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A B S T R A C T   

Constitutive relation remains one of the most important, yet fundamental challenges in the study 
of granular materials. Instead of using closed-form phenomenological models or numerical 
multiscale modelling, machine learning has emerged as an alternative paradigm to revolutionise 
the constitutive modelling of granular materials. However, deep neural networks (DNNs) require 
massive training data and often fail to make credible extrapolations. This study aims to develop a 
deep active learning strategy to (i) identify unreliable forecasts without knowing the ground 
truth; and (ii) continuously improve and verify a data-driven constitutive model until the desired 
generalisation is satisfied. The role of active learning in constitutive modelling is instantiated 
through three scenarios: (i) off-line strain-stress data pool of granular materials; (ii) interactive 
constitutive training and strain-stress data labelling; and (iii) finite element modelling (FEM) 
driven by deep learning-based constitutive models. The results confirm the capability of active 
learning in advancing data-driven constitutive modelling of granular materials toward developing 
a faithful surrogate constitutive model with less data. The same active learning strategy can also 
be applied to other data-centric applications across various science and engineering fields.   

1. Introduction 

The description of the deformation and instability of materials under external loads has been an open scientific challenge for human 
beings since the origin of modern science. As a mathematical approximation of material behaviour the constitutive relation serves as 
the cornerstone not only for understanding the mechanical performance of materials but also for performing macroscale numerical 
computations (e.g. by FEM). 

* Corresponding authors at: Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, 
Swansea, Wales SA1 8EP, UK. 

E-mail addresses: guanshaoheng@whu.edu.cn (S. Guan), y.feng@swansea.ac.uk (Y.T. Feng).  

Contents lists available at ScienceDirect 

International Journal of Plasticity 

journal homepage: www.elsevier.com/locate/ijplas 

https://doi.org/10.1016/j.ijplas.2023.103576 
Received 14 September 2022; Received in revised form 29 January 2023;    

mailto:guanshaoheng@whu.edu.cn
mailto:y.feng@swansea.ac.uk
www.sciencedirect.com/science/journal/07496419
https://www.elsevier.com/locate/ijplas
https://doi.org/10.1016/j.ijplas.2023.103576
https://doi.org/10.1016/j.ijplas.2023.103576
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2023.103576&domain=pdf
https://doi.org/10.1016/j.ijplas.2023.103576
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Plasticity 164 (2023) 103576

2

For granular media the strength and stiffness are strongly rooted in grain-scale interactions: loads are supported by and transferred 
via interparticle contacts. Any contact-scale sliding will cause irreversible plastic deformation, giving rise to evolving strength and 
stiffness characteristics (Qu et al., 2022; Zhao et al., 2016). These seemingly simple particle motions can trigger ample and complicated 
mechanical behaviour of granular materials, such as state and path dependence, anisotropy and strain localisation (Gong et al., 2019; 
Peng et al., 2020; Peng et al., 2022; Qu et al., 2019; Zhao and Guo, 2015). 

The most prevalent approach to formulating constitutive relations of granular materials until now has been the phenomenological 
constitutive theory of plasticity (Gao and Zhao, 2017; Shi et al., 2019; Zhang et al., 2021). Its success is underpinned by four primary 
assumptions: (1) an explicit partition of elastic and plastic zones in a stress-strain sequence; (2) the yield surface distinguishing the 
boundary between elasticity and plasticity; (3) the associative or non-associative flow rule describing the direction of plastic defor
mation; and (4) the hardening rule characterising the evolution of the yield surface. This classical plasticity theory has received 
extensive applications, but it also confronts dilemmas owing to the prior assumptions and increasing model and state parameters to be 
calibrated. In addition, some researchers found that many basic assumptions that are taken for granted in phenomenological models 
are not in agreement with meticulous numerical and experimental observations (Kawamoto et al., 2018; Kuhn and Daouadji, 2018a, 
2018b; Pouragha and Wan, 2017). 

The other paradigm for constitutive modelling is hierarchical multiscale modelling (HMM) (Guo and Zhao, 2014). In this frame
work, continuum-based numerical models (e.g. FEM) can be computed without resorting to phenomenological assumptions. The 
constitutive relation required at each Gauss point is approximated with particle-scale discrete element modelling (DEM) of a repre
sentative volume element (RVE) (Guo and Zhao, 2014, 2016a; Qu et al., 2021c). A boundary value problem (BVP) simulated with FEM 
normally incorporates many Gauss points, thus massive DEM models need to be concurrently solved, resulting in extremely high 
computational costs. 

Machine learning offers a promising alternative to tackle the challenge of constitutive modelling (Abueidda et al., 2021; Jang et al., 
2021; Li et al., 2022; Wu et al., 2022; Xi et al., 2021; Zhang and Mohr, 2020; Zhang et al., 2021). Unlike the phenomenological 
constitutive theory and multiscale modelling, data-driven models do not require parameter calibration and phenomenological as
sumptions, neither do they request unaffordable computational resources to infer stress responses from strain paths. Although it is not 
new to apply neural networks to model the stress-strain relations of concrete and sands (Ellis et al., 1995; Ghaboussi et al., 1991; 
Ghaboussi and Sidarta, 1998), the revolutionary development of deep learning over recent years re-inspires extensive explorations in 
data-driven constitutive models (Guan et al., 2023; Ibragimova et al., 2022; Ibragimova et al., 2021; Jordan et al., 2020; Tancog
ne-Dejean et al., 2021). For example, Wang and Sun (2019) and Wang et al. (2019) developed reinforcement learning and game 
theory-based deep learning models for the constitutive modelling of granular materials. Qu et al. (2021a) developed a 
micromechanics-informed stress-strain modelling strategy by integrating evolving elastic stiffness matrix and physics-invariant ma
terial properties for constitutive training. Ma et al. (2022) proposed an improved long-short term memory (LSTM) model considering 
the initial state of granular materials. Wu and Wang (2022) considered the effect of particle shape on LSTM-based constitutive 
modelling. Bonatti and Mohr (2021, 2022) proposed a minimal state cell (MSC) to reduce the number of state variables (memory units) 
and developed linearised MSC (or LMSC) neural networks to improve incremental size dependence in traditional recurrent neural 
networks (RNNs). The capability of LMSC is further instantiated by the crystal plasticity of an aluminium alloy and the learned model 
demonstrates satisfactory performance when embedded in FEM (Bonatti et al., 2022). 

The importance of involving domain-knowledge into data-driven constitutive modelling has been widely recognised. Heider et al. 
(2020) and Qu et al. (2021b) discussed frame-indifference properties in data-driven constitutive modelling. Vlassis and Sun (2021) and 
Zhang et al. (2022) embedded the first and second-order gradients of the loss function into training with Sobolev training. Masi et al. 
(2021) proposed a thermodynamics-based deep learning strategy by taking the energy potential and a dissipation pseudo-potential as 
the direct outputs of neural networks. The final stress responses are obtained by differentiating the outputs of neural networks with 
respect to their inputs based on the automatic differentiation technique. Masi and Stefanou (2022) further extend their TANN 
framework to materials with inelastic and complex microstructures by using encoder-decoder to automatically search for the internal 
state variables of complex inelastic materials. Wen et al. (2021) developed a physics-driven machine learning model for constitutive 
modelling incorporating temperature and time-dependent effects in lithium metal. Following the classical elastoplastic framework, a 
tree-based machine learning model is adopted to bypass the use of the traditional power-law-based hardening rule. As most of the 
plasticity theory remains, only limited experimental results are required to train the data-driven model. 

Deep learning-based constitutive modelling includes two indispensable components: model and data. In contrast to the above- 
reviewed progress from the perspective of model, rather few efforts have been taken to guarantee that the dataset used to train 
neural networks is sufficiently representative. Yet data is crucial to developing a successful machine learning model and a high-quality 
dataset should cover all possible scenarios that the surrogate model is intended for. Data-driven constitutive modelling tends to suffer 
from two challenges pertaining to data: (1) the training process is data-demanding while it is costly to obtain high-fidelity data, via 
either laboratory experiments or microscale numerical simulations; (2) as data-driven models are not underpinned by physical 
principles, the reliability of a data-driven model is always a concern. 

Active learning can provide a useful perspective to tackle the above challenges. Any form of learning model in which the algorithm 
can partially control input specimens can be regarded as active learning (Lughofer, 2012). For conventional supervised learning with a 
“passive learning” framework, where the training dataset is generated before the training process is performed, the model has to be 
prepared blindly and inefficiently. The idea behind active learning is that not all data is created equally, because different data may 
carry a different information intensity for the model. Provided that the most instructive data is identified, labelled, and employed to fit 
a model, it can be expected that such data may enable a trained model to reach the desired generalisability. However, incorporating 
active learning in the constitutive modelling of materials remains a relatively unexplored territory to date. 
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This study aims to fill the above gap by developing a deep learning committee-based active constitutive learning strategy. Through 
three different scenarios, the unique advantages of deep active learning are revealed. On the one hand, active learning can prioritise 
selecting the most informative data when training a surrogate model. On the other hand, active learning can serve as an effective tool 
to detect potential predictive blind points and improve the model continuously. We demonstrate that active learning works for both 
multilayer perceptron (MLP) and RNNs, but its application can go beyond any type of data-driven surrogate model. We also confirm 
that deep active learning is suitable not only for the data from common conventional or true triaxial tests but also for complex strain- 
stress paths experienced in a BVP problem. Furthermore, the trained DNNs are embedded into FEM computations to bypass 
phenomenological constitutive models or particle-scale DEM simulations. 

The remainder of the paper is structured as follows. Section 2 introduces the basic idea of active learning in general and the 
committee-based active learning strategy in particular. In Section 3, a comprehensive examination is conducted to understand 
different active learning strategies in data-driven constitutive modelling. An interactive constitutive training scheme is demonstrated 
in Section 4, where data generation and the training of DNNs are integrated seamlessly. Such a procedure allows models to identify the 
most informative data to make DNNs learn faster in a cost-effective manner. Section 5 performs a data-driven hierarchical multiscale 
modelling case to exemplify the capability of active learning in discovering unreliable forecasts in macroscopic modelling. The sig
nificance and limitations of active learning in constitutive modelling are discussed in Section 6. Some concluding remarks are made in 
Section 7. 

2. A deep active learning strategy for constitutive modelling 

Active learning is originally motivated by many machine learning scenarios where input-output data pairs are difficult or expensive 
to collect, whereas most supervised learning models are data-greedy. An important issue arises: can we use as small datasets as possible 
to train a reliable predictive model? By identifying the most instructive data for a surrogate model, active learning can maximise the 
performance of models while minimising the amount of data to be labelled. Note that active learning is a strategy, rather than a specific 
model. When combining deep learning models with the active learning strategy, the model is called deep active learning. 

The basic procedure of deep active learning is shown in Fig. 1. For a mapping relation connecting inputs X and outputs Y, we have a 
labelled data pool Dl = {(xi, yi)}

Nl
i=1 and an unlabelled data pool Du = {xi}

Nu
i=1 before training. The first step is to build deep neural 

networks F(0) with prescribed X and Y. These models can be either trained or untrained with labelled datasets Dl. Second, these deep 
neural networks are utilised to infer outputs Ŷ based on the unlabelled data pool Du. Third, an active querying strategy is adopted to 
identify some unlabelled data which is most likely to be mis-predicted in Du. Then the fourth step is to label/resample these recognised 
datasets via performing laboratory experiments or numerical simulations. These data are moved from Du to Dl and new deep neural 
networks F(1) are fitted based on the updated labelled data Dl. The workflow is an iterative procedure including “explor
ation—labelling—training”. The procedure is repeated until the trained DNNs reach the desired accuracy over a targeted stress-strain 
space. Over these active learning rounds t = {0, 1, 2,…,T}, a series of DNNs F(0), F(1), F(2), … F(T) are trained until the mapping relation 
from X to Y has been well captured by the latest DNN. 

Fig. 1. Procedures of deep active learning. 
(The cartoon is accessed from https://kidsread.wordpress.com/2022/06/03/3-steps-for-teaching-kids-to-read/). 
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The core of active learning lies in the querying strategy. Many active query strategies are reported in the literature, such as un
certainty sampling (Lewis and Catlett, 1994), expected error reduction (Settles, 2009), density-weighted methods (Settles, 2009) and 
committee-based query (CBQ) strategy (Seung et al., 1992). However, most active learning strategies are domain-dependent and 
cannot be adapted to other fields. Nevertheless, the CBQ approach can be a universal option which also works for sequence-based 
regression problems, such as the constitutive modelling of granular materials. In addition, the CBQ method is conceptually simple 
and easy to be implemented, and therefore this strategy is adopted in this study. 

The CBQ strategy requires a committee C = {M(1),…,M(N)} of N surrogate models (M) which are fitted based on an available 
labelled dataset Dl. Each committee member provides forecasts on the data points extracted from the unlabelled data pool Du. Then the 
predictive disagreement among different committee members, i.e. surrogate models, can serve as an indicator of the degree of un
certainty. Specifically, the sample with the largest degree of disagreement among all the committee members is selected as the most 
informative one for the current surrogate model. 

This approach is established based on the idea that the model should make a better prediction in the domain that is sufficiently 
covered by the training dataset, compared to the region where the training data is sparsely distributed. It is expected that the forecast in 
the region with sufficient data coverage will converge to the ground truth and thus the inferences made by the committee surrogate 
models are relatively close to each other. By contrast, the predictions around the region where the training data is insufficient will 
scatter with a measurable variance. The disagreement of forecasts can be quantified by the standard deviation SN for a given specimen: 

sN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(zi − z)2

√
√
√
√ (1)  

where zi is the forecast of the ith committee member with i ∈ [1,N], and z is the mean value of these forecasts. By ranking the standard 
deviations of the predictions from the unlabelled pool in their magnitude, the highest variances in the output forecasts indicate the 
most instructive data. 

One more question is how to choose committee members. This study adopts a group of DNN models, as committee members, with 
the only difference consisting in the random initialisation of weights and biases before training. The predictive capability of DNNs is 
empowered by weight and bias parameters. As a high-dimensional mapping of the objective function, different (random) weight 
initialisations give rise to marginally different DNNs after training, even though the network architecture and all other hyper
parameters are the same. Thus, one can leverage the active learning strategy regardless of what types of DNNs are in use. 

For the constitutive modelling of path-dependent materials, currently there are two typical DNNs available: One is a multilayer 
perceptron (MLP) and the other one is a time-series model, such as RNNs and temporal convolutional neural networks (TCN) (Wang 
et al., 2022). MLP can capture the point-to-point mapping efficiently but must introduce some internal variables to encode the loading 
history. In contrast, time-sequence models can capture extremely complex stress-strain relations with multiple unloading-reloading 
cycles but must rely on a large number of parameters and complex network structures to achieve good performance. 

In the following sections, we will consider different constitutive training scenarios which may be encountered in path-dependent 
materials. Also, both MLPs and time-series-based DNNs will be investigated in the subsequent sections. The detailed road map is as 
follows:  

• The role of active learning. Section 3 aims to clarify the applicability of active learning in the constitutive modelling of granular 
materials by performing parametric and comparative examinations of three different scenarios of active learning in a stress-strain 
data pool. The conclusions drawn will guide the study in Sections 4 and 5. 

Fig. 2. DEM models for generating stress-strain data.  
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• On-the-fly active learning. Section 4 demonstrates the on-the-fly active learning where data generation and model training are 
performed interactively. During each round, only the optimal data which can minimise the prediction uncertainty is labelled. This 
part focuses on stress-strain predictions of granular materials under conventional triaxial testing scenarios. Special attention is paid 
to the advantage of active learning in identifying unreliable forecasts of a data-driven surrogate model and adaptively improving 
the model until it behaves satisfactorily in the desired stress-strain space.  

• Data-driven multiscale model. Section 5 develops a data-driven multiscale model by harnessing the stress-strain data produced from 
the FEM×DEM hierarchical multiscale modelling of granular materials. These stress-strain sequence pairs are homogenised from 
DEM simulations of RVE specimens which serve as material models at Gauss points in FEM modelling of a BVP. Active learning is 
used to prioritise the selection of training specimens. The trained DNN is also embedded into FEM computations. 

3. A comprehensive examination of active learning-assisted data-driven constitutive modelling based on a data pool 

3.1. Discrete element models to generate data 

Although many simplifications are made in DEM, some research has shown that even the simplest sphere-based modelling can 
reproduce the primary behaviour (stress-strain relation, volumetric behavior, and critical state) of real granular materials (Qu et al., 
2022). Here the stress-strain data of granular materials is generated through offline true triaxial testing via DEM (Fig. 2). A total of 122 
groups of triaxial tests are simulated with mutually different unloading-reloading loops. These specimens are composed of 4,037 
spherical particles within a cubic volume subjected to an isotropic consolidation pressure of 200 kPa. The simulation properties are 
listed in Table 1. During triaxial testing, the lateral boundary of the whole specimen is controlled to maintain a constant mean pressure 
(constant-p) with identical middle and minor principal stresses, namely: 

σ2 = σ3 = (3p − σ1)/2 (2)  

where σ1, σ2, σ3 and p denote the major, middle, and minor principal stress, and the mean pressure, respectively. Such a constant-p 
condition is achieved by dynamically controlling the magnitude of lateral pressures, in the manner of moving the position of 
boundaries adaptively via a servo-boundary algorithm. The influence of this servo-boundary on the macroscopic stress-strain behavior 
is rather limited according to the previous research (Qu et al., 2019), as the servo-wall boundary is a type of stress boundary, in 
essence. 

As the lateral boundary is governed by the selected loading condition (for example, the constant-p condition here), the only 
discrepancy for the triaxial specimens consists in the axial loading path. In the current case, all the specimens are loaded by imposing a 
constant rate of 1×10− 4m/s in the vertical direction but with mutually different unloading-reloading loops. Fig. 3 describes the 

Table 1 
DEM simulation parameters.  

Radii 
(mm) 

Density 
(kg/m3) 

Normal stiffness 
(N/m) 

Tangential stiffness 
(N/m) 

Frictional coefficient  Local damping coefficient 

2-4 2,600 1×105 5×104 0.5 0.5  

Fig. 3. Sampling points for constant-p true triaxial testing.  
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distribution of these unloading-reloading points in each strain path, where each point represents a specific loading path, with its 
horizontal and vertical coordinates representing the unloading and reloading strains, respectively. 

The specimens are selected with three restrictions: (1) the unloading strain is greater than the subsequent reloading strain in a 
single loop; (2) the reloading strain remains in a compressive state (positive value); and (3) all loading processes terminate at a 
maximum compressive strain of 12%. The first stipulation is a mandatory requirement following some physical rules, while the latter 
two are used to restrict the constitutive responses within a limited space. 

To examine the role of active learning in constitutive modelling, three different training cases are considered: 

Case 1: DNN models are initially trained with uniformly but relatively sparse sampled data. A total of 36 groups of specimens, as 
shown in Fig. 4, are used for the preliminary training. Then active learning is harnessed to detect blind predictions and improve the 
DNN models continuously by adding the most important points during each round. The workflow of Case 1 can be found in Fig. 5a. 
Case 2: DNN models start from nothing, i.e. no data is used to train the initial DNNs. These DNNs are improved incrementally by 
adding the data points recognised by active learning. This case is designed to investigate whether active learning can select data 
judiciously at the very beginning of training. The workflow of Case 2 is exhibited in Fig. 5b. 
Case 3: DNNs are trained with randomly selected stress-strain samples. This is the conventional training scenario without the 
involvement of active learning and thus can be regarded as a passive learning example. 

3.2. The adopted GRU neural network and accuracy evaluation 

In this section, the gated recurrent units (GRU) neural network is adopted as the base DNN model. In our previous work (Qu et al., 
2021a), this type of model has been proved to have an extraordinary fitting ability for path-dependent granular materials. Also, the 
GRU model is not very sensitive to network architectures and hyperparameters for relatively small-scale training data. Diverse ar
chitectures and hyperparameters can yield similar predictions owing to the strong fitting capability. In this work, the adopted ar
chitectures and hyperparameters are determined by the experience drawn from our previous work. The details can be found in Table 2. 
Such an architecture yields 5523 parameters to be trained. The GRU networks are built based on Tensorflow (Abadi et al., 2016) and 
Keras (Chollet, 2015). 

The inference accuracy of a model is evaluated by quantifying the overall difference between the forecasts and the ground truth. 
Two evaluation metrics are employed in this study. One is the mean absolute error (MAE) (see Eq. (3)) and the other is the score metric 
(refer to Qu et al. 2021a). The former can offer a relatively rigorous evaluation of the predictive ability while the latter is more intuitive 
to understand how good these predictions are as a whole. 

The MAE of the jth stress-strain path is given by 

MAEj =
1
Nj

∑Nj

i=1

⃒
⃒
⃒yTrue

ij − yPrediction
ij

⃒
⃒
⃒ (3)  

where yTrue
ij and yPrediction

ij are the actual and predicted values of the ith data point of the jth stress-strain curve, respectively. 
Fig. 6 shows the loss values of training datasets in Case 1. The results show that the MAE values converge to a steady state after 200 

epochs. In each active learning round, new data is added to training datasets. With increasing active learning rounds, the values of the 
loss function decrease gradually. Note that as the network architectures have been predetermined, no validation is conducted during 
training. 

Fig. 4. Specimen distribution used for preliminary training.  
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3.3. Examination and verification of the role of active learning in constitutive modelling 

A series of parametric investigations are performed to understand the potential and limitations of deep active learning for data- 
driven constitutive modelling of granular materials. First, for Cases 1 and 2, four different DNNs are prepared and three commit
tees with two, three, and four DNNs as members are considered. In Case 1, each DNN is pre-trained based on available datasets, while 

Fig. 5. Basic active learning procedures for Case 1 and Case 2.  

Table 2 
The adopted network architecture and some key hyperparameters.  

Item Value 

Network architecture GRU: 40 
The length of moving windows 40 
Batch size 64 
Epoch number 200 
Learning rate 0.001  
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in Case 2, all the DNNs are simply initialised with different random seeds and no training is conducted at the beginning. 
Active learning is utilised to detect all the forecast performance over the entire labelled data pool. Each committee member is 

employed to infer stress responses of all the strain paths in the data pool. Ten groups of data specimens with the largest standard 
deviations in Case 1 are listed in descending order in Table 3, where each index number in the table represents a certain strain path. To 
verify the capability of active learning, the actual predictive accuracy for each strain path is quantified by comparing it with the ground 
truth stress response. Then the ten worst predicted strain paths by each DNN are also listed. 

Fig. 6. Learning curves during training.  

Table 3 
The first-round active learning-assisted forecasts and verifications for Case 1.  

Ranking Estimated MAE ranking with active learning Actual MAE ranking  
2 DNNs 3 DNNs 4 DNNs NN1 NN2 NN3 NN4 

1 52 52 52 52 52 1 52 
2 1 1 1 54 1 52 60 
3 53 53 53 60 53 53 1 
4 55 54 74 4 4 60 74 
5 6 4 4 74 54 74 53 
6 74 74 54 1 8 65 65 
7 65 55 60 69 66 55 4 
8 60 8 55 55 69 54 54 
9 4 60 65 53 15 4 69 
10 56 6 6 8 57 63 15  
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The table demonstrates that most estimations made by the active learning algorithm are consistent with the actual predictions. The 
ten worst predictions given by each committee member DNN vary slightly from each other, which confirms that different initialisations 
of weights and biases do yield different DNN models. Among the ten groups of most unreliable forecasts estimated by active learning 
with two, three and four committee DNNs, a total of eight, nine and nine groups of strain paths, respectively, are exactly within the 
actual MAE ranking list. 

The results confirm that the active learning strategy is capable of discovering the worst predictions without knowing the ground 
truth. Furthermore, the results support that only two or three committee members are sufficient to serve as an error indicator, as using 
more committee member DNNs requires more computational costs. A group of three committee members are thus adopted throughout 
the study. 

The results in Case 1 verify the effectiveness of active learning. However, in the first round of Case 2, the predictions given by active 
learning are irrelevant to the actual worst predicted strain paths, no matter if two, three or four committee members are employed. A 
big discrepancy between Cases 1 and 2 lies that in Case 1, the initial committee DNNs have been trained based on uniformly distributed 
specimens and these models have learned sufficient knowledge about the constitutive relation (with average MAE:0.03; average score: 
0.944); while the initial committee DNNs in Case 2 are not trained and know nothing about the stress-strain mapping. The sharp 
contrast in the performance of active learning in Cases 1 and 2 indicates that only the DNNs which have learned sufficient knowledge 
are qualified to serve as committee members. 

3.4. Batch-mode active learning scheme 

For the committee-based active learning scheme, the time required to train DNN models cannot be ignored. If the most informative 
data is queried in serial, i.e., one at a time, the total cost of training DNN models will be practically unaffordable. To strike a balance 
between efficiency and labelling accuracy, a batch-mode active learning is adopted by selecting a group of specimens with the largest 
uncertainty to label each round and thus reducing the number of training committee DNNs. However, one should consider the possible 
information redundancy among the selected “worst predicted” specimens, because labelling the most hard-to-predict specimen first 
may eliminate the need to label the “neighbouring” cases in a batch of selected specimens. 

To address this concern, a batch sampling scheme is proposed as shown in Fig. 7. When we have selected a certain point, its 
neighbouring points within an influence radius of R will be regarded as invalid and are not considered in the current batch. However, 

Fig. 7. Illustration of data resampling in a batch-mode active learning scheme.  

Fig. 8. Prediction performance of principal stress with three training cases.  
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these invalid points in the current round can still be selected in the next round. In this study, R is empirically selected as 1.5Ls, where Ls 
is the sampling interval. 

3.5. Prediction performance of three training cases 

The prediction performance of the three different training cases is shown in Fig. 8. To reduce the possible influence of randomness, 
three neural networks with the same architecture, hyperparameters, and training data but different initialisations in weights and biases 
are trained. The mean and standard deviation of these three different DNN predictions are considered. When the number of training 
specimens is less than 35 groups, the DNNs from Case 3 outperform those in Case 2, demonstrating that the committee-based active 
learning algorithm is not necessarily useful when each committee member DNN has not learnt sufficient knowledge. 

When the training number is larger than 35, the prediction accuracy of Cases 1 and 2 outperforms those in Case 3. Figs. 9 and 10 
demonstrate the worst and second worst forecasts given by a DNN in Cases 1 and 3 when 60 groups of training datasets are used. 
Although it appears that only a small discrepancy in the forecasted score and MAE is found, as shown in Fig. 8, a relatively large 
difference in the actual stress-strain predictions can be observed. Particularly, in the randomly inputted training datasets in Case 3, 
DNNs’ generalisation error decreases relatively slowly and 30 groups of extra training specimens (almost ¼ of the total number) are 
required to reach a similar predictive level in Cases 1 and 2. These results confirm that active learning can train a good predictive 
model by using less amount of data. 

In addition to the comparison of stress responses, we also perform a comparative investigation on volumetric predictions with and 
without active learning. One is similar to Case 1 where we start from a randomly selected 30 groups of data, and then active learning is 
employed to add five groups of the most informative specimens in each round, i.e. the “random + active learning” scheme. The other 
one is simply the conventional training scheme with an increasing number of randomly selected specimens. All network architectures 
and hyperparameters inherit those from the former stress prediction case. 

The overall prediction performance is demonstrated in Fig. 11, where the predictions with active learning keep a steady low MAE 
range while those with conventional training scheme fluctuate at a relatively high forecast error. The results show that the volumetric 
predictions with active learning significantly outperform those with the conventional training scheme. Fig. 12 shows that the worst 

Fig. 9. The worst stress predictions given by a DNN model in Case 1 with 60 groups of training data.  

Fig. 10. The worst stress predictions given by a DNN model in Case 3 with 60 groups of training data.  
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volumetric predictions with an increasing training number for the active learning case. It is found that the worst volumetric responses 
cannot be satisfactorily predicted when only 30 groups of random data specimens are used. However, with the use of active learning, 
even the worst volumetric forecast after one-round of active sampling behaves excellently over unseen test specimens. This explains 
why the DNN’s inference performance maintains a steadily high level with an increasing training number in Fig. 11. The results further 
confirm the capability of active learning in discovering the most informative specimen during data-driven constitutive training. 

3.6. Active learning-informed data preparation 

With the aid of active learning, DNNs can automatically prioritise labelling the most instructive data to maximise the inference 

Fig. 11. A comparison of volumetric prediction performance with and without active learning.  

Fig. 12. The worst volumetric predictions of the “random+active learning” scheme with an increase in training number.  
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performance of models. We summarise in Fig. 13 the intelligently sampled data recognised by active learning in each round for Cases 1 
and 2. In Case 1, the top five groups of new specimens are selected in each round and a total of six rounds of active learning querying 
are included. In Case 2, the top ten groups of datasets in each round are selected because all the training data is obtained by active 
querying and labelling a relatively large number of specimens in each round can reduce the overall time costs. A total of seven active 
learning querying rounds are listed in Fig. 13b. 

Fig. 13 may suggest that the specimens with reloading strain lower than 2% are probably the most informative data for training. 
These specimens represent a relatively larger unloading-reloading loop. The prediction is similar to extrapolation if we infer large 
unloading-reloading loops with only small-loop data because a large loop may include richer information than small loops. 
Furthermore, Fig. 13a indicates that the loops at the elastic-plastic transition phase (a major principal strain ranging from 0.03 to 0.07) 
may outweigh those at the critical stage where the stress remains constant with the increasing strain. The reason can be attributed to 
the fact that the adopted training data has a relatively long and steady critical state (see Fig. 10), and thus the information density 
carried by the data points at the post-peak state is lower than those at the elastic-plastic transition stage. 

By observing the first and second rounds of selected data in Fig. 13b, it is found that the selected data always occur in clusters. This 
phenomenon may explain why the active learning algorithm may underperform conventional passive learning when the surrogate 
DNNs do not learn the real relation at all. The reasons can be that the active learning algorithm may converge to local or short-sighted 
optimal solutions due to the greedy nature of the algorithm. A greedy algorithm often fails to make the best decision although it always 
goes for the local best choice at each iteration. 

4. Interactive constitutive training and data labelling through active learning 

In Section 3, all the stress-strain data is created before training models. The computational costs for preparing data are thus not 
reduced. In this section, the training of DNNs and the generation of data via microscale DEM simulations are performed in an 
interactive manner. Active learning is used to judiciously select data and only the most informative data is labelled, aiming to reduce 
the overall size of training datasets. 

4.1. Strain path falsification 

In continuum-based numerical computations, the constitutive relation of a specific material receives a strain tensor and yields a 
corresponding stress tensor. The premise of using active learning is that inputs X or unlabelled datasets Du are available. Thus, the 
primary concern of applying active learning in constitutive modelling is whether the strain sequences can be constructed to generate an 
unlabelled data pool. Yet, granular media is a typical material which cannot undergo tensile and large compressive deformation. The 
admissible deformation scope for granular materials is restricted to a relatively narrow strain-stress space, compared to those of other 
solid materials (e.g., rubber and metal). In addition, the most common strain-stress path of granular materials experienced in a BVP is 
shear-type deformation, which is not easy to be artificially constructed through either proportional or random loading in the context of 
full-strain-dominated loading conditions. 

Inspired by conventional triaxial experiments of granular soils, the in-situ stress condition of soils existing in the ground is 
approximated by imposing a constant confining pressure. An axial strain is applied to represent external disturbances on specimens. 
Such a hybrid boundary condition simplifies the complexity of artificially constructing admissible deformation for a granular specimen 
because the constant confining pressure ensures that the granular specimen does not undergo tensile or excessive isotropic 

Fig. 13. The added data specimens via active learning in each round.  
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compression loads. Also, only the one-dimensional axial strain needs to be fabricated. In this section, we adopt the most common 
experiment in geotechnical engineering as the prototype to perform deep active learning. 

4.2. A surrogate error indicator for data-driven constitutive modelling 

Although the granular specimen is not perfectly isotropic, especially during the loading process, we implicitly incorporate the 
isotropic assumption by homogenising stress responses in a triaxial testing condition. For an isotropic material, the strain state at a 
point in a 3D space should be depicted through at least three components (principal variables or invariants). When performing data- 
driven constitutive modelling, it is crucial to keep complete strain components (e.g. three principal strains) as inputs. For a conven
tional triaxial testing condition, the axial strain path can be falsified readily, but the lateral strain relates to the properties of materials 
and is thus difficult to construct artificially. Although the stress-strain prediction model should obey the relation shown in Fig. 14a: 
[Axial strain, lateral strain]→[axial stress], we introduce a new mapping relation which links the axial strain and the axial stress 
directly (see Fig. 14b). The mapping requires only axial strain sequences as inputs thus one can generate extensive strain paths as 
unlabelled datasets. 

Fig. 14. Inputs and outputs for data-driven stress-strain modelling in a conventional triaxial testing condition.  

Fig. 15. The workflow of global domain examination and resampling strategy.  
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The underlying idea is that both DNNs in Fig. 14 suffer from the same data scarcity issue, provided that they share the same training 
data. The predictions around the region where the training data is insufficient will have a larger variance than the region where data is 
sufficiently covered. Model B in Fig. 14b is not the desired candidate to forecast the stress-strain behaviour, but the active learning 
strategy introduced in Section 3 enables it to be a surrogate error indicator to identify the most helpful data for improving the current 
DNNs. Then these identified strain paths will be imposed on DEM specimens as the deformation of the boundaries to generate cor
responding stress responses as new training data. Model A in Fig. 14a will make use of the resampled data to improve it. These 
procedures are repeated until a satisfactory predictive model has been fitted. 

4.3. Examination of the whole domain and adaptive resampling: an example with varied unloading-reloading cycles 

The stress-strain curves with varied unloading-reloading loops are challenging to be predicted by traditional constitutive models. In 
this section, conventional triaxial loading cases with unloading-reloading loops are adopted to examine the capability of active 
learning in distinguishing complex strain paths. Constitutive modelling of path-dependent materials is a typical time series problem. To 
obtain unlabelled strain paths with unloading-reloading cycles, we artificially construct strain paths passing through selected 
unloading and reloading points, and then interpolate data points with equal spacing. These unloading and reloading strains can be 
described with horizontal and vertical coordinates in Cartesian coordinates, as shown in Section 3. For a strain-dominated loading 
condition, such a falsification of the axial strain path resembles the actual strain sequence in laboratory experiments, provided that a 
similar interval is selected. Through a large number of artificial strain paths, we can develop a global domain examination and 
resampling strategy. The workflow is shown in Fig. 15 and the detailed procedure is described below: 

Fig. 16. Sampling space for training and examination.  
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(1) Train a constitutive model (Model A) and three surrogate error models (Model B) based on the available stress-strain data pool.  
(2) Choose unloading-reloading strain points with a desired resolution in the whole domain, and then construct the strain sequence 

(unlabelled data) with even interpolation.  
(3) Utilise the three trained surrogate error indicators (Model B) with diverse initial weights and biases to predict stress values for 

these falsified strain paths.  
(4) Calculate the standard deviation (Eq. (1)) of each stress sequence prediction and rank the standard deviations of all strain 

sequences.  
(5) Select ten strain paths with the largest standard deviations from the previously ranked data pool using the batch-mode scheme 

(Fig. 6).  
(6) Perform DEM simulations using the ten selected strain paths as boundary conditions to generate corresponding stress responses. 

This procedure aims to tag the most instructive unlabelled data specimens.  
(7) Use the trained constitutive model (Model A) to forecast the ten newly generated DEM specimens and evaluate the prediction 

accuracy. In the case that all the predictions have reached a satisfactory level, the current DNN model can be regarded as a 
reliable constitutive model. Otherwise, add these newly generated data to the training datasets, and repeat steps (1)–(7). 

In the above workflow, Models A and B share the same network architecture and hyperparameters, but Model B only inherits part of 
the input features from Model A. Note that the number of network layers and neurons relates to the amount of training data and in 
principle, the DNN architecture and hyperparameters in each training phase for different models should be modified, because the 
optimal architecture may change slightly with a variation in training specimens. Yet the model architecture and hyperparameters are 
currently kept constant to reduce expensive tentative training costs when tuning these hyperparameters. In the future, some available 
packages, especially new algorithms in autoML, deserve to be explored to tune the network architecture automatically. 

4.4. Verification of the interactive learning strategy 

We consider training a data-driven model aiming to capture strain-stress mapping in a conventional testing condition with mutually 
different unloading-reloading points. The initial training data is randomly sampled as shown in Fig. 16a. Three DNNs fitted with these 
initial specimens are employed to examine unreliable predictions in the global domain with a strain interval of 0.003 shown in 
Fig. 16b. 

All the training data is developed via DEM simulations of conventional triaxial testing. The simulated parameters are the same as 
the constant-p true triaxial testing in Section 3. The confining pressure is kept to 200 kPa during testing. A GRU network is used as a 
base DNN for constitutive training. Based on the initial random specimens shown in Fig. 16, the initial model, obtained by trial-and- 
error, includes two GRU hidden layers with 60 neurons and a dropout rate of 0.02 for each layer, resulting in a total of 33,843 weights 
and biases parameters. The two GRU layers adopt the tanh activation function while the output layer uses a linear activation. The 
optimiser is the adaptive moment estimation (Adam) and the learning rate is 0.01. These networks are trained for 2000 epochs with a 
batch size of 256. MAE, as defined in Eq. (3), is used as the loss function. 

Following the procedure described in Section 4.3, we train Model A for constitutive predictions while three error indication models 
(Model B) for seeking ten groups of most unreliable predictions. The ground-truth stress responses are obtained by performing DEM 
simulations of the selected strain paths. The forecasting accuracy of the selected samples is evaluated by comparing the predictions 
given by Model A and the ground truth from DEM simulations. The forecast results are shown in Table 4. Note that the first three 
columns are discovered by Model B while the last two columns are verified by Model A. The results demonstrate that almost all the 
predictions on these specimens are not sufficiently accurate and the average prediction score reaches only 0.71. In the next round, 
these new specimens will be added to the training samples and used for re-training DNNs. 

To verify the proposed interactive constitutive training scheme, we also choose ten strain paths with the smallest standard de
viations. The corresponding stress responses of these strain paths are also obtained via DEM simulations. The batch-mode scheme is 
used to create a wider range of representatives. Table 5 gives the prediction performances of these specimens. The results show that all 
the specimens are satisfactorily forecasted with a full score. 

The comparison between Tables 4 and 5 reveals that the proposed surrogate error indication model is useful for searching for the 

Table 4 
The prediction performance of the selected ten samples with the greatest standard deviations but extracting neighbouring points.  

Unloading strain Reloading strain Standard deviation Score MAE 

0.036 0.006 0.316 0.795 0.041 
0.027 0.006 0.313 0.759 0.047 
0.054 0.003 0.313 0.605 0.055 
0.018 0.003 0.310 0.519 0.081 
0.060 0.003 0.309 0.780 0.044 
0.117 0.006 0.308 0.653 0.053 
0.048 0.003 0.305 0.706 0.043 
0.042 0.006 0.304 0.783 0.044 
0.072 0.003 0.302 0.907 0.028 
0.066 0.003 0.302 0.559 0.065  
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Table 5 
The prediction performance on the ten specimens with the smallest standard deviations.  

Unloading strain Reloading strain Standard deviation Score MAE 

0.075 0.066 0.041 1.0 0.011 
0.063 0.054 0.044 1.0 0.013 
0.069 0.057 0.046 1.0 0.013 
0.081 0.069 0.061 1.0 0.009 
0.060 0.048 0.062 1.0 0.011 
0.069 0.063 0.064 1.0 0.017 
0.051 0.042 0.064 1.0 0.010 
0.081 0.075 0.067 1.0 0.012 
0.057 0.042 0.069 1.0 0.017 
0.063 0.060 0.069 1.0 0.016  

Fig. 17. The worst forecasts discovered in the sixth round of active learning.  
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weakness of DNN models, even though actual stress-strain responses are unknown. For the committee-based active learning scheme, 
the main computational costs occur in training three DNNs as committee members (~0.5 h per DNN), while the querying process can 
be finished in a few seconds. In contrast, it takes a few hours to run a group of DEM specimens. By reducing the number of generating 
DEM specimens, the cost of training a reliable DNN model will be greatly saved. 

By repeating the global domain examination and resampling scheme, the prediction accuracy of the data-driven constitutive model 
will be gradually enhanced. This repetition process terminates when the ten discovered specimens with the largest variances can be 
satisfactorily forecasted. In our current model, applying six rounds of resampling is found to be able to develop a sufficiently reliable 
data-driven constitutive model over the domain of interest. The data during each prediction examination and resampling are recorded 
in Tables A1-A5 in Appendix. The worst forecasts after the sixth round of active learning are shown in Fig. 17. 

The newly added training specimens during each active learning round can be found in Fig. 18. The results show that the majority 
of newly added data are located in the shaded domain where the reloading strain is lower than 0.02. These points represent relatively 
large unloading-reloading loops. In contrast, only one specimen is selected as a reloading strain larger than 0.04. Again, the results 
confirm the importance of labelling the stress-strain curves with large unloading-reloading cycles. 

4.5. An examination of generalisation ability: can we predict multiple unloading-reloading cycles with single unloading-reloading data? 

After a DNN model has been proven to be able to predict single unloading-reloading cycles, a question arises: can we predict 
multiple quasi-static unloading-reloading cycles with single unloading-reloading data? Here the quasi-static unloading-reloading 
means that the inertia forces are not present in the specimens and that at each time step the specimen can be regarded as a static 
equilibrium state. 

This question is significant for developing a more generalised data-driven constitutive model, as many engineering models may 
incorporate multiple unloading-reloading disturbances, but it is highly time-consuming and impractical to prepare training data 
covering all possible unloading-reloading cycles. 

In this section, multiple specimens with two, three and more quasi-static unloading-reloading cycles are modelled via DEM. The 
trained model in Section 4.4 is used to predict these complex mechanical responses. The results show that the stress-strain curves with 
multiple unloading-reloading cycles can be captured satisfactorily by the trained model with only a single-loop training data, although 
the prediction deteriorates as the number of loops increases. Fig. 19 lists some of the representative predictions. 

An important microscopic origin of the elastic-plastic behaviour of granular media is that the external deformation paths make 
internal grains move around each other permanently. These irreversible movements alter the inherent microstructures of granular 
assemblies and thus affect the subsequent stress-strain relations. Provided that the evolution of microstructures under certain external 
deformation conditions can be implicitly captured by a DNN model, a deep learning model trained with a single unloading-reloading 
cycle should capture a similar evolution of inherent microstructures. It should be emphasised, however, that the conclusion holds only 
when particle breakage or degradation is absent during loading. The irreversible damage of particle grains during unloading-reloading 
cycles will make stress prediction more challenging. This problem is not investigated in the current work. 

Fig. 18. The newly added data specimens in each active learning round.  
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5. Deep active learning-based data-driven multiscale modelling 

This section aims to demonstrate the application of active learning in data-driven hierarchical multiscale modelling (HMM) of 
granular materials. The HMM scheme coupling FEM and DEM (FD-HMM for short) is a computational framework which utilises online 
DEM simulations to replace phenomenological constitutive models in FEM computations (Guo and Zhao, 2014). In this section, we 
leverage HMM to generate a large number of stress-strain sequence pairs with ample and realistically experienced strain paths in BVPs. 
The generated data is used to train deep learning-based constitutive models. When transferring a DNN-based constitutive model to 
macroscopic FEM computations of a BVP, the DNN model may suffer from new mispredictions. We try to harness active learning to 
automatically detect potentially unreliable predictions and improve them until the model meets the prescribed accuracy requirements. 

5.1. Hierarchical multiscale modelling coupled FEM and DEM 

For the FD-HMM, the macroscopic BVPs are simulated via FEM while the loading path-dependent constitutive relation at each 
Gauss point is provided by grain-scale DEM solutions of RVE specimens. The solution procedure is illustrated in Fig. 20. Specifically, 
DEM receives the global deformation at Gauss points from FEM as boundary conditions for the RVEs and solves them to obtain the 
corresponding stress responses and tangent operators which are passed on to Gauss points for FEM computations. This procedure is 

Fig. 19. Representative forecasts with multiple unloading-reloading loops.  
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repeated until the end of the simulation. 
This hierarchical framework circumvents the phenomenological assumptions on the constitutive relation of materials in conven

tional continuum modelling and has been a widely accepted method to simulate large-scale BVPs in granular soils. However, despite 
unique advantages, the FD-HMM has to solve massive RVEs with DEM. The prohibitively expensive costs required, have restricted its 
further application in engineering scale BVPs. In addition to parallel computing (Guo and Zhao, 2016b; Zhao et al., 2021), data-driven 
multiscale modelling is also an efficient approach to accelerating the computation of FD-HMM (Karapiperis et al., 2021). 

5.2. Data-driven multiscale modelling coupled FEM and deep learning models 

RNNs have a strong fitting capability but require many parameters to be trained and a long inference time as well. In contrast, MLP 
is more efficient but has to introduce extra internal variables to capture the loading-path dependence of strain-stress responses. One 
option is by using the accumulation of absolute strain increments φ to encode the loading history (Guan et al., 2022; Huang et al., 
2020): 
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(4)  

where φ(t)
j , Δε(t)j and ε(t)j represent the jth components of the internal variable, the strain increment, and the absolute strain, respec

tively, at the time t ⊆ [1,T]. Note here t represents the time step, rather than a physical time metric. In this section, an MLP-based 
neutral network is fitted for constitutive modelling by taking advantage of its high efficiency in prediction and demonstrating the 
wide applicability of active learning in various base models. 

Another consideration is that when employing implicit FEM for computations, the tangent operator D at each Gaussian point is 
required to compute the element stiffness matrix Ke 

Ke =

∫

Ωe
BT DBdΩe (5)  

where B is the gradient of shape function, which can be determined provided that a specific element type is selected; Ωe denotes the 
element domain. In the FD-HMM framework, the tangent operator D can be approximated with the microstructure and particle-scale 
stiffness parameters in DEM based on some homogenisation methods. The analytical formulation based on Vogit’s homogenisation 
(uniform strain field) is given: 

Fig. 20. The computation procedures of FEM×DEM hierarchical multiscale modelling (adapted from Guo and Zhao 2014).  
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D =
1
V
∑

Nc

(knnc ⊗ dc ⊗ nc ⊗ dc + kstc ⊗ dc ⊗ tc ⊗ dc
) (6)  

where Nc denotes the total number of mechanical contacts within the RVE specimen; V represents the volume of the RVE; kn and ks are 
interparticle normal and tangential contact stiffnesses, respectively; nc and tc are unit vectors in the normal and tangential directions of 
a contact plane, respectively; dc is the branch vector connecting the centroids of two contacting particles. The tangent operator D can 
be obtained directly from the corresponding DEM simulations for each Gauss point. 

In the context of data-driven hierarchical multiscale modelling, D should be provided by the trained neural network. One prac
tically feasible way is to include D as an additional output variable. Recalling the former statement of incorporating the internal 
variable φ as the extra input, now the MLP-based mapping relation becomes: 

{
D
⌢(t)

,σ̂ (t)
} = N N

(
ϵ(t),φ(t)) (7)  

where D
⌢(t)

and σ̂ (t) represent the predicted tangent operator and stress responses at the time t, respectively. 

5.3. Deep active learning-assisted multiscale modelling 

5.3.1. The model configuration 
A rigid strip footing problem is employed to exemplify the application of active learning in data-driven multiscale modelling. The 

geometrical configuration, boundary conditions and discretisation scheme are shown in Fig. 21. Given the symmetry of the problem 
concerned, only half of the domain is modelled to reduce computational costs. The widths of the half domain and half footing are 4 m 
and 0.5 m, respectively. The depth of the whole domain is 2 m. The horizontal displacements of both lateral boundaries are restrained 
while the bottom of the entire domain is fixed. A surcharge q of 200 kPa is applied on the ground surface of the footing. The footing is 
discretised with 402 second-order six-node triangular elements with a total of 1,206 Gaussian points. Each Gaussian point shares the 
same RVE packing in DEM simulations. Each RVE consists of 400 particles and a periodic boundary is adopted to reduce possible 
boundary effects. Thus 482,400 particles in total are involved in the HMM model. The particle-scale parameters used are listed in 
Table 6. 

5.3.2. Active learning-assisted data-driven multiscale modelling 
The physics-based FD-HMM is conducted following the framework developed by Guo and Zhao (2014). The FEM and DEM modules 

are computed by two open-source software Escript and Yade, respectively. In this section, an MLP is fitted and embedded into FEM to 
bypass DEM simulations in the data-driven multiscale modelling. The input and output features are given by Eq. (7). The 

Fig. 21. Mesh partition and boundary conditions for the strip footing.  

Table 6 
DEM parameters for the footing model.  

Radii 
(mm) 

Density 
(kg/m3) 

Young’s modulus (Pa) Poisson’s ratio Frictional coefficient Confining pressure (kPa) 

2-4 2,600 6×108 0.2 0.5 200  
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computational procedure coincides with the standard implicit FEM routine while the duty of constitutive relation is assumed by a deep 
learning model. 

The strain-stress and strain-tangent operator D pairs experienced by each Gaussian point in the multiscale model serve as training 
data. However, when performing simply 58 loading steps in FD-HMM, a large number of data pairs are generated. If all the available 
data is fed to a DNN model for training, one has to bear a massive training cost. Given that many of the datasets share a high degree of 
similarity, we initiate a two-stage scheme combined with the active learning algorithm. 

In the first stage of active learning, three DNN models are trained using randomly extracted 5‰ of the total data points. Then active 
learning automatically identifies 5‰ more data points which are the worst forecasted by the current DNN model. In the second stage, 
these newly discovered data points are added to the training dataset (now 1% in total) and a new DNN model is fitted based on the 
updated data. 

Note that although D is also an output, only the predicted stress is used as the indicator to prioritise the selection of the most 
informative training datasets. This is because the stress tensor and tangent operator D are interconnected and paired, and the data 
deficiency informed by stress-based active learning will also disclose such a situation for D matrix. Considering that D is a 4×4 tensor 
with 16 components, even in a 2-dimensional condition, the bypass of D during the active learning process significantly reduces 

Fig. 22. Comparison of the distributions of the displacement field in (a) FEM-DEM and (b) FEM-DNN modelling.  

Fig. 23. Load-displacement curves in both FEM-DEM and FEM-DNN modelling.  
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computational costs. 
When embedding the new DNN into FEM, it is found that the active learning-enhanced DNN can drive FEM computations satis

factorily. Fig. 22 compares the distributions of the displacement field between both FEM-DEM and FEM-DNN modelling after the 
loading. Fig. 23 demonstrates a quantitative comparison of the two load-displacement curves. All the results show that the data-driven 
constitutive model with a small training dataset has reproduced a high-fidelity simulation with the help of active learning. In addition, 
FD-HMM consumes 28 h 21 mins while the FEM-DNN scheme requires 7.7 mins to finish the whole computational process. The data- 
driven multiscale model exhibits nearly 211 times of acceleration than the FD-HMM model. 

6. Discussion 

6.1. Significance of active learning 

(1) We know when our model does not know 
When performing FEM simulations with data-driven constitutive models, a major concern is whether such a FEM simulation is 

sufficiently reliable. Following the idea of committee-based active learning, we can train multiple surrogate models simultaneously 
based on available datasets. If the predicted responses given by different DNNs vary from each other with a relatively large 
discrepancy, there might be a high risk of mispredictions. Then a procedure of labelling these strain paths is taken to enrich training 
datasets. The DNN model is refitted based on the new training dataset to improve the generalisation capability. Active learning enables 
DNN models to be self-learning with an intelligent sampling scheme. 

Furthermore, in DNN-based FEM computations, the initiation and evolvement of possible errors can be estimated by active learning 
and visualised in real time. Fig. 24 shows the distribution and evolution of potential forecast errors in a rigid strip footing simulation 
via committee-based active learning. The relative standard deviations of predicted stress given by three different committee member 
DNNs at each Gauss point are utilised to indicate the magnitude of prediction errors. Four different loading steps are used to 
demonstrate the initiation and development of errors during loading. The figure suggests that the domain where large shear defor
mation occurs is most likely to be mis-predicted, which is consistent with our intuition. The results indicate that active learning can 
enable FEM simulations with data-driven constitutive models to identify unreliable forecasts on their own, i.e. “we know when our 
model does not know”. This is of significance to boost the confidence in developing trust-worthy data-driven models for scientific 
computations. 

(2) Developing small-data-driven models with better generalisation capability 
The data-hungry nature and the susceptibility to misprediction are two open challenges for a data-centric surrogate model. This 

study has confirmed the potential of active learning for developing a reliable and cost-effective data-driven constitutive model for 
granular materials. At each round of training, DNNs always discover and label the most hard-to-predict strain paths. This feature 
bypasses the need to label the less informative data. In addition, active learning can be a useful tool to combat imbalanced data, where 
most supervised learning models ignore and in turn tend to mis-predict the minority class, although the predictions of these minority 
datasets often dominate the success of the trained model. Active learning will automatically select these minority data if the trained 
DNNs mis-predict them. 

Fig. 24. Active learning-assisted detection of relative forecast errors in FEM-DNN simulations at four different loading steps.  
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6.2. Limitation of active learning and future work 

(1) Strain paths must be available to reduce labelling costs 
A prerequisite of implementing active learning for data-driven constitutive modelling is that a large number of strain paths should 

be available. Although a fraction of them can be artificially constructed as demonstrated in Section 4, most strain paths experienced by 
Gauss points in a BVP are intertwined with stress responses and are thus hard to be falsified. This limitation no doubt restricts active 
learning from bringing possible disruptive progress for data-driven constitutive modelling. To address this issue, a possible remedy is 
by exploiting advanced machine learning tools, such as deep generative models, to learn the probability distribution of real strain- 
stress paths in typical BVPs. Then the learned generative model can produce massive strain paths that probably occur in engineer
ing problems but never be seen in existing datasets. The data pool can be used to verify the effectiveness of the model in a wider strain 
space through active learning. 

(2) Active learning tends to be sensitive to outliers in noisy datasets 
Active learning can identify the most unreliable forecasts while these recognised datasets might be outliers. If active learning deals 

with data with high-level noises or fluctuations, the algorithm may constantly add outliers to training datasets which will certainly 
deteriorate the predictive capability of models. For example, the post-peak stress-strain stage experienced by a granular RVE may 
exhibit remarkable “stick-slip” behaviour with locally up-and-down stress values because of the evolving breakage and reconstruction 
of strong force chains in deformed granular materials. The same situations apply equally to laboratory experiment-based data. In 
contrast, the datasets from analytical formulations are almost continuous and are easier to be fitted. However, closed-form expressions 
can simply provide approximated stress-strain data for certain materials. Thus one has to consider the value of training a surrogate 
model with such imperfect data. 

To tackle the noisy data and enable a wider application of active learning, more research needs to be explored in the future. On the 
one hand, some advanced feature extraction measures should be harnessed to denoise or ‘wash’ datasets. On the other hand, some 
customed active learning algorithms should be designed to automatically remove the measurable fluctuated points. 

7. Concluding remarks 

This study has developed a deep active learning-empowered data-driven constitutive modelling strategy, aiming to partially 
address two open challenges in the field: (1) use a small dataset to train a good predictive model, and (2) verify the reliability of a 
model without knowing ground truth. Three different application scenarios with RNNs and MLP-based DNN models are investigated in 
detail. The deep learning-based constitutive models of granular materials are also embedded into FEM to instantiate the unique 
advantage of active learning in recognising unreliable predictions for macro-scale simulations. The approach is conceptually simple 
but practically useful. In addition, the method is general and applicable to various data-centric surrogate models across science and 
engineering fields. The key findings are summarised below.  

(1) Committee-based active learning requires only a few committee members provided that each committee member has learned 
sufficient knowledge. The greatest advantage of active learning lies in its ability to detect inaccurate predictions without 
knowing ground-truth, rather than guiding the surrogate model to select data at the very beginning of the training phase.  

(2) The key to achieving interactive data-driven constitutive training, where training models and tagging data are dynamically 
performed, is that a pool of strain paths should be available beforehand. By using the proposed surrogate error indicator 
approach, some specific strain paths of certain proportional loadings can be artificially constructed.  

(3) The active learning algorithm is a useful tool to automatically discover the underlying order of importance for a pool of data. 
Such insight enables to develop a reliable model with as small datasets as possible by only preparing the most informative 
specimen for the current surrogate model.  

(4) Data-driven constitutive models can reproduce the simulation results of hierarchical multiscale modelling satisfactorily with 
much reduced computational costs. Active learning can detect potentially inaccurate predictions even in macroscale simula
tions, which is crucial to informing high-consequence decision-making of FEM computations with AI-based constitutive models. 
Particularly, these deep learning models can retrain themselves by adding those previously mis-predicted data and thus achieve 
self-learning or self-improvement via the active learning strategy. 
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Appendix   

Table A1 
The second-round selected ten specimens with the greatest standard deviations.  

Unloading strain Reloading strain Score MAE 

0.087 0.015 0.834 0.029 
0.093 0.015 0.938 0.026 
0.084 0.009 0.809 0.038 
0.081 0.003 0.881 0.025 
0.093 0.021 0.644 0.048 
0.090 0.009 0.711 0.054 
0.087 0.021 0.686 0.050 
0.093 0.021 0.607 0.065 
0.099 0.021 0.664 0.061 
0.090 0.003 0.637 0.061  

Table A2 
The third-round selected ten specimens with the greatest standard deviations.  

Unloading strain Reloading strain Score MAE 

0.030 0.003 0.809 0.034 
0.024 0.003 0.869 0.030 
0.117 0.003 0.856 0.032 
0.117 0.009 0.848 0.033 
0.117 0.018 0.647 0.054 
0.117 0.024 0.672 0.048 
0.036 0.003 0.792 0.041 
0.111 0.003 0.735 0.047 
0.117 0.030 0.786 0.036 
0.111 0.009 0.856 0.033  

Table A3 
The fourth-round selected ten specimens with the greatest standard deviations.  

Unloading strain Reloading strain Score MAE 

0.039 0.018 0.894 0.024 
0.057 0.012 0.730 0.049 
0.033 0.009 0.930 0.023 
0.051 0.015 0.839 0.037 
0.033 0.015 0.931 0.024 
0.045 0.015 0.833 0.031 
0.099 0.003 0.777 0.042 
0.108 0.003 0.905 0.026 
0.063 0.009 0.665 0.056 
0.087 0.003 0.929 0.026  
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Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E., 2018. All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392. 
Kuhn, M.R., Daouadji, A., 2018a. Multi-directional behavior of granular materials and its relation to incremental elasto-plasticity. Int. J. Solids Struct. 152, 305–323. 
Kuhn, M.R., Daouadji, A., 2018b. Quasi-static incremental behavior of granular materials: elastic–plastic coupling and micro-scale dissipation. J. Mech. Phys. Solids 

114, 219–237. 
Lewis, D.D., Catlett, J., 1994. Heterogeneous uncertainty sampling for supervised learning. In: Proceedings of the Machine Learning. Elsevier, pp. 148–156 pp.  
Li, X., Roth, C.C., Bonatti, C., Mohr, D., 2022. Counterexample-trained neural network model of rate and temperature dependent hardening with dynamic strain aging. 

Int. J. Plast. 151, 103218. 
Lughofer, E., 2012. Hybrid active learning for reducing the annotation effort of operators in classification systems. Pattern Recognit. 45, 884–896. 

Table A4 
The fifth-round selected ten specimens with the greatest standard deviations.  

Unloading strain Reloading strain Score MAE 

0.108 0.006 1.0 0.018 
0.114 0.009 0.957 0.021 
0.114 0.078 0.968 0.029 
0.102 0.003 0.993 0.020 
0.036 0.015 1.0 0.018 
0.057 0.009 0.987 0.034 
0.048 0.012 0.996 0.029 
0.024 0.015 1.0 0.019 
0.051 0.012 1.0 0.031 
0.018 0.015 0.951 0.026  

Table A5 
The sixth-round selected ten specimens with the greatest standard deviations.  

Unloading strain Reloading strain Score MAE 

0.042 0.018 1.0 0.012 
0.036 0.018 1.0 0.010 
0.030 0.006 1.0 0.014 
0.006 0.003 1.0 0.014 
0.030 0.009 1.0 0.015 
0.036 0.012 1.0 0.013 
0.039 0.021 1.0 0.012 
0.039 0.006 1.0 0.017 
0.024 0.006 1.0 0.015 
0.042 0.012 1.0 0.019  

T. Qu et al.                                                                                                                                                                                                              

http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0001
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0001
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0002
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0003
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0004
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0005
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0005
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0007
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0008
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0009
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0010
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0011
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0011
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0012
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0013
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0014
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0015
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0016
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0016
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0017
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0017
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0018
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0018
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0019
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0019
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0020
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0020
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0021
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0022
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0022
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0023
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0024
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0025
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0026
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0026
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0027
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0028
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0028
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0029


International Journal of Plasticity 164 (2023) 103576

26

Ma, G., Guan, S., Wang, Q., Feng, Y., Zhou, W., 2022. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. Acta 
Geotech. 17, 3463–3478. 

Masi, F., Stefanou, I., 2022. Multiscale modeling of inelastic materials with thermodynamics-based Artificial Neural Networks (TANN). Comput. Methods Appl. Mech. 
Eng. 398, 115190. 

Masi, F., Stefanou, I., Vannucci, P., Maffi-Berthier, V., 2021. Thermodynamics-based artificial neural networks for constitutive modeling. J. Mech. Phys. Solids 147, 
104277. 

Peng, Y., Ding, X., Xiao, Y., Deng, X., Deng, W., 2020. Detailed amount of particle breakage in nonuniformly graded sands under one-dimensional compression. Can. 
Geotech. J. 57, 1239–1246. 

Peng, Y., Yin, Z.Y., Ding, X., 2022. Analysis of particle corner-breakage effect on pile penetration in coral sand: model tests and DEM simulations. Can. Geotech. J. 
https://doi.org/10.1139/cgj-2022-0038. 

Pouragha, M., Wan, R., 2017. Non-dissipative structural evolutions in granular materials within the small strain range. Int. J. Solids Struct. 110, 94–105. 
Qu, T., Di, S., Feng, Y., Wang, M., Zhao, T., 2021a. Towards data-driven constitutive modelling for granular materials via micromechanics-informed deep learning. Int. 

J. Plast. 144, 103046. 
Qu, T., Di, S., T Feng, Y., Wang, M., Zhao, T., Wang, M., 2021b. Deep learning predicts stress–strain relations of granular materials based on triaxial testing data. 

Comput. Model. Eng. Sci. 128, 129–144. 
Qu, T., Feng, Y., Wang, M., 2021c. An adaptive granular representative volume element model with an evolutionary periodic boundary for hierarchical multiscale 

analysis. Int. J. Numer. Methods Eng. 122, 2239–2253. 
Qu, T., Feng, Y., Wang, Y., Wang, M., 2019. Discrete element modelling of flexible membrane boundaries for triaxial tests. Comput. Geotech. 115, 103154. 
Qu, T., Wang, M., Feng, Y., 2022. Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials. J. Rock 

Mech. Geotech. Eng. 14, 240–251. 
Settles, B., 2009. Active learning literature survey. 
Seung, H.S., Opper, M., Sompolinsky, H., 1992. Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 287–294. 
Shi, X., Zhao, J., Yin, J., Yu, Z., 2019. An elastoplastic model for gap-graded soils based on homogenization theory. Int. J. Solids Struct. 163, 1–14. 
Tancogne-Dejean, T., Gorji, M.B., Zhu, J., Mohr, D., 2021. Recurrent neural network modeling of the large deformation of lithium-ion battery cells. Int. J. Plast. 146, 

103072. 
Vlassis, N.N., Sun, W., 2021. Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening. 

Comput. Methods Appl. Mech. Eng. 377, 113695. 
Wang, K., Sun, W., 2019. Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. 

Comput. Methods Appl. Mech. Eng. 346, 216–241. 
Wang, K., Sun, W., Du, Q., 2019. A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. 

Comput. Mech. 64, 467–499. 
Wang, M., Qu, T., Guan, S., Zhao, T., Liu, B., Feng, Y., 2022. Data-driven strain–stress modelling of granular materials via temporal convolution neural network. 

Comput. Geotech. 152, 105049. 
Wen, J., Zou, Q., Wei, Y., 2021. Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element 

implementation. J. Mech. Phys. Solids 153, 104481. 
Wu, M., Wang, J., 2022. Constitutive modelling of natural sands using a deep learning approach accounting for particle shape effects. Powder Technol. 404, 117439. 
Wu, M., Xia, Z., Wang, J., 2022. Constitutive modelling of idealised granular materials using machine learning method. J. Rock Mech. Geotech. Eng. https://doi.org/ 

10.1016/j.jrmge.2022.08.002. 
Xi, X., Yin, Z., Yang, S., Li, C.Q., 2021. Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the meso-scale. 

Eng. Fract. Mech. 242, 107488. 
Zhang, A., Dafalias, Y.F., Jiang, M., 2023. A bounding surface plasticity model for cemented sand under monotonic and cyclic loading. Géotechnique 73 (1), 44–61. 
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Zhao, J., Jiang, M., Soga, K., Luding, S., 2016. Micro origins for macro behavior in granular media. Granul. Matter 18, 1–5. 
Zhao, S., Zhao, J., Liang, W., 2021. A thread-block-wise computational framework for large-scale hierarchical continuum-discrete modeling of granular media. Int. J. 

Numer. Methods Eng. 122, 579–608. 

T. Qu et al.                                                                                                                                                                                                              

http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0030
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0030
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0031
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0031
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0032
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0032
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0033
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0033
https://doi.org/10.1139/cgj-2022-0038
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0035
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0036
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0036
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0037
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0037
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0038
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0038
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0039
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0040
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0040
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0042
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0043
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0044
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0044
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0045
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0045
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0046
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0046
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0047
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0047
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0048
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0048
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0049
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0049
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0050
https://doi.org/10.1016/j.jrmge.2022.08.002
https://doi.org/10.1016/j.jrmge.2022.08.002
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0052
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0052
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0053
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0054
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0055
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0055
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0056
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0056
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0057
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0058
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0059
http://refhub.elsevier.com/S0749-6419(23)00062-1/sbref0059

	Deep active learning for constitutive modelling of granular materials: From representative volume elements to implicit fini ...
	1 Introduction
	2 A deep active learning strategy for constitutive modelling
	3 A comprehensive examination of active learning-assisted data-driven constitutive modelling based on a data pool
	3.1 Discrete element models to generate data
	3.2 The adopted GRU neural network and accuracy evaluation
	3.3 Examination and verification of the role of active learning in constitutive modelling
	3.4 Batch-mode active learning scheme
	3.5 Prediction performance of three training cases
	3.6 Active learning-informed data preparation

	4 Interactive constitutive training and data labelling through active learning
	4.1 Strain path falsification
	4.2 A surrogate error indicator for data-driven constitutive modelling
	4.3 Examination of the whole domain and adaptive resampling: an example with varied unloading-reloading cycles
	4.4 Verification of the interactive learning strategy
	4.5 An examination of generalisation ability: can we predict multiple unloading-reloading cycles with single unloading-relo ...

	5 Deep active learning-based data-driven multiscale modelling
	5.1 Hierarchical multiscale modelling coupled FEM and DEM
	5.2 Data-driven multiscale modelling coupled FEM and deep learning models
	5.3 Deep active learning-assisted multiscale modelling
	5.3.1 The model configuration
	5.3.2 Active learning-assisted data-driven multiscale modelling


	6 Discussion
	6.1 Significance of active learning
	6.2 Limitation of active learning and future work

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix
	References


