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This paper presents a hierarchical multiscale modeling paradigm to simulate the freeze-thaw behavior in granular media. The
multiscale strategy features a hierarchical conjugate of a continuum-based mixture theory with a micromechanics-based homog-
enization technique. It enables the capturing of a typical freeze-thaw process in an engineering setting based on constitutive
responses extracted directly from discrete element method (DEM) solution of representative volume elements (RVEs) affiliated
with material points. Specifically, at the RVE scale, a simple phase transition model is proposed to consider the influence of
freeze-thaw process on the strength of inter-particle contacts. The RVE model is further embedded in the material point of
the continuum-based material point method (MPM) to solve initial and boundary value problems that involve freeze and thaw
process. The proposed strategy effectively enables macro-micro scale bridging while bypassing the necessity of assuming phe-
nomenological thermo-mechanical constitutive models. The multiscale framework is verified and validated before being used to
predict engineering-scale thawing-induced slides of soils.
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1. Introduction

Granular media are ubiquitous in nature and our daily life.
They are the second most processed material after water
in the world. Granular materials are typical porous me-
dia. Their inter-particle pores are frequently partially or fully
filled with fluids and/or other pore-filling materials (typically
air, water and/or ice or gas hydrate). If the pore-filling ma-
terials are thermal sensitive and may undergo phase transi-
tion, temperature changes may induce freezing and thaw-
ing for the material. Such freezing and thawing processes
are expected to influence the bulk mechanical properties of
granular media significantly, thereby triggering large defor-
mation or even rapid flow that may cause catastrophic fail-
ures such as landslides and debris flows. For example, due to
global warming, thawing occurs continuously across large-
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area permafrost (one of the world’s largest carbon sinks)
including Northern Europe, Iceland, Greenland, the Euro-
pean Alps, Alaska, Siberia, northeastern China, the Tibetan
Plateau, South America and the Antarctic Peninsula [1], re-
sulting in numerous hazardous landslides accompanied with
significant carbon release into the atmosphere [2]. Beyond
the natural freezing and thawing, it is also of importance
to model and examine the freeze-thaw behaviors of granular
media in industry and engineering practices. Taking the gas
hydrate exploitation as an example, the dissociation of gas
hydrates can remarkably weaken the host sediment due to the
loss of inter-particle cementation, thereby causing excessive
deformation in the host sediment and its overlying strata and
triggering potential geohazards such as submarine landslides,
earthquakes and even tsunamis, considerably threatening off-
shore infrastructures and coastal cities [3].

Great efforts have been dedicated to modeling freeze-thaw
behaviors of granular media, especially for frozen soils in
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the geotechnical community [4-6]. Most of existing stud-
ies have been focused on proposing sophisticated constitu-
tive models to capture the thermo-hydro-mechanical (THM)
responses of granular media from a continuum perspective,
where granular media are homogenized with mixture theory
for consideration of multi-phase. These models are com-
monly phenomenological but are easy to be implemented in
the continuum-based numerical methods such as FEM [7] for
simulation of large-scale problems. However, FEM might
encounter potential issues of mesh distortion and conver-
gence for large-deformation problems. These issues can be
alleviated partially by specific techniques such as mesh re-
finements or adaptive meshing but at the cost of computa-
tional efficiency and possible convergence [8]. As a conse-
quence, mesh-free continuum methods, especially the mate-
rial point method (MPM) [9], have received growing interests
in tackling large deformation problems over past decades,
e.g., hydro-mechanical coupling [10], and THM coupling
[11].

Continuum-based approaches using conventional contin-
uum constitutive models may encounter great difficulties in
fully capturing complicated behaviors exhibited in granular
media, such as anisotropy, non-coaxiality, loading history-
dependency, and cyclic hysteresis, which limits their appli-
cation in predicting the freeze-thaw response of granular me-
dia, especially for large-deformation problems. Meanwhile,
discrete element method (DEM) has enjoyed an increasing
popularity as a micromechanics tool to simulate complex re-
sponses of granular media. Indeed, hierarchical multiscale
modeling that couples both the continuum numerical meth-
ods (e.g., FEM, MPM) and DEM has proven effective and
promising to simulate engineering-scale problems involving
granular media while tactically avoiding some of the pitfalls
of conventional continuum modeling [12, 13]. In particular,
Zhao et al. [14] recently proposed a hierarchical multiscale
framework to model thermo-mechanical responses of granu-
lar media by coupling FEM and DEM where particle-scale
contact heat conduction is considered. The study, however,
has not been able to tackle the freezing and thawing process
with explicit consideration of phase transition yet.

In this work, a new multiscale framework is proposed
to model freeze-thaw behavior of granular media with full
consideration of phase transition of pore-filling materials in
both micro- and macro-scales. The remainder of this pa-
per is organized as follows. Representative volume element
(RVE) models of freeze-thaw process are first introduced in
Sect. 2, where the continuum-based mixture theory is em-
ployed in conjunction with the micromechanics-based DEM.
Then, thermo-mechanical formulation and implementation
with phase transition of filling materials are proposed for the
macroscopic freeze-thaw modeling in Sect. 3. Section 4 in-

troduces the coupling scheme of the proposed hierarchical
mutiscale framework DEMPM, followed by verification, val-
idation and examples of the proposed framework in Sect. 5
and a summary in Sect. 6.

2. RVE models of freeze-thaw process

2.1 Thermally-induced deformation and stress

Granular media can be regarded as mixtures of grains, ice and
water/air as shown in Fig. 1. Thermally-induced deforma-
tion is dominated by volume change due to phase transition
between solid (e.g., ice) and fluid (e.g., water), resulting in re-
markable thermally-induced stress accordingly. By contrast,
the expansion/contraction of a solid grain caused by thermal
changes is negligibly small so that the corresponding thermal
stress can be neglected. If phase transition is involved during
freezing or thawing, in addition to volume change induced by
phase transition, the variation of inter-particle cementation
has a significant effect on the bulk strength of granular me-
dia such as frozen soils in permafrost areas and gas hydrate-
bearing soils in submarine settings. Hence, a thermally-
sensitive contact model is proposed to consider the influence
of inter-particle cementation in DEM-simulated RVEs.

2.2 Mixture properties

In the theory of mixture [15], the bulk volumetric heat capac-
ity ρc of a saturated mixture can be defined as

ρc = ρ f c f θ f + ρscsθs + ρgcgθg, (1)

where ρ is the mass density and c is the mass heat capac-
ity (with subscript f , s and g for fluid (water), solid (ice) and
gains, respectively); θ f , θs and θg are the corresponding volu-

Grains

Ice
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Figure 1 RVE of a granular material composed of grains, ice and water/air.
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metric fractions of the three phases, respectively. The effec-
tive thermal conductivity of the mixture can be also given
with respect to the three phases as [15]

k = kθgg kθ f

f kθs
s . (2)

For simplicity, the effect of water flow is not considered so
that no water flowing in/out from the RVE is assumed, and
the RVE satisfies the mass conservation, i.e.,

ρ f θ f − ρsθs = 0. (3)

For coarse granular materials, almost all water freezes at the
freezing point, whereas temperature keeps decreasing during
freezing for fine granular materials such as silt and clay [5].
The unfrozen water content w is defined as the ratio of water
mass to grain mass. Hence, the volumetric fraction of ice can
be given by

θs = n −
ρg

ρ f
(1 − n)w, (4)

where n is the porosity (= 1 − Vg/V , with Vg and V denot-
ing the volumes of solid grains and the bulk mixture, respec-
tively).

2.3 Contact bond model in DEM

2.3.1 No bond

For contacted particles without connection by bonds, a force-
displacement law is postulated for inter-particle contact force
evaluation in conjunction with the Coulomb’s friction condi-
tion [16] as below:

f n = −knun, (5a)

∆ f t = −ktδut, (5b)

| f t | ≤ µ| f n|, (5c)

where f n and f t are the normal and tangential contact forces
at contact, respectively; ∆ f t is the incremental tangential
contact force at the current timestep; kn and kt are the nor-
mal and tangent contact stiffness, respectively, which are as-
sumed to be constant for a linear spring model; un is the nor-
mal penetration, δut is the relative tangential displacement at
the contact, and µ is the coefficient of friction.

2.3.2 Bond model

For cemented particles, the inter-particle cementation can be
taken into account by introducing a contact bond [17,18]. For
simplicity yet without losing generality, we introduce the fol-
lowing thermally sensitive bond contact model that governs
the bond breakage upon heating:

∥ f n∥ > Fnb, Fnb = βbcnr̂2, (6)

∥ f t∥ > Ftb, Ftb = βbct r̂2, (7)

where βb is defined as the breakage strength coefficient that is
associated with the volumetric fraction of ice; r̂ is the radius
of the smaller particle at contact; cn and ct are the normal
and shear bond strength, respectively. Contact bond breaks
and can no longer sustain tension once either normal or shear
contact force reaches the corresponding strength. Note that
bond breakage is only subject to tension and shear for sim-
plicity, and it is optional to incorporate bond failure caused
by twisting and/or compression in a more rigorous model.
Note that such a simplified bond model has been success-
fully incorporated into our previous hierarchical multiscale
modeling framework to investigate compression behavior of
sandstone [19, 20].

2.3.3 Simplified phase transition model

At the RVE level, phase transition of pore water/ice is consid-
ered in such a manner that inter-particle bonds are weakened
or enhanced uniformly over the entire RVE. To this end, the
breakage strength coefficient βb is introduced as a function of
the volumetric fraction of ice θs, simply defined as

βb = βa
θs

θs + θ f
, (8)

where βa is a tuned parameter and θ f is the volumetric frac-
tion of unfrozen water. Note that the state variable θs is
solved from heat transfer at the macroscopic continuum.

3. Macroscopic thermo-mechanical modeling

3.1 Governing equations

For a three-phase granular mixture as shown in Fig. 1, the
coupled THM effect has been taken into account in general
engineering practice. However, the freeze-thaw process may
complicate the problem significantly. For simplicity, no wa-
ter flow is assumed within the mixture, and the energy con-
servation law reads

ρcT,t + qi,i = Qt + Lρsθs,t, (9)

where ρ is the bulk mass density of the mixture; c is the spe-
cific heat capacity; T is the temperature; t is the time; qi is
the heat flux; Qt is a heat source or sink; L is the water latent
heat of fusion per unit mass; θs is the volumetric fraction of
ice; ρs is the mass density of ice. According to the Fourier’s
law for anisotropic heat conduction, the heat flux qi can be
written as [21]

qi = −ki jT, j, (10)
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where ki j is the thermal conductivity tensor, which can be
associated with granular fabric [14]. Note that for granular
media such as soils, variation of thermal conductivity due to
shear-induced anisotropy is not considered.

The balance equation of linear momentum is given by

σi j, j + ρbi = ρai, (11)

where σi j is the Cauchy stress tensor; bi is the body force per
unit of mass possibly performed on materials (e.g., gravita-
tional acceleration), and ai is the acceleration term.

The following general boundary and initial conditions are
considered for a typical mechanical problem involving heat
conduction:

T (t) = T̄ , on ΓT , Dirichlet BC, (12a)

q(t)i = q̄i, on Γq, Neumann BC, (12b)

T (0) = Tref, on Ω, initial temperature, (12c)

ui = ūi, on Γu, Dirichlet BC, (12d)

σi jn j = t̄i, on Γt, Neumann BC, (12e)

where BC is boundary condition; ΓT and Γq are the pre-
scribed temperature and heat flux boundaries of the problem
domain Ω, respectively; T̄ and q̄i are the prescribed bound-
ary temperature on ΓT and boundary heat flux on Γq, respec-
tively; Tref is the ambient or reference temperature; n j is the
boundary outward normal of the domain Ω; ūi and t̄i are the
prescribed material displacement on Γu and boundary trac-
tion on Γt, respectively.

3.2 Spatial discretization

The generalized interpolation material point (GIMP) formu-
lation [9] in MPM is employed to discretize the macroscopic
continuum into a finite set of subdomains, where each mate-
rial point has a certain domain. Specifically, the undeformed
GIMP (uGIMP) [9] is adopted here for simplicity in imple-
mentation without losing generality. The weak forms of the
governing equations have integration over the entire domain
Ω, which can be converted into the summation of integration
over each subdomain Ωp of particles in MPM.

In MPM, a physical field fp or g(xi) can be interpolated
based on either material points or grid nodes as follows:

f (xi) =
∑

p

fpχp(xi), (13)

g(xi) =
∑

I

gI NI(xi), (14)

where χp(xi) is the particle characteristic function, satisfying
the partition of unity property in the undeformed configura-
tion and a “top-hat” function is employed here; NI(xi) is the
grid shape function at node I; the subscripts p or I denote

properties or functions associated with particle p or node I
hereafter. For example, the volume of a material particle can
be given by

Vp =

∫
Ωp

χpdΩ. (15)

For a granular material with stationary freezing point, the
semi-discrete equations at node I read∑

J

CIJTJ,t = Qext
I + Qint

I , (16)∑
J

MIJaiJ = f ext
iI + f int

iI , (17)

with

CIJ =
∑

p

mpcpϕI pNJp, (18)

MIJ =
∑

p

mpϕI pϕJp, (19)

Qext
I =

∑
p

VpϕI p(Qtp + Lρsθsp,t) +
∑

p

q̄ph−1ϕI p, (20)

Qint
I =
∑

p

VpϕI p,ikpi jTp, j, (21)

f ext
iI =

∑
p

mpϕI pbip +
∑

p

mpϕI p t̄iph−1, (22)

f int
iI = −

∑
p

VpϕI p, jσpi j, (23)

where C and M are the consistent heat capacity matrix and
mass matrix, respectively; Q and fi are heat and mechani-
cal loads, respectively (the superscripts “int” and “ext” de-
note internal and external loads, respectively); h is the virtual
boundary layer thickness serving for the boundary integra-
tion [22]; mp is the mass of particle p; ϕI p and ϕI p,i are the
weighting and gradient weighting functions, respectively, de-
fined as

ϕI p =
1

Vp

∫
Ωp

χpNIdΩ, (24)

ϕI p,i =
1

Vp

∫
Ωp

χpNI,idΩ. (25)

To facilitate the computation, the scheme of lumped matrix
is employed, i.e.,

CI =
∑

p

mpcpϕI p, MI =
∑

p

mpϕI p, (26)

such that

CITI,t = Qext
I + Qint

I , MIaiI = f ext
iI + f int

iI . (27)

For a material point subject to phase transition with sta-
tionary freezing temperature, the rate of volumetric fraction
of ice is given by

θsp,t = −
kpi jTp, j

Lρs
. (28)
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3.3 Temporal discretization

The Euler forward method is adopted to solve the semi-
discrete equations in Eq. (27) in an explicit manner. Indeed,
this explicit MPM in conjunction with the scheme of lumped
matrix has been popular in the literature for its straightfor-
ward numerical implementation [23]. In this scheme, the dis-
crete equations for nodal temperature and velocity are written
as

T (t+∆t)
I = T (t)

I + T (t)
I,t∆t, (29)

v(t+∆t)
iI = v(t)

iI + a(t)
iI ∆t, (30)

where the superscripts t and t + ∆t indicate the variables at
the start and end of the processing timestep hereafter, respec-
tively. For the mechanical part, the movement of material
points can be solved according to the kinematic fields of the
background grid. Two direct candidate methods are consid-
ered here, i.e., the so-called FLIP (fluid implicit particle [24])
method and PIC (particle in cell [25]) method, where particle
velocity is updated as

v(t+∆t)
ip = v(t)

ip +
∑

I

a(t)
iI ϕ

(t)
I p∆t, for FLIP, (31)

v(t+∆t)
ip =

∑
I

v(t)
iI ϕ

(t)
I p +
∑

I

a(t)
iI ϕ

(t)
I p∆t, for PIC. (32)

One major difference between the FLIP and PIC methods is
that the FLIP method uses the grid accelerations only while
the PIC method uses the updated grid velocities. Stomakhin
et al. [26] suggested a combination of the FLIP and PIC
methods by regrading PIC as a damping term as follows:

v(t+∆t)
ip = v(t)

ip +
∑

I

a(t)
iI ϕ

(t)
I p∆t − αPIC

v(t)
ip −
∑

I

v(t)
iI ϕ

(t)
I p

 , (33)

where αPIC ∈ [0, 1] is the PIC fraction. With grid damping αg

and particle damping αp, the damped particle velocity reads

v(t+∆t)
ip =v(t)

ip +
∑

I

a(t)
iI ϕ

(t)
I p∆t − (αPIC + αp)v(t)

ip

+ (αPIC − αg)
∑

I

v(t)
iI ϕ

(t)
I p, (34)

and the particle position is updated with a general second-
order FLIP formulation [27]

x(t+∆t)
ip =x(t)

ip +
∑

I

v(t+∆t)
iI ϕ(t)

I p∆t − ∆t
2

[∑
I

a(t)
iI ϕ

(t)
I p∆t

+ (αPIC + αp)v(t)
ip + (αPIC − αg)

∑
I

v(t)
iI ϕ

(t)
I p

]
. (35)

Similar to the FLIP and PIC methods on velocity update
in the mechanical part, two possible schemes can be formu-
lated to update the particle temperature (direct one T (t+∆t)

p and

remapped one T ′(t+∆t)
p ), i.e.,

T (t+∆t)
p = T (t)

p +
∑

I

ϕ(t)
I pT (t)

I,t∆t, (36)

T ′(t+∆t)
p =

∑
I

ϕ(t)
I pT (t+∆t)

I . (37)

The direct particle temperature T (t+∆t)
p is then mapped to

nodes for updating nodal temperature T (t+∆t)
I . However,

T (t+∆t)
p has inevitable oscillations like stress at material points

due to an intrinsic numerical issue in MPM, as reported in a
previous study [28]. Hence, a remapping of nodal tempera-
ture, i.e., remapped particle temperature T ′(t+∆t)

p , is employed
to obtain smooth particle temperature, which then serves as
an input for the RVEs.

The phase state update follows the particle temperature up-
date. This framework applies a two-phase update scheme for
coarse soils (e.g., sands) and fine soils (e.g., silts), respec-
tively, due to the significantly different freezing behaviors
between coarse and fine soils. Moreover, only the volume
fraction update of ice is presented here, and its water coun-
terpart can be obtained in terms of a saturation condition.
Note that rather than updating the ice volume fraction us-
ing θsp,t directly, an equivalent heat capacity is introduced to
relate latent heat with temperature, leading to Eq. (A2) by
substituting Eq. (28) (see Appendix A) into Eq. (9). As a
consequence, the ice volume fraction is updated with the as-
sistance of the updated particle temperature acquired by Eq.
(A2).

The freezing/thawing curve for coarse soils is depicted by
such a step function of particle temperature as

S t+∆t
f =


1, if T t+∆t

p > T0,

(T t+∆t
p − Tres)/(T0 − Tres), if Tres 6 T t+∆t

p < T0,

0, if T t+∆t
p < Tres,

(38)

with the ice volume fraction updated by

θt+∆t
s = n(1 − S t+∆t

f ), (39)

where T0 and Tres are the freezing point of soils and the resid-
ual freezing temperature (ice starts freezing at Tres), respec-
tively. Note that a sufficiently small Tres (e.g., −0.1 ◦C) is in-
troduced to facilitate numerical implementation with respect
to T0 = 0 ◦C.

As for fine soils, in the presence of mineral solutes, the
freezing point is temperature-dependent during phase tran-
sition. Hence, the unfrozen water content is introduced by
an empirical equation as denoted in Eq. (A1). Thus, the ice
volume fraction θs can be solved by combining Eqs. (4) and
(A1), i.e.,

θt+∆t
s = n −

ρg

ρ f
(1 − n)

[
w̄ + (w0 − w̄)ea(T t+∆t

p −T0)
]
. (40)

https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
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One may prefer to identify the soil unfrozen curve using
water saturation instead of water content. The saturation-
wise ice volume fraction update is given by

θt+∆t
s = n − (S f 0 − S fres)e−

(Tt+∆t
p −T0)2

a + S fres, (41)

where S f , S f 0 and S fres are the current water saturation, wa-
ter saturation at the freezing point and the unfrozen water
saturation, respectively; a can also be regarded as a parame-
ter that determines the shape of unfrozen curve of soil as that
introduced in Eq. (A1) in Appendix.

To ensure numerical stability and convergence in the pro-
posed staggered coupling algorithm, the mechanical timestep
is constrained by the propagation speed of elastic waves, and
the thermal timestep satisfies the CFL condition [11,28], i.e.,

∆t <
le√
E/ρ
, for mechanical, (42)

∆t <
l2eρc
bk
, for thermal, (43)

where E is Young’s modulus of an RVE packing; b is an ad-
justable factor, with a default value of 1; le is the minimum
element size of a mesh; k is the mean thermal conductivity,
i.e., average of the diagonal terms of the thermal conductivity
tensor ki j.

4. Multiscale framework: DEMPM

4.1 Homogenization of DEM RVE

In the proposed multiscale framework, the RVE-scale re-
sponse of a granular material is modeled using DEM. Fol-
lowing previous studies [12, 13, 29], a DEM RVE is config-
ured with a parallelepiped-shaped cell with periodic bound-
ary conditions. Figure 2 illustrates an RVE cell and its peri-
odic neighbor images in two-dimensional (2D).

As commonly implemented in continuum mechanics, both
Eulerian (xi) and Lagrangian (Xi) coordinates can be em-
ployed to describe the deformation of an RVE cell such that

xi = Hi jX j, (44a)

X j = H−1
jk xk, (44b)

where Hi j is the deformation (gradient) tensor with the cell
basis vectors as its columns, and H−1

i j is its inverse. There-
fore, the material time derivative for Eq. (44a) is given as

ẋi = Ḣi jX j︸︷︷︸
vhi

+Hi jẊ j︸︷︷︸
v f i

, (45)

where v f i and vhi are the non-affine and affine velocities, re-
spectively. Note that v f i is also referred to as the fluctuating

Figure 2 An illustration of a periodic cell for an RVE assembly.

velocity resulting from the resultant force, while vhi is at-
tributed to the homogeneous deformation of the RVE cell,
given by

vhi = Li jx j, (46a)

Li j = ḢikH−1
k j , (46b)

where Li j is the velocity gradient tensor of the cell deforma-
tion, which is prescribed when loading an RVE in the pro-
posed framework.

Considering the fact that an RVE deforms in terms of
strain-controlled incremental loading and its deformation is
sufficiently small during each time step of DEM, the defor-
mation can be homogenized by such a strain tensor εi j of the
periodic cell (RVE) that

εi j =
1
2

(H
′

i j + H
′

ji) − δi j, (47)

where H
′

i j is the deformation gradient tensor with respect to
the reference configuration. Therefore, the volumetric strain
εv and the deviatoric strain εq read

εv = εii, (48a)

εq =

√
2

3n−2 ε
′
i jε

′
i j, n = 2 (2D) or 3 (3D), (48b)

where ε
′

i j is the deviatoric strain tensor, ε
′

i j = εi j − 1
nεvδi j.

The homogenized stress tensor σi j within an RVE assem-
bly can be expressed from contact forces and fluctuating ve-
locities of particles [30, 31], i.e.,

σi j =
1
V

∑
c∈V

f c
i bc

j +
1
V

∑
p′∈V

mp′v
p′

f iv
p′

f j, (49)

where V is the volume of the assembly; f c
i and bc

j are the con-
tact force and the branch vector, respectively; mp′ is the mass
of particle p′. It is worth noting that the contact force-related

https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
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term denotes stress transmission through contact force net-
works, whereas the fluctuating velocity-related term reflects
the kinetic stress associated to the momenta transferred by
particles. In general, compared with the contact force-related
term, the fluctuating velocity-related term is negligibly small.

4.2 Bridging the continuum and RVE scales

The idea of hierarchical multiscale modeling [12-14] can
be extended to model the thermo-mechanical responses of
granular media. In our previous study [14], DEM-simulated
RVEs have been introduced to couple with FEM for model-
ing thermo-mechanical responses of granular media. Replac-
ing FEM with MPM at the continuum scale, a new frame-
work DEMPM is proposed to model the freeze and thaw
behaviors of granular media as illustrated in Fig. 3, where
thawing-induced large deformation can be captured with our
newly proposed phase-transition models at both RVE and
continuum scales. Specifically, thermal transfer through the
continuum modeled by material points changes the volumet-
ric fraction of ice, thereby influencing the inter-particle bond
strength of RVEs modeled by DEM. Stress and deforma-

tion of each material point are tracked by a corresponding
RVE, bypassing the need for assuming phenomenological
constitutive models in MPM. Interested readers are referred
to our previous work on hierarchical multiscale modeling. In
the proposed DEMPM framework, the DEM solver is much
more computationally intensive than the MPM one. Hence,
a thread-block-wise approach [29] is employed to accelerate
RVE DEM simulations on GPUs.

5. Verification, validation and example

5.1 Biaxial compression

5.1.1 Unfrozen granular media

Biaxial compression is simulated to verify the implementa-
tion of the mechanical component of the proposed frame-
work. With the basic parameters outlined in Table 1, three
RVE packings with void ratios of 0.161 (dense), 0.203
(medium dense) and 0.235 (loose) are prepared under an
isotropic confining stress of 100 kPa. Figure 4a-c shows the
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Table 1 Basic parameters for DEM RVEs

Parameter Value

Particle number 400

Particle size r (mm) 2.5-5.0

Material density ρ (kg/m3) 2650

Inter-particle contact stiffness kn, kt (N/m) 1 × 106

Inter-particle coefficient of friction µ 0.5

a c

Loading plate

d e

b

Figure 4 Initial RVE packings with contact force networks: a dense, b
medium dense and c loose; simulation setup of biaxial test: d loading condi-
tion, e material points and background grid.

snapshots of the three packings, respectively, where isotropic
contact force networks suggest an initially isotropic stress
state. A 1 m × 2 m granular column is meshed into 10× 20
cells with 4 material points per cell. Figure 4d illustrates the
loading setup, where the column is fixed at the bottom and
loaded by moving the top plate downward in 0.02 m/s, while
a constant confining stress of 100 kPa is maintained at both
sides. The whole MPM model is shown in Fig. 4e. The
timesteps for MPM and DEM are 1 × 10−3 s and 1 × 10−5 s,
respectively.

Figure 5 shows contours of equivalent shear strain within
the three numerical specimens at an axial strain of 20%. It
can be seen that strain localization identified by shear band
is more remarkable with decreasing initial void ratio, which
is in agreement with the general observation on mechani-
cal behavior of sands in laboratory. Moreover, stress-strain
curves change from strain-hardening to strain-softening pat-
tern when decreasing initial void ratio as shown in Fig. 6,
and both residual axial stress and volumetric strain reach crit-
ical values. Such mechanical responses have been well doc-
umented in soil mechanics [32].

5.1.2 Frozen granular media

Frozen granular media may have different volumetric frac-
tions of ice that control their overall strength. The break-
age strength coefficient βb introduced in the contact bond
model can capture the influence of volumetric fraction of ice.
For simplicity, three simulations are conducted with different
bond breakage strength coefficient of βb = 1.0, 2.0 and 3.0,
respectively, where the normal and shear bond strengths cn

and ct are set to 10 MPa. Following the simulation setup in
Sect. 5.1.1, biaxial compression is performed on the medium
dense specimen, where inter-particle bonds are active at all
contacts prior to loading. Figure 7 shows contours of equiv-
alent shear strain at the final states. It can be seen that shear
strain localizes into a single band with increasing contact
bond strength. Moreover, the contact bond strength augments
the overall strength of specimens as shown in Fig. 8, where

21 30

a b c

Figure 5 Final states with contours of equivalent shear strain: a dense, b
medium dense and c loose.
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Figure 8 Stress-strain curves for different bond strengths during biaxial
compression.

a sharper drop of axial stress is observed due to bond break-
age for higher bond strength. These numerical observations
are qualitatively in agreement with the experimental one for
cemented sands [33] or hydrate-bearing sands [34].

5.2 Column collapse of soils

To validate the multiscale framework, a column collapse test
is simulated and calibrated against the experimental result re-
ported in the literature. Following the experimental settings
in Ref. [35], a 0.2 m × 0.1 m rectangular column of soils is
set up as shown in Fig. 9a . The entire column is meshed into
40 × 20 elements (cells) composed of 3200 material points
(4 material points per cell). Three rigid walls are employed
to confine the soil column, where the left rigid wall and the
outlet baffle only constrain the horizontal displacement, and
the base wall fixes the vertical displacement with additional
friction condition (µ = 0.15 is tuned). DEM RVE packings
are prepared with the same basic parameters listed in Table
1 except that friction coefficient is now tuned to 0.45. Once
the material points are generated, a geostatic process is per-
formed to ensure an initial stress field induced by gravity,
where artificial dampings (particle damping of 0.2 and PIC
fraction of 1.0) are applied to accelerate the simulation pro-
cess. After that, the column collapse is triggered by sud-
denly removing the outlet baffle, and certain dampings (par-
ticle damping and PIC fraction are 0.05 and grid damping is
0) are prescribed to facilitate the numerical stability for the
dynamic problem.

Figure 9b demonstrates a comparison between the exper-
imental and numerical results. Removing the outlet baffle
leads to large deformation of the material points, where the
soil column collapses and slides to form a relative stable
slope. The black circles and diamonds indicate the surface
profile and the failure line from the experimental result [35],
respectively. It can be observed that the numerical result is

consistent with the experimental one, indicating that the pro-
posed multiscale framework performs well for large defor-
mation problems.

5.3 Heat transfer with phase transition

Soil experiencing freezing and thawing process may exhibit
significantly different mechanical and thermal responses due
to their granular configuration. The freezing process for
granular soils (e.g., sand) is called as in situ, and the phase
transition of the moisture ends at pore ice. Nevertheless, the
soil composed of fine particles (e.g., silt and clay) indicates
a slow ice growth compared to the freezing front moving as
a result of the unfrozen moisture [5]. This section verifies
the MPM implementation of the heat transfer model involv-
ing phase transition for both coarse and fine grains. Cases
of thawing-front propagation in pure ice and porous soil are
used to demonstrate the robustness of this framework.

5.3.1 One-dimensional problems

(1) Thawing front propagation in coarse soils (pure ice)
Stefan problems [36, 37] refer to the solution of the move-

ment of a freezing or thawing front. Among different forms
of the Stefan solution reported in Ref. [38], the solution of
thawing front propagation within ice is selected as a bench-
mark. Given a soil column with a porosity of n = 1, it is
fully saturated by pore-filling ice under an ambient tempera-
ture of T0 = 0 ◦C as shown in Fig. 10a. The left boundary is
prescribed with a constant temperature (TBC = 1 ◦C) to gen-
erate a thawing front. The analytical Stefan solution under
the steady-state assumption gives the relationship between
the thawing front and time as

X =

√
2λTs

S w fρwεL f
t, (50)

where λ is heat conductivity; Ts is the temperature boundary
condition of the thawing front; S w f is the water saturation in
thawed zone; ρw is the water density; ε is the soil porosity
and L f is the latent heat per unit mass.

According to the Stefan solution, the material properties
are listed as follows. The specific heat capacity of the ice
and water are defined as c f = cs = 0.1 J/(kg K) to ensure a
quasi-steady heat transfer state. The heat conductivity is set
as λ = k f = ks = 0.1 W/(m K) to allow a larger time step. All
the other properties such as density, soil porosity, soil satura-
tion and latent heat of fusion per unit mass are assumed to be
units for simplification.

Figure 10b shows the evolution of the thawing front ob-
tained from this study (red circles) and the Stefan solution
(blue line). It demonstrates a good agreement of the result



S. Zhao, et al. Acta Mech. Sin., Vol. 39, 722195 (2023) 722195-10

Base  ( μ = 0.15)  

Rigid wall  (μ = 0)

0.2 m

0.1 m

Outlet baffle  (μ = 0)

Elements dimension: 40 × 20
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Surface configuration from experiment data of Bui et al. (2008)

Failure line from experiment data of Bui et al. (2008)

a

b

Figure 9 Column collapse simulation: (a) geometry configuration, and (b) comparison between experimental and numerical results.

matching. A slight difference between these two results can
be observed when the time exceeds 8 s, which may be at-
tributed to the iteration scheme in MPM. Specifically, the
heat transfer model is implemented explicitly in a dynamic
manner, while the analytical solution assumes a steady state.
Moreover, the transient specific heat term in Eq. (10) ac-
counts for the result deviation, and results are expected to
match better for sufficiently small specific heat.

(2) Freezing front propagation in fine soils
All the geometry and material settings except the ice den-

sity for this problem are identical to that of Ref. [39] as
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Figure 10 a Model domain and boundary condition for the thawing front
propagation within ice. b Thawing front displacement as a function of time
from results of this study and Stefan solution.

shown in Fig. 11a. The density of soil ρg = 2650 kg/m3, the
density of water and ice ρ f = ρs = 1000 kg/m3. The specific
heat capacities of soil, water and ice are set to be 900, 4180
and 2100 J/(kg K). The thermal conductivities of soil, water
and ice are as 2.92, 0.56 and 2.24 W/(m K). The latent heat
of fusion per unit mass of water is 3.33 × 105 J/kg. The soil
has an initial temperature of (T0 = 5 ◦C) and fixed boundary
conditions in temperature: the left boundary (TBC1 = −5 ◦C)
and the right boundary (TBC2 = 5 ◦C). Note that the material
composition and the material properties applied here are dif-
ferent from that in the first case. The saturated soil (instead
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Figure 11 a Model domain and boundary condition for the freezing front
propagation within porous soil. b Freezing front displacement as a function
of time from results of this study and Zhu and Michalowski [39].
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of pure ice) has a porosity of n = 0.427 that corresponds to
an unfrozen water content of w0 = 0.285. The material prop-
erties are weighted from the soil and water matrix according
to the mixture theory, referring to Sect. 2.2, and the unfrozen
water content follows a non-linear relation with temperature
that can be empirically given by Eq. (A1).

The evolution of freezing front is shown in Fig. 11b. It can
be seen that frozen front propagation displacement increases
sharply at the initial stage of simulation, but it can reach a
critical state after 6 h. On the whole, our simulated freez-
ing front propagation in MPM agrees well with that from
FEM/Abaqus in Ref. [39].

5.3.2 2D problem

Frozen inclusion thaw [40] problem is used to verify the
framework for 2D solution as shown in Fig. 12a. The ge-
ometry and material parameters adopted in this benchmark
inherit that from Ref. [40]. The density of soil ρg = 2650
kg/m3, the density of water and ice ρ f = ρs = 1000 kg/m3.
The specific heat capacities of soil, water and ice are set to
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Figure 12 a Model domain and boundary condition for the frozen inclusion
thaw within porous soil. b Contour of temperature field. c The temperature
distribution along the middle axis of the solution domain from this study and
Grenier et al. [40].

be 835, 4182 and 2060 J/(kg K). The thermal conductivities
of soil, water and ice are as 9, 0.6 and 2.14 W/(m K). The
latent heat of fusion per unit mass of water is 3.34×105 J/kg.
The solution domain is assigned with an initial temperature
condition (T+0 = 5 ◦C) except the blue square initialized with
T−0 = −5 ◦C. An inflow thermal boundary is imposed on the
left side, TBC = 5 ◦C. The saturated soil has a porosity of
n = 0.37, and the unfrozen water content indicates a non-
linear dependency on the temperature as suggested by Ref.
[41].

Figure 12b shows the contour of temperature at t ≈ 6.4
h. Despite being squarely initialized at the frozen region, the
temperature distributes isotropically around the frozen cen-
ter. Quantitatively, the temperature profile along the middle
axis is plotted together with the results from Ref. [40] in
Fig. 12c. The temperature changes sharply near the center
of the frozen region and shows a flatter tendency at t = 1260
s. With heat transfer, the temperature valley moves upwards,
and the temperature profile becomes asymmetric due to the
influence of boundary conditions (t = 5.9 d). Our simulated
results match well with that of Ref. [40], demonstrating the
predictive capability of our model for capturing the thawing
front propagation.

5.4 Example: thawing-induced slope sliding

After verification and validation, the proposed framework is
further applied to thawing-induced slope sliding to showcase
its capability of modeling engineering-scale problems. Fig-
ure 13a shows the geometrical configuration of the slope with
a height of 10 m and inclined angle of 45◦. The base dimen-
sion is set as 40 m (width) × 4 m (height) to eliminate the
potential boundary effect from the ground. The entire do-
main has a uniform background grid with a cell size of 0.25
m. The slope and base are discretized into 20203 material
points with four per cell. Roller displacement boundary con-
dition is applied on both left and right sides to fix the hor-
izontal displacement, while all the degrees of freedom are
constrained for the bottom boundary. The soil is assumed
uniformly frozen at an ambient temperature of T0 = −5 ◦C.
The blue line around the slope outline illustrates the thermal
boundary condition (TBC1 = −5 ◦C), which characterizes the
semi-infinite frozen soil and avoids the temperature localiza-
tion due to the adiabatic boundary. A heat source (red line)
with constant temperature (TBC2 = 50 ◦C) is introduced to
simulate a heater in a borehole, which mimics the heating
method in gas-hydrate exploitation.

The basic mechanical properties adopt the same as that in
Table 1, and the contact bond strength cn and ct are set to 3.2
MPa to model a slope with poor initial mechanical perfor-
mance. The other material properties related to phase transi-

https://www.sciengine.com/doi/10.1007/s10409-022-22195-x
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Figure 13 a Geometrical and boundary condition configuration of the
slope. b Vertical stress (position for tension) distribution of the slope af-
ter the geostatic process and four probed points. c Vertical and horizontal
displacement as a function of time for probed points.

tion are selected as follows: the density of soil ρg =

2650 kg/m3, the density of water and ice ρ f = ρs =

1000 kg/m3 (the density difference between ice and water is
neglected in this simulation), the initial porosity n = 0.43.
Following Ref. [15], specific heat capacities of soil grain cg,
ice cs and water c f are set to be 900, 2100 and 4180 J/(kg K),
respectively, and the thermal conductivities of soil kg, ice ks

and water k f are 2.92, 2.24 and 0.56 W/(m K), respectively. It
is worth noting that the critical MPM time step for heat trans-
fer is much larger than that for mechanical response for the
given real material properties of soils. To facilitate speeding
up a practical simulation, the thermal conductivity is scaled
up by a factor of 86400 so that a simulated time of 1 s cor-
responds to 1 day for heat transfer in the real world. Such a
scaling scheme has also been employed in the literature, e.g.,
Ref. [11]. The time step is set to 0.001 s.

The geo-static process is performed with the temperature
boundary TBC2 disabled, following a protocol depicted as fol-
lows. First, bond-free RVEs are prepared with different ini-
tial stress states in terms of the vertical position of the corre-

sponding material points. Next, the entire model is subjected
to a gravitational acceleration of 0.5 g. Once the kinematic
energy ratio meets the specific threshold (Ek/Eg < 10−4), the
contact bonds are activated in conjunction with a full gravity
loading of 1 g to form the final geo-static stress field shown in
Fig. 13b. Damping of particle, grid and PIC fraction are all
set to 1 to ensure a quasi-static geo-static process. Note that
the positive geo-static stress denotes tension undertaken by
contact bonds. Moreover, the displacement variations of four
points Pt A, B,C and D highlighted in Fig. 13b are probed
in Fig. 13c to intuitively ensure a stable slope after the geo-
static process. It can be seen that all probed points become
relatively stable at about 1 s, indicating that the final slope is
sufficiently stable under gravity.

The thawing process begins at a new time instant t = 0 s
when the temperature boundary TBC2 is activated. Figure 14
shows the evolution of contours of temperature, normalized
ice fraction and equivalent strain at different simulation time
instants of t = 20 s, 76 s, 78 s, 80 s and 82 s that correspond
to heating of 20 days, 76 days, 78 days, 80 days and 82 days,
respectively. It can be seen that the thawing process is rather
slow and lasts about 78 days (t = 78 s in simulation time)
until a sudden sliding is triggered. The sliding is so quick
that the change is negligibly small in both temperature and
normalized ice fraction (Fig. 14a and b), which suggests an
accumulative effect of thawing process on the slope stabil-
ity. Indeed, strain localization becomes stronger before the
sudden sliding, referring to the sliding arc identified by the
equivalent strain in Fig. 14c.

The sudden failure pattern of slope simulated here is crit-
ical in engineering practices, which may trigger earthquakes
and tsunamis in submarine settings during the exploitation of
gas hydrates [3]. Bypassing the phenomenological conven-
tional constitutive model, the proposed framework is demon-
strated to be capable of capturing thawing-induced sliding
well in granular media, which can be further applied to in-
vestigate the mechanism of thawing-induced sliding from a
multiscale perspective.

6. Summary

A hierarchical multiscale modeling framework is proposed
to model freeze-thaw behavior in granular media, in which
DEM-simulated freeze-thaw responses of RVEs serves as
constitutive relations for solving initial and boundary value
problems in MPM. In the proposed framework, phase transi-
tion of pore-filling materials (typically ice and water) within
granular media is fully considered at both RVE and contin-
uum scales so that heat transfer can be accurately captured
during freezing or thawing. The framework is verified and
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Figure 14 Contours of a temperature, b normalized ice fraction and c equivalent strain at different time instants during thawing.

validated against analytical and experimental results via a set
of simulations including biaxial compression, column col-
lapse, and heat transfer within coarse and fine soils. As a
showcase of potential engineering-scale applications, we fur-
ther use the developed model to simulate thawing-induced
slope sliding triggered by heating in a borehole, which mim-
ics the exploitation of gas hydrates. It demonstrates that
the proposed framework is effective and robust in capturing
engineering-scale freeze-thaw behavior of granular media.

Nevertheless, it requires further efforts to advance the
framework. One possible improvement is to comprehen-
sively model hydraulic effect and heat convection due to fluid
flow that may play an important role in certain engineering
problems.
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(2016).

11 X. Lei, S. He, A. Abed, X. Chen, Z. Yang, and Y. Wu, A generalized
interpolation material point method for modelling coupled thermo-
hydro-mechanical problems, Comput. Methods Appl. Mech. Eng.
386, 114080 (2021).

12 N. Guo, and J. Zhao, A coupled FEM/DEM approach for hierarchical
multiscale modelling of granular media, Int. J. Numer. Meth. Eng. 99,
789 (2014).

https://doi.org/10.1016/j.geomorph.2019.04.029
https://doi.org/10.1073/pnas.2107632118
https://doi.org/10.1098/rsta.2010.0065
https://doi.org/10.1016/0165-232X(93)90045-A
https://doi.org/10.1002/nag.497
https://doi.org/10.1680/geot.2009.59.3.159
https://doi.org/10.1016/j.compgeo.2017.08.011
https://doi.org/10.1016/j.compgeo.2012.09.013
https://doi.org/10.1680/jgeot.15.LM.005
https://doi.org/10.1016/j.cma.2021.114080
https://doi.org/10.1002/nme.4702


S. Zhao, et al. Acta Mech. Sin., Vol. 39, 722195 (2023) 722195-14

13 W. Liang, and J. Zhao, Multiscale modeling of large deformation in
geomechanics, Int. J. Numer. Anal. Methods Geomech. 43, 1080
(2019).

14 S. Zhao, J. Zhao, and Y. Lai, Multiscale modeling of thermo-
mechanical responses of granular materials: A hierarchical continuum-
discrete coupling approach, Comput. Methods Appl. Mech. Eng. 367,
113100 (2020).

15 Y. Zhang, and R. L. Michalowski, Thermal-hydro-mechanical analysis
of frost heave and thaw settlement, J. Geotech. Geoenviron. Eng. 141,
04015027 (2015).

16 P. A. Cundall, and O. D. L. Strack, A discrete numerical model for
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