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Abstract

It remains a challenge for discrete element method to simulate large-scale systems with arbitrarily shaped particles. This
aper presents a novel approach called Ray Tracing Discrete Element Method (RTDEM) to offer ultra-high efficiency in
imulating particles with arbitrary shapes. In RTDEM, we use a triangular mesh to represent the surface of a particle for
reater flexibility in shape representation. Template meshes are further introduced to group particles of different shapes to
ave computing memory. Key to RTDEM are innovative ray tracing-based algorithms specially designed for accurate and
fficient contact detection and resolution between arbitrarily shaped particles. Based on the RT algorithms, discrete potential
eld functions are further proposed for the discrete mesh vertices and facets to define energy-conservative contact models

hat include vertex-potential, facet-potential models, and their combination. The integration of these key elements into RTDEM
ffers a whole new DEM framework that readily empowers any parallel computing architecture for high acceleration on granular
edia modeling. It matches particularly well with the Graphics Processing Units (GPUs) to fully unleash the computing power

f ray tracing cores for large-scale DEM simulations of arbitrarily shaped particles, even on a personal computer with a common
aming GPU card.
2023 Elsevier B.V. All rights reserved.

eywords: Discrete element method; Discrete potential field; Arbitrary shape; Ray tracing

1. Introduction

The shape of particles plays a crucial role in affecting various aspects of the physical properties and mechanical
ehaviors of granular materials under static and dynamic conditions [1,2]. The flow of a granular system in the
resence of interstitial fluids can be significantly influenced by particle shape, as exemplified by the bed load
ediment transport phenomenon [3]. Therefore, quantifying and understanding the role of particle shape in relation
ith the mechanical responses of granular media has become a focus of recent interest in the community, in
articular in numerical modeling. Among many numerical tools, the discrete element method (DEM) has been
idely used to explore the microscopic origins of the mechanical behavior of granular materials. While conventional
EM commonly employs circular or spherical particles for efficient simulations, variants of DEM have recently
een developed to model particles with different shapes [4]. They collectively help to gain new insights into the
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underlying physics of large granular systems and aid in designing and optimizing systems in civil, chemical, and
mining engineering.

The introduction of irregular or realistic complex particle shapes requires the development of computationally
fficient contact models for large-scale simulations. Most existing studies have focused on the use of convex
hapes, such as ellipsoids [5,6], superellipsoids [7,8], poly-superellipsoids [9], convex Fourier series-representation
hapes [10], convex/dilated polyhedra [11,12], and convex NURBS [13]. These shapes allow for efficient inter-
article contact detection and resolution using convex-optimization algorithms [14], such as the simplex-based
JK algorithm [15] and LM algorithm [16]. However, these algorithms are not applicable to arbitrarily shaped
articles (e.g., general concave polyhedra [17], Fourier spectrum-based shapes [18] and spherical harmonics-based
hapes [19]) for which brute-force algorithms are generally needed. For example, possible face–face, vertex-
ace and face-edge pairs are traversed for contact detection among polyhedra in early studies, e.g., [20,21] and
mong others. The algorithms proposed for contact problems in the finite element method have also garnered
ncreasing attention in interparticle contact detection and resolution within the framework of DEM. Notably, the

aster-master algorithms [22] have been successfully employed in DEM such as [17], while the node-to-surface
lgorithms [23] have been utilized in works, e.g., [24]. These brute-force algorithms are flexible in dealing with
ny shape representations but frequently sacrifice computational efficiency and robustness. Interested readers are
eferred to a recent review on computational modeling of granular matter [25].

Energy-conserving contact models (e.g., volume-based contact models [26] for convex polyhedra) have been
xtended for arbitrarily shaped particles in conjunction with the brute-force algorithms [27], lending remarkable
mprovements on numerical stability. Specifically, when arbitrarily shaped particles are represented by triangular
or tetrahedral) meshes, there are two prevailing approaches for contact detection and resolution associated with
nergy-conserving contact models. The first approach is to compute the overlap volume between the two meshes
y discretizing the particles into tetrahedra and resolving the inter-tetrahedron overlap one by one. This approach is
ood for numerical stability when using a volume-based contact model, but it is the most computationally intensive.
he second approach avoids the computation of overlap volume by computing the intersection line between the two
eshes [27]. This may significantly improve computational efficiency because of dimensional degeneration from

he inter-tetrahedron overlap to the inter-triangle intersection and thus reduced computational cost.
Similar to energy-conserving contact models, nodal penetration potential within a particle surface is introduced

n DEM variants such as LS-DEM [24] and SDF-DEM [28] based on the node-to-surface algorithms [23]. In these
ariants, one particle of a contacting pair is represented by level-set (LS) or signed distance field (SDF) functions,
hile the other has a surface with discretized nodes. This approach can further reduce the inter-surface (triangle)

ntersection problem to the node-surface (triangle) potential problem. The critical step is to compute the potential
f the node within another particle. One direct option is to find a proper vertex-triangle pair, such as the one
ith the shortest distance, which is called direct computing. However, all vertex-triangle distances require explicit

omparison, which is an outstanding issue. An alternative approach is to define an explicit potential function, thereby
o need of explicit comparison. Typically, one can define a potential function with a radial distance between particle
urface and center when the surface function is analytically given. Nevertheless, the radial distance-based potential
s less accurate, which may cause possible issues of numerical stability. Moreover, it is non-trivial to have an elegant
nd efficient mathematical description of arbitrary particle shapes. Although the spherical harmonics (SH) function
as been successfully employed in DEM, it is highly computationally expensive to solve a potential function based
n an SH function [28].

To mitigate the above issues on both numerical efficiency and robustness of modeling arbitrarily shaped particles
n DEM, previous studies [24,28] use LS and SDF functions to pre-cache the possible potential values within a
article. Hence, the contact problem becomes to query the potential value of a node within another particle. Since
he pre-cached potential values are arranged at a lattice grid to facilitate the query procedure with a lookup-table
lgorithm, the potential value at the node can be interpolated in terms of the values of the grid nodes in the vicinity
f the node. However, the allocation and access of the pre-cached data may cause efficiency issues associated
ith computer memory. It is less suitable for parallel computing in advanced computing systems, such as modern
PUs. Specifically, the lookup-table algorithm will cause performance degradation due to the bottleneck of data

ommunication on GPUs, while the powerful GPU cores will not be well leveraged because of less computation.
herefore, it deserves efforts to propose a revolutionary DEM framework that is accurate, efficient and robust for

odeling arbitrarily shaped particles in large-scale simulations.
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Fig. 1. A triangular mesh and its geometric measures facet normal n f and vertex normal nv .

This study proposes a paradigm-shifting approach for modeling arbitrarily shaped particles represented by
flexible triangular meshes in DEM. It features a ray tracing-based algorithm for contact detection and resolution in
conjunction with discrete potential field functions, which overcomes the outstanding issues associated with the direct
computing or pre-caching approaches in the previous studies. The framework of the proposed Ray Tracing Discrete
Element Method (RTDEM) is outlined in Section 2, followed by the implementation of hardware acceleration with
ray tracing cores on GPUs in Section 3. A set of numerical examples is then showcased to verify the implementation
and demonstrate the performance of RTDEM in Section 4. Finally, conclusions are summarized in Section 5.

2. Ray tracing discrete element method

2.1. Triangularization of arbitrarily shaped particle

The surface of a particle, regardless of its complexity, can be effectively represented by a triangular mesh with
a prescribed resolution. For simplicity, we use the numbers of vertices Nv and facets N f to quantify the resolution

f a particle surface. The triangular facet is defined by three vertices a, b and c, as shown in Fig. 1, such that the
utward normal of the facet is given by

n f =
(b − a) × (c − a)

∥(b − a) × (c − a)∥
(1)

n area vector S at a vertex is defined by weighting the area vectors of the adjacent facets of the vertex, given by

S =

Na f∑
i=1

Ai ni
f (2)

here Ai and ni
f are the area and outward normal of the i th adjacent facet at the vertex, respectively; Na f is

he number of adjacent facets. Another geometric measure is the vertex normal nv , defined as an angle weighted
seudonormal that was proposed to compute signed distance for polyhedra in the literature [29], i.e.,

nv =

∑Na f
i=1 αi ni

f

∥
∑Na f

i=1 αi ni
f ∥

(3)

where αi is the angle of the i th facet at the vertex; ni
f is the outward normal of the i th facet; Na f is the number

f adjacent facets at the vertex.
The mesh-based representation of particle shape offers great flexibility for modeling arbitrarily shape particles

hat can be either generated by numerical algorithms such as spherical harmonics [30] or reconstructed from X-ray
T scanned images [19]. Moreover, the discrete vertices can serve as Lagrangian points in immersed boundary

echniques when coupling DEM with computational fluid dynamics (CFD) for particle–fluid interactions [31].
ote that the terms “particle surface”, “triangular mesh” and “mesh” will be used interchangeably throughout the
resentation.
3
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2.2. Inertia properties

Mass m, centroid x p and moment of inertia J are basic inertia properties used to resolve particle motion. These
easures can be computed by decomposing the particle into tetrahedra, each with a triangular facet of the particle

urface as its base and a reference point (e.g., the origin) as its apex. The inertia properties of a particle can then
e determined by summing the measures of the individual tetrahedra, i.e.,

m = ρ

N f∑
i=1

Vi (4)

xc
=

∑N f
i=1(ai + bi + ci )Vi

4
∑N f

i=1 Vi

(5)

J =

N f∑
i=1

J (i)Vi (6)

here ρ is mass density; ai , bi and ci are the position vectors of the three vertices of the i th triangular facet
i.e., base of the i th tetrahedron), respectively; N f is the total number of triangular facets of the particle surface.
he signed volume of the i th tetrahedron is given by

Vi =
1
6

(−c0b1a2 + b0c1a2 + c0a1b2 − a0c1b2 − b0a1c2 + a0b1c2). (7)

ote that the three vertices ai , bi and ci are counterclockwise labeled to ensure an outward normal of the facet.
he moment of inertia of the i th tetrahedron is obtained with respect to the mass centroid, i.e.,

J (i)
=

⎡⎢⎣I (i)
11 + I (i)

22 −I (i)
01 −I (i)

02

−I (i)
01 I (i)

00 + I (i)
22 −I (i)

12

−I (i)
02 −I (i)

12 I (i)
00 + I (i)

11

⎤⎥⎦ (8)

ith

I (i)
αβ =

ρ

20
(h − x p

α 1) · (t − 4x p
β 1) (9)

h = [aα, bα, cα] (10)

t = [2aβ + bβ + cβ, aβ + 2bβ + cβ, aβ + bβ + 2cβ] (11)

where α and β are indices in [0,1,2] for the corresponding components; ρ is the mass density. The principal moments
of inertia can be obtained by eigen-decomposition of J (i), where the eigenvectors (e1, e2, e3) and eigenvalues
(J1, J2, J3) are principal axes and the corresponding principal moments of inertia, respectively.

2.3. Template mesh

A template mesh is introduced to facilitate shape transformation and save computing memory. Its mass centroid
serves as the local origin and its principal axes as the local Cartesian axes. Consequently, the mesh can be
transformed to its local configuration by:

x
′ j
v = M−1(x j

v − x p) (12)

where x
′ j
v and x j

v are the new and original position vectors of the j th vertex of the mesh, respectively; M is the
rotation matrix determined by the principal axes, i.e.,

M = |e1, e2, e3|. (13)

Note that the sequence of (e , e , e ) in M may vary.
1 2 3
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2.4. Shape transformation

Shape transformation, such as scale, shear, rotation and translation, can be applied to a template mesh, which
acilitates memory saving by sharing the mesh data with particles that may have different positions, orientations
r shapes. Moreover, this approach avoids accumulative errors in particle shapes during the integration of particle
otion. In this work, transformation matrices S, R, and T are used to account for scale, rotation, and translation,

espectively, given by,

S =

⎡⎢⎢⎣
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
Rxx Rxy Rxz 0
Ryx Ryy Ryz 0
Rzx Rzy Rzz 0
0 0 0 1

⎤⎥⎥⎦ , T =

⎡⎢⎢⎣
0 0 0 Tx

0 0 0 Ty

0 0 0 Tz

0 0 0 1

⎤⎥⎥⎦ (14)

The overall transformation is given by the following matrix

T RS =

⎡⎢⎢⎣
Sx Rxx Sy Rxy Sz Rxz Tx

Sx Ryx Sy Ryy Sz Ryz Ty

Sx Rzx Sy Rzy Sz Rzz Tz

0 0 0 1

⎤⎥⎥⎦ (15)

he particle surface xs pertaining to a template mesh is given by

xs
= s R′xm

+ x p (16)

here xm is a surface point on the template mesh; x p is particle position (center of mass); R′ is a 3 × 3 matrix of
article orientation; s is a scale factor for isotropic scale (i.e., Sx = Sy = Sz = s). In the presence of a scale factor,
he basic particle geometric/inertia measures are given by

m ′
= ms3, J ′

= Js5 (17)

Note that particle orientation is often represented by a quaternion q(w, x, y, z) to facilitate the implementation
n rotation integration, thus Eq. (16) is rewritten as

xs
= sqxm

+ x p (18)

.5. Ray tracing contact detection

.5.1. General contact detection algorithm
Ray tracing is a widely used technique to enhance realistic visualization in computer graphics and gaming by

endering images and videos. In practical rendering, millions of rays are cast into a model scene, and their paths
hange via reflection and/or refraction when colliding with an object, similar to the real world. Taking a similar
pproach, ray tracing has been employed for contact detection in computer graphics [32]. In this work, we propose a
ay tracing-based algorithm for contact detection and resolution in DEM simulations of arbitrarily shaped particles.

As shown in Fig. 2, a ray with a length of l i will be cast along the opposite direction of the normal at a vertex
, i.e., −ni

v defined in Eq. (3). The ray length can be determined by

l i
= ∥xi

h − xi
v∥ (19)

here xi
h is the hit point on the particle surface, i.e., the intersection point between the ray and a hit triangular

acet (see Fig. 2a); xi
v is the position vector of the vertex i . However, it is not necessary for rays to hit their own

article surface. Thus, the ray length is scaled down by a weight w (see Fig. 2b). Moreover, the ray lengths can
e the same for all vertices of a particle (see Fig. 2c). For simplicity, the single ray length can be defined as the
verage of three semi-lengths (lx , ly, lz), i.e.,

l =
1
3

(lx + ly + lz) (20)

ote that the semi-lengths can be defined with respect to the axis-aligned bounding box (AABB) or the principal
xes of a particle. Three-dimensional ray casting is showcased for different shapes in Fig. 3.
5
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Fig. 2. Two-dimensional illustration of ray casting inside a triangular mesh with: single ray length (a) and different ray lengths l i (b) and
wl i (c).

Fig. 3. Examples of different ray casting lengths for banana, pear and nut: (a) 0.5l, (b) 0.9l i and (c) 0.5l i .

Given two particles, as shown in Fig. 4(a), contacts occur once there are rays from one particle hitting the facets
f another particle. To facilitate the contact detection between rays and facets, a bounding volume hierarchy (BVH)
s introduced to organize the axis-aligned bounding box (AABB) of each facet. Hence, the ray-facet contact detection
ecomes to examine the intersection of a ray and an AABB first, and another exact intersection computation is then
pplied to the ray-facet pair if the ray collides the AABB. This procedure can be efficiently implemented via an
cceleration structure elaborated in the following subsection.

Furthermore, it is important to address the occurrence of an extreme configuration, as depicted in Fig. 4(b),
hich can arise during simulations. In this configuration, one particle, denoted as Particle A, can penetrate another

longated or thin particle, denoted as Particle B, due to a significant relative velocity. This particular scenario can
ead to numerical issues and potentially cause the simulation to crash in SDF-DEM and LS-DEM methods. In
DF-DEM and LS-DEM, the vertices D and E of Particle A can be identified as being outside Particle B based
n their SDF or LS values. As a result, these vertices are ignored, resulting in no repulsive forces being applied.
n the other hand, the repulsive forces acting on vertices C and F are significantly underestimated due to their
roximity to the surface of Particle B. Consequently, when such a configuration occurs, Particle A may effectively
6
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Fig. 4. (a) Illustration of ray tracing contact detection and resolution; (b) an extreme configuration that may be encountered in a simulation.

pass through Particle B without the expected repulsive forces in SDF-DEM and LS-DEM. In contrast, our RTDEM
framework offers a robust solution to this numerical problem without requiring any additional implementation. In
RTDEM, the hit point occurs only on the inward side of a facet. For example, the ray at vertex D ignores the first
hit of the surface of Particle B and eventually collides with the inner side of Particle B at another facet. The inner
side of Particle B satisfies the following condition,

nr · n f > 0 (21)

here nr is the ray direction, and n f is the outward normal of a hit facet given in Eq. (1).

.5.2. Acceleration structure
The most computationally intensive aspect of ray tracing is collision detection between rays and objects. To

ddress this challenging task, a sophisticated data structure is required to organize spatial objects. This structure is
ommonly known as an acceleration structure in computer graphics. When dealing with objects that have complex
hapes, their surfaces are often represented by triangular meshes, allowing for arbitrary shapes. As a result, collision
etection between a ray and an object is simplified to checking for a possible intersection between the ray and
he triangular mesh. Our RTDEM utilizes a workflow similar to the general collision detection in ray tracing.
herefore, the contact detection can be easily implemented using state-of-the-art algorithms for ray tracing, including
cceleration structures and hardware acceleration.

An acceleration structure can be established as a bounding volume hierarchy (BVH) tree, which has been
uccessfully applied in computer graphics [33] and computational mechanics [34] to improve computational
fficiency of contact detection in multi-body systems. As shown in Fig. 5, we introduce two levels (bottom level and
op level) of sub-BVH trees to facilitate the management of an acceleration structure. For the bottom level, aligned
xis bounding boxes (AABB) of all triangular facets for a particle surface are grouped into a BVH tree. For the top
evel, AABBs of all particles are then grouped into another BVH tree. Using mesh templates, the particles having
he same mesh template can share a bottom-level BVH tree but with different scale, rotation and/or translation. In
ther words, a bottom-level BVH can be established with respect to a mesh template, and for a particle with given
cale, rotation and translation, the corresponding BVH tree can be readily inserted into the top-level BVH tree,
hich is called as a particle instance (of the template mesh).
It is assumed that particle shapes remain unchangeable in a simulation. Hence, a particle instance requires

pdating once either particle position or particle orientation updates during particle dynamics. With the two-level
VH scheme, it is remarkably efficient to update the entire acceleration structure based on its previous data,
specially for the case of small particle motion that holds generally for one timestep simulation in DEM. It is
oteworthy that the performance of an acceleration structure may degrade considerably after many updates, in
hich case one may reestablish a fresh acceleration structure instead of updating it based on the previous data.
he detailed implementation is not introduced here to avoid possible distraction. Indeed, there are well documented
lgorithms to implement a BVH tree on GPUs, and interested readers are referred to the literature [35,36].
7



S. Zhao and J. Zhao Computer Methods in Applied Mechanics and Engineering 416 (2023) 116370

2

fi
e
fi
S
v
fi
i

p
a

w
v
l
d

N
{

f
f
d

w
a

Fig. 5. Two-dimensional illustration of the proposed two-level acceleration structure with template meshes.

.6. Discrete potential field functions

To introduce energy-conservative contact models for numerical stability [27], it is necessary to define a potential
eld function properly. Similar ideas have also been proposed for contact problems in finite element method,
.g., [37]. In previous DEM variants such as LS-DEM [24] and SDF-DEM [28], both level-set and signed distance
eld functions can be regarded as general potential field functions, which are continuously defined in space.
pecifically, given a particle surface S, a potential field function W (S, x p) can be defined so that the potential
alue at a point x p is the minimum with respect to the surface (see Fig. 6a). Typically, such a continuous potential
eld function is implicit and requires pre-caching at a spatial lattice grid to facilitate lookup-table operations, as

mplemented in LS-DEM and SDF-DEM.
In this work, instead of defining a potential field with respect to the whole surface, we propose two discrete

otential field functions Wv and W f with respect to the i th vertex or facet, respectively, as illustrated in Fig. 6b
nd c.

Wv = W (xi
v, x p), x p ∈ {xi

v + λni
v|i = 1, . . . , Nv} (22)

W f = W (xi
f , x p), x p ∈ {xi

f + λni
f |i = 1, . . . , N f } (23)

here Nv and N f are vertex number and facet number of a particle surface, respectively; ni
v and ni

f are the i th
ertex normal given in Eq. (3) and i th facet normal given in Eq. (1), respective; λ is an arbitrary constant that
ocates the point x p; xi

v is the position of the i th vertex; xi
f is a projection point of x p on the i th facet. These two

iscrete potential field functions can be superimposed to approximate the continuous potential field function, i.e.,

W (S, x p) ≃ W (xi
v, x p) + W (xi

f , x p), S ∈ {xi
v|i = 1, . . . , Nv} ∪ {xi

f |i = 1, . . . , N f }. (24)

ote that for a given point x p, Wv and W f are defined mutually exclusive, i.e., {xi
v + λni

v|i = 1, . . . , Nv} ∩

xi
f + λni

f |i = 1, . . . , N f } = ∅. Compared with potential fields based on level-set functions or signed distance
unctions, the discrete potential field functions define potential values at each individual vertex or facet only. This
eature significantly reduces computing memory usage because no pre-cached potential values are required to be
istributed within a particle.

For a colliding ray-facet pair, a general discrete potential field function W (xv, x) is defined by

W (xvi , x) = k
Si

· ni
v

ϑSp
dϑ (25)

here k is a parameter of material stiffness; Si is the area vector at the vertex i , given in Eq. (2); Sp is the surface
rea of the given particle; vi is the vertex normal defined in Eq. (3), and ϑ is the potential order. d is the distance
v

8
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Fig. 6. Exemplified potential field functions: (a) continuous W (S, x p) against the whole surface, (b) discrete W (xi
v, x p) against vertex i and

c) discrete W (xi
f , x p) against facet i .

iven by

d =

{
(xi

v − xi
h) · ni

v hit point against vertex

(xi
h − xi

v) · ni
h vertex against hit facet

(26)

here ni
h is the surface normal at the hit point xi

h , equal to the facet normal n f of the hit facet. Note that Eq. (26)
pecifically addresses point-vertex and point-facet interactions, omitting explicit consideration of other primitive
nteractions such as edge-edge and edge-facet interactions (see e.g., [34]). Instead, the primitives (edges and facets)
urrounding a point (i.e., a vertex from the other particle surface) are collectively incorporated by being combined
ith the point using a local geometric measure, as defined in Eq. (34). Moreover, both point-vertex and point-facet

nteractions can be unified into a point-surface interaction, which can be described by a continuous potential field
s expressed in Eq. (24). This enables a comprehensive treatment of the interactions between points and surfaces
ithin the model, encompassing the combined effects of vertices, facets and their respective geometric measures.
herefore, the two discrete potential field functions are rewritten as

W (xi
v, xi

h) =k
Si

· ni
v

ϑSp
((xi

v − xi
h) · ni

v)ϑ (27)

W (xi
f , xi

v) =k
Si

· ni
v

ϑSp
((xi

h − xi
v) · ni

h)ϑ (28)

heir derivatives with respect to x are given by

∂W (xi
v, xi

h)
∂xh

= − k
Si

· ni
v

Sp
((xi

v − xi
h) · ni

v)(ϑ−1)ni
v (29)

∂W (xi
f , xi

v)

∂xv

= − k
Si

· ni
v

Sp
((xi

h − xi
v) · ni

h)(ϑ−1)ni
h (30)

2.7. Contact model

2.7.1. Normal contact force
Given a scalar potential field W (x), a normal contact force f n can be obtained by

f n
= −

∂W (x)
∂x

(31)

which yields an energy-conserving contact model as introduced in the literature [27]. In previous studies,

e.g., [24,28], the node-to-surface algorithm was employed to solve contact forces. Specifically, a node (or vertex)

9
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Fig. 7. (a) Contact geometric measures and (b) potential-based contact forces .

from one particle surface is regarded as an intruder, as shown in Fig. 7, and the potential value of this intruder is
required against the surface of another particle, typically by looking up a pre-cached table. Therefore, the pre-cached
table will store both the potential and its gradient.

With our proposed discrete potential field functions W (xi
v, xi

h) and W (xi
f , xi

v) given in Eqs. (27) and (28), the
potential values at the i th vertex xi

v and its hit point xi
h are employed to compute the contact force. Therefore, the

normal contact forces at the vertex xi
v and the hit point xi

h are given by

f ni
xh

= −
∂W (xi

v, xi
h)

∂xh
=knγ

i d (ϑ−1)
h ni

v (32)

f ni
xv

= −
∂W (xi

f , xi
v)

∂xi
v

=knγ
i (dhni

h · (−ni
v))(ϑ−1)ni

h (33)

ith

γ i
=

Si
· ni

v

Sp
(34)

here kn is the normal contact stiffness; dh is the hit distance; γ i is a local geometric measure for normalized facet
rea projection, which can be regarded as a weight for the overall normal contact force. Therefore, there are three
ptions to define a normal contact force, i.e.,

f i
n = f ni

xh
(35)

f i
n = − f ni

xv
(36)

f i
n = f ni

xh
− f ni

xv
(37)

here the third equation is a linear combination of contact forces at xi
v and xi

h for simplicity. For the sake of
larity, we denote these three normal contact forces as the vertex-potential normal contact force, facet-potential

normal contact force, and combined normal contact force. Note that the contact force is applied directly to Particle
B, while its reaction is applied to Particle A. The direction of normal contact force is taken as the contact normal
nc, and the contact point xi

c can be defined as

xi
c = xi

v + 0.5dhni
c (38)

Remarks. The proposed contact model can be considered as a type of multi-point contact model, as it introduces
discrete vertices of a particle surface, distinguishing it from conventional single-point contact models. To quantify
the overall behavior of multi-point contacts, an equivalent single-point contact model is proposed, following a power
law relationship given by

α
Fn = Knd (39)

10
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where Fn is the equivalent normal contact force (or resultant contact force given by Fn = ∥
∑

i f i
n∥); Kn is

deformation-independent contact stiffness; α is a constant, and d is the overall penetration depth at the particle
scale. Note that d may not have a direct relationship with the local penetration depth (the hit distance dh) at each
vertex. Notably, Eq. (39) resembles a linear spring model when α is equal to 1, or the Hertzian model when α is
equal to 3

2 . In the case of our multi-point contact model, the contact force f i
n is assumed to be independent of the

local penetration depth for a model parameter ϑ set to 1. However, this assumption can lead to numerical issues in
situations where penetrated vertices reach a constant number. Hence, ϑ is set to 3

2 or 2 in the simulations of this
work.

2.7.2. Tangential contact force
As for the tangential contact force, we use a linear contact model in conjunction with the Coulomb sliding model.

The computation of the tangential contact force follows a conventional implementation. The relative displacement
s at the contact point xc is first solved by

s =
(
vAB − (vAB · nc)nc

)
∆t (40)

here nc is the contact normal, equal to −nv; vAB is the relative velocity at the contact; ∆t is the timestep. For
onsistency, the particle that has a ray cast is denoted as particle A, while the particle with facets being hit is
enoted as particle B. Thus, the relative velocity vAB is given by

vAB = vB + ωB × (xc
− x p

B) − vA − ωA × (xc
− x p

A) (41)

here v, ω and x p are the translational velocity, rotational velocity and particle position, respectively; and the
ubscripts A and B denote the corresponding particle A and B, respectively. Therefore, the increment of tangential
ontact force ∆ f i is given by a linear displacement–force law, i.e.,

∆ f i
= kt s (42)

here kt is the tangential contact stiffness. Unlike the computation of normal contact force, the previous tangential
ontact force required to be rotated to the current tangential plane. Accordingly, two axes orthogonal with the contact
ormal, namely orthonormal axis noa and twist axis nta , are introduced to facilitate the force rotation, defined as

noa
= n′

c × nc (43)

nta
=

∆t
2

[n′

c × (ωB + ωA)] · n′

c (44)

here nc′

is the previous contact normal. Then, the previous tangential contact force f ′

t is rotated twice as follows

f r1
t = f ′

t − f ′

t × noa (45)

f r2
t = f r1

t − f r1
t × nta (46)

lternatively, the previous tangential contact force f ′

t can be simply projected onto the current contact plane, i.e.,

f r2
t = f ′

t − ( f ′

t · nc)nc (47)

herefore, the tangential contact force f i
t is obtained as

f i
t = f r2

t + ∆ f i (48)

ith its magnitude subjected to the Coulomb condition, i.e.,

∥ f i
t∥ = min{∥ f i

t∥, µ∥ f i
n∥} (49)

here µ is the coefficient of friction. Note that the tangential contact force f i
t is not necessarily parallel to the

elative tangential velocity at contact in a three-dimensional space [38].

.8. Motion integration

Particle motion follows the Newton-Euler equations that are shown here for the sake of presentation, i.e.,

m
dv

= F(b)
+ F(d)

+ F(c) (50)

dt

11



S. Zhao and J. Zhao Computer Methods in Applied Mechanics and Engineering 416 (2023) 116370
J
dω

dt
+ ω × ( Jω) = T (d)

+ T (c) (51)

where v and ω are the translational and rotational velocities of a particle, respectively; m and J are the mass and
moment of inertia of the particle, respectively; F(b) is the body force; F(d) and T (d) are damping force and torque,
respectively; F(c) and T (c) are the resultant contact force and torque on the particle, respectively, given by

F(c)
=

N A
cv∑

i=1

(
− f i

n + f i
t

)
−

∑
B∈Np

N B
cv∑

i=1

(
− f i

n + f i
t

)
(52)

T (c) =

N A
cv∑

i=1

(xi
c − x A) × (− f i

n + f i
t ) −

∑
B∈Np

N B
cv∑

i=1

(xi
c − x A) × (− f i

n + f i
t ) (53)

where N A
cv and N B

cv are the numbers of vertices within the contact overlap for particles A and B, respectively; Np

is the neighbor number of particle A; x A is the position vector of particle A.
Note that the Euler equation, i.e., Eq. (51), requires a body-fixed reference frame. In general, it is preferable to

align the local axes with the principal axes of the particle, which facilitates the computation of particle rotation.
Moreover, particle orientation is represented by a quaternion as mentioned in Section 2.4. The Newton-Euler
equations are solved explicitly by a canonical Verlet scheme for simplicity in this work. The detailed implementation
is not presented here for brevity, while interested readers are referred to the literature [9,39].

3. Hardware acceleration

The proposed computational framework is well-suited for parallel computing on conventional multi-core or multi-
node CPU computing systems. Moreover, it introduces a novel paradigm of efficient parallel computing by largely
leveraging the hardware of modern GPUs. Unlike conventional GPGPU computing that only uses shader cores
(such as CUDA cores on NVIDIA’s GPUs), RTDEM employs the latest hardware, i.e., ray tracing cores, to compute
contact detection and resolution between arbitrarily shaped particles. This cutting-edge technology makes RTDEM a
next-generation tool for large-scale DEM simulations with arbitrarily shaped particles using economically available
computing resources, such as personal computers with a common gaming graphic card.

3.1. Ray tracing cores on GPUs

In RTDEM, many rays will be cast from particle vertices and then queried against an acceleration structure. This
task is most often computationally time-consuming but can be generally solved in parallel on multi-core CPUs or
shaders of GPUs. In addition to GPU shaders (e.g., CUDA cores on NVIDIA GPUs) for general-purpose computing,
RTDEM benefits remarkably from ray tracing cores that were first introduced in NVIDIA’s Turing architecture in
2019 to accelerate ray tracing tasks [40]. The ray tracing cores have been successfully utilized for general-purpose
computing such as locating particle position in unstructured meshes [41], accelerating particle-based numerical
simulations [42]. A ray tracing core has two individual physical units: box intersection and ray-triangle intersection
evaluators. The box intersection evaluator checks if there is an intersection between a ray and an AABB, which
can be regarded as a broad phase of contact detection. The ray-triangle intersection evaluator is a narrow phase of
contact detection, which computes the intersection point of a ray and a triangular facet and returns the hit distance
dh .

3.2. Implementation on GPUs

RTDEM has been implemented using GPU acceleration, including general acceleration with shaders (such as
CUDA acceleration of NVIDIA GPUs) and ray tracing (RT) acceleration with RT cores. The overall workflow of
RTDEM is outlined in Algorithm 1. GPU shader acceleration has been implemented using CUDA 11.5, while GPU
RT acceleration has been implemented using OptiX 7.5. All simulations in the next section were carried out on a

Linux/Ubuntu 18.04 Desktop with an NVIDIA Geforce RTX 2080 Ti GPU.

12
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m

Algorithm 1: Pseudocode of the RTDEM workflow.
Input: Simulation time-steps;

1 foreach time-step do
2 foreach vertex of each particle {GPU shader acceleration} do
3 computing ray position and direction;
4 updating the acceleration structure;

5 foreach ray {GPU RT acceleration} do
6 computing hit distance;

7 foreach vertex of each particle {GPU shader acceleration} do
8 computing contact force;

9 foreach particle {GPU shader acceleration} do
10 integrating particle motion;

Fig. 8. Exemplified shapes with different mesh resolutions: (a) sphere and (b) sand.

4. Numerical examples

4.1. Particle pair test

In this section, we examine the discrete potential-based contact models, namely the vertex-potential normal
contact force, facet-potential normal contact force, and combined normal contact force given in Eqs. (35), (36),
and (37), respectively, for both spherical and non-spherical particles. We then perform a sensitivity analysis of
mesh resolutions. To this end, we prepare two groups of template meshes with different resolutions, as illustrated
in Fig. 8. The spherical particle has a radius of 5 m, while the non-spherical (sand) particle has an equivalent radius
of 5 m with the same volume as a sphere. In the particle pair test, two particles are vertically stacked without initial
contact, and the top particle moves downwards with a constant velocity, while the bottom particle remains fixed. The
repulsive force Fn , i.e., equivalent normal contact force of classical single-point contact models, e.g., Eq. (39), is
used to examine the holistic behavior of multi-point contacts between the two particles. The normal contact stiffness
kn is set to 1 × 106 N/m0.5 for ϑ =

3
2 and 1 × 106 N/m for ϑ = 2. The normal contact forces Fn with different

odels are normalized by the corresponding normal contact stiffness k .
n

13
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a

Fig. 9. Variation of normal contact force Fn normalized by normal contact stiffness kn with penetration depth d for spheres (2562 vertices
and 5120 facets for each): (a) ϑ =

3
2 and (b) ϑ = 2. Note that V in (b) is the theoretical overlap volume between the contacting spheres.

Fig. 10. Variation of normal contact force Fn normalized by normal contact stiffness kn with penetration depth d for sands (2002 vertices
nd 4000 facets for each): (a) ϑ =

3
2 and (b) ϑ = 2.

4.1.1. Test 1: different contact models
We use the highest-resolution template meshes for the tests, namely a sphere with 2562 vertices and 5120 facets,

and sand with 2002 vertices and 4000 facets. The variations of Fn/kn are plotted in Figs. 9 and 10 for sphere-sphere
and sand-sand contact tests, respectively. The results show that there is no significant deviation between the vertex-
potential and facet-potential contact forces. To quantify the holistic behavior of the proposed multi-point contact
model, a power law fitting equation is introduced below based on the single-point contact model in Eq. (39).

Fn/kn = adϑ (54)

where a is a fitting parameter that satisfies Kn = akn; α in Eq. (39) is set to ϑ , the model parameter of our
multi-point contact model. The results show that the fitting Eq. (54) is suitable for fitting the force–displacement
relation regardless of particle shape. It is worth mentioning that the local contact force f i

n is proportional to the ϑ−1
order of the local penetration dh , referring to Eqs (32) and (33), while the overall contact force Fn is proportional
to the ϑ order of the overall penetration d.

The proposed discrete potential-based contact model has two noteworthy features. Firstly, for ϑ =
3
2 , the contact

model resembles the Hertzian model, where the contact force is proportional to the 3 order of the penetration.
2
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Fig. 11. Normal contact force varying with penetration depth for different vertex numbers: (a) sphere and (b) sand.

econdly, for ϑ = 2, the contact model resembles a volume-based contact model, especially for sphere-sphere
contact. To verify this feature, we introduce the theoretical overlap volume of two identical spheres given by:

V =
2π

3
(3r − d)d2 (55)

here r is the radius, and d is the penetration depth. As shown in Fig. 9b, the contact force can be fitted with a
inear relation with the overlap volume V .

.1.2. Test 2: effect of mesh resolution
The vertex-potential contact model with ϑ =

3
2 is selected to conduct sensitivity analysis on the resolution of

template mesh. As shown in Fig. 11, the template meshes with 322 vertices and 502 vertices are sufficiently
ne to produce quantitatively comparable results with high-resolution meshes for the testing sphere and sand
ases, respectively. It suggests that our proposed multi-point contact model is not sensitive to the mesh resolution,
enefiting from the introduction of a local geometric measure γ in Eq. (34) that helps weight the contact forces

adaptively based on the mesh resolution. It should be noted that the resolution sensitivity may be shape-dependent,
and the uniformity of facets may also influence the sensitivity to some extent, as reported in the literature [28].
A comprehensive discussion of this topic is beyond the scope of this work. Interested readers may refer to the
literature [43] for a detailed discussion on how to reasonably reduce the vertex number of a triangular mesh.

4.2. Nut spinning into a bolt

The proposed discrete potential-based contact model and the overall RTDEM will be further verified for
a dynamic problem: a frictionless nut spinning into a bolt under gravity. During the nut rotation, it involves
complicated contact detection within the nut-bolt system, which has been selected as a benchmark for multi-
body dynamic simulations in previous studies [28]. With the energy conservation equation of the nut mgh =

.5mv2
z + 0.5Izω

2
z (m: mass; Iz : principal moment of inertia around the vertical axis; vz : vertical velocity; ωz :

otational velocity; g: gravitational acceleration, 10 m/s2 for the default value in this work; h: vertical displacement)
nd the constraint equations dh/dt = vz and 2π/ωz = H/vz , the analytical rotational velocity ωz is given by

ωz =
2πmgHt

4π2 Iz + m H 2 (56)

here H is the vertical displacement of the nut rotating 2π around the bolt.
The simulation setup for the dynamic problem of a frictionless nut spinning into a bolt under gravity is illustrated

n Fig. 12. The bolt is fixed, and the nut rotates freely driven by its self-weight. The nut has a mass m of 38.95 kg
nd a principal moment of inertia I of 0.4371 kg m2. The vertical span between two neighboring bolt tracks H
z
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Fig. 12. Setup of the nut spinning test: (a) a nut with 4690 vertices and 9380 facets, and a bolt with 8776 vertices and 17 548 facets; (b)
initial configuration; (c) both nut and bolt with ray casting and (d) only the nut with ray casting (The red lines for rays). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

is 15.07 mm, resulting in an analytical rotational acceleration of 2.137 rad/s2. We utilize the three potential-based
contact force models, i.e., vertex-potential, facet-potential, and combined-potential models, in conjunction with two
ϑ values ( 3

2 and 2). In the simulation, no friction is applied to any contact, and a small local damping coefficient
of 0.025 is used to ensure numerical stability for a given time step of 1 × 10−4 s. The normal contact stiffness kn

is set to 1 × 106 N/m
1
2 and 1 × 107 N/m for ϑ =

3
2 and ϑ = 2, respectively. Note that the value of kn will not

nfluence the result, except for numerical stability, since it vanishes in the analytical solution.
As shown in Fig. 13, the facet-potential contact model outperforms the other two models, yielding nearly

onsistent results with the analytical solution. The combined-potential contact model performs better than the vertex-
otential model in most cases. Moreover, the results of only nut casting rays are nearly identical to those of both nut
nd bolt casting rays. The average simulation speeds are 15,813 steps/s and 9724 steps/s for the only-nut-casting and
oth-nut-and-bolt-casting cases, respectively, resulting in a speedup of 250 ∼ with respect to previous SDF-DEM
imulations [28] with 5196 and 8170 facets for the nut and the bolt, respectively (almost half problem size of
his work). It is important to acknowledge that comparing the performance of RTDEM and SDF-DEM based on
ifferent computing architectures, one on GPU and the other on CPU, may not provide a fair evaluation. Therefore,
t would be more meaningful to conduct a comprehensive comparison on the same GPU computing architecture.
owever, such a comparison is beyond the scope of this work. Interested readers are referred to the literature [28]

or a comprehensive investigation of computational performance of SDF-DEM on a CPU computing architecture.
oreover, it suggests that casting rays from only one of the contacting particles can significantly improve the

omputational performance with comparable results to casting rays from both particles. However, for ϑ =
3
2 , there

is a moderate difference between simulation results of the two ray-casting cases when using the vertex-potential or
combined-potential contact models. Furthermore, the matter of selecting which particle to employ for ray casting in
many-particle systems is still an open question that we intend to address in future research. This issue is analogous
to the one encountered in the conventional master–slave particle scheme when utilizing node-to-surface algorithms.
It is noteworthy that previous studies, such as [28], have demonstrated that swapping the roles of master and slave
particles results in a negligible deviation in the contact force. This negligible deviation does not significantly affect
the mechanical response of the particle pair, provided that the mesh resolution is adequate. In this work, however,
we will use both contacting particles for ray casting to eliminate potential numerical issues caused by using single
particle for ray casting. In summary, the facet-potential contact model is the most robust, regardless of the ray-casting

cases and the model order parameter ϑ .
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Fig. 13. Rotational velocity of the nut driven by its self weigh with: both nut and bolt casting rays for (a) ϑ =
3
2 and (b) ϑ = 2, and only

the nut casting rays for (c) ϑ =
3
2 and (d) ϑ = 2.

.3. Granular packing

This section examines the robustness and performance of our RTDEM in simulating frictional granular systems
ith respect to varying particle shape. The template meshes (127v and 502v) of sand particle illustrated in Fig. 8

re adopted to investigate the effect of mesh resolution, and another two template meshes, i.e., banana and pear, are
repared as illustrated in Fig. 14. Both the vertex-potential and facet-potential contact models are employed, and the
ontact model parameter ϑ is set to 3

2 . We only show snapshots of the packing configurations for simulations with
he vertex-potential contact model to observe the numerical stability. Kinetic energy and elapsed time in computation
re then quantitatively examined for simulations with both contact models.

.3.1. Packing protocol
The following simulation protocol is employed for granular packing unless stated otherwise. The initial packing

onfiguration is set up at a 5 × 5 × 20 lattice grid with a gap of 0.11 m, and then particles deposit freely into
box under gravity. The box has a square base of 1.42 × 1.42 m2. For particle–particle contacts, the normal

ontact stiffness kn is set to 1 × 106 N/m
1
2 , and the tangential contact stiffness ks is set to 1 × 105 N/m. For the

particle-box contacts, kn and ks are 1 × 108 N/m
1
2 and 1 × 105 N/m, respectively. Both coefficients of friction for

particle–particle and particle-box contacts are set to 0.3. The material mass density of particles is 2650 kg/m3. A
local damping coefficient of 0.3 is used to facilitate energy dissipation. The packing simulation runs for 30 000
steps with a fixed timestep of 1 × 10−4 s.
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Fig. 14. Template meshes: (a) a banana with 252 vertices and 500 facets, (b) a pear with 750 vertices and 1496 facets.

4.3.2. Packing of sand particles with different mesh resolutions
Fig. 15 shows the packing configurations of 500 sand particles with an equivalent size of 5.0 cm. The packings use

he 127v and 502v meshes, which have over 63,500 and 251,000 vertices, respectively. Although there is a moderate
ifference between the final configurations for the two mesh resolutions, the packing simulation is numerically stable
or the mesh with only 127 vertices.

.3.3. Packing of bananas and pears
Figs. 16 and 17 show the packing configurations of 500 bananas (with an equivalent size of 5.2 cm) and 500 pears

with an equivalent size of 8.3 cm), respectively. The packings have over 126,000 and 375,000 vertices, respectively.
he packing simulations for these two distorted shapes are numerically stable. Moreover, we simulate a packing
ith a mixture of 400 bananas and 100 pears, and the configurations are shown in Fig. 18. No numerical instability
as been observed so far, confirming the robustness of RTDEM in simulating elongated particles that can result in
xtreme configurations, as depicted in Fig. 4(b).

.3.4. Packing of sand particles with varying sizes
Two more examples of packing sand particles (using the mesh template 127v) are showcased to further examine

he robustness of RTDEM in simulating polydisperse granular systems with varying particle size. One example has
rain sizes uniformly distributed between 2.5 and 5.0 cm (denoted as gsd packing), and the other has binary sizes
f 1.0 and 5.0 cm (denoted as bi-mixture packing). For the bi-mixture packing, the normal contact stiffness kn is

set to 1 × 105 N/m
1
2 and 1 × 104 N/m

1
2 for the particle-box contacts and the inter-particle contacts of fine particles,

espectively. Moreover, there are 100 coarse particles and 9375 fine particles. The rest of the simulation setup is
he same as the previous examples. Figs. 19 and 20 show the packing configurations at different time instants for
he gsd packing and the bi-mixture packing, respectively. It is observed that the simulations are numerically stable
uring the course of packing.

.3.5. Energy dissipation during packing
The numerical stability has been observed in the simulations above. To quantify the stability, the variation of

inetic energy
∑

(mv2/2 + Iω2/2) is tracked and normalized by the initial potential energy
∑

(mgh) (h is the
article height above the box base). Fig. 21 shows the variations of kinetic energy for all the simulations. The
inetic energy evolves almost the same for the vertex-potential and facet-potential contact models, but there is a
ignificant deviation at the peak for a low resolution of particle mesh, such as sand-127v. Moreover, the kinetic
nergy exhibits a single-peak evolution during packing, except for the packing of pears, implying that the evolution
hape of kinetic energy is somewhat related to particle shape. However, a comprehensive investigation of the effect

f particle shape is not presented here to avoid any possible distractions.
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Fig. 15. Packing of sand particles within a box at different time instants: (a) 127v and (e) 502v at t = 0 s, (b) 127v and (f) 502v at t = 1
s, (c) 127v and (g) 502v at t = 2 s and (d) 127v and (h) 502v at t = 3 s. Note: 127v for 127 vertices and 502v for 502 vertices.

4.3.6. Computational efficiency
Computational efficiency is another important indicator for evaluating the performance of RTDEM. The elapsed

time for all simulations is summarized in Table 1, where the problem size is roughly quantified by the total vertex
number to allow for an intuitive comparison between simulations. Note that particle shape and size distribution
are also major factors influencing computational efficiency. Based on Table 1, we can conclude that the vertex-
potential contact model is slightly more computationally efficient than the facet-potential contact model for most
of the simulations. The reason is that the facet-potential contact model requires extra computation to access the
facet normal. However, considering the overall performance, including accuracy, robustness, and efficiency, it is
recommended to use the facet-potential contact model.
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Fig. 16. Packing of bananas within a box at different time instants: (a) t = 0 s, (b) t = 1 s, (c) t = 2 s and (d) t = 3 s.

Fig. 17. Packing of pears within a box at different time instants: (a) t = 0 s, (b) t = 1 s, (c) t = 2 s and (d) t = 3 s.

.3.7. Packing of bi-mixture with an extreme size ratio
The proposed computational framework is able to efficiently simulate dynamic problems of both mono-disperse

nd poly-disperse particle systems with arbitrarily shapes as demonstrated above. An additional extreme case is
resented here to further showcase the performance of the proposed framework. In the simulation, 0.2 million fine
articles deposit above a coarse particle in a box. The equivalent sizes of the coarse and fine particles are 1 m
nd 1 cm, respectively, resulting in an extreme size ratio of 100 : 1. All particles have the same shape with the
20
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s

Fig. 18. Mixture packing of bananas and pears within a box at different time instants: (a) t = 0 s, (b) t = 1 s, (c) t = 2 s and (d) t = 3 s.

Fig. 19. Packing of sand particles with a uniform grain size distribution (gsd packing) within a box at different time instants: (a) t = 0 s,
(b) t = 1 s, (c) t = 2 s and (d) t = 3 s.

and127v template mesh. The facet-potential contact model is adopted with ϑ =
3
2 . The normal contact stiffnesses

are 1 × 108 N/m
1
2 and 1 × 104 N/m

1
2 for the coarse and fine particles, respectively, while the tangential contact

stiffnesses are 1 × 105 N/m and 1 × 104 N/m, respectively. The other simulation parameters are the same as in the
previous simulations. The simulation runs for 30,000 steps with a fixed timestep of 1×10−4 s, and the snapshots of
particle configuration are shown in Fig. 22. The entire simulations takes 29.4 min on a gaming NVIDIA RTX 2080
21
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Fig. 20. Packing of bi-mixture sand particles (bi-mixture packing) within a box at different time instants: (a) t = 0 s, (b) t = 1 s, (c) t = 2
s and (d) t = 3 s.

Fig. 21. Kinetic energy normalized by the initial gravitational potential energy during packing of: (a) sand particles and (b) bananas and
ears.

i GPU (with 11 GB memory), and the GPU memory usage is 2323 MB. These results suggest that the proposed
ramework offers an efficient solution for modeling arbitrarily shaped particles, even with a large size ratio.

.4. Column collapse

Experimental tests of column collapse are carried out to validate the corresponding simulations in RTDEM. Two
roups of granular columns are prepared with mono-disperse particles: one with 1 540 sand particles as introduced
n previous sections and the other with 728 poly-superellipsoidal particles. A poly-superellipsoidal particle has a
22
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Table 1
Elapsed time of RTDEM simulations for granular packing on an NVIDIA RTX 2080 Ti GPU.

Test Total vertex # Virtual time [s] Elapsed time [s]

Vertex-potential Facet-potential

Sand, 127v 63 500 3 3.53 3.61
Sand, 502v 251 000 3 7.68 7.75
Bananas 126 000 3 5.39 5.43
Pears 375 000 3 10.68 10.66
Bananas & pears 175 800 3 7.29 7.52
Gsd sand 63 500 3 3.58 3.69
Bi-mixture sand 1 203 325 3 45.87 44.84

Fig. 22. Packing of bi-mixture particles with a size ratio of 100 : 1 within a box at different time instants: (a) t = 0 s, (b) t = 1 s, t = 2 s
and t = 3 s.

Fig. 23. Template meshes (upper) and 3D printed particles (lower): (a) sand with 127 vertices and 250 facets; (b) poly-superellipsoid with
475 vertices and 946 facets.

smooth surface, as described mathematically in the literature [9]. Particles are 3D-printed with a resolution of 50 µm
using a Formlabs Form 3L printer. Fig. 23 shows the template meshes and their 3D-printed samples.

The 3D-printed particles are poured into an acrylic container with a base of 4 cm × 3.5 cm. The granular column
ollapses to approach an equilibrium state (final configuration) after removing a side wall of the container. Both
nitial and final configurations are plotted in Fig. 24. It can be seen that the poly-superellipsoidal particles run
ut further than the sand particles due to their smoother surfaces. The slopes are 27.7◦ and 21.9◦ for sand and
23
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Fig. 24. Column collapse of 3D printed particles: (a) initial and (b) final configurations for sand particles; (c) initial and (d) final configurations
for poly-superellipsoidal particles.

poly-superellipsoidal particles, respectively. The final profiles are taken as benchmarks to validate the numerical
simulations. Note that it is inevitable that there can be a moderate deviation between the profiles of experimental
repetitions.

In the proposed numerical model of RTDEM, model parameters such as contact stiffness, friction coefficient and
amping coefficient may influence the final profile of a granular column after collapse. However, a comprehensive
arametric study is not presented here to avoid any possible distractions. Moreover, an elaborated calibration on
hose model parameters is required to quantitatively reproduce the experimental results, e.g., using an iterative
ayesian filtering framework [44], which is beyond the scope of this work. For simplicity, the friction coefficient
is taken as a variable for sensitive analysis, while the values of the other model parameters are selected as

ollows: mass density 1200 kg/m3, normal and tangential contact stiffness kn = 5 × 102 N/m
1
2 , ks = 1 × 104 N/m

for inter-particle contacts and kn = 5 × 103 N/m
1
2 , ks = 1 × 105 N/m for particle-box contacts, and a damping

oefficient of 0.1. The vertex-potential contact model with ϑ =
3
2 is adopted. Each simulation runs for 100 000

teps with a fixed timestep of 1 × 10−5 s.
Fig. 25 shows the snapshots of the sand column during collapsing. Two friction coefficients µ = 0.3 and µ = 0.2

re adopted, yielding two slopes of 29.4◦ and 26.3◦, respectively, at the final state. The final profile of the simulation
ith µ = 0.2 closely resembles that of the experiment. Fig. 26 shows the configurations of poly-superellipsoidal
articles at different time instants. The final slopes are 25.2◦ and 21.0◦ with friction coefficients of µ = 0.2 and
= 0.15, respectively. It is evident that the simulated profile is expected to match the experimental one with a

lightly increased friction coefficient from 0.15. In summary, RTDEM is capable of reproducing experimental results
ithout requiring significant effort to tune the model parameters.

. Conclusions

Our proposed computational framework is shown capable of efficiently modeling arbitrarily shaped particles. This
ramework has three major features: (1) Contact detection and resolution are solved by our proposed ray-tracing
pproach; (2) Three potential-based contact models, including the vertex-potential, the facet-potential, and their
ombined models, make the simulations numerically stable, with the facet-potential model being the most robust; (3)
he potential-based models can be seamlessly combined with the ray-tracing contact detection, making the overall

ramework suitable for parallel computing in advanced computing systems, such as GPUs. Specifically, both shader

nd RT cores on GPUs can be fully leveraged to accelerate simulations, making efficient use of the computing
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Fig. 25. Configurations of sand particles in simulations of column collapse with different friction coefficients: (a) µ = 0.3 and (b) µ = 0.2.

apacity of GPUs. While the implementation of RTDEM is for GPUs, the proposed framework is compatible with
onventional multi-core or multi-node CPU computing systems, as well as with FPGA computing systems.

The proposed framework can be extended and enhanced in several key aspects. (1) The current framework
ecessitates ray casting at each time step. However, a promising avenue for optimization involves the introduction
f a local Verlet buffer (skin). The implementation of a Verlet buffer can help reduce the frequency of ray casting,
eading to improved computational efficiency without compromising the accuracy of the simulation. (2) While the
umerical results demonstrate insensitivity to the mesh resolution or vertex number once an adequate number of
25
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Fig. 26. Configurations of poly-superellipsoidal particles in simulations of column collapse with different friction coefficients: (a) µ = 0.2
and (b) µ = 0.15.

vertices is employed, it is essential to conduct a theoretical analysis to determine such a critical vertex number.
Establishing this critical threshold would provide a valuable guideline for selecting an appropriate mesh resolution
in simulations using this framework. (3) Further efforts should be dedicated to establishing a theoretical relationship
among contact stiffness, mesh resolution, and time step. Strengthening the theoretical foundation of the framework
would enable a more rigorous understanding of the interplay between these parameters. This, in turn, would facilitate
better-informed choices of contact stiffness, mesh resolution, and time step, leading to improved accuracy and
reliability of the simulation results.
26
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