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Abstract
Neighbor searching is an essential and computationally heavy step in
particle-based numerical methods such as discrete element method (DEM),
molecular dynamics, peridynamics, and smooth particle hydrodynamics. This
article presents a novel approach to accelerate particle-based simulations by
leveraging ray tracing (RT) cores in addition to CUDA cores on RTX GPUs.
The neighbor search problem is first numerically converted into a general ray
tracing problem so that it can be possible to utilize the hardware accelera-
tion of RT cores. A new, general-purpose RT-based neighbor search algorithm
is then proposed and benchmarked with a prevailing cell-based one. As a
showcase, both algorithms are implemented into a GPU-based DEM code
for simulating large-scale granular problems including packing, column col-
lapse and debris flow. The overall simulation performance is examined with
varying problem sizes and GPU specs. It demonstrates that the RT-based
simulations are 10%–60% faster than the cell-based ones, depending on the
simulated problems and GPU specs. This study offers a new recipe for
next-generation high-performance computing of large-scale engineering prob-
lems using particle-based numerical methods.
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1 INTRODUCTION

Particle-based numerical methods, such as discrete element method (DEM),1 molecular dynamics (MD),2 peridynamics
(PD),3 and smooth particle hydrodynamics (SPH),4 by the virtue of their mesh-free and highly parallelizable features,
are gaining increasing popularity in research and engineering. For the particle-based numerical methods, the motion of
a particle is determined by the interactions with its surrounding particles (neighbors). Searching for the neighbors of
every particle is a critical step, which can be so computationally intensive that dominates the whole running time of a
simulation. Notably, the configuration of particles may change significantly and rapidly, especially for dynamic problems,
making the neighbor searching problem computationally heavy in general. For example, it can take up to 80% running
time for contact detection and resolution (where the computation of neighbor search is the dominant part for spherical
particles) in DEM as reported in the literature.5,6 Therefore, it is worth the effort to develop new acceleration schemes for
these particle-based methods, making them more practical in engineering-scale simulations.

696 © 2022 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2023;124:696–713.
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F I G U R E 1 Two-dimensional illustrations of: (A) Particles with axis-aligned bounding boxes (AABBs), (B) particles in a uniform grid
of cells, and (C) particles organized in a bounding volume hierarchy (BVH).

Indeed, great efforts have been dedicated to algorithms of neighbor search in particle-based numerical methods. Given
an N-particle system as exemplified in Figure 1A, neighbor search can be implemented in a brute-force manner, where
all the rest N − 1 particles are queried for each given particle. The brute-force approach is straightforward but has a
time complexity of O(N2), and thus is seldom employed in practical simulations. A prevailing alternative is the so-called
sweep and prune algorithm,7,8 where the lower and upper bounds of axis-aligned bounding boxes (AABBs) are sorted
in separate axes, and a particle is regarded as a potential neighbor if its AABB overlaps with that of the given particle
in all axes. The sweep-and-prune neighbor search is efficient even for moving particles, and interested readers can find
its implementation in some open-source codes, for example, YADE9 and SudoDEM.10 Two more prevailing algorithms
have also been commonly adopted for neighbor searching: one is cell-based11,12 as illustrated in Figure 1B and the other
is tree-based,12 especially bounding volume hierarchy (BVH) in Figure 1C. The cell-based neighbor search relies majorly
on a uniform grid by which a mapping between particles and grid cells can be obtained efficiently. Hence, searching
neighbors of a particle over the entire domain can be reduced by only traversing the particles in the cell of the given
particle and its adjacent cells. As for the BVH-based neighbor search, one needs first to build a BVH tree from all AABBs
of particles, and then to find the neighbors of a given particle by traversing the corresponding branches and nodes of the
BVH tree.

With the rapid development of general-purpose graphics processing unit (GPGPU) computing, a modern GPU can
offer tens of thousands of physically concurrent threads for scientific computation beyond the original purpose of
image/video rendering. For example, NVIDIA’s CUDA (compute unified device architecture) platform provides a scalable
programming model for GPU computation with a hierarchical organization of threads. Not surprisingly, such abundant
GPU-threads can accelerate particle-based simulations in nature, for example, one thread for one particle. Indeed, there
are extensive studies and applications of the parallelization algorithms with CUDA for DEM,13-16 MD,17-19 PD,20-22 and
SPH.23,24 Regarding the algorithms of neighbor search in those particle-based methods, both cell-based and BVH-based
algorithms are commonly utilized to leverage the parallel power of GPUs, whilst the sweep and prune algorithm cannot
be efficiently implemented on GPUs.

GPUs are naturally more powerful and suitable for processing rendering tasks than general-purpose computing (scien-
tific computing). Prior to NVIDIA’s Turing architecture (2019),25 both rendering and GPGPU computing are empowered
by CUDA cores. With the rapid development of computer graphics and meta-universe techniques, NVIDIA has designed
additional new specific hardware, namely ray-tracing (RT) cores, for ray-tracing rendering complementary to CUDA
cores. Indeed, NVIDIA has released its third-generation RT cores in its recent Ada Lovelace architecture (2022). RT cores
are becoming more powerful to fulfill increasing demand in rendering. Although RT cores are originally designed for
ray tracing in computer graphics (akin to CUDA cores for the original rendering function of a GPU), their tremendous
computational power are driving researches and engineers to explore its potential applications in general-purpose com-
putation beyond ray tracing (akin to CUDA cores for the GPGPU computing). Along this line, Wald from NVIDIA and his
collaborators first explored the capability of RT cores for locating points in a tetrahedron mesh.26 Wang et al.27 utilized RT
cores to trace particles in unstructured meshes for fluid flow in porous media. Zellmann et al.28 used RT cores to acceler-
ate force-directed graph drawing. Evangelou et al.29 adopted RT cores for fast radius search in graphic applications that
require intensive spatial search operations. The success of RT cores beyond ray tracing implies possibility of applying RT

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7139 by H
ong K

ong U
niversity O

f, W
iley O

nline L
ibrary on [11/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



698 ZHAO et al.

cores to scientific computing. Regarding particle-based simulations with DEM, MD, PD, and SPH, they have been accel-
erated much more significantly on GPU than CPU computing systems, but all applications are limited to the utilization
of CUDA cores. In these numerical methods, the BVH traversal supported by RT cores may benefit the computationally
intensive neighbor search. However, it is not clear to what extent that RT cores can accelerate these particle-based simu-
lations. Hence, it is of interest to propose algorithms for leveraging RT cores in particle-based simulations and estimating
the potential performance of using the powerful RT cores together with CUDA cores.

This article presents a novel generalization of the neighbor search problem for DEM, MD, PD, and SPH by using RT
cores. The RT-based neighbor search algorithm is proposed along with the cell-based one as a benchmark in Section 2.
Both algorithms are then implemented in GPU-accelerated DEM in Section 3, followed by numerical examples including
granular packing, column collapse, and dry debris flow in Section 4.

2 METHODOLOGY

In this section, we generalize the neighbor search problem that are typically involved in particle-based numerical methods
and present the proposed RT-based algorithm for neighbor search, along with the conventional cell-based neighbor search
algorithm as a comparison.

2.1 Neighbor search problem

DEM and MD are discrete-based numerical methods, while PD and SPH are continuum-based. In DEM, the overlap
between two particles with given sizes (radii) is used to determine inter-particle interaction forces, while cut-off distance
is used for MD. As for PD and SPH, an influential range, that is, horizon, is employed to determine interaction weight of
a neighbor for a given particle. In these particle-based methods, as shown in Figure 2, a particle j is taken as a potential
neighbor of particle i (particle A in the figure) when satisfying the following condition

d < (1 + 𝛿)l, (1)

where d is the distance between particles i and j; l is the generalized searching radius, which is equal to the sum of radii of
the two particles for DEM, the cut-off distance for MD, and the horizon for PD and SPH; 𝛿 is referred to as skin size factor
for scaling up the searching radius l and is introduced to reduce the neighbor searching frequency. Neighbor searching is
invoked once the accumulative displacement (since last time of neighbor searching) of any particle exceeds its skin size
(i.e., 𝛿l). Note that for non-spherical particles in DEM, l can be the sum of radii of bounding spheres of the two particles
being considered.

2.2 Cell-based neighbor search algorithm

Cell-based neighbor search approach has been prevalently adopted in particle-based simulations and is briefly intro-
duced herein for the sake of completeness. Interested readers are referred to our previous work30 where a detailed

(B) (C) (D)(A)

A A AA

F I G U R E 2 (A) Particles with uniform AABBs in DEM or MD, (B) AABB (blue) expanded with respect to the searching region (green)
in DEM or MD, (C) horizon-defined searching region (circle) and its AABB (green) of particle A in PD or SPH, and (D) AABB (blue)
expanded with respect to the horizon of particle A in PD or SPH.

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7139 by H
ong K

ong U
niversity O

f, W
iley O

nline L
ibrary on [11/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHAO et al. 699

T A B L E 1 Exemplified PCNp
and CPNs

(Particle id i, PCi) (1,5) (2,5) (3,2) (4,7) (5,9) (6,10) (7,12) (8,15)

(Cell id i, CPi) (2,3) (5,1) (5,2) (7,4) (9,5) (10,6) (12,7) (15,8)

implementation of the algorithm is depicted. Two major steps, namely (i) mapping between particle and cell and (ii)
neighbor searching, of the algorithm are presented in the following.

(1) Mapping between particle and cell. Given a set of particle positions XNp (Np is particle number), loop over all particles
and compute the index (id) PCi of the cell that particle i belongs to. Similarly, it is necessary to create a cell-particle
list CPNs (Ns is cell number) to link cells to particles. In this work, it is assumed that one particle is mapped to only
one cell and the grid cells are larger than the largest neighbor searching distance (1 + 𝛿)l defined in Equation (1).
Then, a radix sort with respect to cell ids is performed on the pair of particle-cell ids, so that all particles for a given
cell i can be indexed by a look-up list CPi. Table 1 lists exemplified PCNp and CPNs for the configuration in Figure 1B.

(2) Neighbor searching. The neighbors of a given particle i can be searched with the following three steps:
(i) locating the cell, that is, cell id PCi, that the particle belongs to;

(ii) finding the nearest adjacent 26 cells in which the particles are the potential neighbors of the given particle i;
and

(iii) traversing all particles belonging to the cell of interest and its adjacent ones, and performing neighbor check.
A neighbor list NLi is then created and filled with the neighbor particle id j. To facilitate the computation, j is
pushed into the sub-lists from left if particle id j is greater than particle id i, and otherwise from right.

In practice, different particles may have different numbers of neighbors and thus require different amount of memory
to store the neighbor list. To avoid the overhead due to repeated memory allocation, one can pre-allocate the neighbor
list NLi with a sufficiently large memory segment to cover all possible neighbors. In addition, in most particle-based
numerical methods, the particle pair-wise calculations need only to be performed once for each pair of particles. As each
pair of particles are neighbors of each other, we only need to check the neighbors of each given particle with particle id
less than the id of the given particle; and thanks to the use of two accompanying lists (i.e., sub-list Njgi

Np
and sub-list Njli

Np
),

which are introduced to record the counts of neighbors with id j greater or less than particle id i, respectively, the targeted
neighbors for a given particle i can be accessed readily.

2.3 New ray-tracing-based neighbor search algorithm

2.3.1 Ray-tracing problem

Ray tracing is a lighting technique for modeling light reflection and refraction in the real world, and is prevailing for
rendering digital images with extra realism in computer graphics and games. Figure 3A illustrates the main idea of a
general ray tracing technique. Each pixel of the rendered image corresponds to a ray starting from the camera. The pixel
is then assigned with a specific color, which is computed from the colors of the objects hit by the corresponding ray.
During the course of traveling in the scene, a ray may hit several objects sequentially or none, as illustrated in Figure 3B.
Typically, there might be tens of thousands of hits (collision detection) for a realistic scene. To facilitate the identifying
of a ray path, BVH has been widely adopted. In general, the efficiency of querying a BVH tree is highly dependent on the
quality of the tree, which is associated with the implementation complexity. There have been extensive investigations on
the BVH-based algorithms on GPUs in past decades.31,32 Investigation of BVH is beyond the scope of this study, while a
ray-tracing neighbor search algorithm will be introduced based on BVH.

2.3.2 NVIDIA’s RT core and OptiX

To accelerate the real-time ray tracing in gaming, NVIDIA has introduced a new type of hardware called RT core in RTX
GPUs since the Turing architecture. In an RTX GPU, each streaming multiprocessor (SM) has an RT core, and each RT
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F I G U R E 3 Illustration of ray tracing: (A) problem, and (B) accelerating with BVH.
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Acceleration

Structure
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Hit?

No

Yes

(A)

F I G U R E 4 (A) NVIDIA’s RT core with two physical units, and (B) general ray-tracing workflow in OptiX 7.

core has two physical units: box intersection and ray-triangle intersection evaluators, as illustrated in Figure 4A. As the
name suggests, the box intersection evaluator is designed for BVH traversal, while the ray-triangle intersection evalu-
ator is for the solution of a ray hitting a triangle. Accompanied with RT core is newly designed OptiX 7, a ray tracing
application programming interface (API) developed by NVIDIA.33 Figure 4B shows a general ray-tracing workflow in
OptiX 7, where yellow boxes denote customized CUDA programs. After launching a ray tracing pipeline, a ray is gener-
ated with customized position, length and direction, and then passed to acceleration structure traversal (AST), that is,
traversing the BVH of all objects in the scene. Note that AST runs completely on the box intersection evaluator of RT
core. A customized intersection program, followed by an any hit program, is invoked once the ray intersects an AABB.
A closest hit program is invoked once the ray hits the closest geometry. A miss program is invoked when the ray hits
nothing. It is worth noting that OptiX 7 has implemented the art-of-the-state BVH build and traversal algorithms at
the driver level, which not only improves the ray tracing performance significantly but also eases the programming of
ray tracing.

2.3.3 Ray-tracing algorithm of neighbor search

The neighbor search problem in particle-based simulations can be converted into a ray tracing problem to leverage the
power of RT cores. As shown in Figure 5A, the AABB (green box) of particle A or its horizon region is first expanded as
the AABB (blue box) of the neighbor search region. Determining whether a surrounding particle is a potential neighbor of

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7139 by H
ong K

ong U
niversity O

f, W
iley O

nline L
ibrary on [11/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHAO et al. 701

(B) (C)(A)

AAAA A

(D)

F I G U R E 5 (A) Search range of particle A and the corresponding expanded AABB, (B) potential neighbors with centers (red points)
and the expanded AABB of particle A, (C) point-AABB intersection as a ray-tracing problem, and (D) further contact resolution for
potentially contacting particles.

particle A thus amounts to testing whether the center of the surrounding particle Op is enclosed by the expanded AABB,
referring to Figure 5B. Thereby, the problem can be converted to such a ray tracing one that whether an infinitesimal
ray starting from the center (red point) of a given surrounding particle intersects the expanded AABB (blue box) or not,
referring to Figure 5C. Given that the ray length is infinitesimal, the ray direction can be arbitrary.

o p t i x T r a c e ( gas_handle , c e n t e r , d i r e c t i o n , 0 . 0 f , 1e−16 f , 0 . 0 f ,
O p t i x V i s i b i l i t y M a s k ( 1 ) ,
OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT |
OPTIX_RAY_FLAG_DISABLE_ANYHIT ,
0 ,
0 ,
0 ,
N_jgi , N _ j l i ) ; / / N _ j g i and N _ j l i a r e p a y l o a d s

Listing 1: TraceRay entry of ray generation program in OptiX

Listing 1 shows a snippet of the ray generation program. For each particle, the OptiX API optixTrace will launch
a ray with a small length of 1 × 10−16. To identify particles and rays, ray ids are initialized as particle ids. More-
over, both closest hit and any hit are disabled by setting flags OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT and
OPTIX_RAY_FLAG_DISABLE_ANYHIT to improve performance. In OptiX, each ray can have shared data among differ-
ent programs via setting payloads, while CUDA intrinsics (e.g., shared memory, thread warp) are not allowable. Similar
to the cell-based neighbor search approach, two auxiliary lists Njgi

Np
and Njli

Np
are introduced and passed to optixTrace as

payloads for particle i (or ray i).
Following the ray generation program, an intersection program will be invoked once there are any ray-box

(AABB) intersections for a given ray i during the BVH traversal. Outlined in Algorithm 1 is a pseudocode of
such an intersection program for neighbor searching. In general, a surrounding particle is enclosed in the AABB
of particle i identified by ray id i as illustrated in Figure 5D once the ray tracing program runs into the ray-box
intersection program. However, one more query is conducted at Line 6, referring to Equation (1), to have a bet-
ter comparison with the cell-based algorithm in Section 2.2. Starting from Line 7, the neighbor list NLi is con-
structed in the same manner as the cell-based algorithm except that Njgi and Njli are updated in the payloads
of ray i.

Remarks: In OptiX, the customized programs are executed sequentially for each ray that is assigned to a single thread,
while a large number of rays can be generated and processed in parallel. To maximize the performance, the neighbor-
ing rays should follow similar paths when traversing the BVH. One effective way is to reorder particles following space
filling curves such as Morton curve34 and Hilbert space filling curve.35 The Morton curve is adopted for ease of implemen-
tation but without losing generality in this work. Moreover, the BVH can be constructed via OptiX API but not shown
here for brevity. However, special attention needs paying to the quality degradation of the BVH, which would cause a
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702 ZHAO et al.

Algorithm 1. Box intersection program for neighbor searching

Input: ray id i, particle id j, ray position Or, particle position Op, particle radii ri and rj.
Output: neighbor lists Njgi and Njli.

1 if i == j then
2 return;

3 Njgi: ← the first payload;
4 Njli: ← the second payload;
5 d = Or −Op;
6 if ‖d‖<(1 + 𝛿)(ri + rj) then
7 if j>i then
8 //push from left;
9 NL[i ∗ offset + Njgi] = j;

10 Njgi: ← Njgi + 1;
11 the first payload: ← Njgi;

12 else
13 //push from right;
14 NL[(i + 1) ∗ offset − Njli − 1] = j;
15 Njli: ← Njli + 1;
16 the second payload: ← Njli;

worse BVH traversal, especially for dynamic simulations. Rebuilding the BVH periodically is an effective remedy to avoid
this issue.

2.4 Contact list

It is worth noting that the neighbor list doubly stores the information of neighbors (contact pairs). Hence, the contact
pairs are accessible by traversing only half of the neighbor list, for example, neighbors with id j greater than i. Indeed, the
list of contact ids can be established by

cid = Sjgi
i + j, j ∈ {0, … ,Njgi

i − 1}, (2a)

Sjgi
i =

{
0, if i = 0,
∑i−1

k=0Njgi
k , otherwise,

(2b)

where Sjgi
Np

is the prefix sum of Njgi
Np

. Then, a contact list can be built with size Nc given by

Nc = Sjgi
Np−1 + Njgi

Np−1. (3)

Note that a backup of the contact list is required once the neighbor list has been updated. With the backup of the
contact list, it is straightforward to query the previous contact when the corresponding contact id changes in the updated
contact list. Hence, any contact-wise quantities can be solved accordingly, for example, frictional force in DEM that
requires an incremental summation, referring to Equation (7).

3 GPU-ACCELERATED DEM

The proposed RT-based approach for neighbor searching is applied and implemented in a DEM code for validation and
performance evaluation. This section presents a brief introduction to DEM and its GPU-based implementation.
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3.1 Brief introduction to DEM

Particle motion and inter-particle contact forces are two essential ingredients of DEM and are introduced briefly below
for the completion of presentation. Interested readers are referred to literature5,10 for more details. In a nutshell, particle
motion is governed by the Newton–Euler equation as

F = mv̇, (4a)

T = I𝝎̇ + 𝝎 × (I𝝎), (4b)

where F and T, respectively, are the force and torque acting on the particle center of mass; v and 𝝎 are the translational
and angular velocities, respectively, and the over dot denotes derivation with respect to time; m is the particle mass; I is
the moment of inertia around the mass center. Note that the rotation is solved with a reference frame fixed to the particle.
For spherical particles, Equation (4b) is reduced to T = I𝝎̇. The force F and torque T are calculated as

F = F b +
∑

c∈Nc

f c
, (5a)

T =
∑

c∈Nc

r c × f c
, (5b)

where F b is the body force; f c is the contact force at contact c; Nc is the number of particles contacting with the given
particle; rc is the position vector of contact point at contact c with respect to the particle center.

Contact force f c in Equation (5) is generally decomposed into two orthogonal parts: normal contact force fn and
tangential contact force ft. The force-displacement law in conjunction with the Coulomb friction model is employed as
the contact force model at the microscopic scale,1 given as

fn = −knd, (6a)

Δft = −kt𝛿u, (6b)

and

ft =

{
f ′t + Δft, if ||f ′t + Δft|| ≤ 𝜇||f

n||,

𝜇||f n||
𝛿u

||𝛿u||
, otherwise

(7)

where d and 𝛿u are the penetration vector and the tangential incremental displacement, respectively; Δft is the incre-
mental tangential contact force; f ′t is the tangential contact force at the previous time step; 𝜇 is the coefficient of contact
friction. To facilitate energy dissipation in the system, two artificial damping, namely mass damping and viscous damping,
are introduced such that

a = −𝛼daSign(v,a), (8a)

f = 2v𝛽d

√
mk, (8b)

where 𝛼d and 𝛽d are the coefficients of mass damping and viscous damping, respectively; a and v are the acceleration and
the velocity of the particle, respectively; Sign is the signum function with respect to each axis; f and k are the normal/tan-
gential viscous force and the normal/tangential contact stiffness at the contact, respectively; m is the mean mass of the
two particles, and v is their relative velocity at the contact.

3.2 Framework of GPU-DEM

Algorithm 2 summarizes the pseudocode of generic parallelized DEM on a GPU. For each DEM step/iteration, three
main procedures are sequentially executed by launching corresponding CUDA kernels: (a) updating the neighbor list;
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704 ZHAO et al.

(b) computing contact forces for all contacts; and (c) integrating motion of all particles. Note that in the case of spherical
particles as considered in this work, updating the neighbor list is more time-consuming than the other two procedures,
but it can be executed less frequently via introducing skin size in Equation (1) to cache potential neighbors in the neighbor
list. To this end, a switch updateNL is flagged to trigger the neighbor list update once any particle moves a distance larger
than the skin size since the last update of the neighbor list in the integration procedure of particle motion.

Algorithm 2. Pseudocode of the GPU-DEM workflow

Input: Simulation iterations;
1 foreach iteration do
2 if updateNL then
3 update reference positions of particles;
4 update neighbor list;
5 reorder particles if applicable;

6 // Computing contact forces for all contacts;
7 foreach contact do
8 compute contact geometry: normal, penetration;
9 if it is a real contact then

10 find previous contact force;
11 compute contact force subjected to the Coulomb condition;
12 apply viscous damping if applicable;
13 add contact force to the particle pair;

14 // Integrating motion of all particles;
15 foreach particle do
16 compute resultant force;
17 apply damping if applicable;
18 update velocity and position;
19 if (particle displacement > skin size ) set updateNL true;

Both cell-based and RT-based neighbor searching algorithms introduced in Section 2 are implemented to build the
neighbor list. As for contact force computation and integration of particle motion, one can refer to our previous work,
where a detailed description of GPU-DEM has been outlined for a 2D thread-block-wise code GODEM.30 All algorithms
depicted in this work are implemented in our in-house code CUDEM with CUDA C++ (11.2). The code is compiled on
Linux/Ubuntu OS with OptiX 7.2.

4 NUMERICAL EXAMPLES

4.1 Simulation scenarios

We select three typical problems with different scales including granular packing, column collapse, and dry debris flow.
All simulations have the same setting of material properties as listed in Table 2, and the gravitational acceleration and
timestep are set to 10 m/s2 and 0.001 s, respectively. The simulations are grouped into three different tests as outlined in
Table 3.

As aforementioned, skin size influences the update frequency of neighbor list, which is investigated in Test 1. Problem
size (typically particle number) and GPU specs may also have an effect on the computational performance, which are
examined in Tests 2 and 3, respectively. We prepare four dedicated NVIDIA RTX GPU cards with specifications listed in
Table 4, where RTX 3090 is the most powerful in the overall performance, and RTX 2080 Ti and RTX 5000 are the second
and third. In Tests 1 and 2, RTX 5000 is utilized for a better benchmark. Detailed setups of the three tests are depicted in
the following sections.
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ZHAO et al. 705

T A B L E 2 Material properties in all simulations for the three problems.

Parameter Value

Particle material density (kg/m3) 2000

Particle contact stiffness kn, kt (N/m) 1 × 105

Wall contact stiffness kn, kt (N/m) 1 × 107

Particle coefficient of friction 0.5

Wall coefficient of friction 1.0

Viscous damping 0.5

Mass damping 0.1

T A B L E 3 Overview of all simulation configurations for three tests.

Test group Particles (M: million) Skin size RTX GPU

Test 1 0.8 0, 0.1, 0.2, 0.3, 0.4 5000

Test 2 0.1, 0.2, 0.4, 0.8, 1.6 0.2 5000

Test 3 1.6 0.2 3060, 5000, 2080Ti, 3090

T A B L E 4 Specifications of testing GPUs.

NVIDIA GPU RT cores CUDA cores Memory (GDDR6) bus/size

GeForce RTX 3060 28 3584 192 bit/12 GB

Quadro RTX 5000 48 3072 256 bit/16 GB

GeForce RTX 2080Ti 68 4352 352 bit/11 GB

GeForce RTX 3090 82 10,496 384 bit/24 GB

4.2 Test 1: Column collapses with varying skin size

Column collapse test is selected to test the influence of skin size on the overall computational performance for both cell-
and RT-based neighbor search algorithms. A total number of about 0.8 M monosized spheres of radius 0.1 m are setup as
a 71 × 80 × 141 lattice grid with an interval of 2.4 times of sphere radius, as shown in Figure 6A. To avoid particle stacking
onto each other and forming a lattice configuration, all particles are shifted from the grid nodes with a random distance
ranging from 0 to 0.1r in x and y directions. Then, particles are allowed to settle down under gravity until forming a stable
heap in 40 s (i.e., 40,000 time steps), referring to Figure 6B for the final state. As can be seen, the granular column collapses
to a relatively straight slope with a curved tail as observed in previous numerical and experimental studies, for example,
Reference 36, and the angle of repose 𝛼 is 27.4◦ that is close to the reported value of 28.1◦ in Reference 37, suggesting
that our GPU-DEM code has been well implemented. Note that this work focuses on the acceleration scheme and the
corresponding computational performance, and further validation and verification of the code are beyond the scope of
this work.

Five groups of simulations are conducted on the Quadro RTX 5000 GPU card with a series of skin size factors 0, 0.1, 0.2,
0.3, and 0.4, respectively, where a larger skin size factor implies less frequent neighbor search in simulations. Notably, for
the extreme case with zero skin size, the neighbor list needs updating every time step, which is generally time-consuming
and not adopted in practical simulations. To measure the simulation performance at a given time instant, average speed
is introduced as the accumulative time steps Ntot divided by the current elapsed time tela, that is,

speed = Ntot

tela
. (9)

Hence, a dynamic speed can be recorded during the simulation. As shown in Figure 7A, simulation speed drops rapidly
at the very beginning of the simulation, which is attributed to the rapid increase of coordination number (number of
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F I G U R E 6 Simulation snapshots for column collapse of 0.8 M particles. (A) Initial state; (B) final state
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F I G U R E 7 Evolution of average speed with time for column collapses with 0.8 M particles and varying skin sizes on the Quadro RTX
5000 GPU.

contacts per particle) during column collapse. Then, simulation speed is expected to converge to a relatively stable value
for each simulation setup when the heap approaches to a static state. Moreover, it is not surprising that both initial and
stable simulation speeds increase with skin size. This is because a larger skin size is helpful to cache more neighbors
among which some may be not touching with the given particle, thereby reducing the update frequency of neighbor list.
Nevertheless, the overall speed cannot be improved furthermore when skin size factor gets beyond 0.2. Therefore, a skin
size factor of 0.2 is selected for the rest simulations of this work. Moreover, it is worth pointing out that increasing skin
size might result in a side effect of a potential increase of memory allocation. In this work, we have a fixed neighbor
number of 32 for each particle. That is to say, the neighbor list can only cache up to 32 neighbors for each particle. One
has to increase the memory of neighbor list when more neighbors need to be cached.

The analysis above is applicable to both cell- and RT-based neighbor search algorithms. Also, for each skin size,
the RT-based simulation has a higher speed than the cell-based one, indicating that we can gain improved perfor-
mance when using the RT-based neighbor search algorithm. Quantitatively, the speed ratio of RT-based approach to
cell-based approach is plotted in Figure 7B. It can be seen that the speed ratio increases rapidly first, then gradually
drops except for the case without skin size. For the case without skin size, the speed ratio increases monotonically, up
to 1.9, which means using the RT core can be up to 1.9× faster when we have to update the neighbor list every time
step. It implies that we can gain better performance with the acceleration of RT core when maximizing its usage. Indeed,
the usage of RT core is likely to be reduced when increasing skin size because the update frequency of neighbor list is
reduced. It also suggests that the RT-based algorithm is suitable for dynamic simulations, referring to the rapid increase
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F I G U R E 8 (A) Initial and (B) final states for simulations of column collapse with 0.1 and 1.6 M particles.
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F I G U R E 9 Evolution of average speed for column collapses with varying particle numbers on the Quadro RTX 5000 GPU.

of speed ratio in the beginning few hundreds of time steps, during when the particles rearrange dramatically due to
collapsing.

To sum up, in the present test, the stable simulation speed can be up to 450 steps per second for 0.8 M particles on the
Quadra RTX 5000 GPU card, and using the RT core can achieve a speed up of 1.2–1.4.

4.3 Test 2: Column collapses with varying particle number

Similar to the setup in Test 1, column collapse simulations are carried out with different particle numbers ranging from
0.1 to 1.6 M. To have a better comparison, only the y dimension of the column is adjusted to prepare different particle
numbers as shown in Figure 8.

Figure 9 shows the average speed and speed ratio between the RT-based and cell-based algorithms for different particle
numbers during column collapse simulations. With particle number increasing from 0.1 to 1.6 M, the initial simulation
speed drops significantly from 5000 to 450 steps per second, while the stable simulation speed ranges from 3000 to 220
steps per second. For all cases, the overall performance with the RT-based algorithm is better than that with the cell-based
one. Moreover, with particle number increasing, the RT core can be utilized more extensively with an increase speed ratio.
In particular, for the case with 1.6 M particles, the speed ratio can reach 1.6 and 1.3 at the peak and final, respectively.
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F I G U R E 10 (A) Evolution of reduced speed weight, (B) memory allocation for column collapse with varying particle numbers.

To compare the scalability of the cell- and RT-based algorithms, we introduce a quantity coined as reduced speed
weight, defined as the ratio of simulation speed for the case with 2N particles to that with N particles. As the name
suggests, reduced speed weight shows how much the overall simulation speed becomes when doubling particle number.
For reduced speed weight equal to 0.5, it suggests that the system can be linearly scaled without degradation of simulation
performance. For a system with reduced speed weight greater than 0.5, it means that the hardware has not been maximally
utilized, otherwise there is shortage in hardware for reduced speed weight less than 0.5. As shown in Figure 10A, a larger
particle system has a smaller reduced speed weight as expected. In particular, the RT-based simulations have greater
reduced speed weight than the cell-based one for all cases, indicating that the RT-based algorithm can be scaled more
efficiently. Note that the hardware here denotes all hardware resources in the computing system such as CUDA cores,
RT cores, GPU memory size and bus. An elaborate investigation of these resources is complicated and also beyond the
scope of this work. Only memory allocation is shown here in Figure 10B, where the memory allocation is observed to
increase almost linearly with increasing particle number. Besides, the RT-based simulation requires more but not too
much memory than the cell-based one.

4.4 Test 3: Different GPU specs

In addition to the column collapse simulation in Tests 1 and 2, two more problems, namely granular packing and dry
debris flow, are simulated in Test 3. On the top of the findings and discussions in Test 2, 1.6 M particles are used for all
the simulations of Test 3.

4.4.1 Granular packing and column collapse

The granular packing simulation has almost the same setup as the column collapse except an additional side wall at the
right surface of the column. Figure 11 shows a sequence of snapshots during simulation of granular packing with 1.6 M
particles.

Figure 12 shows the evolution of simulation speed for packing and column collapse tests with 1.6 M particles on
different GPUs. It can be seen that both packing and column collapse have almost the same simulation speed at the
very beginning (before around 2000 time steps). This is because most of the particles just settle down at this period for
both cases. Moreover, the RT-based simulation is faster than the cell-based one for both packing and column collapse
problem across all GPUs. Specifically, the simulation speed is positively proportional to the overall power of the GPU as
expected in Figure 13A. Interestingly, the packing simulation is faster than the column collapse one, whereas the column
collapse simulation has a larger RT-cell speed ratio than the packing one as shown in Figure 13B. The main reason is that
the column collapse simulation is more dynamic due to the large-scale rearrangements of particles, which implies more
frequent updates of the neighbor list. It also verifies that maximally utilizing the RT core can give a better performance as
mentioned in Test 1. Furthermore, it is worth noting that the performance gain (in terms of speed ratio) of the RT-based
approach is determined by the weight of the RT core in the overall performance of a GPU but not just the number of RT
cores. For example, RTX 2080Ti has the most RT cores, but its speed ratio is the lowest.
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(A) (B) (C) (D)

F I G U R E 11 Simulation snapshots for granular packing with 1.6 M particles. (A) t = 0 s; (B) t = 2 s; (C) t = 4 s; (D) t = 40 s
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F I G U R E 12 Evolution of speed for (A) packing and (B) column collapse simulations on different GPUs (1.6 M particles).
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F I G U R E 13 Packing and column collapse simulations on different GPUs (1.6 M particles): (A) The final simulation speed with the
RT-based algorithm and (B) evolution of speed ratio.

4.4.2 Dry debris flow

As for the dry debris flow, the simulation setup is more complex as it involves a large-scale of moving debris particles
and a static highly irregular-shaped terrain boundary, as shown in Figure 14. In this work, the terrain is modeled by a
triangle mesh, which is created based on a digital elevation model. The debris particles are generated from a lattice grid
of the slide region, that is, pre-slide terrain subtracted by the after-slide terrain. The lattice grid has a spacing of 0.25 m,
which results in an amount of about 1.6 M debris particles with radii of 0.125 m. Note that neighboring triangle facets
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F I G U R E 14 Simulation setup for dry debris flow: (A) terrain and sliding source, and (B) zoom-in sliding source.
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F I G U R E 15 Simulation snapshots for dry debris flow.
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F I G U R E 16 Average simulation speed for the dry debris flow on different GPUs (1.6 M particles).

of particles are not cached for efficiency, since the neighboring facets can be efficiently identified with the position of a
given particle due to the regular mesh of a digital elevation model. In case a particle is contact with multiple triangles,
the contact force is weighted by the particle-triangle contact area for accuracy.

The dry debris flow is simulated for 100,000 time steps with a fixed timestep of 0.001 s. Figure 15 shows sev-
eral snapshots (rendered in blender) of the debris flow at time 0, 5, 20, 40, 70, and 100 s, respectively. The sim-
ulation captures reasonably well the profiles and evolution of general dry debris flow. The simulation speed and
speed ratio of the debris flow simulation are recorded in Figure 16. Similar to the column collapse case, the sim-
ulation speed drops dramatically during the first several hundreds of time steps, and it plateaus afterwards. The
speed ratio of the RT-based approach to cell-based one during the whole simulation varies between 1.1 and 1.6,
depending on the GPU specs. For the memory consumption, it takes about 3138 MB for the RT-based simulation,
slightly lower than that of the cell-based one (3418 MB). However, for the column collapse problem, the RT-based
simulation requires slightly more memory than that of the cell-based one, as shown in Figure 10B. It suggests
that both RT-based and cell-based simulations have similar memory consumption. Overall, the RT-based approach
exhibits better computational performance (in terms of computational efficiency and memory consumption) than the
cell-based one.

5 SUMMARY

This work presented an RT-based neighbor search framework for particle-based numerical methods including DEM,
MD, PD, and SPH on NVIDIA’s RTX GPUs. In the proposed framework, the neighbor search problem is converted to
a ray-tracing one so that it can leverage the specially-designed RT cores for hardware-wise acceleration. Specifically,
a particle is considered as a neighbor of a given particle if an infinitesimally short ray starting from the particle hits
the AABB of the given particle. The implementation based on the CUDA and OptiX APIs are presented, where the
state-of-the-art BVH algorithm is employed via OptiX. We have discussed the use of skin to reduce the frequency of neigh-
bor search, prior to applying in large-scale DEM simulations as a showcase. Numerical tests, including granular packing,
column collapse, and dry debris flow, are performed to evaluate the computational performance of the proposed RT-based
approach against the conventional cell-based one. The results indicate that the RT-based simulations can be approxi-
mately 10%–60% faster than the cell-based ones, requiring almost as much memory as the cell-based one. The performance
gain could be more notable for large particle systems and dynamic problems, where the RT cores can be utilized to the
most extent.

Note that the current release of RT drivers and APIs are specially designed for computer graphics and yet not opti-
mized for computational mechanics. This work serves as an effort on leveraging the emerging RT cores and techniques
for computational mechanics. It is anticipated that, with the improvements of RT drivers, the RT cores would be another
promising and powerful plus resource complementary to CUDA cores for parallel computing in computational mechan-
ics. It is also worth noting that only the traversal unit of RT cores is utilized in this work, while the applicability of
ray-triangle intersection unit merits further exploration.
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