interaction force calculated following the semi-Lagrangian PD theory 

Tf = ω〈 ‖ Y ‖ 〉σxM− 1
x Y (x ∈ Bs) (31) 

In this calculation, x is a real fluid material point and Bs denotes the set of neighbouring points which are fictitious fluid material 
points. The shape tensor of a fluid material point at the interface is calculated by 

Mx =

∫

x′∕∈Bs

ω〈 ‖ Y ‖ 〉Y ⊗ YdVx′ +

∫

x′∈Bs

ω〈 ‖ Y ‖ 〉(1 − φx′)Y ⊗ YdVx′ (32) 

Fig. 3. Schematic illustration of the concepts and quantities in modelling fluid-solid interactions.  
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where φx′ represents the damage at a neighbouring solid material point that is treated as a fictitious fluid material point. The coefficient 
(1 − φx′) is utilized here to enable fluid infiltration into damaged solids. 

However, it is worth noting that enabling fluid infiltration into damaged solids does not imply penetration of fluids into intact 
solids, for example, the unphysical phenomenon that fluid material points penetrate the rigid wall in a dam break simulation. In the 
present study, we assume an idealized condition that the fluid material points cannot permeate into intact solid. Implementing only 
Eq. (31) cannot guarantee such non-penetration condition. An additional repulsive bond force density term Tr is applied at a portion of 
the interface bonds to prevent interpenetration of material points at the interface. The definition is similar to [46] which was originally 
used for modelling fluid-solid interactions with SPH method. The term Tr writes 

Tr = − CRFc2
0f (η)

(

1 −
‖ Y ‖

Δx

)
Y

‖ Y‖2 (33)  

where CRF is a coefficient that controls the magnitude of repulsive force. The basic criterion of determining CRF is that it should be large 
enough to prevent unphysical penetration effectively and small enough to have minimal effect on fluid motion and computational 
accuracy. Its value should be calibrated and validated against experimental or reference data to ensure the accuracy and reliability of 
the simulation results. According to our tests and the reference [46], a value of 0.01 for CRF generally satisfies the criterion mentioned 
above. η is a parameter related to bond length and horizon and can be calculated by ‖ Y ‖ /0.75δ. f(η) is defined in the form of B-spline 
kernel function as [47] 

f (η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3
, 0 < η ≤

2
3

2η − 1.5η2,
2
3
< η ≤ 1

0.5(2 − η)2
, 1 < η ≤ 2

0, otherwise

(34)  

and Δx represents the size of solid material point (cubic root of the volume in 3D, or square root of area in 2D). This repulsive force 
term is applied between fluid material points adjacent to the interface and solid materials points that are immediate neighbours of 
those fluid material points, as illustrated in Fig. 3. This algorithm is intended to have minimal effect on fluid motion and computational 
accuracy while effectively prevents unphysical penetration. Taking a smaller or zero CRF may allow the fluid material points to seep 
into the intact solid material domain. This naturally simulates fluid seepage or penetration into the solid and may better suit scenarios 
where the solid material is porous or with high permeability. Nonetheless, the robustness, stability, and accuracy of the formulation in 
those scenarios require careful examination and will be addressed in a separate study. 

Implementation of the above FSI formulation can be embedded in the computation of fluid. Velocity and pressure constraints can 
also be applied on the fictitious solid points to model free-slip or no-slip boundary conditions. Formulation for the solid material will 
not be affected by the FSI. In other words, the solid material can be modelled with either state-based (ordinary or non-ordinary) or 
bond-based PD formulation. The presented FSI model thus offers high versatility to the coupled computational framework. None-
theless, selection of the FSI model is at the discretion of the modeller and should be based on the specific case to be simulated. Many 
other FSI models can be found in the literature for a variety of FSI scenarios, such as the two-way interaction technique where fictitious 
points are modelled in both solid and fluid domains [30]. 

Fig. 4. PD discretization of 2D Dam break model.  
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4. Numerical simulations 

In this section, we first simulate two-dimensional (2D) and three-dimensional (3D) dam break problems to validate both the semi- 
Lagrangian PD fluid model and the coupled FSI algorithm. The simulation results are compared with laboratory experiments. Sub-
sequently, we extend the coupled computational framework to simulate two classical problems, one for crack deformation under 
hydrostatic water pressures and the other for fluid injection induced fracturing. Analytical solutions are available for both problems 
and are used for validation. Furthermore, we conduct simulations on an actual hydraulic fracturing in sandstone to demonstrate the 
capability of the proposed method with results compared with experimental data. 

4.1. Dam break simulations 

To demonstrate the efficacy of the proposed method in modelling fluid with FSI, we first present a benchmark of the classical dam 
break problem, considering both 2D and 3D conditions. The 2D dam break model is illustrated in Fig. 4. The flow is driven by gravity of 
9.8 m/s2. The flow is confined within a rigid container with an upper opening. The water column has a width of 0.145 m and a height of 
0.29 m. The material point size is set at 5 mm for both fluid and the rigid container, and the entire fluid domain is discretized with 1682 
material points. In the 2D simulation presented herein, the material point size refers to the dimension of a square whose area is the 
same as that represented by a material point. The simulation is found insensitive to the material point size when it is smaller than 5 
mm. The horizon of the fluid and the thickness of the container are both set at three times the material point size. 

To describe the relation between pressure and density of fluid, the equation of state proposed by Monaghan [44] is employed here 
as 

p =
ρc2

0

n

(
1
υn − 1

)

+ pb (35)  

where n is one fitting parameter, which can be determined based on test data. pb is a background pressure. υ is relative volume defined 
in Eq. (27). In current simulation, the fluid is assumed to be water, with the parameters n set to 7.0 [48]. The container is assumed to be 
made of steel. The parameters of both the fluid and the container are summarized in Table 1. It is noteworthy that, in contrast to many 
previous particle-based methods [39-40,49] which typically model the solid using mirroring particles or fictitious particles that serve 
solely as boundary conditions, the proposed method herein models both the fluid and the container using actual PD material points. 

The configuration of the simulation follows an experiment as presented in [50] for the convenience of comparison. A comparison of 
the simulated fluid profile with experiment at different time is shown in Fig. 5. As driven by the gravity force, the water column 
collapses gradually and hit the right boundary of container at about 0.25 s, with water bounced back afterwards. The simulation results 
are found to match well with the experimental results throughout the modelling time. A further quantitative comparison is carried out 
with respect to the front of the collapsing water as exhibited in Fig. 6. The experimental data given by Koshizuka [51] and Martin et al. 
[52] are included for comparison. A reasonable match between the numerical and experimental data can be seen. In the simulation, no 
unphysical penetration of fluid material points into solid domain has been observed. It is also worth noting that the material point 
distribution of the proposed method is rather uniform throughout the simulation (i.e., point clustering is largely eliminated) and there 
are no notable voids between the container and the fluid. This demonstrates the merits of the proposed method in simulating fluid and 
FSI. 

A 3D dam break problem is further simulated for benchmarking. A cross section of the model is schematically shown in Fig. 7. In the 
model, an obstacle perpendicular to the flow path is set on the way. All parameters adopted in this simulation are the same as those 
used in the 2D problem, except for the material point size which is set larger to 6 mm for better computational efficiency. The total 
number of material points is 27,648 for the fluid and 51,528 for the solid container (including the obstacle). The simulated profile of 
the collapsing water is shown in Fig. 8 at different times with comparison to experiment conducted by Koshizuka [51]. Again, good 
agreement can be found with respect to the advancement of the collapsing water. The interactions between fluid and the obstacle are 
well captured. The capability of the proposed method in simulating fluid and FSI problems is therefore demonstrated in both 2D and 3D 
dam break problems. 

4.2. Crack profile under hydrostatic pressure 

A benchmark model is developed to test the performance of the proposed computational framework in simulating solid defor-
mation under hydrostatic pressure. The model simulates the profile of a static crack in elastic solid pressurized by fluid. The analytical 
solution for the fracture aperture profile in a 2D infinite elastic domain is given by [53] in the form of 

Table 1 
Parameters for dam break simulation.  

Parameters Fluid Container 

Density: kg/m3 998 8000 
Bulk modulus: GPa 2.2 160 
Poisson’s ratio / 0.3 
CPST = 0.01, CRF = 0.01, vmax = 2.38 m/s, c0 = 1500 m/s, n = 7.0, δ = 3Δx.  
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Fig. 5. Comparisons of fluid contour between experiment [51] and simulation for: (a) t = 0.1 s; (b) t = 0.2 s; (c) t = 0.3 s; and (d) t = 0.4 s.  
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Fig. 6. Position of the front of collapsing water with normalized time.  

Fig. 7. Configuration of the 3D dam break model: (a) front view; and (b) top view.  
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where p is the fluid pressure; l represents half-length of the crack; x denotes the position along the crack; and E′ = E/(1 − ν2) denotes the 
plane strain modulus where E and ν are the Young’s modulus and Poisson’s ratio, respectively. The numerical model considers a 
quarter of the domain as shown in Fig. 9 with a size of 10.0 m × 10.0 m. The half-length of the crack is taken to be 1.0 m. Considering 
the symmetrical features of the problem, we fix the deformation of material points on the y = 0 edge (beyond the crack) and the x = 0 
edge along the y and x direction, respectively, as a boundary condition. Ordinary SBPD is known to have surface effect owning to the 
reduced number of neighbours near material boundaries. To enhance the computation accuracy at the boundaries, we model a layer of 
fictitious points with thickness of a horizon along the two boundaries and the above-described boundary conditions are also assigned to 
those fictitious points. The properties of both fluid and solid materials in the simulation are given in Table 2. Fluid material points are 
modelled in a rectangular region adjacent to the crack and are compressed to generate hydrostatic pressure. The fluid pressure is 
applied on the crack through the FSI model presented in Section 3. The modelled fluid domain is extended beyond the x = 0 edge for a 
distance of a horizon to mitigate the boundary effect at the fluid-solid interface. 

We first select an element size of 0.025 m for both fluid and solid to perform two simulations with different fluid pressures. The 
obtained crack aperture profiles are compared with analytical solutions in Fig. 10 where good agreement is observed. The calculated 
aperture is generally within 1% of the analytical solution. The results confirm the capacity of the non-local peridynamics approach and 
the FSI algorithm in giving correct prediction of deformation in solid under hydrostatic pressure. 

In Fig. 11 we further investigate the accuracy and convergence of the solution with five different element sizes ranging from 0.0125 
m (1/80 the crack length) to 0.2 m (1/5 the crack length) under different hydrostatic pressures. The error of the numerical solution is 

Fig. 8. Comparisons of fluid contour between experiment [51] and simulation for: (a) t = 0.1 s; (b) t = 0.2 s; (c) t = 0.3 s; and (d) t = 0.4 s.  

Fig. 9. Schematic illustration of the crack profile benchmark model.  
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indicated by the relative L1 loss which is calculated by e1 =
∑N

n=1(wa − wn)/(waN), where wa and wn represent analytical and nu-
merical solution of the crack aperture at a point, respectively. A total of nine points (N = 9) are selected along the crack direction with 
a uniform interval. The calculated L1 error is found to reduce with element size monotonically. It can be seen that even with a rather 
coarse discretization (e.g., Δx = 0.2 m) the numerical solution does not deviate notably from the analytical solution with the L1 error 
at about 10%. With finer discretization, the L1 error drops by one order and offers good computational accuracy. The convergence 
slope for the two cases in L1 error exhibits first order accuracy. Therefore, as the mesh size approaches zero, the nonlocal method 
approaches the exact solution at a rate of Δx. The presented simulation confirms the capacity of the proposed computational 
framework in modelling deformation at cracks with pressurized fluid. 

Table 2 
Parameters for simulation of crack profile under hydrostatic pressure.  

Parameters Fluid Solid 

Density: kg/m3 998 2500 
Bulk modulus: GPa 2.2 / 
Young’s modulus: GPa / 10 
Poisson’s ratio / 0.2 
CPST = 0.0, CRF = 0.01, c0 = 1500 m/s; n = 7.0, δ = 3Δx.  

Fig. 10. Comparison of crack aperture profile from simulation and analytical solution.  

Fig. 11. Variation of L1 error with element size for: (a) p = 17.5 MPa; and (b) p = 8.7 MPa.  
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4.3. KGD hydraulic fracturing model 

The KGD fracturing model is one of the most classical analytical models for hydraulic fracturing introduced by Geertsma and Klerk 
[54]. It deals with the propagation of a linearly expanding plane strain fracture in an impermeable elastic solid, as schematically 
illustrated in Fig. 12(a). The analytical solution is based on the theory of elasticity which describes the deformation of solid, the linear 
elastic fracture mechanics which governs the propagation of the fracture, and a lubrication equation which describes the flow in the 
fracture. The growth of the fracture can be classified into toughness-dominated and viscosity-dominated regimes based on the 
mechanism of energy consumption. The toughness-dominated regime is represented by negligible energy dissipation in viscous fluid 
flow compared to the energy on fracturing solid whereas the viscosity-dominated regime involves significant energy dissipation in 
overcoming the viscosity of fluid. When a low-viscosity Newtonian fluid, such as water, is injected into the formation, the KGD fracture 
may be purely toughness-dominated without a transition from the viscosity-dominated region to the toughness-dominated region [55]. 
The present study deals with the toughness-dominated fractures only. The analytical solutions of the length of facture and injection 
pressure developed at the injection point are derived by [55] as 

L =
2
π2

3

(
E′qt
K′

)2
3

(37)  

p =
π1

3

8

(
K′4

E′qt

)1
3

(38)  

in which q is the flow rate; t is the injection time; E′ is the plane strain modulus; and K′ can be further expressed as 

K′ = 4
̅̅̅
2
π

√

KIC (39)  

where KIC represents the mode-I fracture toughness. 
A 2D plane strain hydraulic fracturing model is set up as illustrated in Fig. 12(b) for which the simulation results are compared with 

the KGD analytical model. The solid specimen has a dimension of 200 mm × 150 mm. The solid material is assumed to be a typical 
brittle material [56] with properties given in Table 3. The solid material is confined by a 1 MPa compressive stress in x-direction and 
the upper boundary is fixed in y-direction to avoid rigid movement induced by fluid injection. Water is injected into the solid through a 
tube located at the top. An initial crack with a length of 10 mm and a width of 4 mm is assumed to be located at the upper middle of the 
solid. The tube is simulated by two strips of solid material points, each has a thickness three times of the element size of the material 
point. The tube is assumed to be fixed and has the same properties as the solids. The element size of all materials is taken to be 1 mm. 
The injection speed of water is set to be 0.2 m/s, corresponding to an injection rate of 0.0008 m3/s. The total simulation time is 0.1 s 
with time step taken as 5.0 × 10− 7 s. 

Presented in Fig. 13 are the initiation and propagation process of fracture as well as the movement of fluid. The totally damaged (φ 
= 1) solid material points are deleted for clarification. The fracture initiates quickly at the first a few thousand steps. At about 5 ms, the 
fluid is seen squeezed into the fracture. The fluid drives the growth of the fracture by exerting forces perpendicular to the fracture 
surface as illustrated in Fig. 14. The forces being applied on the solid material near the fluid-solid interface tend to open the crack and 
the extent of such forces grow with the continued infiltration of fluid. The fracture induced by fluid injection is found to be 
approximately a straight line, which is the same as the analytical solution. It is noted that the fracture does not evolve perfectly 

Fig. 12. Schematic illustration of: (a) KGD analytical model [16]; and (b) numerical model.  
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vertically which is likely due to the non-locality of PD and the semi-Lagrangian formulation which tend to amplify or accumulate even 
slight numerical perturbations. With the progress of the fracture, it is observed that the fluid pressure gradually reduces and conse-
quently the force density at the FSI decreases. The observed fluid injection pressure (i.e., the fluid pressure at the top of the initial 
crack) from the simulation is plotted together with the analytical solution in Fig. 15(a), which shows a general agreement. At the 
beginning of the simulation, the pressure in the fluid starts to build up with the injection process. The first peak in the pressure curve 
indicates the start of crack propagation. The injection pressure drops dramatically after the peak due to the opening created by 
fracturing. The injection pressure builds up again as fluid filling the voids of the fracture, and it gradually drops with further steady 
growth of the fracture. The analytical solution for the toughness-dominated regime assumes that the fracture is fully filled by fluid at all 
times. Therefore, the result is only presented by a monotonic decreasing curve and the transient phenomena is not reflected. Some 
fluctuations in the simulation result are observed and it is expected to be a result of disturbance due to bond breakage (i.e., fracture 
extension) on fluid field. It is expected that the fluctuations can be further minimized with finer meshing for both fluid and solid. 

The comparison of the length of fracture between the simulation and analytical solution is shown in Fig. 15(b). The length of 
fracture in the simulation is measured along the y-axis based on the fracture front, which is denoted by the furthest point having a 
damage not less than 0.4. It can be found that the numerical solution generally matches the analytical solution with similar trend. Note 
that the actual fracture is not perfectly straight in the simulation and as such, it is not surprising to observe some discrepancies between 
the simulation result and analytical solution. The fracture appears to be readily filled with fluid in the initial stage of injection as shown 
in Fig. 13. At about halfway during the simulation, the fracture front and fluid front begin to deviate, forming a fluid lag [57–59]. 
Formation of the fluid lag is known to be associated with fluid viscosity, injection rate, permeability of rock and many other properties. 
In the numerical simulation, the phenomenon can also be partially attributed to the fact that the material point size of fluid is relatively 

Table 3 
Parameters for KGD hydraulic fracturing simulation.  

Parameters Fluid Solid & Tube 

Density: kg/m3 998 1180 
Bulk modulus: GPa 2.2 / 
Young’s modulus: GPa / 2.8 
Poisson’s ratio / 0.37 
Fracture toughness: MPa·m0.5 / 1.88 
CPST = 0.01, CRF = 0.01, vmax = 0.2 m/s, c0 = 1500 m/s, n = 7.0, δ = 3Δx.  

Fig. 13. Progress of fractures in solid and fluid infiltration into fractures obtained from simulation at: (a) 5 ms; (b) 25 ms; (c) 50 ms and (d) 100 ms.  
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large compared to the fracture width so that the fluid material points cannot easily enter the fracture. Using a smaller material points 
size is expected to improve the situation. Nonetheless, excessively small material point size would induce unaffordable computational 
costs. The dual-horizon theory [60] may be potentially useful if different material point sizes are to be used for fluid and solid. It is 
nonetheless out of the scope of the present study and may worth investigation in the future. 

In Fig. 15(b) we further extend our study to examine the sensitivity of simulation results on the material point discretization 
pattern. In the previous simulation, the material points were generated with a square grid in both horizontal and vertical directions. 
The grid is now rotated by 45◦ and all material points are regenerated for analysis. It has been confirmed that the propagation develops 
along the vertical direction. The propagation speed of the fracture, as shown in the figure, is insensitive to the discretization pattern 
with the adopted material point size (Δx = 1 mm). As discussed in Section 4.2, the proposed method exhibits convergence as the 

Fig. 14. FSI force density in horizontal direction at: (a) 5 ms; (b) 25 ms; (c) 50 ms; and (d) 100 ms.  

Fig. 15. Comparison of: (a) injection pressure developed at injection point; and (b) fracture length between numerical and analytical solutions.  
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element size decreases. Consequently, with a fine mesh utilized in the KGD analysis, the associated error should be negligible irre-
spective of the spatial discretization pattern. 

4.4. Injection-induced brittle fracture in sandstone 

In this example, we simulate a typical laboratory scale hydraulic fracture test where fluid is injected into a sandstone specimen to 
trigger fractures [61]. The sandstone specimen is cylindrical with a height of 140 mm and a radius of 50 mm. The fluid is injected 
through a steel tube inserted in a borehole drilled at the centre of the specimen at a constant rate of 10 ml/min. The borehole has a 
diameter of 6.35 mm. The numerical model is set up as shown in Fig. 16(a). The sandstone, the tube, and the fluid are discretized with 
an element size of 1.5 mm, 1.33 mm and 1.0 mm, respectively, leading to a total number of 342,774 material points. The tube is 
modelled with an inner radius of 5 mm and an outer radius of 9 mm placed immediately inside the borehole. The borehole is 20 mm 
longer than the tube where the sandstone is exposed to the injection fluid. The specimen is confined in the experiment by an initial 
vertical stress of 10.3 MPa, and a horizontal stress of 20.7 MPa and 3.45 MPa along the two perpendicular directions, respectively. 
Since traction boundary conditions cannot be directly applied in PD, the initial stress is implemented as a body force on three layers of 
material points on the outer boundary near the maximum and minimum coordinates along the x and y directions. The body force is 
linearly increased during the first 400 simulation steps to the target level. The bottom three layers of the sandstone has been assigned 
with a fixed boundary condition along the vertical direction. The tube is fixed in the simulation and the interaction between the tube 
and sandstone is modelled with a short-range force contact model as detailed in [62]. 

The properties of three materials are summarized in Table 4 based on [63–64] for sandstone and [61,65] for vegetable oil. The 
injection fluid is modelled following the semi-Lagrangian PD formulation in conjunction with the equation of state where the fitting 
parameters n taken to be 4.0 as interpreted from the compression test in [65]. The injection process is simulated by letting all fluid 
material points above the bottom of the tube to move at a constant vertical velocity of 1 m/s towards the interior of the sandstone. 
Injection starts after the confining stress has been applied. The rate of injection in numerical model is selected larger than that in 
experiment for the sake of computational efficiency. To stabilize the simulation and mitigate the dynamic effect, an artificial viscosity 
has been applied to the fluid with coefficients Cl and Cq both taken to be 0.5. A damping coefficient of 0.01 is applied to tamper the 
dynamic effect. The time step in the simulation is selected to be 2.5 × 10− 7 s with a total number of 8000 simulation steps. The 
computation takes about 1.5 hrs running on 24 Intel® i9–12,900 CPUs at 3.0 GHz. 

The simulation results are presented in Fig. 16 for both fluid pressure and the damage in solid. The pressure of fluid below the tube 
is of interest in this study since this pressure triggers the fracture in the sandstone. The fluid pressure within the tube does not have 
particular significance as the fluid is subject to the constant velocity condition and does not interact with the sandstone. An interior 
view of the evolving fracture surfaces is shown in Fig. 17. As expected, the fluid pressure beneath the tube gradually accumulates with 
the progress of injection, and the fracture is found to initiate near the borehole along the radial direction as shown in Fig. 16(b) and 
Fig. 17(a). Further injection does not lead to a subsequent increase in fluid pressure due the opening created by the fracture. The fluid 
pressure decreases drastically while the fractures propagate, as shown in Fig. 16(c)-(d). The fracture is observed to propagate primarily 
along the radial direction until it reaches the edge of the specimen. With continued injection, vertical crack can also be seen below the 
borehole as shown in Fig. 17(c). At the end of the simulation, the fracture surface is almost planar and is situated parallel to the 
maximum principal stress direction. The obtained fracture surface agrees reasonably well with the recorded acoustic emission events 
in experiment as shown in Fig. 17(d)-(e). 

Presented in Fig. 18 is the evolution of fluid pressure during the injection process. The time after injection is normalized by tm which 
represents the time when the maximum injection pressure is reached. The evolution of pressure is found agree with experimental 
records before the peak. The injection pressure reaches its peak near 18 MPa and drops drastically since then. The pressure drop is 
slower in our simulation probably due to the applied artificial viscosity and fast injection. The post-peak pressure evolution does not 
completely fit with the experimental records due to many other factors that cannot be faithfully captured in the simulation, such as the 
existence of pores and fluid permeation into intact solids which are not explicitly modelled. However, the simulation results accurately 
capture the peak pressure and reflect the overall evolution trend of the fluid pressure, which is a result of the fractures which create 
fissures for the fluid material points to infiltrate. In this example, we demonstrate that the fractures driven by the fluid pressure due to 
injection can be reasonably captured with the coupled total- and semi-Lagrangian PD formulations. 

5. Conclusions and discussions 

Presented in this paper is a peridynamics-based computational approach for modelling fluid-solid interactions and fluid-driven 
fractures by coupling the total- and semi-Lagrangian formulations. The former is used for modelling fracturing in solids, while the 
latter is employed for modelling fluids. A fictitious point-based FSI formulation is presented to model interactions between the fluid 
and solid. Benchmark models are presented for the dam break problem, crack profile under hydraulic pressure, and KGD hydraulic 
fracturing problem. A numerical simulation example is presented for injection-induced pressurization and fracturing in solid rock. The 
proposed computational approach is shown to reasonably simulate fluid flow, fluid-solid interactions, and fluid-driven fracturing in 
the solid, with comparison to experiments and analytical solutions. 

The advantage of the coupled computational approach is that one does not need to explicitly describe the geometry of the fractures 
in modelling fluid-driven fracturing problems. This is appealing when considering cases where complex fracture patterns are expected 
to develop, and when the solid is unsaturated and impermeable such that fluid infiltration is dependant of the fractures. Nonetheless, 
the proposed approach is not without limitations. First, it is best suited for impermeable solid materials where fluid does not infiltrate 
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Fig. 16. Evolution of fluid pressure and progress of fracture in the sandstone. (a) initial condition; (b) at step 2000; (c) at step 4000; (d) at step 
8000. The sandstone specimen is cut vertically at x = 0 for the purpose of presentation. The time that corresponds to (a) through (d) is marked 
in Fig. 18. 

Table 4 
Parameters for simulation of injection-induced brittle fracture in sandstone.  

Parameters Vegetable oil Sandstone Steel tube 

Density: kg/m3 900 2500 7800 
Bulk modulus: GPa 1.5 2.72 100 
Shear modulus: GPa / 3.24 74 
Poisson’s ratio / 0.37 0.3 
Viscosity: Pa·s 5 × 10− 3 / / 
Fracture toughness: MPa·m0.5 / 0.4 / 
Critical energy release rate: J/m2 / 22.9 / 
CPST = 0.0, CRF = 0.01, c0 = 3580 m/s, n = 4.0, δ = 3Δx.   
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into solid. For porous solid material, additional consideration will be necessary to consider fluid diffusion into solid. Second, the 
application of the semi-Lagrangian-PD theory remains new and needs further efforts to extend it for larger scale simulation and po-
tential engineering applications. It may also experience an unfavourable material instability issue [32], which should be addressed in 
future studies. Third, the computational cost associated with the coupled approach can be expensive if 3D simulation is performed for 
an endured fracturing and fluid infiltration process. This may be attributed to the nature of the semi-Lagrangian formulation which 
requires point neighbour to be updated each step. GPU based parallel computing may help for such cases. Moreover, it is worth noting 

Fig. 17. Interior view of the fracture surfaces in the sandstone: (a) at step 2000; (b) at step 4000; (c) at step 8000; and acoustic emission events 
captured in experiment [61] in (d) top view; (e) side view. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 18. Evolution of fluid pressure during injection and fracturing process. Conditions of the specimen at time [a] through [d] are shown in Fig. 16.  
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that the recently developed bond-associated PD theory [66–69] may also be considered in the modelling of solid and fluid. The theory 
has been found to offer good numerical stability while maintaining the versatility of the non-ordinary SBPD. The fluid-solid interaction 
model proposed herein will need to be further examined when used in conjunction with this recently developed PD theory. 
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