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Abstract

We propose a multiscale, multiphysics approach by coupling two-phase material point method (MPM) with discrete element
ethod (DEM) (MPM-DEM) to simulate the hydro-mechanical coupling responses of saturated granular media from small strain

n route to large deformation under either quasi-static or dynamic loading conditions. The multiscale scheme is featured by (a)
sing a two-phase MPM in conjunction with the u − v − p formulation to solve the solid–fluid interactions in the macroscopic
omain of a boundary value problem of saturated porous media, and (b) employing a DEM assembly comprised of arbitrarily
haped particles to provide path-dependent effective constitutive responses for each material point under complex loading
onditions. A semi-implicit integration scheme based on the fractional step algorithm is further implemented in the proposed
ultiscale approach to improve its overall efficiency. The proposed approach is validated by the one-dimensional consolidation

est before being further used to simulate more challenging problems, including the cyclic shaking test, the column collapse,
nd the wave propagation in anisotropic saturated porous media. We demonstrate that the proposed MPM-DEM approach is
owerful and versatile in capturing the complicated static and dynamic multiphysics interactions exhibited in saturated granular
edia that could be of practical importance in various engineering settings. We further establish connections between these
acroscopic observations with their underlying microstructural mechanisms to offer multiscale insights into the complicated

ynamic responses of saturated sand.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Saturated granular materials are important to the operation and performance of key infrastructures and industrial
pplications, ranging from onshore tunnel boring to offshore foundations and ultra-deep underground carbon
equestration. Natural geohazards, such as rainfall-induced landslides and debris flows, are also in typical form
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of saturated granular media where the dynamic solid–fluid interactions play a crucial role in their initiation,
mobilization, and deposition. Granular media have long been treated as a continuum in engineering settings. The
multiscale nature of granular media has become increasingly recognized with recent advances in both observational
and simulation tools. A community-wide consensus has been reached that the microstructural features arising from
the grain scale, such as granular texture, inter-particle interactions through contact sliding and rolling, and force
transmission, play a decisive role in dictating the macroscopic responses of granular media. Meanwhile, granular
materials are porous media where the pores are fully or partially saturated with liquid. The coupling between pore
fluids and solid skeleton under static loading or dynamic external excitements may engender a wide spectrum of
interesting physical phenomena both at the pore/grain scale and on the macroscopic scale. Examples of multiphysics
processes observed in saturated granular media include the convection and advection of interstitial pore fluids and
their mobilization and transport of fines through intergranular pores and the related macroscopic phenomena such as
liquefaction, internal erosion, piping, soil boiling, complex wave propagation and dispersion. Due to their practical
importance, reproducing and understanding the multiscale and multiphysics nature of granular media under different
loading conditions have attracted strong research interests across many scientific and engineering disciplines.

Among a variety of computational methods, the discrete element method (DEM) has demonstrated a compelling
apability in capturing path-dependent nonlinear responses of granular media. This success largely stems from its
especting the discrete nature of granular media and directly replicating the grain-scale physics that decodes the
acroscopic responses [1–3]. A sustained effort has been made to extend DEM from dry condition to multiphase

cenarios. An often taken route is to couple DEM with Computational Fluid Dynamics (CFD), typically including
ulerian-based methods such as Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM), to simulate

he partially/fully saturated granular media. In the literature, these approaches are typically coined in names
ncluding coupled CFD-DEM, LBM-DEM, and FVM-DEM [4–11], where the DEM and any of the Eulerian-
ased approaches work to tackle the solid phase and fluid system, respectively, while particle–fluid interactions are
onsidered through empirical or numerical means of force/momentum exchange. These coupled approaches have
chieved great success in replicating complex hydro-mechanical coupling behaviors in broad practical engineering
nd industrial applications, such as granular flow [12] and powder-based selective laser melting [13]. However,
major pitfall associated with these coupled approaches lies in their expensive computational costs as they need

ot only to handle the contact detection in DEM for a large particulate system but also to frequently evaluate the
olid–fluid interaction forces for individual grains.

Recent advances in the hierarchical multiscale approach have created an alternative avenue for granular media
odeling. Departing from the aforementioned coupled methods typically considering the same spatiotemporal scale,

ierarchical multiscale approaches combine the advantages of continuum-based numerical methods (i.e., Finite
Element Method (FEM) [14], Material Point Method (MPM), Smoothed Particle Finite Element Method (SPFEM))
and physics-based micromechanics approaches (such as DEM) to form hierarchical computational structure to
tackle granular problems. They are best known as various multiscale coupling approaches, such as FEM-DEM,
MPM-DEM, SPFEM-DEM [15–18]. These hybrid continuum–discrete approaches have been found effective in
mitigating the inherent computational efficiency issue of DEM while bypassing the need for phenomenological
constitutive assumption in conventional continuum approaches. They offer solutions to a rich variety of engineering
and industrial applications while providing multiscale insights [19–21]. However, attempts to address granular
material behavior in the presence of interstitial fluid(s) remain scarce for these multiscale approaches. Among
the limited studies, Guo and Zhao [22] and Wang and Sun [23] proposed u − p formulation based FEM-DEM
hierarchical coupling approach for saturated porous media. The coupling scheme has been further extended to
investigating the evolution of deformation bands in saturated sandstones [24] and seepage-induced erosion in gap-
graded granular soils [25]. Li et al. [26] constructed a meso-structural packing based on FEM (for fluid) and
DEM (for solid) to estimate the effective hydro-mechanical material properties of granular media. These multiscale
studies are constrained largely within the small strain regime and often under quasi-static loading conditions. It is
understandable that saturated granular media are prone to develop large deformation en route to collapse and even
dynamic flow, especially under dynamic loading such as earthquake. The multiphysics phenomena under these
extreme conditions are of more practical concern but have been less explored.

This study aims to significantly extend our earlier MPM-DEM multiscale framework to cover the multiphysics
regimes for hydro-mechanical modeling of saturated granular material from small strain to large deformation under

either quasi-static or dynamic loading conditions. MPM is chosen over the conventional FEM for its desirable
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capability in handling large deformation and dynamic problems [27–30]. DEM is employed to capture the history-
and path-dependent behavior of granular media through computational homogenization over a DEM assembly
(coined herein as Representative Volumetric Element, RVE). The homogenized RVE responses by DEM naturally
replicate the behavior of soil skeleton according to Terzaghi’s effective stress principle [31,32]. The u − v − p
formulation is further chosen over the u − p one in the MPM to solve the macroscopic solid–fluid interactions by
virtue of its capability in handling high-frequency dynamic problems [33]. A semi-implicit integration scheme will
be developed to resolve the restriction on time step to leverage the overall computational efficiency of the proposed
method. The semi-implicit scheme is to overcome some hurdles of the explicit scheme popularly used in existing
MPM studies [27,28,34], such as their conditional stability and the time-step restriction by the Courant–Friedrichs–
Lewy (CFL) condition which is related to the grid spacing and material wave speed. To model granular media with
(nearly) incompressible solid grains and interstitial fluid, adopting an explicit integration scheme in a multiscale
approach will inevitably result in an extremely small time and mandate frequent data exchanges between the MPM
and DEM solver, leading to colossal communication overhead and aggravated computational efficiency.

This manuscript is organized as follows: Section 2 briefly outlines the modeling strategy of integrated framework
and formulations for the MPM and DEM; Section 3 provides detailed coupling procedure between the solvers in
different scales; Section 4 demonstrate the capability of the proposed approach with four numerical examples of
increasing complexity, including one-dimensional consolidation for benchmark, cyclic shaking, column collapse and
wave propagation in anisotropic porous media; and Section 5 presents the major conclusions.

2. Methodology and formulation

2.1. Overall computational strategy

The multiscale and multiphysics nature of saturated granular media is herein treated by an integrated com-
putational strategy. The overall computational scheme is illustrated in Fig. 1. Considering a saturated granular
media which is subjected to either quasi-static or dynamic loadings, we employ a one-point two-phase material
point method to model its macroscopic kinematics and deformation where the interactions between the fluid and
solid phases are considered in a continuum manner. Instead of assuming a phenomenological constitutive model as
routinely required in conventional continuum approaches, the mechanical response of the solid skeleton is herein
retrieved from the grain-scale DEM simulation on a RVE embedded to each material point. The two-phase MPM
modeling at the macroscale enables the capturing of multiphysics processes, whereas the coupling of the solid
phase in MPM with the grain-scale DEM facilitates effective cross-scale modeling. Key model components of the
numerical strategy are introduced in the following.

2.2. Two-phase material point method for macro multiphysics modeling

2.2.1. Governing equations
The macroscopic one-point two-phase MPM is proposed based upon the mixture theory [27,35–37]. An individual

material point represents an inseparable mixture of solid skeleton and pore fluid, each phase of the two carrying
distinctive properties and state variables of its own, including mass, velocity, effective stress (for the solid skeleton)
or pore pressure (for the pore fluid). Specifically, the solid phase plays a dominant role in the deformation behavior
of the material point, and its kinematics controls the motion of the material. For the saturated granular media to be
considered here, it is assumed that (a) both the solid grains and interstitial pore fluid are incompressible; (b) there
is no mass exchange between the two phases; (c) Terzaghi’s effective stress principle [31] and Darcy’s law hold.

The u − v − p formulation [38] is adopted in the study to expedite the consideration of the acceleration of
both phases and is suitable for describing both steady-state and transient flows of the porous media [33,39]. In
the absence of the convective term, the linear momentum equations for the mixture and the fluid phase are given
respectively as follows:

(1 − n)ρs as + nρ f a f = ∇ · (σ ′

rve − p I) + ρb (1)

nρ f a f = ∇ · (−np I) + nρ f b + p∇n −
n2ρ f g

(v f − vs) (2)

k

3
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Fig. 1. Multiscale, multiphysics modeling of saturated granular media: overall strategy.

here subscripts α = s, f denote a quantity associated with solid phase and fluid phase, respectively; aα is the
acceleration; vα is the velocity; ρα denotes the intrinsic density for each phase; n is the porosity; ρ = (1−n)ρs +nρ f
s volumetric average density for the mixture; p is the pore pressure; σ ′

rve is the effective stress which is obtained
rom the RVE attached to the material point under consideration; k is the permeability; b is the body force and I
s the identity matrix.

The mass balance equation for the saturated mixture reads:

(1 − n)∇ · vs + n∇ · v f = 0 (3)

.2.2. Semi-implicit integration
Despite being a popular scheme, the explicit integration is only conditional stable and is subject to the restriction

f small time step when considering incompressible interstitial fluid and the potential low permeability [40]. It is not
uitable for the current multiscale, multiphysics approach since it will inevitably cause persistent message passing
etween MPM and DEM solver and significantly deteriorates the overall computational efficiency. Therefore, we
esort to the semi-implicit scheme proposed previously by the authors [40] for the present MPM solver. In this semi-
mplicit scheme, the pore pressure term is treated implicitly to eliminate the sensitivity of material incompressibility
nd low permeability. In contrast, the effective stress is explicitly considered to avoid successive iterations associated
ith the nonlinearity of material responses. The temporal discretizations of the momentum equations are given by:

(1 − n)ρs
vt+1

s − vt
s

∆t
+ nρ f

vt+1
f − vt

f

∆t
= ∇ · (σ ′,t

rve − pt+1 I) + ρb (4)

nρ f
vt+1

f − vt
f

∆t
= −n∇ pt+1

+ nρ f b −
n2ρ f g

k
(v f − vs) (5)

It is clear that the adopted scheme arrives at a strongly coupled set of equations that demands simultaneous
olutions to velocity and pressure fields. To solve this coupled system, the fractional step method (also coined as
4
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the splitting method) [40] is employed to decouple the pore pressure with the kinematic variables. Central to the
fractional step method is that the coupled system is advanced to the next step by several sub-steps, and only one
unknown field is solved in each sub-step.

Two intermediate velocities v∗
s and v∗

f , are introduced into the above momentum equation for the mixture to
partition it into the following two parts:

(1 − n)ρs
v∗

s − vt
s

∆t
+ nρ f

v∗

f − vt
f

∆t
= ∇ · (σ ′,t

rve − pt I) + ρb (6)

nd

(1 − n)ρs
vt+1

s − v∗
s

∆t
+ nρ f

vt+1
f − v∗

f

∆t
= −∇(pt+1

− pt ) (7)

The momentum equation for the fluid phase can also be split into two parts in a similar manner as follows. In
particular, the drag force term in Eq. (5) will be evaluated based on intermediate velocities v∗

s and v∗

f :

nρ f
v∗

f − vt
f

∆t
= −n∇ pt

+ nρ f b −
n2ρ f g

k
(v∗

f − v∗

s ) (8)

and

nρ f
vt+1

f − v∗

f

∆t
= −n∇(pt+1

− pt ) (9)

Considering mass conservation, substituting vt+1
s and vt+1

f in Eqs. (7) and (9) into Eq. (3), and taking the
ivergence for both sides, we obtain the following elliptic Poisson’s equation by which the pore pressure is solved:

∆t(
1 − n

ρs
+

n
ρ f

)∇2(pt+1
− pt ) = (1 − n)∇ · v∗

s + n∇ · v∗

f (10)

.3. Weak form

The weak form of the aforementioned governing equations are obtained via the standard Galerkin procedure,
.e., by multiplying both sides of the according equation by a scalar test function, w, or a vector test function, w,
ntegrating it over the material domain Ω , and taking the divergence theorem when necessary. In particular, the
plitting equation in Eqs. (6)–(10) is rearranged such that the solution to primary variables (v∗

α , pt+1, vt+1
α where

= s, f ) is obtained accordingly in each sub-step.
The following weak forms for the intermediate velocity v∗

s and v∗

f are first considered from Eqs. (6) and (8):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω w · (1 − n)ρs

v∗
s −vt

s
∆t dΩ +

∫
Ω w · nρ f

v∗
f −vt

f
∆t dΩ =

∫
Ω w · ∇ · (σ ′,t

rve − pt I)dΩ
+

∫
Ω w · ρbdΩ

(a)∫
Ω w · nρ f

v∗
f −vt

f
∆t dΩ +

∫
Ω w ·

n2ρ f g
k (v∗

s − v∗

f )dΩ = −
∫
Ω w · n∇ pt dΩ

+
∫
Ω w · nρ f bdΩ

(b)

(11)

The weak form of the mixture mass balance equation derived from Eq. (10) which yields a solution for pt+1

reads:

∆t
∫
Ω

w(
1 − n

ρs
+

n
ρ f

)∇2(pt+1
− pt )dΩ =

∫
Ω

w(1 − n)∇ · v∗

s dΩ +

∫
Ω

wn∇ · v∗

f dΩ (12)

Finally, the weak forms of Eqs. (7) and (9), by which updated velocities vt+1
s and vt+1

f are calculated, are written
s: ⎧⎨⎩

∫
Ω w · (1 − n)ρs

vt+1
s −v∗

s
∆t dΩ = −

∫
Ω w · (1 − n)∇(pt+1

− pt )dΩ (a)∫ vt+1
f −v∗

f
∫

t+1 t
(13)
Ω w · nρ f ∆t dΩ = − Ω w · n∇(p − p )dΩ (b)

5
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2.4. Spatial discretization

MPM spatial discretization to numerically evaluate the above integral expressions is similar to the FEM. In
onventional FEM, reduced integration for the pressure field is required to satisfy the Ladyzhenskaya–Babuska–
rezzi (LBB) conditions [41] to maintain the computational stability. The current MPM implementation based on

he fractional step method, however, allows an equal-order interpolation for displacement and pressure [40] while
eing numerically stable. With a background mesh, the velocity vα and the pressure p of a material point and its

associated test functions, w and w, can be expressed by the nodal quantities via the shape function N (x, t):

vα(x, t) =

Nn∑
I=1

NI (x, t)vα,I (14a)

p(x, t) =

Nn∑
I=1

NI (x, t)pI (14b)

w(x, t) =

Nn∑
I=1

NI (x, t)w I (14c)

w(x, t) =

Nn∑
I=1

NI (x, t)wI (14d)

where Nn is the number of nodes.
Substitution of Eq. (14) into Eq. (11), leads to the following matrices form equality for v̂

∗

f = [v∗

f,1, v
∗

f,2, . . . , v
∗

f,I ]T

nd v̂
∗

s = [v∗

s,1, v
∗

s,2, . . . , v
∗

s,I ]T .{
1
∆t (Ms v̂

∗

s + M f v̂
∗

f ) = F int
+ F ext

+
1
∆t (Ms v̂

t
s + M f v̂

t
f ) (a)

1
∆t M f v̂

∗

f + Q(v̂∗

s − v̂
∗

f ) = F int
f + F ext

f (b)
(15)

ith

Ms =

Nn∑
I=1

Nn∑
J=1

∫
Ω

(1 − n)ρs NI NJ dΩ (16a)

M f =

Nn∑
I=1

Nn∑
J=1

∫
Ω

nρ f NI NJ dΩ (16b)

Q =

Nn∑
I=1

Nn∑
J=1

∫
Ω

n2ρ f g
k

NI NJ dΩ (16c)

F int
= −

Nn∑
I=1

∫
Ω

∇NI : (σσσ ′,t
rve − pt I)dΩ (16d)

F ext
=

Nn∑
I=1

∫
Ω

ρNI b +

Nn∑
I=1

∫
∂Ω

NI tdS (16e)

F int
f =

Nn∑
I=1

∫
Ω

∇NI : (npt
p I)dΩ (16f)

F ext
f =

Nn∑
I=1

∫
Ω

nρ f NI bdΩ +

Nn∑
I=1

∫
∂Ω

NI t f dS (16g)

where v̂
t
α = [vt

α,1, v
t
α,2, . . . , v

t
α,I ]T ; t = (σ ′,t

rve − p I) · n and t f = −np I · n are the external traction acting on the
mixture and fluid phase respectively.

Solving Eq. (15), one can obtain the intermediate velocity for all the active nodes v̂
∗

α . Subsequently, the com-
t+1 t+1 t+1 t+1 T
putation proceeds to solve the Poisson’s equation for the updated nodal pressure p̂ = [p1 , p2 , . . . , pI ] ,

6
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which reads as follows:

L( p̂t+1
− p̂t ) =

1
∆t

(Av̂
∗

s + B(v̂∗

f − v̂
∗

s ) + C) (17)

where

L =

Nn∑
I=1

Nn∑
J=1

∫
Ω

(
1 − n

ρs
+

n
ρ f

)∇NI ∇NJ dΩ (18a)

A = −

Nn∑
I=1

Nn∑
J=1

∫
Ω

∇NI NJ dΩ (18b)

B =

Nn∑
I=1

Nn∑
J=1

∫
Ω

∇NI NJ ndΩ (18c)

C =

Nn∑
I=1

∫
∂Ω

NI [−n(v∗

f − v∗

s ) + ∆t(
1 − n

ρs
+

n
ρ f

)∇(pt+1
− pt )] · nd S (18d)

In the above equation, the Laplacian matrix L is symmetric positive-definite and hence a conjugate-gradient-based
solver can be used to solve the matrix equality and obtain the updated nodal pressure p̂t+1. As the updated nodal

ressure is obtained, we can advance to the next step to obtain the updated velocity v̂
t+1
s = [vt+1

s,1 , vt+1
s,2 , . . . , vt+1

s,I ]T

nd v̂
t+1
f = [vt+1

f,1 , vt+1
f,2 , . . . , vt+1

f,I ]T for the solid and liquid phases, which can be rewritten in the matrix form as:{
Ms v̂

t+1
s = ∆tDs( p̂t+1

− p̂t ) + Ms v̂
∗

s (a)
M f v̂

t+1
f = ∆tD f ( p̂t+1

− p̂t ) + M f v̂
∗

f (b)
(19)

where

Ds = −

Nn∑
I=1

Nn∑
J=1

∫
Ω

(1 − n)NI ∇NJ dΩ (20a)

D f = −

Nn∑
I=1

Nn∑
J=1

∫
Ω

nNI ∇NJ dΩ (20b)

Note that, if the lumped matrix is used for Ms and M f , Eq. (19) can be solved explicitly without resorting to
ny matrix inversion.

.5. Micromechanics solution by discrete element method

In the multiscale modeling context, the DEM provides a grain-scale micromechanics-based solution for each
aterial point in MPM at a given incremental deformation/displacement boundary condition.
The contact scheme of in DEM is shown in Fig. 2. Without losing generality, we use the elliptic particle for

emonstration, where r is the semi-major axis length, d is the branch vector joining two particle centers, nc is
ormal contact direction, tc is the tangential contact direction, and f c is the contact force. Specifically, the normal
ontact force f n

c and tangential contact force f t
c between two contacting particles are computed as follows:

f n
c = −knun (21)

∆ f t
c = −ktδut (22)

here kn and kt are normal and tangential contact stiffness, respectively, un is the contact overlap, δut is the
ncremental tangential displacement. In addition, this dissipative contact is also constrained by the Coulomb friction
ondition which prescribes the upper bound of the tangential contact force:

| f t
c | ≤ µ| f n

c | (23)

here µ is the inter-particle friction coefficient.
7
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w

Fig. 2. Illustration of contact model in DEM solver.

The contact stiffnesses can be set as either constants or functions of contact displacement, corresponding
respectively to the linear-spring model and the Hertz–Mindlin model [42–44]. Herein, these stiffnesses (kn and
kt ) are assumed to be constant for the sake of simplicity. Specifically, kn and kt are related to the Young’s modulus
E of material through kn = 2ErArB/(rA + rB) and kt = νkn , with rA and rB being the radii of two contacting
particles and ν being the contact stiffness ratio.

2.5.1. Loading and boundary conditions
One critical ingredient of the overall multiscale multiphysics computation is an appropriate two-way message-

passing mechanism during the scale bridging process. In particular, a macro-to-meso downscaling is invoked to
enforce suitable boundary conditions applied to the RVE which are consistent with the macroscopic measures.
These may include deformation, temperature, pore pressure, etc. Specific rules should be fulfilled when downscaling
these macroscopic measures, among which is the seminal Hill–Mandel condition (also known as macrohomogeneity
condition) [45]. Hill–Mandel condition requires an equivalence of internal work density between the RVE scale and
the macroscale. For a solid continuum, this energetic condition could be straightforwardly interpreted as strain
energy as follows:

⟨P : F⟩ = ⟨P⟩ : ⟨F⟩ (24)

here ⟨ • ⟩ =
1

Vrve

∫
Ω • dΩ indicates the volumetric average over the RVE, and P and F are a specific stress and

deformation measure in the RVE.
The above energetic equality for the solid phase leads to three general types of admissible boundary condi-

tions [46]: affine displacement, periodic displacement, and uniform traction, among which the periodic displacement
is the most versatile (cf [47,48]). The presence of other physical phases and processes, e.g., thermal and hydraulic
conduction, may complicate the enforcement of boundary conditions for grain-scale RVE simulations due to the
relatively vague energetic interpretation of the Hill–Mandel condition. Nevertheless, several attempts have been
made in this direction. For example, Li et al. [26] derived an imposition of periodic displacement and pore pressure
boundary condition for a meso-structural RVE which is a superposition of FEM domain and DEM assembly,
and applied it to consider the effective hydro-mechanical properties of granular material from the microscopic
perspective. In the current study, the solid–fluid coupling/interaction is entirely considered through the drag force
in the macro domain, while the mesoscopic grain-scale simulation accounts for the highly nonlinear mechanical
response of the solid skeleton and is later superimposed with the pore pressure for the total stress. Herein we
employ the periodic displacement boundary condition for RVE as it yields a more appropriate response compared
to the rest two [47,48].
8
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It is also noted that the method proposed in this study remains a first-order computational homogenization
trategy, which is established based on the principle of scale separation. This principle also implies that the
haracteristic length of the macroscopic continuum body is much larger than that of RVE, and the RVE is deformed
niformly. In the implementation, the configuration of the RVE over time is quantified via a tensor deformation
radient F which represents arbitrary combinations of rotations and stretches. The incremental displacement gradient
ut is received from the macroscale MPM material point to prescribe as boundary conditions of RVE. Specifically,

we first compute the corresponding velocity gradient ∇vt from the downscaled information: ∇vt
= ∇ut/∆tdem,

with ∆tdem being the time step of DEM. This velocity gradient is then integrated automatically over time, and the
accumulated transformation is reflected in the transformation matrix F.

Ft+1
= (I + ∇vt∆tdem)Ft (25)

To minimize the boundary effect, the deformation is applied homogeneously over the entire RVE. This is realized
by modifying the VelGrad of the periodic cell in our DEM solver (e.g., YADE or SudoDEM).

2.5.2. Effective properties from mesoscale RVE
Equally crucial to the two-scale message-passing is the upscaling that feeds the macroscopic solver with pertinent

information retrieved from the RVE to render solutions to the global mass and momentum conservation equations.
Again it is highly desirable but challenging to develop a general framework for the upscaling that simultaneously
considers different physical fields across multiple scales and meanwhile rigorously satisfies thermodynamics laws.
There are some recent useful discussions on this topic, such as the thermodynamically constrained averaging theory
(TCAT) [49] that helps to homogenize effective properties from lower scales. Continuous effort is needed to address
the aforementioned challenges. In this study, the effective stress for the solid phase in Eq. (15)(a) is computed based
on the DEM solution of a mesoscale assembly of granular particles, which is subjected to the deformation imposed
from the corresponding material point.

Effective stress is a key effective property to be homogenized from the mesoscale RVE in the proposed
framework. For a fluid-saturated granular media, the effective stress can be derived from inter-particle contact forces
and branch vectors based on the Love-Weber formula [32,50,51], which is applicable to both dry and saturated
condition:

σ ′

rve =
1

Vrve

∑
Nc

d ⊗ f c (26)

here “⊗” denotes the dyadic product between two vectors, Vrve is the volume of the RVE, Nc is the total number
f all contacts inside the RVE; d and f c are the branch vector and the contact force respectively as shown in Fig. 2.

For saturated granular media, the permeability can be estimated by the well-known Kozeny–Carman (KC)
quation [52–54] according to the following form:

k = C
g

µ f ρ f

1
S2 D2

r

e3

1 + e
(27)

where g is the gravity, µ f is the dynamic viscosity of fluid, ρ f is the density of fluid, S is the specific surface on
olids (in a unit of m2/kg), Dr (= ρs/ρ f ) is the specific weight of solids, e is the void ratio, and C is the coefficient
ccounting for the shape and tortuosity of the channels. Given all the other parameters, the KC equation indicates
he permeability k of a porous material is a linear function of e3/(1 + e). In the current numerical implementation,
he following simplified expression of the KC equation is employed to evaluate the permeability for saturated porous

edia based on information extracted from the internal structure of the RVE:

k = c
e3

1 + e
(28)

In the above relation, the simplified coefficient c accounts for all factors affecting the permeability except the
oid ratio and can be back calculated based on the initial void ratio of RVE and the prescribed value of k. Readers
ay also refer to Wang and Sun [55] for an interesting machine learning approach for evaluating permeability.
When the effective stress and the permeability are obtained from the particle assembly, they are transferred back

o the MPM for the subsequent computation.
9
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Fig. 3. Computational procedure of the multiscale multiphysics approach.

3. Hierarchical coupling scheme for two-phase MPM and DEM

The overall solution procedure of the proposed multiscale multiphysics framework is shown in Fig. 3, with its
detail described below. The update stress first (USF) algorithm is employed in MPM. α = s, f , denotes a property
associated with the solid skeleton or fluid, respectively. The subscript p and I indicate quantities pertaining to the
material point and the background node, respectively.

In the initialization step, the mixture is discretized by a set of Lagrangian points with a certain volume Ωp

and mass mα,p in MPM. At this stage, the prepared RVEs are embedded in the corresponding material points to
reproduce the material response of granular media. The computation then enters the main loop described by the
following steps which are executed sequentially until the termination criterion is met.

1. At the beginning of each time step, the mass and the velocities of each constituent carried by the material
points are mapped to the background grid using :

mα,I =

Np∑
p=1

NI mα,p (29)

vt
α,I =

1
mα,I

Np∑
p=1

NI mα,pv
t
α,p (30)

The displacement gradients for all material points in MPM are calculated based on the nodal information:

∇ut
p = ∆t

Nn∑
∇NI v

t
s,I (31)
I=1

10
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2. These displacement gradients are transferred to the DEM solver and are used as prescribed boundary condition
for the corresponding simulation (Eq. (25))

3. Upon the DEM simulation is completed for each RVE, the homogenized effective stress σ ′
rve and permeability

k are computed and passed back to the corresponding material point of the MPM (Eq. (26) and (28))
4. Compute the nodal intermediate velocity v∗

s and v∗

f with least squares conjugate gradient method (Eq. (15))
5. Solve the nodal pore pressure pt+1 with the conjugate gradient iterative linear solver (Eq. (17))
6. Compute the nodal corrected velocity vt+1

s and vt+1
f explicitly (Eq. (19))

7. Finally, update the pore pressure for each material point:

pt+1
p = pt

p +

Nn∑
I=1

NI (pt+1
I − pt

I ) (32)

and their velocity vt+1
α,p , position, xt+1

p and volume Ω t+1
p :

vt+1
α,p = vt

α,p +

Nn∑
I=1

NI (vt+1
α,I − vt

α,I ) (33)

xt+1
p = xt+1

p + ∆t
Nn∑

I=1

NI v
t+1
s,I (34)

Ω t+1
p = Ω t

pdet(I + ∇ut
p) (35)

where ‘det’ indicates the determinant operation. After the updating, the computation is advanced to the next
step.

. Numerical examples

This section presents several numerical examples with increasing complexity to showcase the predictive capability
f the proposed multiscale multiphysics framework, especially for dynamics problems. These examples include
lassical one-dimensional consolidation, cyclic loading test, saturated column collapse, and wave propagation in
nisotropic porous media.

.1. One-dimensional consolidation

The first example is the classical one-dimensional consolidation problem. This example has been frequently
evisited since it allows a direct comparison against the analytical solution and hence serves as a validation of the
roposed numerical method. The analytical solution is well documented in [31]. For completeness, we briefly recall
he evolution of the pressure along the saturated column, which is given by:

p(y, t) =
4
π

p0

∞∑
M=0

1
2M + 1

sin(
(2M + 1)π y

2H
)e−(2M+1)2π2Tv/4 (36a)

Tv =
cv

H 2 t =
k

γ f mv

t
H 2 (36b)

where p0 is the net load exerted at the top of the saturated column, H is the height of the column, and Tv is a time
factor which related to the constrained modulus of the solid phase mv . In this problem, the settlement at the ground
surface u(t) and the degree of consolidation U can be computed as follows:

u(t) = mv p0 H (1 −
8
π2

∞∑
M=0

1
(2M + 1)2 e−(2M+1)2π2Tv/4) (37a)

U =
u(t)

u(+∞)
(37b)

where the degree of consolidation U denotes the current settlement normalized by the final settlement.
11
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Fig. 4. Model setup for one-dimensional consolidation simulation: (a) boundary condition; (b) RVE assigned to each material point; (c)
estimation of the elastic parameters.

The numerical model setup of the one-dimensional consolidation test is shown in Fig. 4. A saturated column
of 1 m high is discretized into 50 quadrilateral elements with element size of 0.02 m. Each element contains 4
material points (PPC = 4). The lateral side of the column is constrained in horizontal direction while the bottom is
constrained in the vertical direction. A surcharge q = 110 kPa is applied at the top surface from which the pore fluid
is freely to drain, whereas all the other three sides are impermeable. A dense RVE packing with an initial porosity
n = 0.161 (shown in Fig. 4 (b)) is generated through an isotropic compression. The microscopic parameters of
the RVE are listed in Table 1. The particle sizes have been scaled up in the study to accelerate the computation
following other studies [16,17]. Each RVE has an initial mean effective stress of σmean = 100 kPa, resulting in a net
load of p0 = 110−100 = 10 kPa. The permeability k is set as 1×10−3 m/s (such that the permeability coefficient
c in Eq. (28) can be back calculated). Upon preparation, the generated RVE is embedded at each material point to
provide the mechanical response of the solid phase.

To benchmark the multiscale simulations, the elastic parameters of the RVE are estimated via pure DEM
simulation of oedometer compression tests of the RVE under small deformation regime wherein particles undergo
negligible sliding over each other during the small-strain regime. As shown in Fig. 4 (c), the elastic parameters
are estimated as K + 4G/3 = 25.06 MPa and K − 2G/3 = 3.93 MPa, where G and K are bulk modulus and
shear modulus, respectively. Accordingly, these two elastic parameters are computed as: K = 10.98 MPa and
G = 10.57 MPa and are used for the analytical solutions.

Fig. 5 shows a comparison of the multiscale result with the analytical solution in terms of the pore pressure
dissipation (Eq. (36)) and the degree of consolidation (Eq. (37)). It is clear that the multiscale multiphysics approach

offers a good prediction against the analytical solution, and thus the proposed framework is well validated.

12
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Table 1
Microscopic parameters used for RVE preparation in 1-D consolidation problem.

Ngrain r [mm] ρgrain [kg/m3] E [MPa] kt/kn µ

400 3 – 7 2 650 600 0.8 0.545

Fig. 5. Comparison of multiscale result and theoretical solution for one-dimensional consolidation problem: (a) pore pressure evolution at
T = 0.010, 0.041, 0.10, 0.21, 0.31, 0.52, 0.72, 1.02 (b) degree of consolidation.

4.2. Cyclic loading test

The proposed multiscale approach is first used to simulate cyclic loading of a saturated granular material which is
highly relevant to the liquefaction of granular soils in geotechnical engineering. Liquefaction in saturated or nearly
saturated soil is characterized by a substantial buildup of pore pressure and a loss of strength and stiffness when
subjected to cyclic loads [56]. Upon occurrence, liquefaction usually results in an unbounded deformation of soil
mass and catastrophic failure of relevant geostructures. Reliable modeling of the degradation of granular media in
liquefaction routinely requires sophisticated constitutive model, such as the bounding surface models [57–59] and
the thermodynamic-based models [60]. The proposed multiscale multiphysics framework is herein demonstrated to
be able to capture such unique phenomena associated with saturated granular media.

The model setup is shown in Fig. 6 where the saturated soil is placed in a rigid box and is subjected to a lateral
cyclic loading. The problem domain is 2 m long and 1 m high, and is discretized by quadrilateral element with an
element size of 0.05 m. To replicate the stimulation illustrated in the inset, the horizontal velocity of the lateral
boundaries and the bottom boundary is prescribed by a sinusoidal function v̄ = 0.025π sin 5π t , with a maximum
displacement of 0.08 m. The vertical displacement of the bottom surface is fixed, whereas the top surface is left free
(p = 0). Two RVE cases (labeled by dense and medium) are prepared using the same model parameters in Table 1.

he void ratio is 0.21 for the dense packing and 0.23 for the medium one. For both packings, their permeabilities
are set as 1 × 10−3 m/s. Before the cyclic stimulation, the RVEs are assigned to the material points to achieve

eostatic equilibrium under gravity. The simulation is terminated at t = 20 s. To monitor the results, three RVEs
located at the top, middle, and bottom of the soil domain are selected and their locations are marked in Fig. 6.

Fig. 7 shows the generated excess pore pressure at three time instants for both RVE cases. The horizontal cyclic
shaking results in an apparent buildup of excess pore pressure in the soil domain which may change with the
shaking direction. At early cyclic shaking stage such as up to t = 10 s, both cases show a similar alternative
switch pattern of positive and negative excess pore pressure for the left and right portions of the soil, due to the
change of shaking direction and the confinement of the left and right box walls. However, they evolve with rather
distinctive patterns over the time. The dense case persists to the alternative switch pattern of positive and negative
pore pressure on the two sides (see t = 15 s and t = 20 s) with change of shaking direction. The medium dense

case shows an appreciable continuous buildup of positive excess pore pressure as shown at both t = 15 s and
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Fig. 6. Model setup for cyclic shaking of saturated media (the insertion shows the prescribed velocity v̄ for the shaking).

= 20 s. While the entire domain accumulates positive excess pore pressures which increase with time, the change
f shaking direction switch the location of the maximum excess pore pressure between left and right portions of
he shaking box. Consequently, the strength of the medium dense soil is greatly reduced over the cyclic loading
rocess. Though not showing the detail here, we have also observed the upper part of the soil sloshes curvedly
ithin the box, leading to relatively higher excess pore pressure built up at the intermediate depth. To furnish a more
uantitative analysis, we also present the evolution of excess pore pressure ratio (normalized by the initial vertical
ffective stress ∆p/σ ′,0

yy ) at three selected points (marked in Fig. 6). As shown in Fig. 8, the excess pore pressure
or the dense packing oscillates regularly during the cyclic load but does not show a noticeable increase at all three
elected locations, suggesting a relatively high shear resistance to liquefaction throughout the soil body. However,
he medium dense packing exhibits rather different responses. The surface Point A undergoes an initial buildup of
ore pressure shortly after the commencement of the external loading, followed by significant fluctuations around
p/σ ′,0

yy ∼ 0.4 before a slight subsiding at t = 17.5 s. Such fluctuations stem from inadequate cyclic resistance
nd continuous strength degradation for the medium dense packing induced by the cyclic shaking, which lead to
ontinuous shear deformation and settlement at the ground surface. Similar observations are found for both Point B
nd Point C. Interestingly, the onset of excess pore pressure buildup is slightly delayed, as with relatively suppressed
mplitude of fluctuation, with increasing depth, highlighting the influence of overlying confinement to liquefaction
roblem.

In Fig. 9, we further compare the cyclic response of the two cases in terms of the surface settlement, typical shear
tress, and force chain network. Fig. 9 (a) shows that the cyclic shaking triggers apparent surface settlement for the
edium dense soil shortly after the commencement of the cyclic loading. The settling velocity appears to be larger

n the later stage of the loading. Conversely, the dense case does not exhibit a noticeable settlement throughout
he shaking. We also compare the shear stress σxy of Point B, which locates at the center of the domain. It shows
hat the medium packing gradually loses its strength as the cyclic number increases. In contrast, the dense packing
oes not experience apparent degradation in strength with its σxy − ux curve forming a close hysteresis loop. Fig. 9

(c) depicts the force chain network for Point B in the medium case. After mobilized liquefaction, the force chain
network is significantly altered, showing a much lower normal contact force network than before cyclic shaking
(note that in Fig. 9 c, the width of the force chain is linearly proportional to its magnitude).

4.3. Collapse of a saturated granular column

The granular column collapse has been a classic example widely explored by many in diverse conditions
[6,7,11,12,61,62]. It is selected here to demonstrate the capability of the proposed method in addressing the large

deformation of saturated granular material. The setting for the column collapse problem is graphically illustrated
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Fig. 7. Snapshots of excess pore pressure for both dense and medium dense cases at t = 10 s, t = 15 s, and t = 20 s.

in Fig. 10. The granular column is assumed to be fully saturated with a size of 1 m by 1 m. It is discretized by
100 quadrilateral elements with an element size of 0.1 m. Each element contains 25(= 5 × 5) material points. The
large PPC (particle per cell) number is adopted here to avoid numerical instabilities arising from inadequate material
points in a cell when part of the granular body experiences an exceedingly large displacement. The granular column
is confined by a wall on the left and a gate on the right, and both of them are assumed to be smooth. The rough
bottom base constrains both horizontal and vertical velocities. The simulation consists of two stages: (1) The smooth
gate is kept still to ensure the column sample achieves a stabilized state under gravity; (2) The gate is removed
instantly to allow the granular column to collapse freely.

Typical parameters used in the simulation are summarized as follows: the soil density ρs = 2650 kg/m3, the
fluid density ρ f = 1000 kg/m3, permeability k = 1 × 10−2 m/s and the time step in MPM ∆tmpm = 2 × 10−4 s.
Three RVEs are adopted here, namely dense, medium and loose, and they have an initial void ratio of 0.21, 0.23,
and 0.24, respectively. In particular, the medium and the dense RVEs are the same as those mentioned in the cyclic
loading test example. To investigate how the presence of pore fluid affects the collapse process, we also conduct a
comparison simulation of a dry column collapse with the medium RVE under otherwise identical conditions.

Fig. 11 shows a comparison of the velocity profile among the three saturated columns and the dry column at
different time instances. Despite of different initial void ratios, the collapse of saturated soil develops at an apparently
15
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B

Fig. 8. Evolution of excess pore pressure ratio for selected points.

Fig. 9. Cyclic response for selected points: (a) settlement of Point A; (b) σxy − ux relation for Point B; (c) force chain network for Point
in the medium case.
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Fig. 10. Model setup for the collapse of a saturated granular column.

Fig. 11. Comparison of the velocity field for the collapse of saturated and dry granular columns at different times.
17
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Fig. 12. Evolution of excess pore pressure in the saturated column during the collapse process.

slower pace than the dry case due to the generated negative excess pore pressure (see detailed discussion in the
following paragraph) and the drag force between the solid skeleton and fluid. As shown in Fig. 11, at t = 0.5 s,
he front of the mobilized mass in the dry case already collapses onto the base plate and further moves forward
long the bottom plate for over 1 m, while for those saturated columns, their right-side edge just touches the base
ith their outer upper corners still maintain a nearly intact structure. It is also noted that a saturated column with
smaller initial void ratio would develop at a slower rate during the collapse process, which is mainly attributed

o its larger negative excess pore pressure generated at the commencement of mobilization. Although exhibiting
maller peak velocities, saturated columns last much longer and result in a longer runout distance L f (neglecting
he isolated material points), as compared to the dry case. This observation is consistent with previous particle
imulations [12]. Interestingly, as seen from Fig. 11, the initial void ratio appears to have a minor effect on the final
eposition of the saturated cases, in terms of the runout distance L f and deposition profile which is approximately
straight line in contrast with a concave one for the dry case.
It is also instructive to examine the evolution of excess pore pressure during the collapse process. Fig. 12 shows

he excess pore pressure field for the three saturated columns during the collapse process. Shortly after removing the
ateral smooth gate (i.e., t = 0.06s), different excess pore pressure distributions are generated inside the saturated
olumns with varied initial void ratios. For the dense and the medium specimens, negative excess pore pressure
s developed and the dense one has a higher excess pore pressure magnitude. On the other hand, positive excess
ore pressure is observed inside the saturated column with a loose RVE. This distinctive response stems likely from
he dilation characteristics of the underlying microstructure, wherein the dense and the medium packings undergo
ilation while the loose one experiences contraction when subjected to shearing. However, such difference in excess
ore pressure quickly vanishes and large negative excess pore pressure becomes dominating within the bulk mass
s the mobilization proceeds, which plays a role in enhancing the drag force between the solid skeleton and the
ore fluid and leads to a delay in the development of the collapse as compared to the dry case. This observation

s in line with the results reported in [6,7]. However, the high permeability adopted in this example renders rather
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Fig. 13. Evolution of kinetic and potential energies for granular column during collapse process.

quick dissipation of the negative excess pore pressure, especially for the soil close to the free surface. When the
collapsed soil gradually settles down to a static/ quasi-static state, certain positive excess pore water pressure is
noted in the sliding soil layer close to the ground surface due to gravity. One underlying assumption is noteworthy
in the aforementioned analysis of excess pore pressure that the pore fluid and the soil skeleton are supposed to be
inseparable and remain to be a continuum saturated soil during the collapse process.

The evolutions of normalized potential energy E p/E0
p and normalized kinetic energy Ek/E0

p with time for dry
and saturated granular columns are compared in Fig. 13. Clearly, the peak normalized kinetic energy attained is much
smaller in the saturated columns than that in the dry one. This discrepancy is caused by the negative excess pore
pressure during the early stage of the collapse and the drag force between the two phases all along the collapsing
process in the saturated cases. For saturated cases with different initial void ratios, the excess pore pressure generated
shortly after the onset of the collapse causes the loose/dense case to develop at the fastest/slowest rate while the
medium one lies in between. As for the evolution of potential energy, the dry case drops quickly and maintains a
constant value thereafter, whereas gradual and progressive decreases are observed following the initial drop in all
saturated cases. The dissipation of pore water pressure and the long-lasting creeping of the upper part of soil mass
in the saturated cases are supposed to account for the observed difference. The complicated phenomena demonstrate
the significant influences of the interstitial fluid and the microstructure on the macroscale behavior in this saturated
column collapse example and general geotechnical applications at large.

4.4. Wave propagation in anisotropic porous media

4.4.1. Model setup
A final example is selected to demonstrate the predictive power of the proposed method for dynamic problems.

Herein we consider an anisotropic saturated soil domain subjected to an impulse load. The example is also intended
to highlight the potential enhancement of the modeling capability of the proposed approach in accounting for the
particle morphology and the resultant mesostructural features of the porous media. Note that similar simulations
have been conducted previously (see [63–66]) albeit they were limited mainly to isotropic porous media.

The model setting for the two-dimensional wave propagation problem is shown in Fig. 14. The soil domain is
fully saturated with a dimension of 21 m by 10 m. The whole domain is discretized into 3,360 quadrilateral elements
with a uniform element size of 0.25 m, and each element contains four material points (RVEs). Both left and right
sides of the problem domain are subject to horizontal displacement constraints (for both phases) and the bottom is
subject to a vertical displacement constraint. An impulse load (prescribed in Eq. (38)) is exerted onto the center of
the top surface.

f (t) = 100 sin(25π t)[1 − H (t − 0.04)] + 100 kPa (38)

where H (◦) is the Heaviside step function. A surcharge qs = 100 kPa is applied at the rest of the top surface other
than the impulse loading area to maintain the stability of RVEs. To account for anisotropic fabric in natural granular
19



W. Liang, J. Zhao, H. Wu et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115871

s
r

Fig. 14. Model setup for two-dimensional wave propagation in a saturated soil domain subjected to impact of impulse load (shown in inset)
exerted on the center of top surface.

Fig. 15. (a–c) RVE configuration for the wave propagation simulation and (d–f) their contact normal direction distribution.

oil, we introduce elliptic particles in DEM and construct three RVEs with varied mesostructures, including two
egularly packed RVEs (bedding angle α = 0◦ and 30◦) and a randomly compressed one representing an isotropic

sample as a comparison case. The generated RVEs and their associated contact normal distribution are depicted

in Fig. 15. Table 2 lists the microscopic parameters for the RVE preparation, wherein r denotes the radius of the
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Table 2
Microscopic parameters used for the RVE preparation in wave propagation problem.

Ngrain r [mm] a ρgrain [kg/m3] kn [N/m] kt [N/m] µ

400; 432; 414 5 0.743 2 650 6.0 × 106 6.0 × 106 0.6

Fig. 16. Displacement field at different time instance: t = 0.04, 0.07, 0.09 and 0.12 s from top to bottom for each column (the displacement
as been scaled up 500 times for better visualization of the wave.).

emi-major axis and a is the aspect ratio of the elliptic particle. Note that there is a slight difference in the number
f DEM particles within the RVE due to varied particle arrangements. The permeability k is set as 1 × 10−2 m/s.
e select two material points located at the domain surface (Point A at (5, 10) and Point B at (10.5, 10) as marked

n Fig. 14) to monitor the local response during the wave propagation.

.4.2. Wave propagation patterns for different RVE cases
Fig. 16 shows the snapshots of displacement field at t = 0.04, 0.07, 0.09 and 0.12s for three RVE cases. The

isplacement has been scaled up by 500 times for better visualization of the wave. It is evident that the proposed
pproach can successfully capture the distinct wave propagation patterns. For the isotropic packing, the displacement
eld is not perfectly symmetrical since the embedded RVE possesses minor intrinsic anisotropy related to the DEM

◦
article arrangement. For the case with α = 0 , it shows a rather symmetrical propagation pattern with respect to
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Fig. 17. Trajectory for Point A in different cases (Point position is shown in Fig. 14).

the centerline due to its relatively symmetric mesostructure. On the other hand, the packing with α = 30◦ exhibits a
rather different deformation pattern than the other two cases. When the impulse load is exerted on the top surface,
the soil domian is mobilized downward with a clear rightward bias due to the preferential rightward tilting bedding
plane direction of particles in the case that tends to lead to oriented grain sliding and rotation and tilting in the
sub-stable load-bearing structure. The inclined agitation on the top surface not only triggers a discontinuity in the
displacement field close to the left-end boundary of the impulse loading area (e.g., x = 10, y = 10) but also induces
a larger wave amplitude on the right-hand side as it travels through the saturated media.

To further investigate the displacement field, the trajectory of Point A located at the free surface is plotted in
Fig. 17 for all three cases. Despite the mild discrepancy, Point A in all three cases exhibits a similar elliptic motion
before the wave reflection. As pointed out in [63], such motion reflects one of the typical surface waves, namely the
Rayleigh wave, which is generated by the interaction between the P-wave and S-wave. As no absorbing boundary
(e.g., [67]) is implemented in the current study, Point A is displaced back and forth with mild oscillation by the
reflected wave after the initial elliptic motion.

The excess pore pressure field during the wave propagation process is further examined. Fig. 18 shows the
snapshots of excess pore pressure ∆p of the entire domain at t = 0.04, 0.07, 0.09 and 0.12 s. It is clear that the
impulse load generates an appreciable oscillation of excess pore pressures within the soil domain. For those with
regularly packed RVEs (α = 0◦ and α = 30◦), the waves in terms of positive excess pore pressure first transmit
through the soil domain vertically in a nearly synchronized manner and then disperse horizontally to both sides. For
the case of α = 30◦ in particular, the initial positive excess pore pressure is more pronounced on the right side of
the domain than the left because of the right-tilled agitation on the surface. In addition, the sliding of the soil close
to the left boundary of the loading area induces a sequence of secondary waves in terms of excess pore pressure.
Nevertheless, these secondary waves are small in amplitude and are dissipated quickly after their generation. For
the case with isotropic packing, the wave of excess pore pressure due to the impulse load seems to be constrained
to the upper portion of the domain only, highlighting the dissipative feature along the vertical direction.

4.4.3. Influence of permeability
It is also instructive to examine the influence of the permeability of porous media on the wave propagation

characteristics. In so doing, all the settings are identical to those mentioned in Section 4.4.1 except the permeability,
which is varied from k = 10−2 m/s to k = 10−6 m/s, representing the (partially) drained to the nearly undrained
22
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Fig. 18. Excess pore pressure fields at different time instance: t = 0.04, 0.07, 0.09 and 0.12 s from top to bottom for each column.

egime. The RVE with α = 0◦ is selected to study the influence of permeability. Note that, the semi-implicit scheme
dopted in resolving the macroscopic BVP allows a permeability-independent time step, which considerably eases
he numerical challenge in low permeability conditions encountered by explicit methods.

Fig. 19 shows the temporal evolution of vertical displacement u y and excess pore pressure ∆p for Point B
located at the center of the loading area as marked in Fig. 14). Notably, the lower permeability case leads to

smaller settlement of the saturated soil domain when subjected to the impulse load. The phenomenon could
e attributed to the fact that the pore fluid in the saturated mixture with a lower permeability sustains a larger
ortion of the external loading and tends to generate higher excess pore pressure (as shown in Fig. 19 (b)), which
n turn causes a lower effective stress increment on the solid skeleton and hence a smaller consolidation induced
eformation. This characteristic, however, is hardly distinguishable when the permeability is lower than 10−4 m/s
ue to the slow dissipation rate. Conversely, due to the high dissipation rate and the low-frequency of the external
timulation, the cases with k = 10−2 m/s and k = 10−3 m/s reach their peak excess pore pressure before the
aximum impulse (t = 0.2 s), showing a clear evidence of the occurrence of partial consolidation for the two high

ermeability cases.
Although the permeability does not alter the overall wave propagation pattern as observed in the inset in Fig. 19

a), it does cause certain detailed discrepancies in the wave characteristics. Fig. 20 depicts the time-domain wave
esponses in terms of the surface vertical displacement u for the permeability cases considered. The amplitude
y

23



W. Liang, J. Zhao, H. Wu et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115871

1

s
s
t

Fig. 19. Evolution of (a) vertical displacement u y and (b) excess pore pressure ∆p of Point B (marked in Fig. 14) for various permeabilities
(the insert plot shows the displacement field for cases of k = 10−3 m/s and k = 10−6 m/s at t = 0.07 s).

Fig. 20. Wave propagation patterns in terms of surface vertical displacement u y for various permeabilities: k = 10−2, 10−3, 10−4 and
0−6 m/s.

pectrum suggests that the proposed framework could readily capture the entire process of the wave after the initial
timulation. The waves propagate initially outwards before being bounced back from the boundaries and returning
o the center. A reduction in permeability leads to a smaller attenuation of the wave and a marginally higher wave
24
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speed (note the amplitude of the reflected wave and their reflection time in Fig. 20). This phenomena are more
pronounced in the high-permeability cases (i.e., from k = 10−2 m/s to k = 10−3 m/s) when partial consolidation
more likely occur (as shown in Fig. 19).

5. Closure

We have presented a multiscale multiphysics computational framework to model the hydro-mechanical coupling
of granular materials where both dynamic loading and large deformation are considered. In such an integrated
framework, the interaction between the soil phase and the interstitial fluid phase is handled in the macroscopic scale
by MPM via u − v − p formulation for computational efficiency. A semi-implicit integration scheme is employed
in the MPM solver wherein effective stress is treated explicitly to avoid successive iterations related to nonlinear
material responses, whereas the pore water pressure term is treated implicitly to resolve the numerical instabilities
exhibited in the limit of nearly incompressible pore fluid and/or small permeability. By applying the fractional step
method, the original strongly coupled equations are partitioned into two sets of equations, each solving the kinetic
variables and pore pressure, respectively. Terzaghi’s effective stress principle is further invoked to derive the effective
stress for each material point from a meso-scale RVE instead of using a phenomenological constitutive model. The
computational integration of different numerical approaches enables the proposed framework to be readily capable
of simulating various multiscale, multiphysics phenomena. The coupled approach is firstly benchmarked by the
classical one-dimensional consolidation, and the numerical result agrees well with the analytical prediction. The
proposed method is further applied for modeling a series of challenging problems involving cyclic loads, large
deformation flow and dynamic wave propagation. It is demonstrated that the proposed framework can successfully
capture characteristic behaviors of saturated granular media commonly important to engineering practice, including
the liquefaction due to cyclic load and wave propagation in anisotropic saturated porous media.
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