Bi-Linear Laws Govern the Impacts of Debris Flows, Debris Avalanches, and Rock Avalanches on Flexible Barrier

Yong Kong1, Mingfu Guan2, Xingyue Li3, Jidong Zhao4, and Haochen Yan1

1Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China, 2Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, China, 3Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China

Abstract Geophysical mass flows impacting flexible barriers can create complex flow patterns and multiway solid-fluid-structure interactions, wherein estimates of impact loads rely predominantly on analytical or simplified solutions. However, an examination of the fundamental relations, applicability, and underlying mechanisms of these solutions has been so far elusive. Here, using a coupled continuum-discrete method, we systematically examine the physical laws of multiphase, multiway interactions between geophysical flows of variable natures, and a permeable flexible ring net barrier system. This model well captures the essential physics observed in experiments and field investigations. Our results reveal for the first time that unified bi-linear laws underpin widely used analytical and simplified solutions, with inflection points caused by the transitions from trapezoid-shaped to triangle-shaped dead zones. Specifically, the peak impact load increases bi-linearly with increasing Froude number, peak cable force, or maximum barrier deformation. Flow materials (wet vs. dry) and impact dynamics (slow vs. fast) jointly drive the patterns of identified bi-linear correlations. These findings offer a physics-based, significant improvement over existing solutions to impact problems for geophysical flows.

Plain Language Summary Flexible barriers are increasingly used worldwide to mitigate debris flows, debris/rock/snow avalanches, and rockfalls. Although many methods exist to estimate critical design factors of flexible barriers, a systematic examination of their applicability and underlying relations remains elusive. The status quo has been largely caused by the challenges of capturing and quantifying the multiphase, multiway flow-barrier interactions. Here, we perform a series of hybrid solid-fluid simulations to explore the impact of debris flows/avalanches and rock avalanches on a flexible barrier system. Our numerical predictions of critical physical processes show reasonable consistency with experimental and field observations. For the first time, the physics-based numerical measures of the flow-barrier forces, in-barrier forces, and barrier load-deformation relations reveal the unified bi-linear laws behind widely used methods. We find that the flow-specific turning points of the bi-linear laws are due to the change from trapezoid-shaped to triangle-shaped jammed regions formed upstream of the barrier. Our findings quantitatively explain how flow properties (e.g., wet vs. dry and slow vs. fast) control the obtained bi-linear laws. This study provides a crucial improvement over widely used methods for geohazard scientists and engineers to impact problems for geophysical flows.

1. Introduction

Geophysical mass flows are common phenomena in mountain regions worldwide, with the size, frequency, and hazardous potential of events predicted to increase due to extreme rainstorms, land-cover changes, and severe wildfires (Hoch et al., 2021; D. Li et al., 2022; Pisano et al., 2017). Compared with traditional rigid countermeasures (Hung et al., 1984), flexible barriers are increasingly used to mitigate catastrophic geophysical flows (Figure S1 in Supporting Information S1), such as debris flows, debris/rock/snow avalanches, and rockfalls (Caviezel et al., 2021; Cook et al., 2021; Iverson et al., 2011; Trottet et al., 2022). A fundamental issue in hazard mitigation is determining the total impact load of geophysical flows on a flexible barrier. However, this total impact load was not directly measurable in physical experiments before (e.g., Bugnion et al., 2012; DeNatale et al., 1999; Vicari et al., 2021). Furthermore, impact loads of fluid and solid materials in a geophysical flow on a rigid obstacle can be separated from the measured impact pressure signals (Cui et al., 2015; Zheng et al., 2022), while a physical measurement for flexible barriers identifying the contribution of individual phases to the total impact remains elusive. The difficulty is rooted in capturing and quantifying the multiphase, multiway flow-barrier interactions,
where many mechanisms governing energy and force can work simultaneously. A proper understanding of such an impact process and its physical laws is thus of profound scientific and engineering importance.

Estimating the peak impact of geophysical flows on flexible barriers for practical designs relies primarily on analytical solutions, including hydrostatic, hydrodynamic and hybrid models (Berger et al., 2021; Kwan & Cheung, 2012; Lam et al., 2022; see Appendix A). They require theoretical functions and empirical coefficients in conjunction with the Froude number (Fr) of impinging flows, which have been investigated in extensive studies (Kong et al., 2022; Li, Zhao, & Soga, 2021; Song et al., 2021). Fundamentally, calibrations of these Fr-related analytical solutions and their empirical coefficients depend upon the impact loads estimated in physical tests using simplified solutions (e.g., Song et al., 2022; Tan et al., 2019; Wang et al., 2022). For example, the cable-based solution (Ferrero et al., 2015; Ng et al., 2017) calculates the total impact load exerted on a flexible barrier by summing the normal impact forces on all its horizontal supporting cables. This solution converts the cable tensile force to the impact load normal to the barrier face and has been widely adopted in experiments (e.g., Lam et al., 2022; Song et al., 2022; Vicari et al., 2021). The spring solution applies Hooke's Law to estimate the impact load acting on a flexible barrier, using an equivalent barrier stiffness and the maximum barrier deflection in the flow direction. It has been investigated by flume and field tests (e.g., Ashwood & Hung, 2016; Song et al., 2019; Wendeler, 2016). However, these simplified solutions feature idealized assumptions and lack scrutiny (details provided in Appendix A), and a systematic examination of their applicability and underlying relations is still elusive. A limited understanding of the physical laws behind widely used analytical and simplified solutions hampers effective hazard mitigation regarding flexible barriers.

Besides physical experiments and theoretical analysis, many numerical methods have been applied to investigate the impacts of geophysical flows on flexible barriers, such as mesh-free methods (smoothed particle hydrodynamics [SPH], Fávero Neto et al., 2020; Material Point Method, Vicari et al., 2022; discrete element method [DEM], Albaba et al., 2017), grid-dependent methods (finite element method [FEM], Brighenti et al., 2013), and coupled frameworks (SPH-DEM-FEM, B. Li, Wang, et al., 2021; DEM-FEM, Liu et al., 2020; computational fluid dynamics [CFD] coupled with DEM, Kong, Li, et al., 2021; Lattice Boltzmann Method coupled with DEM and FEM, Leonardi et al., 2016; CFD-FEM, Von Boetticher et al., 2011). Nonetheless, simplifications of flow dynamics and flexible barriers have prevented a deeper understanding of the underlying relations and mechanisms of the flow-barrier interactions. On the one hand, the solid-fluid nature of a geophysical flow plays a crucial role in predicting its propagation and impact (De Haas et al., 2021; Iverson, 1997; Pudasaini & Mergili, 2019) but has commonly been modeled as pure continuum or granular flows (Albaba et al., 2017; Liu et al., 2020; Von Boetticher et al., 2011). On the other hand, permeable flexible barrier systems (Figure 1a) are simulated as membranes (Leonardi et al., 2016; Vicari et al., 2022), and net units are generated in a 2D plane (Brighenti et al., 2013; Kong, Li, et al., 2021; B. Li, Wang, et al., 2021) by ignoring the cable-ring-ring slidings in a 3D space. However, these omitted in-flow multiphase and in-barrier multiway interactions are essential for accurately predicting systematic structure deformations, evolving load sharings and distributions, and thus peak barrier load.

This study will focus on scrutinizing three fundamental relationships for the Fr-related analytical (Figure 5a), cable-based (Figure 6), and spring (Figure 7e) solutions based on systematic numerical measures of the flow-barrier forces, in-barrier forces, and barrier load-deformation relations. The employed solid-fluid coupled model considers essential physics, including the in-flow multiphase and flow-barrier multiway interactions, materials passing through, and the cable-ring-ring slidings. The results can facilitate a unified description of the impacts and interpret the underlying physics when geophysical flows of variable natures impact a multicomponent flexible barrier system.

2. Methods

A unified CFD-DEM coupling approach is employed to probe the dynamics of geophysical flows of different natures impacting a flexible barrier. A flexible barrier is modeled by DEM (Figure 1a), while a typical debris flow is treated as a mixture of discrete particles and a continuous slurry by DEM and CFD (Figure 1d), respectively. The motions of a particle are governed by Newton's equations, and the fluid is controlled by the locally averaged Navier-Stokes equation for each fluid cell with the finite-volume method. The two-way coupling scheme offers a unified way to describe the solid-liquid interactions in a debris flow and between barrier components and debris liquid. This method has been widely applied to investigate granular-fluid systems.
relevant to geomechanics (Breard et al., 2020; Li, Zhao, & Soga, 2021; Zhao & Shan, 2013) and industry (Goniva et al., 2012; Yu & Zhao, 2021). Recently, it has been extended to examine debris-flow impacts on flexible barriers (Kong et al., 2022; Kong, Li, et al., 2021; X. Li et al., 2020), where the modeling of different barrier components has been calibrated and verified. Key ingredients of this hybrid solid-fluid method can be found in Text S2 in Supporting Information S1.

2.1. Modeling Geophysical Flows Against Flexible Ring Net Barrier System

Figure 1a-upper shows a typical flexible barrier system composed of a ring net, brake elements, and cables used in New Zealand for arresting debris flows. It was fixed on three sides (left, bottom, and right) by anchors and nails driven into the ground. We model such a barrier by assembling 5 supporting cables, 10 brake elements, and a ring net consisting of 382 interlocking rings (Figure 1a-lower). The bottom cable and lateral edges of the top and middle cables are fixed to mimic the anchored boundaries. DEM is used to model all barrier components as nodal particles connected with parallel bonds (Potyondy & Cundall, 2004; Zhao & Crosta, 2018; see details in Text S3 in Supporting Information S1). For instance, interlocking rings are idealized as connected nodal particles placed at the physical nodes of rings (Figure 1b). Analogously, a cable is modeled with a set of nodal particles whose centers are along the rope, and a brake element is simplified as two nodal particles linked by a piecewise-linear bond (X. Li et al., 2020; Xu et al., 2018). Both ends of a horizontal supporting cable are equipped with two brake elements (Figure 1a), which are designed to dissipate impact energy and lengthen significantly under debris-flow impact. The locations of simulated brake elements have been visualized in Figure S2 (see Text S3 in Supporting Information S1).

Figure 1. Undeformed and deformed flexible ring net barrier system. (a)–(c) present a comparison between field photos and numerical snapshots for the barrier, interlocking rings, and local deformation characteristics, respectively. (d) shows the simulated dynamics for a typical debris flow impacting the barrier, where split views display debris fluid and gap-graded particles (back half-space) as well as fluid streamlines and interparticle contacts (front half-space). Photos in (a) and (c) are modified from GEOVERT (2016) and Wendeler (2016), respectively.
Moreover, the total physical mass of the ring net and cables is assumed to be lumped over these nodal particles, according to which their density is adjusted (Dugelas et al., 2019; X. Li et al., 2020). Key parameters for modeling a flexible ring net barrier are summarized in Table 1, and the full model description, calibration, and validation can be found in X. Li et al. (2020).

Table 1

<table>
<thead>
<tr>
<th>Items</th>
<th>Parameter [units]</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particles in a flow</td>
<td>Particle number</td>
<td>28,125</td>
</tr>
<tr>
<td></td>
<td>Density [kg/m³]</td>
<td>2,650</td>
</tr>
<tr>
<td></td>
<td>Diameters [m]</td>
<td>0.04, 0.06, 0.08</td>
</tr>
<tr>
<td></td>
<td>Young's modulus (particle-particle contact) [GPa]</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Young's modulus (particle-wall contact) [GPa]</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Restitution coefficient</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Interparticle friction coefficient</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Particle-wall friction coefficient</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Rolling friction coefficient</td>
<td>0.15</td>
</tr>
<tr>
<td>Particles in a barrier</td>
<td>Diameter [m]</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>14,725</td>
</tr>
<tr>
<td></td>
<td>Density for ring element, cable, brake [kg/m³]</td>
<td>7,800, 12,000, 20,000</td>
</tr>
<tr>
<td></td>
<td>Young's modulus [GPa]</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Restitution coefficient</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Friction coefficient</td>
<td>0.1</td>
</tr>
<tr>
<td>Bonds in a barrier</td>
<td>Normal stiffness of ring element [N/m]</td>
<td>3 × 10¹¹</td>
</tr>
<tr>
<td></td>
<td>Shear stiffness of ring element [N/m]</td>
<td>9 × 10⁶</td>
</tr>
<tr>
<td></td>
<td>Normal stiffness of cable [N/m]</td>
<td>8 × 10¹¹</td>
</tr>
<tr>
<td></td>
<td>Shear stiffness of cable [N/m]</td>
<td>8 × 10⁶</td>
</tr>
<tr>
<td></td>
<td>Stiffnesses of the brake at the three stages [x 10¹ N/m]</td>
<td>20, 1.3, 3.2</td>
</tr>
<tr>
<td></td>
<td>Force limits of brake at the three stages [kN]</td>
<td>50, 80, 100</td>
</tr>
<tr>
<td>Air</td>
<td>Density [kg/m³]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Viscosity [Pa ⋅ s]</td>
<td>1.48 × 10⁻⁵</td>
</tr>
<tr>
<td>Fluid</td>
<td>Density [kg/m³]</td>
<td>1.350</td>
</tr>
<tr>
<td></td>
<td>Consistency index [Pa ⋅ sⁿ]</td>
<td>21.30</td>
</tr>
<tr>
<td></td>
<td>Flow index</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Yield stress [Pa]</td>
<td>17.86</td>
</tr>
<tr>
<td>Simulation control</td>
<td>Cell size [m]</td>
<td>0.150.150.15</td>
</tr>
<tr>
<td></td>
<td>Timestep in DEM [s]</td>
<td>5 × 10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>Timestep in CFD [s]</td>
<td>5 × 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>Simulated real-time [s]</td>
<td>2–12</td>
</tr>
</tbody>
</table>

*Refer to the typical values of physical properties for geophysical flows (Iverson, 1997). †Refer to key parameters in modeling a flexible ring net barrier (Dugelas et al., 2019; X. Li et al., 2020; Xu et al., 2018). ‡Refer to typical values of the non-Newtonian fluids in a debris flow (Remaître et al., 2005).

Information S1). Moreover, the total physical mass of the ring net and cables is assumed to be lumped over these nodal particles, according to which their density is adjusted (Dugelas et al., 2019; X. Li et al., 2020). Key parameters for modeling a flexible ring net barrier are summarized in Table 1, and the full model description, calibration, and validation can be found in X. Li et al. (2020).

Figure 1d demonstrates a typical debris flow impacting a flexible barrier (0.9-m-high, 1.8-m-wide) constructed on an inclined channel, capturing critical physical processes, such as flow retaining and climbing, the cable-ring-ring sliding, dewatering, and small particles passing through. In particular, Figure 1c-right demonstrates an enlarged view of the area marked by a dashed rectangular in Figure 1d. Figure 1c indicates that our model
captures the local deformations of barrier components and the intricate connections among interlocking rings and cables, where the cable-ring-ring frictional sliding and collision are enabled. Moreover, the interaction between debris particles and barrier nodal particles can be readily handled within the same DEM framework. Meanwhile, the interaction between debris fluid and barrier nodal particles can be considered the same as the fluid-particle interactions in a debris flow under the unified CFD-DEM method. As a result, we can obtain loads of solid particles and the viscous fluid in a geophysical mass flow acting on barrier nodal particles via interparticle contact forces and fluid-particle interaction forces, respectively.

2.2. Model Setup

Figure 2a illustrates the geometric model setup for a geophysical mass flow against a flexible barrier constructed on an inclined channel with a slope angle θ. In DEM, the sides and bottom of the flow channel are modeled as frictional rigid walls. An outlet face at the end of the channel, an upper atmosphere face, and four no-slip channel walls bound the CFD domain. Only fluid cells in a mixture sample are filled with viscous slurry at the initial state, leaving the rest of the CFD domain filled with air. Unlike water as the fluid phase (Fang et al., 2021; Zhou et al., 2020), viscous slurries in DFS/debris avalanches (DAs) are treated as the more complicated non-Newtonian fluid modeled with the Herschel-Bulkley model (Remaître et al., 2005). Although a fixed rheological formula cannot accurately predict debris-flow behavior (Iverson, 2003), the interstitial fluid in a debris-flow mixture can be best described by a Herschel-Bulkley model with shear thinning rheology (Coussot et al., 1998; Von Boetticher et al., 2016).

This study performs systematic simulations of debris flows (DFs), debris avalanches (DAs), and rock avalanches (RAs) against a flexible ring net barrier. A typical debris-flow sample is simulated as a mixture of tridisperse particles and a viscous slurry (Figure 2b). The mass percentages of the particles with diameters d_p of 0.08, 0.06, and 0.04 m are 70%, 15%, and 15%, respectively. We adopt the gap-graded tridisperse particle distribution instead of a more realistic distribution (e.g., Gaussian or Power-law) partially because it can provide an adequate sample volume for the complete impact process while maintaining affordable computational efficiency. The bulk volume of the sample (i.e., 6.8 m3) is appropriate to maintain the overflow process with a reasonable duration in each simulation. Thus, increasing the released mass may not affect the core results in this study. Moreover, the samples, including the fluid and solid phases, are initially assigned with prescribed velocities ($v_{int} = 0.5$–14 m/s) before being released to flow down an inclined channel under gravity and further impacting the barrier. Consequently, a broad range of Fr (0.5–8.7) is produced with a constant pre-impact flow depth of ~0.3 m. Note that the hypothesis of a uniform vertical velocity profile at the initial state is unrealistic (Iverson, 1997; Redaelli et al., 2021), which may affect the impact process. Redaelli et al. (2021) reported that the impact load of dry granular flows on a rigid wall is negligibly affected by the shape of the velocity profile. In addition, compared to releasing a gravity-driven sample with prescribed initial velocities, using a continuous inflow of material (Pasqua et al., 2022) may produce a constant impact velocity of incoming flows and affect the Froude scaling on the flow-barrier interactions. As seen in Figure 2b, the initial heights of viscous slurries in DF, DA, and RA cases are set to 0.3, 0.15, and 0 m, respectively. Thus, the DF, DA, and RA cases can also be characterized as fully saturated, partially saturated, and dry granular flows, respectively. The total number of simulated particles in each simulation is 42,850 (28,125 in a flow and 14,725 in a barrier), with a maximum particle size ratio of ~13.3. Key adopted parameters and test scenarios are summarized in Tables 1 and 2, respectively.
For each case, the computation time on an 8-core Intel CPU (3.7 GHz) desktop computer varies from 60 to 390 hr, primarily depending on the simulated flow materials (wet or dry) and real-time (2–12 s). Thus, instead of full-scale (10^3–10^2 m) ones, large-scale (10^0–10^1 m) simulations are conducted for computational efficiency. Furthermore, the adoptions of particle size distribution and barrier size are determined according to the scale of the setup in Figure 2a. On the one hand, the particle number along the flow width direction needs to be small enough to save computational cost and meanwhile sufficiently large to avoid boundary effect from the lateral walls. On the other hand, the barrier ring net size (i.e., ring diameter equal to 0.07 m) is determined to retain large particles (d_p = 0.08 m) in a flow while allowing small particles (d_p = 0.04 or 0.06 m) to pass through, which recovers the primary function of a real-world flexible barrier. In addition to solid volume concentrations and flow dynamics, the flow-barrier interactions can also be affected by the complex nature of geophysical flows, including varying flow depths (Faug et al., 2012; Iverson et al., 2016), broad particle size distributions (Cabrera & Estrada, 2021), large boulders (Belli et al., 2022; Piton et al., 2022), phase separation of the solid and fluid components (Leonardi et al., 2015; Pudasaini & Fischer, 2020), and erosion (Berger et al., 2011; Pudasaini & Krautblatter, 2021). Meanwhile, the barrier geometry and configuration (e.g., barrier width and height, number of horizontal supporting cables, and the ring-to-largest particle size ratio) may also affect the results presented in the following sections. These factors can be explored in the future.

Numerical predictions of key flow-barrier interactions and barrier deformations show reasonable consistency with experimental and field observations (Figures S3 and S4 in Supporting Information S1). Furthermore, each simulated flow type corresponds to distinct flow dynamics and impact behaviors. Clear differences in flow redirection, separation and overtopping dynamics, and consequential barrier responses among representative DF, DA, and RA cases can be observed from Movies S1, S2, and S3 (https://doi.org/10.25442/hku.20349192.v1; Kong & Guan, 2022).

3. Results and Discussion

3.1. Flow and Barrier Profiles Under Peak Impacts

Figure 3 displays key profiles under peak impact load F^Peak_b in Cases DF and RA with v_int = 6 m/s. Figures 3a and 3d indicate that F^Peak_b occurs during the overtopping process, where quasistatic dead zones (Faug, 2015; Kong, Zhao, et al., 2021) coexist with flowing layers. Thus, F^Peak_b should be calculated as the sum of loads from the dead zone and the flowing layer (see Figures A1e and A1f in Appendix A), especially in designing multilevel flexible barriers. Note that the boundaries of dead zones are roughly determined according to a velocity threshold (below 5% of incoming velocity; Faug et al., 2009). From another perspective, the dynamic load from flowing debris and the static load induced by both the dead zone and flowing layer can be transferred through contact networks to the barrier (Figures 3b and 3e). It reflects the rationality of hybrid analytical models (Faug, 2021; Wendeler et al., 2019) by considering hydrostatic and hydrodynamic components (Equation A4 in Appendix A). Indeed, the competitive roles of load components from the dead zone and flowing layer at different impact stages (i.e., frontal impact, runup impact, and overflow) drive the load sharing and distribution (Figures 4 and 6) and barrier load-deformation behavior (Figure 7).

Controlled by distinct flow materials, strong interparticle contacts occur outside-inside a trapezoid-shaped dead zone under the debris-flow impact (Figure 3b). In contrast, weak and more homogeneous contacts appear in a trapezoid-shaped dead zone under the impact of a rock avalanche (Figure 3e). It is mainly due to the dry flow undergoing a smaller bulk density and a higher energy dissipation efficiency of the flow-barrier interactions than the wet flow. Specifically, grain shear stress is considered more effective in energy dissipation than fluid viscous shearing (Fang et al., 2021; Song et al., 2018). The fluid phase can enhance flow mobility and thus impact pressures by dampening particle collisions (Kaitna et al., 2016) and decreasing interparticle friction (Iverson, 2003).

Table 2

<table>
<thead>
<tr>
<th>Group IDs</th>
<th>Debris flows (DFs)</th>
<th>Debris avalanches (DAs)</th>
<th>Rock avalanches (RAs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_int (m/s)</td>
<td>0.5, 1, 2, 3, 4, 6, 8, 10, 12, 14</td>
<td>0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14</td>
<td>1, 2, 3, 4, 5, 6, 8, 10, 12, 14</td>
</tr>
<tr>
<td>Fr</td>
<td>0.6–8.7</td>
<td>0.5–8.6</td>
<td>0.7–8.5</td>
</tr>
</tbody>
</table>
They jointly explain why average barrier bond forces \mathbf{F}_b^c in the wet case (Figure 3c) are more prominent than the dry case (Figure 3f), despite having similar pre-impact Fr numbers with the dry case. In this study, barrier bond forces are tensile forces sustained by parallel bonds that connect barrier nodal particles within different barrier components. Moreover, the maximum \mathbf{F}_b^c is observed in cables, indicating effective load transfer from ring nets to cables. Interested readers can find details of impact dynamics under the largest barrier deformations (vertical and horizontal) and peak forces (cable and barrier) of the two representative cases in Figure B1 provided in Appendix B.

3.2. Flow-Barrier and In-Barrier Forces

3.2.1. Temporal Evolutions of Typical Flow-Barrier and In-Barrier Forces

The hybrid solid-fluid simulations enable the direct measures of the loads acting on either the flexible barrier system or an individual barrier component exerted by the solid and fluid phases in an impinging flow. In addition, the in-barrier forces, that is, the forces sustained within individual barrier components (i.e., the barrier bond force \mathbf{F}_b^c) and the forces exerted by barrier components on each other, can also be extracted from the simulations. Taking the middle cable in a DF case as an example, Figure 4a demonstrates how the simulation captures the forces sustained by or acting on a cable. The left inset in Figure 4a illustrates that the bond force $\mathbf{F}_{b}^{c,j}$ acting on a cable nodal particle j is contributed by flow impact (solid-cable contact force \mathbf{F}_{s-c}^{j} and fluid-cable interaction force \mathbf{F}_{f-c}^{j}), gravity \mathbf{F}_{g}^{j}, and the portion through in-barrier load sharing (ring-cable contact force \mathbf{F}_{r-c}^{j}).

Figure 4a compares the time-series data of four typical forces (\mathbf{F}_{s-c}^{j}, \mathbf{F}_{f-c}^{j}, and \mathbf{F}_{r-c}^{j}) sustained by the middle cable in the DF case with $v_{in} = 6$ m/s. Specifically, the ring-cable contact force is calculated by $\mathbf{F}_{r-c}^{j} = \sum_{i \in N_{MC}} \mathbf{F}_{r-c}^{j,i}$, where N_{MC} denotes the total number of nodal particles in the middle cable. Analogously, the solid-cable contact and fluid-cable interaction forces are calculated by $\mathbf{F}_{s-c}^{j} = \sum_{i \in N_{MC}} \mathbf{F}_{s-c}^{j,i}$ and $\mathbf{F}_{f-c}^{j} = \sum_{i \in N_{MC}} \mathbf{F}_{f-c}^{j,i}$, respectively.

The cable tensile force is calculated by $T = \text{Max}(\mathbf{F}_b^c)$, and the peak cable force $T_{\text{Peak}} = \text{Max}(T)$ is extracted from the entire impact process. As shown in Figure 4a, similar trends between cable tensile force T and the ring-cable contact force \mathbf{F}_{r-c}^{j} are observed, which differ significantly from \mathbf{F}_{s-c}^{j} and \mathbf{F}_{f-c}^{j}. Meanwhile, at T_{Peak}, T is around...
relations from all numerical cases are presented in Figure (see Figures and S1 with Fr in Figure 2021 represents the total number of barrier nodal from individual debris-flow phases. Figure 2021 presents the influences of flow types and impact dynamics on the measured Fr-

Figure 4b reflects that the peak value $F_{c,b} = 183.2$ kN of the fluctuating solid-barrier contact force is around nine times larger than that ($F_{t,b} = 20.3$ kN, inset in Figure 4b) of the relatively smooth fluid-barrier interaction force. It indicates that the solid-barrier contact force is the dominant load contributor to the debris-flow impact. Compared with relatively smooth $F_{t,b}$, both random impacts caused by multiparticle force chains and random single-particle impacts control the fluctuations of $F_{c,b}$ (see Figures B1c and B1d in Appendix B), similar to in-situ measures of force fluctuations in debris flows (Zhang et al., 2021). Under similar pre-impact Fr numbers, the first peaks caused by frontal impacts in the two cases are similar, while $F_{p,b} = 183.2$ kN occurring at overtopping in the dry case is about half of that (193.3 kN) in the wet case. Because rock avalanches undergo a higher energy dissipation efficiency and a smaller bulk density than debris flows, which hardly influence the first peak caused by the frontal impact but strongly affect the peak impact occurring at overtopping. Although the absence of the fluid leads to a small bulk density of a dry case, the solid particles predominantly induce similar first peaks for the wet and dry cases.

Moreover, the valuable data of T_{peak} and F_{peak} from the experiment (Vicari et al., 2021) are plotted in Figure 4b for comparison under similar Fr conditions and barrier configurations (see details in Text S5 in Supporting Information S1). The experimental data $T_{peak} = 43.8$ kN is around double $T_{peak} = 19.1$ kN from our DF case since the experiment adopts a relatively high (1.5 m) and low-permeability (two layers) flexible ring net barrier. However, $F_{peak} = 55$ kN estimated by the cable-based solution (Vicari et al., 2021) is around one in four of $F_{peak} = 193.3$ measured from the DF case, indicating the cable-based solution may underestimate F_{peak}. A further comparison of time-series cable tensile forces between this DF case and both large- and medium-scale flume tests (Vicari et al., 2021; Wang et al., 2022) can be found in Figure S5 in Supporting Information S1. The T_{peak}-F_{peak} relationships from all numerical cases are presented in Figure 6 in Section 3.2.3.

3.2.2. Measured Relationships Underpinning Fr-Related Analytical Solutions

Figure 5a presents the influences of flow types and impact dynamics on the measured Fr-T_{peak} relations, revealing bi-linear, positive correlations (average $R^2 = 0.95$). These identified bi-linear relationships are summarized in Table S1 in Supporting Information S1. Figures 5b–5d indicate that the inflection points of these identified bi-linear relationships are due to the shifts from trapezoid-to triangle-shaped dead zones measured at peak impacts (see details in Text S6 in Supporting Information S1). Here, the shifts (i.e., from slow to fast increases of F_{peak} with Fr in Figure 5a); from trapezoid-to triangle-shaped dead zones in Figures 5b–5d) are further referred to identify the slow-to-fast transitions of flow impact dynamics for DFs, DAs, and RAs against a flexible barrier.

Figure 5a indicates that the increased solid fraction in an impinging flow results in the slow-to-fast transition occurring at a higher Fr, similar to impact mechanism transitions (e.g., from slow to fast, Faug, 2021; from
pile-up to runup, Kong, Li, et al., 2021; from momentum jump to vertical jet, Song et al., 2021). Furthermore, the increasing rates of \(Fr - F_{\text{Peak}}^b \) relations for DF (Fully saturated), DA (Partially saturated), and RA (Dry) cases under fast impact dynamics are much higher than that under slow impact dynamics (Figure 5a). Because impinging flows under slow impact dynamics experience a longer energy-dissipative runup surface (i.e., the boundary of a dead zone) and a larger volume of trapped debris at barrier peak impact than fast impact dynamics (Figures 5b–5d). Moreover, the increasing rate of \(Fr - F_{\text{Peak}}^b \) relations in DF cases under fast dynamics is 7.7 times that under slow dynamics, while the corresponding ratio is around 3 for RA cases. Our results highlight that the discriminants of impact dynamics (slow or fast) and flow types (DF, DA, or RA) are crucial for predicting \(Fr - F_{\text{Peak}}^b \) relations. These findings have fundamental implications for potential improvements of various \(Fr \)-related analytical solutions (details provided in Appendix A), which are commonly adopted for the practical design of flexible barriers in arresting different geophysical flows.

3.2.3. Correlations Between Peak Cable Force and Peak Barrier Load

Figure 6 displays the bi-linear, positive \(T_{\text{Peak}} - F_{\text{Peak}}^b \) relations (average \(R^2 = 0.93 \), with the inflection points and slopes altered by flow types and impact dynamics. These identified bi-linear relationships are summarized in Table S1 in Supporting Information S1. Under slow impact dynamics, the range of either \(T_{\text{Peak}} \) or \(F_{\text{Peak}}^b \) in the dry cases is much broader than the wet cases. Because the trapezoid-shaped dead zones in RA cases undergo more significant changes (i.e., runup surfaces and volume of trapped debris) than in DF and DA cases (see Figures 5b–5d). Moreover, the slopes of \(T_{\text{Peak}} - F_{\text{Peak}}^b \) relations for DF, DA, and RA cases are similar under either slow or fast impact dynamics. Their mean slope is around 13.7 under fast impact dynamics, approximately two times that (7.1) under slow impact dynamics. However, according to the cable-based solution (see Equation A6 in Appendix A), this slope should be much lower than 6 for a barrier configured with three horizontal cables. It indicates that the cable-based solution may underestimate the peak impact load of geophysical flows on a flexible barrier, especially under fast impact dynamics.

3.3. Barrier Load-Deformation Relationships

Quantifying barrier load-deformation relations is critical to evaluating the peak impact, barrier deformation, and retention capacity for practical designs (EOTA, 2016; Kwan & Cheung, 2012). As shown in Figures 7a–7c, we categorize the barrier load-deformation behavior into the three dominant modes for DF (Fully saturated), DA (Partially saturated), and RA (Dry) cases with similar \(Fr \) numbers. \(D_b \) denotes the maximum barrier deflection in the flow direction (see Figure A1g in Appendix A). \(D_b \) and \(F_b \) are determined simultaneously from the entire flexible barrier system.

In mode I (Figure 7a), the equivalent barrier stiffness \(k_{b1}^n \) undergoes two prominent stages: \(k_{b1}^n \) at the initial deformation stage and \(k_{b1}^{n\,\text{II}} \) at the subsequent deformation stage. Note that the blue dotted auxiliary lines highlight the equivalent barrier stiffnesses \(k_{b1}^n \) and \(k_{b1}^{n\,\text{II}} \) for the DF case. Initially, the barrier structure behaves flexibly with a small \(k_{b1}^n \) until the inflection point, at which point the majority of barrier flexibility is exhausted, and the equivalent barrier stiffness rapidly increases to \(k_{b1}^{n\,\text{II}} \). In mode II (Figure 7b), \(F_b \) presents an increasing-decreasing-increasing trend before inflection points. The first peaks are primarily due to the direct impact of solid particles in a flow on the barrier during the frontal impact process (see Figures 4b, B1c, and B1d). Then, the formation of the dead zone impedes the direct impact of incoming solid particles on the barrier, which produces a short-term decrease of \(F_b \). After that, the continuous increasing trend is possibly caused by the increasing static load induced...
by the dead zone and the shear stress resulting from the flowing layer. Under modes I and II, overtopping occurs before the inflection points in dry (RA) cases while after the inflection points for wet (DF and DA) cases.

In mode III (Figure 7c), an interesting backward development trend of D_b along with a slight decrease of I_b near inflection points can be observed within a short duration before overtopping. This barrier shrinkage is due to the excessive barrier deformation resulting from the frontal impacts of flows carrying destructive momentum, which has been observed in the USGS flume tests (Logan et al., 2018). Under similar Fr number conditions (Figures 7b and 7c), the frontal impact-induced first peaks of I_b are roughly consistent between the wet and dry cases, while both F_{Peak}^b and $Max(D_b)$ in the dry cases are smaller than in the wet cases. Because the dry cases experience lower bulk density and higher energy dissipation efficiency than the wet cases, which slightly affects the first peak induced by the frontal impact but strongly influences the peak impact and maximum barrier deformation occurring at overflow.

Figure 7d further compiles a flow-specific diagram to clarify the three Fr-dependent modes of barrier load-deformation behaviors and their key determining parameters and typical physical impacting processes. The legend/table in Figure 7d only presents the measured upper or lower limits of the flow-specific Fr conditions for each mode in this study. The recognition of the barrier load-deformation mode for an impinging flow with a Froude number in between different modes needs further investigation. Details of the flow-specific Fr conditions for the transitions of predominant barrier load-deformation modes are presented in Figure S7 in Supporting Information S1. The shaded areas below F_b-D_b lines indicate strain energy stored by the barrier to a certain extent. Assuming a piecewise linear increase of the load F_b, plotted over the deformation D_b, produces barrier strain energy at F_{Peak}^b. Consequently, the examination of I_b-D_b relations may help quantify barrier strain energy and understand the complicated energy dissipation process. Moreover, higher Fr produces larger shaded areas before F_{Peak}^b (Figure 7d), and the wet cases present larger areas below the barrier load-deformation curvess than the dry case despite having similar pre-impact Fr numbers with the dry case (Figure 7b). It indicates that barrier structural deformability can be utilized to the best advantage in dissipating impact energy when subjected to high-velocity wet flows. Note that large boulders commonly observed in natural geophysical flows (Belli et al., 2022; Iverson et al., 2011) can produce much higher peak impact loads and significantly change the barrier load-deformation behavior. Thus, the three generalized modes only apply to geophysical flows with distributed and continuous loading characteristics.

Figure 7e presents the $Max(D_b)-F_{Peak}^b$ relations underpinning the spring solution (see Figure A1g in Appendix A), displaying the bi-linear, positive correlations with an average $R^2 = 0.93$. These bi-linear relationships are summarized in Table S1 in Supporting Information S1. Both $Max(D_b)$ and F_{Peak}^b are crucial designing factors and positively correlated with Fr. For either wet (DF and DA) or dry (RA) flows, fast impact dynamics witness a higher increasing rate of F_{Peak}^b with $Max(D_b)$ than slow impact dynamics. Because the trapezoid-shaped dead zones under slow impact dynamics experience the longer energy-dissipative runup surface and the larger volume of trapped debris than the triangle-shaped ones under fast impact dynamics (see Figures 5b–5d). Further, the slopes of the bi-linear $Max(D_b)-F_{Peak}^b$ relation in dry cases under slow and fast impact dynamics are around half that in wet cases, owing to the energy dissipation efficiencies of the flowing layer and dead zone in wet flows being lower than in dry flows. Similar trends of the bi-linear $Max(D_b)-F_{Peak}^b$ relations are observed in DF and DA cases, while the magnitudes of $Max(D_b)$ and F_{Peak}^b in DA cases are much smaller than in DF cases under similar pre-impact Fr numbers. Our results indicate that flow materials (either wet or dry flows) primarily control the trend of $Max(D_b)-F_{Peak}^b$ relations, while a larger bulk density in a wet flow produces more significant $Max(D_b)$ and F_{Peak}^b under similar pre-impact Fr numbers.

The inset in Figure 7e reveals the bi-linear, positive correlations between Fr and k_e^b with an average R^2 of 0.92. The equivalent barrier stiffness, that is, $k_e^b = F_{Peak}^b/Max(D_b)$, is determined from the complete impact process for each case. Under slow impact dynamics, k_e^b is roughly constant in either dry (RA: ~ 0.26 MN/m) or wet cases.

Figure 6. The influences of flow types and impact dynamics on the measured $F_{Peak}^b-F_{Peak}^h$ relations. The slow-to-fast transitions of flow impact dynamics are consistent with Figure 5. Fr colors the symbols.
(DF: \(\sim 0.39 \) MN/m; DA: \(\sim 0.38 \) MN/m). Under fast impact dynamics, \(k^b_n \) increases rapidly with increasing Fr in DF, DA, and RA cases, wherein RA (dry) cases experience the minimum growth rate. It indicates that \(k^b_n \) changes with flow materials and Fr conditions under fast impact dynamics, regardless of the same barrier. Therefore, the hypothesis of constant \(k^b_n \) in spring solution can be reasonable under slow impact dynamics, whereas its rationality is not guaranteed under fast impact dynamics or with different impinging flows.

4. Conclusions

This study presents systematic, high-fidelity simulations of a flexible barrier system against debris flows, debris avalanches, and rock avalanches, corresponding to distinct flow dynamics and impact behaviors. The employed continuum-discrete coupling model captures the essential physics observed in experiments and field investigations. The results support the following conclusions:

1. This study enables physics-informed numerical measures of the total impact loads of debris flows/avalanches and rock avalanches on a flexible ring net barrier system, delineating the contributions of individual phases to the total impact. The results highlight that the fluctuating solid-barrier contact force and the overflow process are the predominant load contributor and the critical impact stage for determining peak impact loads of geophysical flows on flexible barriers, respectively.
2. For the first time, a systematic examination of the flow-barrier forces, in-barrier forces, and barrier load-deformation relations reveals the unified bi-linear laws, which underpin widely used analytical and simplified solutions. Our results indicate that the spring and cable-based solutions may introduce errors in estimating the peak impact loads exerted on flexible barriers by geophysical flows, especially under fast impact dynamics. We also compile a flow-specific diagram to clarify three Froude-number-dependent modes of barrier load-deformation behaviors.

3. The identified bi-linear relationships quantitatively link the peak barrier load to impinging flow properties scaled by the Froude number, the peak cable force, or the maximum barrier deformation. Their flow-specific inflection points are caused by the transitions from trapezoid-shaped to triangle-shaped dead zones measured at peak impacts. These findings facilitate predicting the impact load of geophysical flows on flexible barriers based on flow materials (wet vs. dry) and impact dynamics (slow vs. fast).

This study helps to advance our understanding of the physical laws of multiphase, multiway flow-barrier interactions. The findings in this paper offer a physics-based, crucial improvement over existing solutions to impact problems for geophysical flows.

Appendix A: Analytical and Simplified Solutions in Estimating Peak Impact Load

This appendix revisits key assumptions and equations of analytical and simplified solutions for estimating impact loads of geophysical flows on flexible barriers. According to the three key impact stages shown in Figures A1a–A1f illustrate the impact loading history with the dynamic load F_{b}^{dyn} from flowing debris, the static load F_{b}^{sta} induced by dead zone and flowing layer, as well as the passive pressure F_{b}^{pas} and the drag or shear force F_{b}^{dra} produced by the overtopping or flowing layer. As a result, the total impact load F_{b} can be cast as:

![Diagram](https://example.com/diagram.png)

\[F_b = F_{dyn}^b + F_{sta}^b + F_{pas}^b + F_{dra}^b \]

(A1)

where the direct-impact induced force dominates at the frontal impact (Figures A1d), while forces produced by the dead zone and flowing layer play substantial roles during overflow (Ashwood & Hungr, 2016; Figures A1f). Although these load components are crucial for evaluating impact loads on flow-resisting rigid and flexible barriers (Jiang et al., 2021; Tan et al., 2020; Vagnon & Segalini, 2016), quantitative determination of their values remains a long-standing question.

A1. Analytical Solutions

In simplest terms, Fr-related analytical solutions, including hydrodynamic, hydrostatic, and hybrid models, have been developed for designing flexible barriers. Notably, Fr is universally used to characterize flow dynamics and aid barrier designs (Kyburz et al., 2020; Wendeler, 2016). It is defined as Fr = \(\frac{v_0}{\sqrt{gh_0\cos\theta}} \), where \(v_0 \) and \(h_0 \) represent flow velocity and depth. Based on the frontal impact process (Figure A1a), the hydrodynamic formula (Hung et al., 1984) is given by:

\[F_b = \alpha \rho_0 v_0^2 h_0 w \]

(A2)

where \(\alpha \) is the hydrodynamic coefficient, \(\rho_0 \) is flow bulk density, and \(w \) is the width of the barrier. \(\alpha \) assumes a purely fluid-like force proportional to the velocity square in the inertial regime at high Fr. In comparison, the hydrostatic formula (Armanini, 1997) is given by:

\[F_b = \kappa \rho_0 g h_0^2 w \]

(A3)

where \(\kappa \) represents the empirical hydrostatic coefficient, assuming a hydrostatic force contribution in the gravity regime at low Fr (Faug, 2021).

For the subsequent impact processes (Figures A1b and A1c), the hybrid models are proposed considering hydrostatic and hydrodynamic factors (e.g., Faug, 2021; Li, Zhao, & Soga, 2021; Song et al., 2022). For instance, the hybrid formula (Wang et al., 2022; Wendeler et al., 2019) can be expressed as:

\[F_b = \alpha \rho_0 v_0^2 h_0 w + \kappa \rho_0 g H^2 w \]

(A4)

where \(H \) is the total height of the static deposit and flowing layer. In practice, these empirical coefficients (\(\alpha \) and \(\kappa \)) and functions are in conjunction with Fr that have been widely adopted in designing flexible, slit, and rigid barriers (Kong et al., 2022; Li, Zhao, & Soga, 2021).

A2. Simplified Solutions

Based on the impact process shown in Figure A1b and A1g–A1i illustrate alternative simplified solutions that rely on barrier deformations, cable forces, and ring-ring contact forces. These solutions have been adopted in experimental and in-suit tests to estimate the impacts of geophysical flows on flexible barriers (Ashwood & Hungr, 2016; Lam et al., 2022; Ng et al., 2017; Song et al., 2022; Tan et al., 2019; Wendeler, 2016). For instance, the spring solution (Figure A1g) is expressed as:

\[F_s = k_b^e D_h \]

(A5)

where \(k_b^e \) and \(D_h \) denote the equivalent barrier stiffness and maximum barrier deflection in the flow direction. This solution assumes a constant \(k_b^e \) of a flexible barrier.

Figure A1h illustrates the simplified force analysis based on the top view of the horizontal supporting cable \(j \) in Figure A1b. This cable-based simplified solution converts cable tensile force \(T_j \) to the impact load normal to the barrier face \(F_j \) (Ferrero et al., 2015; Ng et al., 2017). The sum of \(F_j \) measured in each cable is assumed to be the...
total impact load F_b. It estimates F_b based on the horizontal deflection angle of cable j (φ_j) and T_j, according to the following equation:

$$F_b = \sum_{j=1}^{n} 2T_j \sin \varphi_j$$

where n is the number of horizontal cables, typically ranging from 2 to 4 in experiments (Ng et al., 2017; Vicari et al., 2021).

Figure A1i displays the simplified force analysis of the measured area (dash box in Figure A1b) in the cross-section of transducer i and transducer $i + 1$. The transducers in-between connected rings have been used to record their maximum tensile force, for example, F_i in the transducer i. This ring-based simplified solution (Tan et al., 2018) calculates F_b by:

$$F_b = \cos \frac{\alpha}{2} \left(\sum_{i=1}^{n} F_i \right) \frac{A_{imp}}{A_{num}}$$

where F_i is the ring-ring contact force, α is the included angle of deformed cross-sectional barrier, and $\frac{A_{imp}}{A_{num}}$ denotes the load area ratio. We did not examine this ring-based simplified solution due to the difficulties in modeling the specific laboratory equipment used by Tan et al. (2018, 2019).

These analytical and simplified solutions feature simple expressions with idealized assumptions and easy-to-estimate inputs. For instance, barrier and cable deformations are 3D phenomena, varying across the width and height of the barrier, and the length of a cable, which differs significantly from these simplified solutions. Thus, there is a pressing need to assess their validity by virtue of physics-based direct measures of the inter-twined relations among barrier load, impinging flow properties, cable force, and barrier deformation.

Appendix B: Dynamics at Largest Deformations and Peak Forces

Figure B1 presents the impact dynamics and barrier load distributions at the largest deformations (maximum D_v and maximum D_h) and peak forces (peak barrier load $F_{b,\text{peak}}$ and peak cable force T_{peak}) of a flexible barrier in arresting representative wet (DF) and dry (RA) flows. D_v and D_h denote the maximum deformations perpendicular to and along the flow direction, respectively. The fluid part in the DF case (Figure B1a) is visualized by the contour surface of the liquid phase with liquid fraction $\alpha_l = 0.5$ and in the background color with transparency equal to 50%. The magnitudes of interparticle contact force F_c and barrier bond force F_b are denoted by the thickness and color of tubes. The I, II, and III denote three key flow-barrier interactions, including frontal impact, runup impact, and overtopping processes (Kong, Li, et al., 2021).

Figure B1 indicates $F_{b,\text{peak}}$, T_{peak}, and maximum D_v and maximum D_h do not occur simultaneously. Thus, it may lack rationality that a simplified solution empirically links the peak cable force or the maximum barrier deformations to $F_{b,\text{peak}}$. Furthermore, the maximum D_v occurs at stage II (runup process) for both wet and dry cases (Figures B1a-2 and B1b-2) because the barrier will reduce in height immediately when subjected to the frontal impact of impinging flows. This vertical deformation influences barrier containment capacity and therefore affects both the load acting on the barrier and the final barrier deformation.

Figures B1c and B1d show the side views of solid-barrier interactions visualized in contact fabric networks for the wet and dry cases, respectively. Strong contact forces are denoted in black and are relatively thicker than weak contact forces in gray. At stage I (Figures B1c-1 and B1d-1), strong force chains are observed at the bottom of barriers for both cases. Then, some solid particles can directly impact the middle part of the barrier at stage II (Figures B1c-2, B1d-1, and B1d-2). It may partially explain why T_{peak} can occur at stage II for a dry case (Figure B1d-3). During impact stage III, strong contacts mainly happen at the lower and higher parts of dead zones in the wet case, while no strong contact has been observed in the dry case (Figures B1d-4 and B1d-5) Compared with the wet case, the metastable dead zone forms faster in the dry case, wherein the interparticle contact forces restrict retained particles from moving, resulting in an effective energy-dissipating contact network.
Figures B1e and B1f display the barrier load distributions for the two cases. For both cases, the lower half part of the ring net is observed with concentrated loads at stage II, and the load distributions are relatively homogeneous throughout the entire ring net at stage III. The observed changes in load concentration are caused by the dynamic load transfer mechanisms within the barrier and the sharing of static loads for the trapped solid mass in a dead zone.
zone during stages II and III. The gradual change of shear forces induced by the flowing layer at stages II and III also contributes to this phenomenon (see Figures A1e and A1f in Appendix A). Moreover, the vertical stretching is more significant than the horizontal stretching of the ring net during stage III (Figures B1e and B1f). It is due to the downward momentum transfer from incoming flows, the continuously increased static load induced by the dead zone, as well as more shear stress and earth pressure from the flowing layer transferred through the metastable contact networks to the barrier (see Figure A1f in Appendix A). Therefore, the competitive roles of macroscopic load components from the flowing debris and the dead zone at different impact stages drive the characteristics of flow-barrier force transmissions and barrier load distributions.

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

The supplementary videos (Figure 1) and data set (Figures 4–7, and Figure S7 in Supporting Information S1) underlying this article are permanently archived at https://doi.org/10.25442/hku.20349192.v1 (Kong & Guan, 2022). The code used to produce the coupled CFD-DEM simulations is licensed under GNU and published on GitHub https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC/ (CFDEMproject, 2017).

Acknowledgments

The research reported in this work is financially supported by the National Natural Science Foundation of China (Project #51909227 and #11972030) and the University Grants Council of Hong Kong (RGC/GRF Project #51909227 and #11972030) and Natural Science Foundation of China financially supported by the National Science Foundation.

References

References From the Supporting Information

