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Abstract

Granular matter is ubiquitous in nature and is present in diverse 
forms in important engineering, industrial and natural processes. 
Particle-based computational modelling has become indispensable 
to understand and predict the complex behaviour of granular matter 
in these processes. The success of modern computational models 
requires realistic and efficient consideration of particle shape. 
Realistic particle shapes in naturally occurring and engineered 
materials offer diverse challenges owing to their multiscale nature 
in both length and time. Furthermore, the complex interactions with 
other materials, such as interstitial fluids, are highly nonlinear and 
commonly involve multiphysics coupling. This Technical Review 
presents a comprehensive appraisal of state-of-the-art computational 
models for granular particles of either naturally occurring shapes or 
engineered geometries. It focuses on particle shape characterization, 
representation and implementation, as well as its important effects. 
In addition, the particles may be hard, highly deformable, crushable 
or phase transformable; they might change their behaviour in the 
presence of interstitial fluids and are sensitive to density, confining 
stress and flow state. We describe generic methodologies that capture 
the universal features of granular matter and some unique approaches 
developed for special but important applications.
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interaction. This Technical Review aims to make a critical comparison 
of state-of-the-art computational models and numerical techniques for 
granular matter (Fig. 1) prevailing in recent years for modelling realistic 
particle shapes and to offer perspectives for emerging challenges.

We organize the Technical Review according to the following 
subtopics. We first discuss numerical models of hard granular particles 
with arbitrary shapes and that are rigid and unbreakable and in the 
absence of multiphysics fields, with focus on computational models 
of contact interactions between particles. We then turn to the charac-
terization and simulation of crushable and/or deformable particles 
with intermittent or continuous changes in particle shape that may be 
strongly coupled to the mechanical responses of an assembly. Next, we 
discuss modelling granular particles in multiphysics fields highlight-
ing the complications caused by particle–fluid interactions. We then 
discuss advanced numerical techniques, which use direct numerical 
simulation (DNS) approaches, parallel computing or machine learning 
(ML) and which enable and accelerate large-scale, multiscale simula-
tions of granular matter. Finally, we describe some future challenges 
for the computational modelling of granular matter.

Hard granular particles
Shape matters
Naturally occurring granular matter. Granular matter in nature exists 
in diverse shapes across different scales in both size and time (Fig. 1). 
The shapes of food grains, such as maize, wheat and coffee beans7,12, 
critically affect their flow, packing and processing including mixing and 
grinding. Naturally occurring sand grains are typically non-spherical 
because of their mineral composition and geohydrochemical envi-
ronments and history. The effect of their shape is manifest in various 
facets of their engineering properties, including shear strength, flow 
behaviour (such as hopper discharge in silo or reactor core13), wave 
propagation14, segregation15 and cohesive powder flow8. The collective 
behaviour of biorelated granular media, including biomass particles16,17 
and creatures such as sea stars, is well known to depend strongly on 
their particle shape; the same is true of asteroids11,18. Human activi-
ties engender the generation and accumulation of microparticles in 
the natural environment, including nanoplastics and microplastics5 
and atmospheric particulate matter19, threatening the safety of our 
lives. Representative examples of modelling techniques used to study 
granular materials in the natural world are the discrete element method 
(DEM) for studies on particle scales and molecular dynamics (MD) for 
studies on atomistic scales.

Granular matter by design. Unlike naturally occurring particles, 
granular materials can be purposely designed or engineered to have 
desired functions and macroscopic properties. Numerical modelling 
is effective at the design stage. For example, with precisely controlled 
geometry, non-convex interlocking granular particles may be pro-
grammed to form structured fabrics that offer desirable mechanical 
properties of jamming and unjamming transitions that are useful in 
medical or engineering applications20,21. An example application is alea-
tory architecture21. DEM has been widely used for aggregations of such 
designed-shape particles to achieve tunable mechanical properties20 
and to serve in applications including architectural construction22. 
The design and testing of specially shaped nanoparticles and colloidal 
particles have become an emerging technology for creating functional 
nanostructures23,24 or smart materials via processes such as reversible 
assembly25 and magnetic assembly26. On this scale, MD27,28 is prevalent 
as a simulation tool. Particle shape has an underpinning role for inactive 

Key points

•• Particle-based computational modelling that considers realistic 
particle shapes has become indispensable for understanding and 
predicting the complex behaviour of granular matter in engineering, 
industry and nature.

•• How to effectively represent the shape of a particle is closely related 
to its intended purpose; the modelling of naturally occurring granular 
materials may differ from approaches for engineered particles.

•• Particle shape representation is inseparably coupled to the detection 
of interparticle contacts, both of which critically determine the 
computational accuracy and efficiency of simulations of granular 
matter.

•• Specific methodologies are needed to address challenges arising 
from crushable particles or highly deformable particles, in which the 
co-evolution of particle shapes and sizes and hence contact detection 
algorithms dictate both accuracy and efficiency.

•• Consideration of shape effects in coupled simulations of granular 
particles and environmental fluids requires revamped theories 
and methods to faithfully reflect their underpinning multiphase, 
multiphysics nature.

•• Incorporating realistic particle shapes in granular matter modelling 
must harness the latest advances in parallel computing and machine 
learning for effective large-scale computations.

Introduction
Granular media are ubiquitous in nature and indispensable in every-
day life. Broadly speaking, granular matter may include both densely 
packed solid, macroscopic particles interacting through dissipative 
processes and microparticle to nanoparticle in suspension. They 
are present in diverse forms spanning nanoscale, engineering and 
even planetary scales. Examples of the particles forming granular 
media include biological viruses1, colloids2, nanoparticles3, red blood 
cells4, microplastics5, beach sand6, food grains7, chemical powders8, 
boulders9, icebergs10 and asteroids11. Granular media exhibit emergent 
phenomena at various length scales and timescales, including jamming, 
collapse, failure, avalanche, phase transition and flow. These complex 
behaviours are underpinned by interactions between particles and 
between particles and their environment; the shape of a particle has 
a crucial role in such interactions. The past decades have witnessed a 
rapid development of computational models and numerical methods 
that foster better models and thus improved predictions and deeper 
understanding. Although conventional approaches based on simplified 
particle shapes such as spheres have gained great success in various 
scientific and engineering fields, recent research has paid more atten-
tion to the high-resolution representation and accurate modelling of 
particle shapes. Indeed, particle shape can be intricately intertwined 
with many facets of granular behaviour. For example, granular matter 
consisting of crushable and/or deformable particles involves evolving 
particle shapes and is notably different from hard-particle systems. Fre-
quently, granular matter exists in a multiphysics environment in which 
particle shape critically affects key processes such as particle–fluid 
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nanoparticles and microparticles that are ultrasound-propelled3,29 or 
driven by active particle aggregations30 and self-assembling structures 
of colloidal particles2. Such systems have been treated numerically 
using Brownian dynamics31,32, dissipative particle dynamics (DPD)33, 
Monte Carlo (MC)34 and MD35. Moreover, particle shape is of major 
concern in the design of energy cells because aspherical-active parti-
cles can cause non-uniform lithium intercalation36 in Li-ion batteries.

Shape representation
Qualitative or quantitative terminologies such as convexity, regular-
ity, symmetry, sphericity, elongation and flatness have been used to 
describe particle shapes. Naturally occurring particles commonly have 
arbitrary (concave and irregular) shapes, whereas regular shapes that 
are easy to describe, manipulate and manufacture are often preferred 
in designed granular matter. We summarize three major schemes 
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Fig. 1 | Modelling realistic complex particles and their collective behaviours. a, Relationship between different methods and systems. b, Shape matters in granular 
matter across multiple scales.
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for representing shape in the computational modelling of granular  
matter (Fig. 2).

Primitive-clumped scheme. This scheme refers to a class of meth-
ods that approximate the complex shape of grains by aggregating a 
set of simple geometric primitives such as points, discs, spheres or 
cylinders. There are two prevailing approaches to aggregating primi-
tives: one simply clumps the primitives together to obtain the best-fit 
shape profile by allowing arbitrary overlapping between the primi-
tives, exemplified by such methods as sphere-clump particles37 and 
cross-shaped particles38; the other is the so-called cluster approach 
in which the overlap between the primitives is constrained by taking 
interprimitive interactions into consideration. Typical methods in 
this category include the sphere-cluster particle and the point-cluster 
(cloud) particle27. The cluster-type particle methods often require 
many primitives to render sufficient representation of the realistic 
shape, which may incur increasing computational cost and hinder their 
application for modelling large-scale systems. As also noted in ref. 39, 
the clustered particle is often rougher than the original smooth shape 
to be approximated, which leads to increased friction and interlocking 
effects between clustered particles and hence undesirable physical 
behaviour in simulations.

Mesh-based scheme. In a typical mesh-based scheme, the shape of 
a grain is represented by a collection of vertices and polygons. The 
polygons may range from typical triangles to simple, convex and regu-
lar polyhedra such as platonic solids and irregular polyhedra40. The 
approximation of complex shapes in this scheme strongly depends on 
the resolution of vertices. To reduce the roughness of the mesh-based 
surface, the Minkowski-sum representation has become an increas-
ingly popular and effective extension. In d dimensions, a sphere R is 
typically swept over a mesh-based surface S to obtain the Minkowski 
sum of the two, namely,

S R S R S Rs r s r⊕ = { + | ∈ , ∈ }, , ∈ (1)dR

For example, sweeping a sphere along a segment may yield a thick 
bar (spherocylinder41), along all edges (segments) of a polygon for a 
spheropolygon42, or along the surface of a polyhedron for a dilated 
polyhedron43 or generally called spheropolyhedron44. Notably, some 
mesh-based representations of particle shape cause a non-smoothness 
issue of the particle surface at vertices and edges, posing computational 
challenges. Rounding the vertices or edges by using arcs or spheres 
(that is, the Minkowski-sum method) to remove the non-smoothness 
issue is a possible remedy39. Moreover, the mesh-based scheme is the 
most flexible of the methods discussed here to represent arbitrarily 
shaped particles, and the vertices can be readily utilized as Lagrangian 
points to compute particle–fluid interactions (as discussed in the sec-
tion on particle–fluid interactions). However, mesh-based schemes 
require sophisticated hierarchical data structures to store the topology 
of vertices, edges and facets.

Analytical-surface scheme. A shape can be represented analytically by 
a surface function. Although a sphere is the most straightforward exam-
ple that exists in a wide family of ellipsoids and superellipsoids45–47, ana-
lytical function-based poly-ellipsoids48,49 and poly-superellipsoids50 can 
provide more asymmetric features. Following the concept of clumping, 
combining different surface functions may offer other shape repre-
sentations such as poly-Béziers51 and meta-balls52. Although these 
analytical surfaces can be taken as primitives to construct complex 
shapes in the spirit of the primitive-clumped scheme, they may fail to 
model arbitrary, concave shapes directly. More advanced mathematical 
representations have been developed to obtain more flexible particle 
shapes. For example, non-uniform rational B-splines (NURBS) com-
monly used in computer graphics and computer-aided design have 
been used to represent particle shapes. A NURBS surface can be either 
convex53 or concave54, depending on the distribution of control points. 
This feature of NURBS may also be relevant to particle interaction, as 
discussed in the following section.

Fourier-spectrum-based representations offer another useful 
tool to generate three orthogonal cross-sections of a particle before 
interpolating them into a 3D surface6,55. As a further extension of 
Fourier-spectrum-based representation, spherical harmonics (SH) 
use higher-dimensional functions with linear combinations of Fou-
rier series defined on a sphere to capture the morphology of realistic 
particles56,57. Both Fourier-spectrum-based and SH-based representa-
tions can be controlled by a given set of shape descriptors to generate 
virtual samples with shape characteristics statistically consistent 
with real samples. This feature is notably useful for generating a larger 
numerical sample from limited laboratory data. As a further exten-
sion of SH, harmonic functions can be also defined on an ellipsoid, 
in other words, ellipsoidal harmonics (EH). Although complicated in  
mathematical implementation, EH is a promising tool for represent-
ing non-spherical shapes because of the higher rate of numerical 
convergence58. Indeed, EH has been applied successfully to calculate 
the gravitational field of asteroids with complex shapes59 and has 
proven to be superior to SH for highly elongated or concave shapes60. 
Note that the surface functions of Fourier-spectrum-based, SH and 
EH shapes are typically not used directly in the computation of inter-
particle contact interactions. Instead, computational efficiency is 
improved by making further approximations using methods such as 
sphere clumping, clustering or mesh-based approaches.

Discrete modelling approaches
Discrete modelling approaches such as MD, MC and DEM (Table 1) have 
been applied widely in simulations of problems at scales including 
atomic, mesoscale, industrial and engineering, even to the astrophysi-
cal scale. It is common to assume that particle motion is governed by 
the Newton–Euler equations for time-driven dynamics:

∑m
t

d
d

= + (2)c bv
f F

Fig. 2 | Numerical models on particle shape representation. a, Primitive- 
clumped scheme. The sphere-clump and sphere-cluster methods are 
exemplified here. The sphere-clump method allows overlaps but needs proper 
consideration of moment of inertia for rotational modelling. Showcased are 
different particle filling methods with varying efficiencies and accuracies. The 
sphere-cluster method does not allow overlaps and needs more spheres to fill 
a particle. b, A mesh-based scheme uses vertices and polygons or polyhedrons 

and Minkowski sum of them to represent a particle. c, Analytical-surface 
scheme. Part a adapted with permission from ref. 202, Elsevier, and ref.  203, 
ICE Publishing. Part b adapted with permission from ref. 40, Springer, and ref. 94, 
Elsevier. Part c adapted with permission from the following: superellipsoid and 
poly-superellipsoid50, Wiley; non-uniform rational B-spline (NURBS)53, Elsevier; 
Fourier spectrum55, Elsevier; and spherical harmonics (ref. 57, Springer, and 
ref. 84, Elsevier). For definitions of variables, see the corresponding references.
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Table 1 | Computational modelling approaches for particle dynamics

Method Description Useful for Limitations

Standard 
DEM (discrete 
element 
method)

Time driven
Interparticle contact force is explicitly calculated 
with a given penetration–force contact model
Particles are explicitly driven by the resolved 
contact force in conjunction with externally 
exerted forces

Allows smooth particle velocity solution
Resolves contact forces easily
Convenient to implement for non-spherical 
particles

Small time steps are required to ensure 
numerical stability
Elaborated calibration of non-physical 
model parameters, including contact 
model parameters and damping, may be 
needed.

Contact 
dynamics

Time-driven or event-driven (but the event-driven 
may not be suitable for many-contact systems)
No interparticle penetration allowed
Solves a complementarity relation between 
contact velocity and impulse and indirectly 
solves the contact forces as a complementary 
to constraints

Implicit integrator allows large time step and 
good stability properties
Contact forces are retrievable through 
impulse reaction if necessary
Less artificial contact parameters as 
introduced in standard DEM
Easy to handle particle shapes

Solving the complementarity problem 
is often time-consuming, especially for 
non-spherical particles
Considerable oscillations may be 
introduced in retrieving contact forces
Uniqueness of reactions not guaranteed

Impulse-based 
DEM 
(simultaneous)

Time-driven
Particle motion is governed by Newton’s law 
of impact
Impulse applied in a simultaneous manner

Allows larger time step than standard DEM
More computationally efficient than 
standard DEM
Updating particle velocity by contact impulse

Can be as complicated as contact dynamics 
in implementation

Impulse-based 
DEM 
(sequential)

Time-driven
Particle motion is governed by Newton’s law 
of impact
Impulse applied in a sequential manner

More computationally efficient than 
standard DEM
Updating particle velocity by contact impulse
Can be implemented straightforwardly

Results may depend on the handling order 
of contacts68

Event-driven 
DEM or 
molecular 
dynamics (MD)

Particle position updates with non-smooth 
velocities
Simulation advances in collision event 
sequentially

Generally faster than standard DEM and MD Limited to simple-shape particles and 
relatively dilute systems such as gas or 
suspended granular system
Difficult in dealing with externally exerted 
forces such as gravitational, electrostatic or 
aerodynamic forces201

Monte Carlo 
method

Popularly used to simulate random jammed 
packing of non-spherical particles

Useful to model states of equilibrium Requires a combination with other methods 
such as MD for dynamic problems

Brownian 
dynamics

No inertia force term involved but with additional 
stochastic body force
Like DEM and MD, it can be either time-driven or 
event-driven

Replaces molecular interactions with 
stochastic forces and allows larger 
timescales than MD
Useful to model complex fluids such as 
polymers and proteins in non-equilibrium 
situations

Limited to microscopic simulations such 
as colloidal liquid crystals and motion of 
bacteria

Material point 
method

Lagrangian material points moving on a Eulerian 
background mesh
Material points interact with one another through 
the background nodes

Capable of solving large-deformation 
problems in both solid and fluid mechanics.
Easy to deal with contacts between 
multimaterials

Requires complicated implementation for 
simulating material damage and fracture

Smoothed 
particle 
hydrodynamics

Uses a smooth kernel function for point-based 
integration at each Lagrangian point

Originally proposed for astrophysical 
problems, increasingly used in fluid 
mechanics and extended in solid mechanics

May not be suitable for high Reynolds 
number or turbulent flows
Difficult to deal with fully incompressible 
fluids

Peridynamics Uses integral of nonlocal forces to replace 
divergence of stress in the linear momentum 
equation
A material point interacts with all neighbouring 
points within its horizon through pairwise bonds

Suitable for modelling fractures in solid 
without a pre-defined crack path
Capable of modelling complex crack 
patterns such as branching and merging 
cracks

May not be suitable for simulating crack 
propagation in materials with high plastic 
deformation

Lattice 
Boltzmann 
method

Solves the lattice Boltzmann equation with 
imaginary fluid particles moving on the lattice 
grid

Easy to implement and highly suitable for 
parallel computing
Suitable for simulating multiphase problems

Difficult to deal with high-Mach number flows
Possible but less efficient to be extended to 
an unstructured grid

Dissipative 
particle 
dynamics 
(DPD)

Solves the stochastic differential equations of 
motion for particles involving conservative, 
dissipative and stochastic forces

Capable of modelling soft matter and 
complex fluids

Limited to mesoscale systems such as 
colloids, blood, polymers and so on
Can be extended to consider multibody 
interactions (MDPD) and non-isothermal 
situations (EDPD)169

Lattice element 
method

Lattice-spring and lattice-beam modes are widely 
used for the interaction between lattice nodes
The lattice grid can be structured or unstructured 
for forming regular or irregular lattice topologies, 
respectively

Easy to implement as cohesive DEM (with 
cohesive bonds at interparticle contacts)
Useful for modelling crack propagation 
and failure in interparticle interfaces under 
quasi-static conditions

Requires a regular or irregular lattice 
structure, which may not be suitable for 
modelling irregular particle shapes
Requires more implementation of contact 
interaction and detection for dynamic 
problems such as dynamic fragmentation
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J
ω

ω Jω f r∑t
d
d

+ × ( ) = × (3)c c

in which m is the particle mass, J is the inertial moment, v is the trans-
lational velocity, ω is the angular velocity, f c is the contact force, cr  is 
the position vector of the contact point with respect to the mass centre 
and bF  is the body force. The impulse-based versions of these equations 
are given as:

∑m t∆ = + ∆ (4)c bιv F

∑t∆ + × ( )∆ = × (5)c cιJ ω ω Jω r

in which cι  is the impulse at the contact and t∆  is the time interval. To 
facilitate numerical implementation, a body-fixed frame is often 
applied, and quaternions are used to track particle rotation in  
equations (3) and (5).

DEM. As shown in Table 1, in addition to the standard form methods 
such as the standard ‘soft-body’ DEM61, variants have been developed 
to suit specific purposes, including event-driven (ED) DEM62, con-
tact dynamics (CD)63 and impulse-based DEM64. Standard DEM allows 
the possibility of particles interpenetrating, so that the interaction 
can be resolved by calculating the contact force explicitly using a 
given penetration–force contact model. Particle motion is resolved 
by explicitly solving equations (2) and (3) with integration schemes 
such as Verlet, velocity Verlet or predictor–corrector. ED tracks inter-
particle collision events by sorting the potential collision time for 
all pairs of particles in a simulation body, in which the particle veloc-
ity is updated from the restitution upon collision. Similar to ED, CD 
(or more accurately, non-smooth CD) also assumes impenetrable 
particles and requires the tracking of dynamic contacts in the sys-
tem, as its name suggests. However, CD solves the velocity and the 
impulse at each contact for subsequent updates of the particle states. 
Although traditional ED has no static limit, CD is designed around 
static equilibrium, but neither works well for the opposite limit. DEM 
can tackle both. Unlike the standard DEM in which particle velocities 
and contact forces are solved smoothly, CD solves a complementarity 
relation between contact velocity and impulse and indirectly solves 
the contact forces as a complement to constraints (typically volume 
exclusion and non-sliding constraints for frictional granular systems),  
for example,

v f f v≥ 0, ≥ 0, = 0 (volume exclusion) (6)n
c

n
c

n
c

n
c∙







µ

µ

| | = 0 | | ≤ | |

| | ≠ 0 | | = | |
(Coulomb law) (7)t

c
t
c

n
c

t
c

t
c

n
c

v f f

v f f

⟹

⟹

in which µ is the coefficient of friction; f n
c and t

cf  are normal and tan-
gential contact forces, respectively; and vn

c  and vt
c are normal and 

tangential relative contact velocities, respectively. Note that CD is more 
complex to implement than the standard DEM (as compared in 
refs. 65,66), which may limit its widespread use. Impulse-based DEM 
was originally proposed and widely used in computer graphics67. 
It applies Newton’s law of impact, that is, equations (4) and (5), to deter-
mine the non-smooth particle velocity. Depending on the solution 
procedure, impulse-based DEM can be divided into two categories: 
the simultaneous impulse method and the sequential (or propagation) 
impulse method68. The simultaneous impulse method enforces  

constraints on all contacts at the same time and formulates a comple-
mentarity problem equivalent to the CD method68. The sequential 
impulse method applies the impulse to each contact one after another, 
a feature rendering it suitable for parallelization. Both methods have 
advantages and disadvantages69. Note that an iterative process is still 
required for the sequential method at each time step.

MD and MC. MD is very similar to DEM in its theoretical framework, 
and DEM can be considered a branch of MD. A noteworthy difference 
between MD and DEM is that MD is widely adopted to model atomic, 
molecular or nanoscale interactions between particles, for applications 
such as simulating Janus ring polymers70. Event-driven MD advances 
over time in terms of interparticle collision events. Only spherical par-
ticles have a closed form for collision prediction62, and it is necessary  
to find the event time for non-spherical particles iteratively71. Similar to 
MD, Brownian dynamics (BD) can be used to simulate molecular-scale 
dynamics72. As a counterpart of the event-driven DEM or MD, MC has 
been used widely to model hard-body systems. It has applications 
in systems in static equilibrium62, such as colloidal preassembly of 
superballs73, the phase behaviour of hard curved spherocylinders74 
and the magnetic-field-assisted assembly of ellipsoids75. However, 
MC is generally unable to deal with the dynamics and time evolution 
of granular matter.

Interparticle contact interaction
Shape is an even more critical issue for interparticle interactions than 
for their geometric representation. This is especially true for con-
tact interactions when modelling a granular assembly computation-
ally. Contact interactions are commonly modelled by either smooth 
(force-based, ‘soft-body’) or non-smooth (impulse-based, ‘hard-body’) 
approaches76 (Box 1). In either method, interparticle contacts or col-
lisions must first be detected accurately and efficiently; doing so it 
poses a challenge when modelling non-spherical particles. Practical 
measures to balance the accuracy and efficiency of contact detection 
can be categorized into broad-phase and narrow-phase resolution  
techniques. The broad-phase methods aim to identify potential  
contacting pairs of particles by excluding most non-contacting pairs, 
whereas narrow-phase techniques offer an exact treatment of contact 
details such as the contact point, normal and tangential directions and 
contact penetration and/or deformation if any.

Broad-phase contact detection. Although linked cells are the stand-
ard method from MD for similarly sized spheres, the use of a bounding 
box, such as an axis-aligned bounding box, is a prevalent technique for 
broad-phase contact detection of non-spheres. Well-known algorithms 
include the sweep-and-prune algorithm, the cell-based algorithm 
and tree-based algorithms such as bounding volume hierarchy77. The 
sweep-and-prune algorithm is robust but not well suited for paral-
lelization. The cell-based algorithm is known to be sensitive to the 
particle size distribution and must resort to remedies such as the stencil 
algorithm78, which are complicated to implement. Polydispersity is 
efficiently accounted for by so-called hierarchical grid methods that 
stacks multiple scale-linked cells. Frequently, the cell-based methods 
must fill the entire simulation domain with cells, which demands high 
memory use and computational cost, especially for spatially sparse 
particles. The hierarchical grid uses either efficient binary search or 
tree-based algorithms to mitigate this issue. Such methods are widely 
used in computer graphics, for instance, in ray tracing and physics 
engines, and have been proven to be robust and efficient. An apparent 
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Box 1

Interparticle and intraparticle interactions
N-body problem
In an N-body problem, each individual particle in a system has 
non-contact interactions with the other particles. Such a model 
describes interasteroid gravitation and intermolecular van der Waals 
force, among others. Introducing a cut-off distance or tree data 
structures can reduce the time complexity substantially76.

Smooth and non-smooth contact modelling
Smooth contact modelling allows interparticle penetration such  
that contact forces are calculated by a penalty-based law (see the 
figure, panel a, in which d d,c c

n t  are the normal penetration depth and 
tangential displacement, respectively; the other symbols are defined 
in equation (7) in the main text). Non-smooth contact modelling 
prohibits interparticle penetration such that contact force and 
velocity follow a complementarity relation (see the figure, panel b,  
in which the symbols are defined in equation (7) in the main text).

Interparticle interaction
In the dual-space method, one defines a bounding plane as 

+ + =x y z d{( , , )|ax by cz } for a convex polyhedron (see the figure, 
panel c). Mapping between a plane and a point in the dual space  
(the prime for variables in the image space) follows the relation81,82:
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One common optimization method (see the figure, panel d) is 
midway or potential optimization:
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where x is the midway point and S ( )1 x  and xS ( )2  are surface or 
potential functions of particles. Another widely used optimization 
method is common normal or support point optimization:
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in which c is the common normal and S c( )1  and S c( )2  are support 
functions of particles.

In the brute-force method, the interaction between each pair of 
primitives from two particles is traversed. The point-to-point traversal 
is a typical approach (see the figure, panel e). In addition, the node 
(point)-to-surface method is to query the penetration of a node from 
one particle into the other represented by a surface (see the figure, 
panel f). To facilitate the querying process, a level-set function or 
a general signed distance field (SDF) function is used to pre-cache 
the distance potential in a grid structure. See the figure, panel g for 
a level-set contour of a particle surface (the dot-dashed profile). An 
exemplified SDF of a particle represented by a mesh is shown (see 
the figure, panel h).
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drawback of the hierarchical grid is that it is problem-specific and 
requires a sophisticated data structure and is thus harder to implement 
than other methods. The overall performance of broad-phase detection 
algorithms can be improved by storing the neighbour list in cache and 
updating the potential neighbours of each particle78,79.

Narrow-phase contact detection. Narrow-phase contact detec-
tion provides accurate resolution of interparticle contacts. There are 
general-purpose algorithms available for simple, spherical particles. 
However, there is no easy technique for accurate contact detection 
of particles with irregular or arbitrary convex or concave shapes, and 
relevant algorithms are often case-specific and problem-specific. 
Existing approaches can be classified into three categories: analytical, 
optimization-based and brute-force methods (Box 1).

The analytical method only works for simple primitives. For 
example, there is a closed-form analytical solution that can readily be 
coded for numerical simulations to calculate the minimum distance 
between two discs or two spheres. However, even slightly distorted 
shapes such as ellipsoids render such a solution unattainable. In the 
case of ellipsoids, the problem can be tackled in different ways80. 
Notably, the dual-space method is a promising method that has been 
successfully used in standard DEM81,82 and offers a robust solution to 
the intersection between two convex polyhedra using dual spaces83. 
This method transforms the half-space planes of the contacting poly-
hedra into discrete points in the dual space and identifies the convex 
hull of those points as the intersection in real space. The intersec-
tion polyhedron facilitates determination of the contact volume to 
resolve the contact force in conjunction with the volumetric contact 
stiffness in standard DEM. The introduction of volumetric contact 
stiffness contributes further to numerical stability when developing 
an energy-conservative contact model84. Despite these good features, 
the dual-space method is computationally inefficient, especially for 
polyhedra with manyvertices.

The optimization-based method is applicable to any convex 
shape, from convex polyhedra to all convex shapes that are suit-
able for the analytical-surface scheme discussed earlier. Indeed, 
optimization-based methods are the contact resolution strategies 
for most convex particle shapes proposed in DEM today, including 
ellipsoids, superellipsoids46,47, poly-superellipsoids50, meta-balls52 
and convex Fourier-based shapes85. In standard DEM, the optimization 
problem is formulated to search a minimum distance between two 
particle surfaces, subject to constraints such as common normal direc-
tion. The problem is solved using suitable optimization algorithms such 
as the Nelder–Mead simplex algorithm, the Gilbert–Johnson–Keerthi 
(GJK) algorithm, Newton’s method and the Levenberg–Marquardt 
algorithms. In some cases, the combined use of these optimiza-
tion algorithms — such as a hybrid of Levenberg–Marquardt and GJK50 —  
may help achieve better convergence. All the optimization algorithms 
mentioned earlier are equally applicable to CD and impulse-based 
DEM. Notably, GJK has been adopted widely in physics engines for 
computer graphics. Recently, physics engines such as PhysX86 and 
Bullet87 have become increasingly popular in scientific computation. 
For event-driven DEM or MD, it is non-trivial to predict the collision time 
for non-spherical moving particles88. The Donev–Torquato–Stillinger 
(DTS) algorithm71 has been proposed to extend the Lubachevsky–
Stillinger algorithm89 to handle non-spherical particles with centrally 
symmetric convex shapes, such as ellipsoids and superballs90. With 
further simplification by assuming equal principal moment of inertia, 
the Donev–Torquato–Stillinger algorithm solves interparticle overlap 
potentials as an optimization problem.

The brute-force method is the most straightforward for resolv-
ing contacts between non-spherical particles modelled by clumped 
spheres in standard DEM or MD. It can also be used for shapes repre-
sented by the primitive-clumped scheme. This method determines 
possible contacts between each pair of primitives (for instance, spheres 
in the clumped spheres) of the two non-spherical particles to collect all 

Intraparticle interaction
In a discrete approach, particle shape is represented by using 
the primitive-clump scheme with primitives such as sphere and 
polyhedron. Intraparticle interaction between these primitives is 
modelled for particle deformation and crushing by the discrete 
element method (DEM) or molecular dynamics (see the figure,  
panel i).

In a continuum approach, particles are modelled as general 
continuum with intraparticle stress and strain governed by the 
linear momentum equation subject to boundary conditions, such 
as contact force or confinement. Either meshes or material  
points are used to discretize particle shape (see the figure, panel j),  
corresponding to the mesh-based methods such as finite element  
method (FEM) and the particle-based methods such as material  
point method, smoothed particle hydrodynamics and 
peridynamics (PD).

Intraparticle interaction with particle dynamics
Particle deformation or crushing path in an assembly can be tracked 
by either discrete methods (such as DEM) or continuum methods 
(such as material point method). Coupling continuum and discrete 
methods, such as in FEM–DEM and PD–DEM (see the figure, panel k), 

helps to leverage the advantages of both methods on the modelling 
of particle deformation or crushing.

Replacement model for particle crushing
In this model, the parent particle is replaced by an aggregation of 
small particles. The small particles can be generated empirically or 
with respect to a semiempirical population balance model. The 1D 
population balance model equation is given by

∑= − + = ∈
=

−m
K m b K m i N

d
dt 0, [1, ]i

i i j

i
ij j j1

1

mi is the particle mass fraction in size group of N groups, Ki is  
the breakage constant and bij is the breakage distribution parameter 
defining particle mass fraction formed in size group i from group j 
(ref. 112).

Part c adapted with permission from ref. 82, Springer. Part d 
adapted with permission from ref. 205, Elsevier. Part e adapted with 
permission from ref. 206, Elsevier. Part f adapted with permission 
from ref. 100, Springer. Part g adapted with permission from ref. 97, 
Elsevier. Part h adapted with permission from ref. 100, Springer.  
Part i adapted with permission from refs. 7,114, Elsevier. Part k 
adapted with permission from refs. 44,87, Elsevier.
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information for the contact. For the case of convex polyhedra, it is usual 
to adopt the common plane algorithm proposed by Cundall et al.91, 
which has been extended by traversing a set of potential candidate 
common planes92. In addition, early studies of contact detection among 
polyhedra proposed approaches that traverse possible face–face, 
vertex–face and face–edge pairs93. However, such methods are not as 
computationally efficient as those based on optimization methods for 
convex shapes. For advanced shape-representation methods such as 
the mesh-based scheme and the analytical-surface scheme for arbi-
trary shapes, the primitives can be points (vertices), segments and 
triangles (or polygons). For example, if the vertex is used as primitive, 
it gives better performance than using a triangle as primitive94 but 
may possibly cause some loss of accuracy for mesh-based shapes. 
The node-to-surface detection algorithm promises to address the 
issues in vertex–vertex or triangle–triangle contact detection and 
has been used for SH-based methods57,95,96. More recently, the level-set 
and signed-distance field (SDF) functions originally used in com-
puter graphics are attracting increasing attention for application 
in advanced DEM to accelerate node-to-surface detection, such as 
level-set-based DEM97–99 and SDF-based DEM100–102.

Interparticle contact model. For smooth contact interactions, inter-
particle overlap is allowed, to compute contact forces. Penetration 
depth can be obtained during the narrow-phase contact detection 
and used as a weight or penalty for force calculations. However, 
contact models based on penetration depth may not be suitable for 
non-spherical particles as they can cause undesired behaviour for the 
system stiffness and damping when multiple contacts occur. As a 
result, contact models for general non-spherical particles are still being 
discussed. Energy-conserving contact models have been proposed 
to ensure numerical stability for non-spherical particles103. The 
volume-based contact model also falls into this category. Note that the 
volume-based contact model is commonly computationally expensive. 
Alternatively, for mesh-based shapes, the intersection line between two 
particles can be resolved instead of the overlap volume84. Moreover, 
both level-set and SDF functions can resemble a potential-based con-
tact model97,100. For non-smooth contact interactions, although there 
are no stiffness-overlap relations directly to compute contact force, 
interparticle overlap is iteratively computed to ensure that particles 
are impenetrable according to a threshold value applied to overlap. 
Multiple contacts can also cause issues for non-spherical particles, 
resulting in excess complications for adjusting particle positions to 
maintain the complementarity condition. For clustered particles in 
which multiple contacts may occur, in addition to the induced excess 
friction and interlocking, multiple contacts need to be stored and the 
contact history has to be maintained at each contacting pair, which 
necessarily invokes higher memory and computational cost39.

Crushable and deformable particles
Granular particles may deform negligibly or markedly when subjected 
to external loading and may also break slowly or suddenly under vari-
ous conditions. Indeed, granular particle crushing is ubiquitous and 
is important in many industrial and natural processes, such as grain 
milling, chipping of pharmaceutical tablets, Li-ion particle crushing or 
asteroid collisions. Brittle particles may undergo sudden crushing at 
negligible deformation, whereas ductile or cohesive particles may show 
slower, smoother breakage processes. Both DNS and semi-empirical 
approaches have been developed to model the post-crushing child 
particles without tracking the entire crushing process. Meanwhile, 

in certain situations, granular particles may exhibit elastic and/or 
plastic deformations. Such deformations can be seen in red blood 
cells104, artificial soft particles such as filled polymers in microgel 
particle suspensions105 and flexible fibres in fluid106, as well as pow-
ders, among other examples. Another example is the adaptation of 
the shape of granular hydrogels to adapt their mechanical properties 
for biomedical applications such as healing and cardiac repairs107. The 
following focuses mainly on DNS approaches to modelling crushable 
and deformable particles (Box 1).

Crushable particles
Semi-empirical approaches. Holistic treatments have been widely 
considered for modelling particle crushing, in view of the extreme 
complexity of grain crushing, which involves changes in both parti-
cle size and shape. A relatively intuitive method is the replacement 
approach, in which the original particle is replaced by a set of smaller 
particles (typically spheres) after crushing108. The crushing criterion is 
decided empirically from the overall contact force or other measures. 
However, such a simple replacement approach may lead to consider-
able loss of volume when spheres are used. Further refinements can be 
incorporated to consider cracks and other defects, such as the damage 
separation model109 and the level-set splitting approach98. The fracture 
surfaces are generally simplified as planes according to the advanced 
overall breakage criterion such as the maximum principal stress, Tresca 
or von Mises criterion on the basis of the intraparticle static stress:

l f∑V
σ =

1
⊗ (8)
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N
c c

p
p =1

where Vp is the particle volume; lc and f c are branch vector and contact 
force at contact c, respectively. We do not refer to dynamic, energy 
breakage criteria here. Population balance modelling is a semi-empirical 
approach with simplified mechanical consideration of the particle crush-
ing process used widely in chemistry and pharmaceutics110,111. Population 
balance modelling has recently been coupled with the replacement 
approach in DEM to better capture the mechanical process112.

Discrete-based DNS. The clustered-sphere model is among the most 
straightforward discrete-based DNS methods. In it, a particle breaks 
along the interparticle contacts between the clustered spheres. Dif-
ferent variants of the clustered-sphere model have been developed by 
simply using other shapes, such as polyhedra, to replace spheres as the 
primitives, including the clustered-polyhedron model113 and its exten-
sion based on Voronoi tessellation114 (or bonded cell method110 for both 
2D115 and 3D116). Such primitive-clustered approaches enable dynamic 
tracking of cracks but have the pitfall that the possible cracks can only 
pass through prescribed internal contacts between primitives. Increas-
ing the resolution of primitives may help to mitigate this issue at the 
cost of computational efficiency. Frequently, these primitive-clustered 
approaches need to be coupled with general DEM to simulate parti-
cle crushing within a granular system. Alternative approaches exist, 
including the lattice element method, which is suitable for modelling 
crack propagation at quasi-static conditions for small displacement 
problems117. The lattice element method introduces bonds, such as 
springs or beams, to connect adjacent nodes at a regular or irregular lat-
tice, allowing for the modelling of cracks by debonding adjacent nodes. 
It can be applied to modelling the failure of interparticle interfaces, 
such as those in cemented granular materials118,119, and intraparticle 
failure such as wheat fragmentation120.
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Continuum-based DNS. Conventional finite element method (FEM) 
and advanced techniques such as extended FEM for solid cracking 
problems (such as phase-field-based FEM121) are equivalently applica-
ble to modelling grain crushing. More recently, mesh-free methods 
such as peridynamics (PD), smoothed particle hydrodynamics (SPH) 
and material point method (MPM) (Table 1) have become popular for 
modelling particle crushing and can be combined with conventional 
approaches to modelling cracking, as is done in phase-field-based 
SPH122, for example. Continuum methods have further been coupled 
with discrete modelling approaches to consider interparticle interac-
tions, represented by prevailing coupling schemes such as FEM–DEM44 
or PD–DEM87,123,124.

Deformable particles
Discrete-based DNS. To simulate deformable particles, special shape 
representations are required to characterize the shape changes. 
Deformable particles can be either shell-like or solid. For shell-like par-
ticles such as biomembranes and capsules, the primitive-clump scheme 
is predominantly used because of its flexibility. For example, it is possi-
ble to use spheres or point clouds to construct realistic complex shapes 
such as realistic biomembranes125 and hinge-like nanostructures126. The 
interactions between the primitives are modelled using either discrete 
modelling approaches such as DEM and MD or specific models such as 
an energy-based deformable polygon model127,128. These approaches are 
equally applicable to solid particles but may be more computationally 
demanding in that case because of increasing numbers and complexity 
of primitives.

Continuum-based DNS. The deformation of individual particles 
can be solved by either mesh-based or mesh-free continuum-based 
approaches. The mesh-based approaches have a solid theoretical 
basis in continuum mechanics and represent particle shapes ele-
gantly using various mesh-based discretization schemes, such as the 
thin-shell model for deformable capsules129 based on FEM. However, 
mesh-based methods such as FEM may encounter the issue of mesh 
distortion when the particles experience excessively large relative 
deformation. Advanced techniques such as arbitrary Lagrangian– 
Eulerian (ALE) methods may help to mitigate the issue, but compromise 
computational efficiency and cause possible convergency issues.  
A single-element particle scheme130 has been proposed to model flex-
ible polyhedral particles on the basis of the virtual element method 
for better computational efficiency, but the scheme sacrifices accu-
racy. Emerging mesh-free approaches such as SPH and MPM are well 
suited to large-deformation problems (Table 1). Both SPH and MPM 
are particle-based methods. But unlike DEM, they solve continuum 
equations rather than the discrete particle motion. In these methods, 
deformable particles can be represented by point clouds. However, 
accurate representation necessarily requires substantial point clouds, 
causing great demand for computing resources and high computa-
tional cost. As such, continuum-based DNS approaches can at best be 
used for mesoscale modelling; they cannot replace discrete model-
ling approaches to atomic or microscale interactions, such as atomic 
interactions in the deformation of metal (nano) particles131.

Interactions with deformable particles. Interparticle interactions 
for assemblies of deformable particle can be modelled using general 
discrete modelling approaches. Coupled schemes such as the coupling 
of FEM and DEM (FDEM or DEFEM)132, CD–FEM133 and CD–MPM134,135 are 
popular examples. In addition to interparticle interaction, particles 

may be deformed by other forces such as fluid–particle interactions. 
Examples include red blood cells in vessels104 and flexible fibres in 
fluid flows106. These latter interactions are detailed in the next section. 
Furthermore, the spontaneous deformation of artificial particles is an 
active topic of research, especially in the context of meta-materials, 
which goes beyond the scope of this Technical Review. One example is 
deformable nanoparticles with varying patterns of surface charge136.

Particle–fluid interaction
Method overview
Computational fluid dynamics (CFD) is a prevailing method for direct 
numerical simulation (DNS) of fluid flow. Popular CFD methods are 
based on the finite volume method. The latest developments also see 
alternative CFD variants such as the lattice Boltzmann method (LBM) 
and SPH. Particle–fluid interactions have been treated as a fluid–solid 
coupling problem for which various emerging computational methods 
have been developed to treat specific problems involving non-spherical 
particles interacting with fluid64.

Particles in fluid. Particle–fluid interactions can be modelled in 
either resolved or unresolved manners (Box 2). The resolved (or 
particle-resolved) approach solves the particle–fluid interaction at 
each discretized subsurface of a particle, whereas for the unresolved 
(or particle-unresolved) approach the particle–fluid interaction is 
solved approximately using empirical models. Whereas the former 
works with a resolution much smaller than the particle137, the latter 
can be much faster owing to a much lower refinement138. Evidently, the 
resolved approach is directly applicable to non-spherical particles but 
inevitably incurs higher computational costs. The unresolved approach 
depends strongly on empirical fluid–particle interaction models such 
as drag force models, which are not readily available for non-spherical 
particles. For mesh-based fluid solvers, the finest Eulerian grid must be 
larger than the particles (for instance, at least three times larger than 
the particle) in the unresolved approach139. Particle–fluid interactions 
are then coupled with interparticle interactions solved using DEM140,141 
or other interparticle collision models142 for particle-laden flows or 
sediment transport (refs. 64,139 provide more exhaustive reviews of 
these methods).

Microswimmers. Particle–fluid interactions may differ greatly when 
the scale is rather small, such as in Brownian motion32. Particles such 
as microplastics, colloidal particles, biocells and microorganisms 
are frequently referred to as microswimmers and comprise an active 
research topic for computational modelling143. Although microswim-
mers are commonly non-spherical, the primitive-clumped scheme 
in MD has proved to be effective and widely adopted, and the fluid is 
often modelled by a mesoscale method such LBM144. A point-friction 
coupling scheme145 can be used to couple LBM with MD to model bio-
logical processes such as bacterial accumulation146. Moreover, DPD 
is also suitable for modelling microswimmers such as red blood cells 
moving in the blood flow104.

Fluid in particles. For unsaturated granular materials, fluid (liquid) 
may be absorbed on the particle surface and form liquid layers or liquid 
bridges between particles, as in capillary condensation147, for example. 
The aforementioned DNS approaches, whether resolved or unresolved, 
are inadequate for directly modelling fluid–particle interaction in 
such conditions148. The solution to this problem mandates further 
consideration of a multiphase fluid and its free surface, using a method 
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Box 2

Particle–fluid interaction for particles in fluid
Fluid dynamics
Fluid dynamics can be described by the incompressible Navier–
Stokes equations:

N u u u u f∙= ∂ + ∇ + ∇ − ∇ =ρ p µ( ) ( )t
2

d

u∙∇ = 0

in which ρ is the mass density, u is the velocity, p is the pressure, µ is 
the viscosity and fd is the force density.

An alternative computational approach is to use the lattice 
Boltzmann equation:

f t t t f t τ f t f t( ∆ | ∆ ) ( | )
1

( ( | ) ( | ))eq+ + − = − −x v x x x

in which xf t( , ) is the particle distribution function at position x and 
time t, f t( , )eq x  is the equilibrium distribution function, v is the 
particle velocity and τ is a relaxation parameter.

Particle–fluid interaction
With respect to the interaction resolution, particle–fluid interaction 
can be particle-resolved or unresolved. Panel a (see the figure) refers 
to an unresolved case in which the fluid cell is typically several times 
bigger than the particle size and the particle–fluid interaction forces 
are holistically resolved and applied to the mass centre of each 
particle without considering their actual shape. Panel b (see the 
figure) refers to the resolved case in which the particle is typically 
bigger than the fluid cell. The particle surface is discretized to 
match the surrounding fluid mesh to resolve the interaction at each 
cell before summing them up to form the total interaction forces. 

a Unresolved Conformal Non-conformal

d

e

b c

f

Fũ

ŭ

Xi

rs

L

lprobe

Object surface

|ΦGN|

Fluid node
Ghost node
Object node
Image point

Φ1.0 0

Particles

–lprobe < Φ < 0,
Φ > 0,

 Φ < –lprobe,

Fluid node
Ghost node
Object node

http://www.nature.com/natrevphys


Nature Reviews Physics | Volume 5 | September 2023 | 505–525 517

Technical review

such as multicomponent LBM149. Accurate simulation of fluid–particle 
interaction in these conditions requires more advanced and complex 
approaches that consider the complexities of multiphase fluids in 
the presence of non-spherical particles. Mesoscale approaches such 
as mDPM use fluid parcels much larger than atoms as a compromise 
between accuracy and performance33. When the fluid–particle inter-
action is dominated by the capillary force, it can be solved using the 
Young–Laplace equation instead of DNS. For non-spherical particles, 
the local curvature at the contact point can be used as an approximation 
to solve the liquid bridge force. The liquid transfer between particles 
can be estimated using analytical models at low computational cost150.

Mesh-based resolved approach
Boundary-conformal and boundary-non-conformal approaches. 
To resolve particle–fluid interactions properly, it is essential that a 
resolved approach tracks the particle–fluid interface or bound-
ary. Mesh-based CFD commonly adopts boundary-conformal (or 
body-fitted) methods to handle the particle–fluid interface accu-
rately. A representative method is the ALE method, in which the fluid 
Euler grid conforms with the particle surface to handle the particle–
fluid interface accurately with no-slip boundary conditions readily 
imposed directly. However, when applied to moving particles, such 

methods may suffer from frequent grid regeneration or re-meshing. 
By contrast, non-boundary-conformal methods keep a fixed fluid grid  
(Eulerian mesh) with movable and/or deformable particles (Lagrangian 
or material points) superimposed. A typical direct approach is to use 
overlapping grids with the ALE formulation, such as in the moving 
non-conforming Schwarz-spectral element method151.

Fictitious domain method. The fictitious domain (FD) method is 
another prevailing boundary-non-conformal approach. It refers to 
a class of techniques to find the solution of partial differential equa-
tions with complex geometries embedded in a larger domain. For the 
specific case of particle–fluid interaction, the fluid domain occupied 
by solid particles is taken as the FD. A typical FD method is the dis-
tributed Lagrangian multiplier (DLM) method that incorporates the 
no-slip condition into the variational formulation of the conservation 
equations using Lagrangian multipliers (Box 2). In DLM-based FD, 
the hydrodynamic forces acting on particles are not solved directly; 
as a result, DLM-based FD is also known as the implicit fictitious 
boundary method (FBM). DLM-based FD has also been coupled with 
phase-field methods to consider a two-phase fluid152. The explicit 
FBM153 uses a multigrid finite element method with hydrodynamic 
forces obtained directly by volume integration. Both DLM-based 

For mesh-based solvers of fluids, the resolved approach can be 
boundary conformal or not (see the figure, panel b).

Variational formulations in distributed Lagrangian 
multiplier-based fictitious domain
These are given by

N λu v x v x∙ ∙∫ ∫∑+ ==( ) d d 0,i
n

PΩ 0
i

L λ( ) ( )d 0,i c
c

i i P i i
i

∫∑− + × − + × =ζ ζf V r V r xi∙ ∙

L



























a ζ

U
V∙ ∙= − − +

ρ
ρ m t

Jω
t1

d
d

d
d ,i i

i
i

i i
i

f

s

ωu U r x∙α ( ( ))d 0,
P i i

i
∫ − + × =

where Ω is the entire domain; Pi is the domain of particle i; N( )u  is  
the Navier–Stokes operator; λ is a Lagrangian multiplier vector; ρf 
and ρs are the densities of fluid and solid and v, V, ζ and α are test 
functions for fluid velocity u, particle velocity U, particle angular 
velocity ω and λ.

Discrete forcing immersed boundary method
In discrete direct forcing, spatial discretization is not modified near 
the immersed boundary. The forcing is directly calculated from the 
discrete form of Navier–Stokes equation:

∙=
−

+ ∇ + ∇ − ∇ρ t ρ p µ∆ ( ) ,ib 2f
V u

u u u

where Vib is the velocity of the immersed boundary (Lagrangian 
points). For arbitrarily moving particles, a direct application of the 
aforementioned equation may potentially cause strong oscillation in 
hydrodynamic forces. To mitigate this issue, the two-step forcing by 
Uhlmann157 (see the figure, panel c) is widely used:
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in which F and u~ are force and fluid velocity at Lagrangian points, 
respectively; ŭ is the provisional fluid velocity without forcing and δh 
is the regularized delta function (in which the subscript h is affixed to 
distinguish it from the standard delta function δ). The usage of δh 
causes smooth velocity gradient near the boundary. See the figure, 
panel d for an example.

Alternatively, one can impose boundary conditions on ghost cells 
that are inside the solid domain with neighbours in the fluid domain; 
the ghost cells can be flagged by techniques such as level-set 
methods207 (see the figure, panel e). This approach can capture 
gradient discontinuity but does not satisfy local mass conservation 
or even momentum conservation.

In a cut cell approach, boundary cells are cut to satisfy the 
conservation laws, but doing so is challenging and computationally 
expensive for 3D and moving particles. GN, ghost node.

Part d adapted with permission from ref. 129, AIP. Part e adapted 
with permission from ref. 207, Wiley.

(continued from previous page)
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FD and FBM are limited to 2D simulations because of their excessive  
computational cost.

Immersed boundary method. The immersed boundary method 
(IBM)154 belongs to another category of FD approaches. It only consid-
ers the particle surface domain and is more computationally efficient. 
Note that researchers may distinguish IBM from FD in the literature155,156. 
IBM came first and as originally proposed with a regularized Dirac delta 
function to exchange velocity and force between the Lagrangian mark-
ers of a particle and the Eulerian nodes of a fluid grid. With advanced 
variants such as the direct forcing approach157, IBM has become a 
canonical technique to tackle resolved particle–fluid interactions for 
moving arbitrarily shaped particles including thin membranes158. There 
are two categories of IBM, different in how they implement the forcing 
term ( df  and N( )u  in Box 2) for an immersed body. One is continuous 
forcing, in which fd is directly introduced in the governing equations 
(that is, N u f( ) = d), which are then discretized over the whole domain. 
The other is discrete forcing that introduces the forcing term in the 
vicinity of the immersed body after discretizing the governing equa-
tions (that is, ( ) = 0N u ). Continuous forcing has formulations inde-
pendent of spatial discretization, and the velocity gradient is smoothed 
by a finite-width regularized delta function. Discrete forcing is gener-
ally more flexible and accurate with specific techniques including the 
direct forcing method, ghost cell method and cut cell method (Box 2). 
Similar to the direct forcing IBM, there is another simple and efficient 
approach called the smoothed profile method that159 uses smoothed 
profiles to replace particle–fluid interfaces of shapes, which is suitable 
for sphere-clumped particles.

Particle-based resolved approach
As summarized in Table 1, particle-based approaches such as LBM, SPH, 
MPM and DPD can be used to solve fluid dynamics.

LBM. LBM models fluid dynamics by solving the lattice Boltzmann 
equation at the mesoscale rather than directly tackling the Navier–
Stokes equations; in conventional CFD, it uses methods such as the 
finite volume method160. Coupling LBM with IBM to solve complex 
fluid–particle interaction problems is considered promising and has 
been applied to simulate particle flow in areas such as microfluidics161. 
Coupling challenges such as small amplitude perturbations during 
wave propagation in saturated granular media have also recently been 
tackled by LBM162.

SPH and MPM. SPH is a Lagrangian-based approach solving the Navier–
Stokes equation for fluid flow163. Particles are represented as a col-
lection of SPH particles in a similar manner as the primitive-clump 
scheme, thereby avoiding the need for ad hoc boundary treatment 
for particle–fluid interaction. Nevertheless, the density jump at the 
particle–fluid interface may cause a substantial gap between fluid 
and solid particles that needs further corrections164. SPH also works 
for solid or soil mechanics and is well suited to simulating deform-
able particles. Instead of discretizing the whole particle, multilayer 
ghost–fluid particles can be attached to the solid particle165. Moreover, 
a penalty-based contact scheme analogous to DEM is applicable to the 
interaction between SPH particles and solid particles166,167. Neverthe-
less, the spring–damper parameters introduced in the method remain 
somewhat artificial.

MPM became fashionable a little later than SPH and avoids several 
of its problems, allowing for a much more rigorous solid-mechanics 

treatment of the particles. Theoretically, the same fluid–particle inter-
action strategy in SPH can also be applied to MPM, via the penalty-based 
scheme168, for example. However, moderate differences may be 
observed in their implementation. For example, the interface bound-
ary condition in MPM can also be applied on the background grid in 
addition to material points.

DPD. Unlike SPH and MPM, DPD can be considered as a coarse-grained 
MD method, which models fluid flows at the mesoscale169 that involves 
temperature and Brownian motion. It has been widely adopted to 
simulate biomembranes and suspensions, such as red blood cells104, 
in which both the fluid and cells are modelled by DPD particles without 
requiring ad hoc treatment of fluid–particle (cell) interactions.

Unresolved approach
The unresolved approach simplifies the particle–fluid interaction to 
a body force that can readily be incorporated into Newton’s equation 
for particle motion and the Navier–Stokes equation for fluid flow. This 
approach works well for spherical particles, but it remains challeng-
ing for non-spherical particles because of a lack of robust and flexible 
empirical models to describe the interaction body forces accurately, 
especially the drag force. Efforts have been devoted to establishing 
either a specific model for a particular particle shape (such as micro-
plastic fibres170) or a unified model for arbitrary shapes171. However, it 
is non-trivial to establish a unified model that must quantify particle 
shape using simplified descriptors such as sphericity172 and aspect 
ratio173. Direct numerical simulations173–175 have also been adopted 
to investigate the effect of particle shape on the drag and lift coef-
ficients on the basis of resolved approaches. Further consideration 
of turbulent wakes by delayed-detached eddy simulation models176 
may help to establish more sophisticated empirical models for the 
unresolved approach. However, many studies involve single or sev-
eral particles with oversimplified surrounding fluid conditions for 
calibration purpose only177, a scenario that is beyond the scope of this 
Technical Review.

Large-scale and multiscale modelling
Direct numerical simulation
Table 2 summarizes the representative computational approaches for 
granular matter with non-spherical particles. The realistic simulation 
of particle shape necessarily results in a high demand for computing 
resources, especially for large-scale simulations. Indeed, large-scale 
simulations of spherical granular matter are already commonplace 
for industrial processes and engineering practices. The various tech-
niques of DNS described earlier may not be directly applicable to 
large-scale simulations involving many particles with complicated 
shapes. Various techniques have been developed to tackle the chal-
lenge, including coarse-grained modelling and continuum–discrete 
modelling approaches (Fig. 3). The continuum–discrete coupling 
approach has become popular for multiscale modelling. Specifically, 
continuum-based methods such as FEM, SPH and MPM are coupled 
with discrete-based methods such as DEM and MD in a hierarchical or 
concurrent manner, leveraging the advantages of both methods to 
solve different engineering problems by running full resolution only 
where necessary (in space or time).

Coarse-grained modelling. Coarse-grained modelling uses larger 
particles to replace particle groups or clustered particles, while 
retaining equivalent collective (bulk) responses. It is effective for 
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modelling macromolecules in MD and can readily be coupled with 
mesoscopic models to simulate large-scale systems, such as realistic 
biomembranes125,178. The idea of coarse graining has been extended 
to direct mesoscopic modelling, such as modelling red blood cells in 
DPD104. Coarse-grained modelling has more recently become popular 
to simulate the mechanical responses of granular materials by DEM179 
and modelling the multiphysics processes involving CFD180.

A major issue with this method is the determination of upscaling 
laws and the inevitable system errors it introduces because of scale 
effects. Notably, the interaction between coarse-grained particles is 
simply an approximation of that between two groups of real particles. 
Moreover, the coarse-grained interactions may not capture the energy 
dissipation that occurs at interparticle contacts within a group. This 
limitation highlights the need for careful consideration when using 
coarse-grained modelling, as the accuracy of the model may be com-
promised by the assumptions made during the process of simplifying 
the system. It may become even more complicated when arbitrar-
ily shaped particles with multiple contacts are modelled. Indeed, it 
remains an open question how much detail in particle shape, if any, 
is needed for a coarse-grained approach. Because the coarse grains 
model groups of particles, the shape detail of the primary objects may 
be smeared out in the coarse graining and become less important when 

it is projected into the much larger-scale interaction rules between the 
coarse particles. Meanwhile, it remains challenging for coarse-grained 
modelling to choose appropriate resolved or unresolved approaches 
to simulate particle–fluid interactions.

Continuum–discrete modelling. The continuum–discrete coupling 
approach has two representative variants: concurrent coupling and 
hierarchical coupling. For the concurrent approach, the simulation 
domain of interest is modelled by using discrete modelling approaches, 
whereas the remainder is simulated by continuum-based methods 
using conventional phenomenological material models. One critical 
challenge is to exchange physical properties and mechanical responses 
at the interface between the two subdomains, in which buffer zones are 
commonly considered. Great effort has been applied to this topic179,181. 
In the hierarchical coupling approach, no concurrent subdomains are 
considered. The entire domain is discretized by a continuum-based 
approach for which the required material responses are modelled 
and fed by high-resolution discrete-based methods, typically at 
each material point. This approach has been used successfully for 
the hierarchical multiscale modelling of granular materials, in terms 
of various coupling formulations such as FEM–DEM coupling182,183 
and MPM–DEM coupling184,185, in which the DEM-simulated responses 

Table 2 | Representative computational approaches for granular matter with non-spherical particles

Problem Method Description

Shape representation: 
modelling particle 
shapes with varying 
resolution

Primitive-clumped scheme Primitives can be points, discs, spheres, cylinders and so on. Many primitives are required to 
approximate a realistic complex shape with high resolution. Suitable for solving intraparticle 
interactions

Mesh-based scheme Triangular mesh or its Minkowski sum with a sphere. The most flexible approach for representing a 
realistic complex shape. Can be more efficient than the primitive-clumped scheme

Analytical-surface scheme Ellipsoids, poly-ellipsoids, superellipsoids, poly-superellipsoids, NURBS, spherical harmonics and so 
on. Can be the most efficient when using optimization algorithms with frame cohesion in simulations

Interparticle contact 
interactions, which 
depend on particle 
shapes

Analytical method Limited application for non-spherical shapes. The dual-space method works only for convex 
polyhedral, but it is considerably inefficient with increasing vertex number

Optimization-based method Suitable for convex shapes with optimization algorithms such as Nelder–Mead simplex, GJK and 
LM algorithms. Convex polyhedral and analytical-surface particles are preferable. Can be the most 
efficient with frame cohesion

Brute-force method General for arbitrarily shaped particles. Suitable for the primitive-clumped and mesh-based shapes. 
Less efficient than the optimization-based method. Neighbour-list algorithms can be applied to 
primitives for better performance

Intraparticle interaction: 
interaction within a 
particle that can deform 
and/or crush under 
external loading at the 
surface

Semi-empirical approach Replacement approach, damage separation model, level-set splitting approach, PBM and so on. 
Most efficient but in sacrifice of accuracy

Discrete-based DNS Clustered-sphere, clustered-polyhedron, bonded cell approaches based on DEM. LEM is also 
applicable but suitable for quasi-static conditions with small displacement problems

Continuum-based DNS Mesh-free methods such as SPH, MPM and PD are superior to mesh-based ones. Can handle 
interparticle contacts with proper contact implementation or coupling with DEM such as CD–MPM 
and PD–DEM

Particle–fluid interactions Mesh-based resolved 
approach

Boundary-conformal methods such as ALE are computationally intensive; boundary-non-conformal 
methods such as FD are more flexible and efficient. The discrete forcing variant of IBM is widely used

Particle-based resolved 
approach

LBM, SPH, MPM and DPD as particle-based fluid solvers are popularly adopted, in which DPD is 
specifically suitable for microfluid flow. LBM is the most efficient for parallel computing owing to its 
lattice structure

Unresolved approach Particle–fluid interaction is captured by a holistic model. Far more efficient than the resolved 
approach but in sacrifice of accuracy. No elegant model for general arbitrarily shaped particles yet

ALE, arbitrary Lagrangian–Eulerian; CD, contact dynamics; DEM, discrete element method; DNS, direct numerical simulation; DPD, dissipative particle dynamics; FD, fictitious domain; 
GJK, Gilbert–Johnson–Keerthi; IBM, immersed boundary method; LBM, lattice Boltzmann method; LEM, lattice element method; LM, Levenberg–Marquardt; MPM, material point method; 
NURBS, non-uniform rational B-splines; PBM, population balance model; PD, peridynamics; SPH, smoothed particle hydrodynamics.
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provide a constitutive relation for FEM or MPM, thereby bypassing the 
necessity for the phenomenological constitutive models required in 
conventional continuum modelling. Moreover, it is possible to adopt 
hybrid coupling of both concurrent and hierarchical approaches for 
a boundary value problem or other variations thereof.

Machine learning
It is possible to leverage the advantage of ML in modelling granular mat-
ter. At the particulate scale, the direct use of ML techniques ranges from 
shape recognition, characterization186,187 and contact resolution188,189, 
to multiphysics fields such as particle–fluid interaction190,191. Particle 
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interaction models can be readily calibrated (see ref. 192 and references 
therein), in which not only additional information such as correlations 
between the microparameters but also micro–macro correlations 
are provided. Nevertheless, it remains an open issue whether consid-
erable improvements in computational efficiency can be achieved, 
especially for contact resolution. At the mesoscopic scale, the physi-
cal and mechanical properties of an assembly can be trained into 
prediction models, for instance, by training constitutive response 
as a surrogate model to replace conventional constitutive models in 
continuum-based numerical methods193. Although there has been 
recent progress in applying data-driven194 and physics-informed195 tech-
niques to obtain improved learning performance, ML approaches still 
need ground-truth data that are most often synthesized by DNS. A more 
promising direction for ML is to solve partial differential equations 
directly for large-scale simulations without having to use DNS.

Parallel computing
Particle-based numerical methods, including both discrete-based (such 
as DEM and MD) and continuum-based (such as SPH and MPM) meth-
ods, are well suited for parallel computing. Conventional CPU comput-
ing with shared memory and message passing interface parallelization 
has been successfully applied, for example, in modelling polyhedral 
particles196 in DEM and coupled CFD–DEM197. Graphics processing 
unit (GPU) computing has attracted major attention across many dis-
ciplines owing to the tremendous increase in computing efficiency 
in the past decade. The resolution of interparticle interactions is the 
most computationally demanding part of these particle-based meth-
ods, especially for non-spherical particles and N-body problems76. In 
the case of the primitive-clumped and mesh-based shapes, primitive 
pairs can be resolved in parallel, rendering the simulation more effi-
cient. In addition to the general GPU computing shaders, the emerging 
ray-tracing cores have also been used to accelerate interparticle col-
lision detection77. Nevertheless, the performance of GPU computing 
suffers from communication bottlenecks and high energy consump-
tion. Other energy-efficient hardware such as field-programmable gate 
array (FPGA)198 may become an alternative in the future.

Outlook
Computational modelling approaches, purely particle or discrete- 
based, continuum-based or coupled methods, are a fast-growing body 
of research and allow tackling emerging challenges for granular mat-
ter in both engineering and science. Core to these approaches are the 

underpinning roles played by accurate characterization, representa-
tion and implementation of realistic particle shape. Such models offer 
versatile, robust means for high-fidelity and high-resolution simulation 
of granular matter. However, challenges remain for future realistic 
particle modelling.

The shape of granular particles is multiscale in nature and relevant 
in almost all industrial or natural granular systems. Particle shape 
modelling is problem-dependent and application-dependent and is 
usually limited by factors such as available information and afford-
able computing resources. Although some issues can be overcome by 
effective contact algorithms suitable for non-spherical objects, other 
physical properties of granular materials, including friction, cohesion, 
adhesion, dissipation and conformation, may require more accurate 
considerations of particle surface roughness or even finer scales. The 
straightforward primitive, analytical or mesh-based shape representa-
tions all need to be extended substantially to incorporate important 
information about the finer scales to render the bulk (multiparticle) 
simulations physically reasonable and more reliable. In addition to 
purely geometric descriptions, shape modelling for many granular sys-
tems may have to be extended by statistical physics or reduced-order 
modelling approaches to obtain reliable predictions in an efficient way.

There is a class of granular matter problems in which the parti-
cles may undergo transitions between hard and soft (deformable) 
states when the environment changes (such as changes in pressure 
or temperature199). Many numerical models have been developed for 
either hard or deformable particles, exclusively, without being able to 
account for possible transition processes and a hard–soft mix200. It is 
desirable to develop unified computational models that can consider 
the possible two-way transitions flexibly and handle the mixing of 
hard and soft particles robustly following effective contact detection. 
Further complications may arise if such transitions manifest as phase 
transformations (ordering, segregation or melting from solid to liquid, 
for example) or are coupled with further multiphysics fields.

Indeed, granular matter is a highly interdisciplinary research area 
pertaining to practical applications in which granular particles are 
subject to more diverse fields than ever, including thermal, hydraulic, 
mechanical, chemical, electromagnetic, photonic, active bio-matter 
fields and even architecture21 . Accurately modelling the complex 
coupling between shape changes of particles and phase transforma-
tions and these environmental multiphysics fields is important for 
many scientific and industrial processes but is challenging to tackle. 
In fields such as civil engineering, it is critical to accurately model and 

Fig. 3 | Computational approaches for large-scale and multiscale modelling. 
a,b, Coarse-grained modelling. a, Star polymer molecules are coarse-grained by 
simple spheres. b, Proteins on a bio-membrane are coarse-grained by arc-shaped 
particles. c, Hierarchical modelling across nanoscale and mesoscale. The figure 
shows exemplified hierarchical modelling of bio-membranes, where all-atom 
MD (aaMD), coarse-grained MD (cgMD) and mesoscale methods such as DPD 
can be bottom-to-up coupled. d, Continuum–discrete hierarchical modelling. 
The figure shows an exemplified coupling of material point method (MPM) 
and discrete element method (DEM), in which each material point of MPM 
corresponds to a DEM RVE, bypassing the conventional constitutive model in 
MPM. e,f, Continuum–discrete concurrent modelling. e, A reconciliation zone 
is required to exchange the response between the continuum and discrete 
regions or domains. The discrete modelling approaches such as DEM and MD are 
used for the particle region (discrete domain), whereas the continuum domain 
can be modelled by either mesh-based methods such as FEM or particle-based  

methods such as MPM (the left and right panels in part f). g,h, Machine 
learning (ML). g, An implicit mapping between experimental data and their 
characteristics. The figure shows an example of extracting characteristics 
of particle morphology by ML. h, Training advanced ML models for complex 
problems such as fluid flows within porous media as exemplified here requires 
a large set of data including DNS data. CFD, computational fluid dynamics; 
DE, discrete element; DNS, direct numerical simulation; FE, finite element; 
LBM, lattice Boltzmann method; MD, molecular dynamics; RVE, representative 
volume element; CNN, convolutional neural network. Part a adapted with 
permission from ref. 169, AIP. Part b adapted with permission from ref. 178, 
RSC. Part c adapted with permission from ref. 125, Elsevier. Part d adapted with 
permission from ref. 204, Springer. Part e adapted with permission from ref. 181, 
ACM. Part f adapted with permission from ref. 179, Elsevier, and ref. 181, ACM. 
Part g adapted with permission from ref. 187, Elsevier. Part h adapted with 
permission from ref. 194, Elsevier.
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evaluate the shape effects in soil and rock mechanics, to better under-
standing the behaviour of natural hazards such as avalanches, debris 
flows, flooding, sediment transport and dust storm movements. These 
phenomena remain to be fully explored.

Meanwhile, it is worth noting that large-scale simulations of granu-
lar matter typically require considerable computing resources and 
computational time. The pertaining electricity consumption should 
never be underestimated and need to be fully considered in the devel-
opment of various computational models mentioned earlier. Indeed, 
it has become an emerging scientific area to develop forward-looking 
interfaces between scientific computing and environmental sustaina-
bility. Energy-efficient computing systems, such as the FPGA machines, 
are increasingly used in scientific computing. Their widespread adop-
tion remains limited by the computational efficiency they presently 
offer. The challenge can only be effectively addressed by developing 
numerical tools and software that can fully leverage the architecture 
of these advanced energy-efficient computing systems, to offer inte-
grated solutions to energy-efficient computing also for granular mat-
ter. High-fidelity, high-efficiency computational modelling of granular 
materials integrated with environmental awareness design is a bright 
future prospect.

Finally, there are some fundamental questions to be answered 
regarding non-spherical particles. It is evident that methods and tools  
are available for fine-detail experimental observations and numeri-
cal modelling of non-spherical particles. How much detail is needed 
to solve a specific problem? Or to what extent will simplified shapes 
such as sphere suffice to provide satisfactory solutions? There are 
no uniform answers for these questions, and the criteria can be 
problem-specific and situation-specific. Future effort on granular 
matter modelling should also be devoted to comparison and under-
standing of simplified and detailed particle models to guide users on 
better model selection.

Published online: 10 August 2023
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