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Abstract
This paper presents a signed distance field (SDF) approach for unified discrete element method (DEM) modeling of granular
media using arbitrarily shaped particles. The SDF approach employs a generic SDF-based interface defined by an SDF function
and a surface projection function to rigorously model particle shapes and their ensuing complications on contact operations in
DEMmodeling. The signed distance is defined positive inside particles and negative when outside, and the zeroth isosurface of
the SDF is conveniently used to represent the particle surface. The surface of a particle is discretized into a set of nodes. Node-
to-surface algorithms are formulated to check the signs of the pertaining distance for contact detection. An energy-conserving
contact theory is further employed to derive the contact interaction forces according to the contact potential defined on each
intruding node. Based on the unified shape-contact description by SDF, specialised grain shape models are further developed
to recover classical shape models as special cases, including poly-super-ellipsoid, poly-super-quadrics, spherical harmonics,
polyhedron, and level set. A weighted spherical centroidal Voronoi tessellation-based numerical scheme is further developed
for rigorous particle surface discretization and reconstruction. Demonstrative examples are presented to validate and showcase
the capabilities of the proposed SDF approach for DEM modeling of granular media. The computational aspects, including
the memory consumption and computational efficiency of the proposed approach for various particle models, are discussed.

Keywords Discrete element method · Arbitrary-shaped particle · Signed distance field · Contact potential · Spherical
harmonics

1 Introduction

Granular materials are important to many engineering and
industrial processes. To understand the complicated behav-
ior of granular media, the discrete element method (DEM)
[1] has been one of the most popular numerical approaches.
A methodological focus of recent DEM developments has
been placed on modeling the effect of irregular particle
shape. Non-spherical particle models based on different
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geometries have been developed to better accommodate the
shape effect in DEM modeling, including poly-ellipsoids
[2], super-ellipsoid [3], poly-super-ellipsoids [4,5], super-
quadrics [6–8], polyhedron [9–12], nonuniform rational basis
splines [13–15], level set [16,17], and spherical harmonics
[18,19]. Recent comprehensive reviews on the developments
of irregular-shaped particle models in DEM and their engi-
neering applications can be referred to Zhong et al. [20], Feng
[21], He et al. [22]. The development of these particle mod-
els has significantly advanced the predictive capability of
DEM in modeling realistic granular materials. Nonetheless,
the application of these various particle models are largely
limited by their specific purposes in modeling a certain, usu-
ally not general, class of shapes; and some particle models
(e.g., level set or non-convex polyhedron) are too memory
demanding and computationally expensive to be applicable
to simulating large granular systems. Indeed, a versatile parti-
cle model that can accurately represent major shape features
of particles in engineering and industrial processes mean-
while offering the best computational efficiency yet does
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not exist. The overall performance, in terms of accuracy of
shape representation, memory consumption, and computa-
tional efficiency, of a particle model is frequently problem
dependent, and sometimes, there is a need to employ differ-
ent models in one single simulation to pursue the optimal
performance.

Core to DEM modeling is its contact detection and res-
olution algorithm. Contact detection refers to identifying
inter-particle contacts, whereas contact resolution is to com-
pute the contact geometric features such as contact overlap,
contact normal and contact point, which serve as critical
ingredients to evaluate contact forces via contact models. For
generic convex particles, it is common to adopt the assump-
tion of single inter-particle contact. The contact detection and
resolution problem is hence a convex optimization problem
that can be readily solved by using any numerical opti-
mization method such as Newton’s method [13,23,24], the
Levenberg-Marquardt method [4], the Nelder-Mead simplex
algorithm [25], and the Gilbert-Johnson-Keerthi algorithm
[26,27]. By contrast, for non-convex particles, there might
be multiple contacts so that the aforementioned optimiza-
tion algorithms may fail to find all contacts correctly due to
inherent limitations.

For non-convex particles, one popular approach deal-
ing with contact is to decompose a non-convex particle
into pieces of convex primitives, thereby converting the
non-convex optimization problem into a set of convex
optimization. One representative is the so-called clump tech-
nique, e.g., the multi-sphere clump approach [28–30] and the
glued-convex-particles approach [27]. Although the clump
technique has been rather popular in DEM simulations, there
are two noteworthy pitfalls. 1) It often needs a large number
of convex primitives to approximate a smooth and con-
tinuous irregular-shaped particle with high fidelity, thereby
significantly increasing the overall computational cost, even
though the computation of contact between an individual
pair of convex primitives is efficient [31]; 2) It is diffi-
cult or even impossible to fully reproduce the true surface
curvature by simply clumping convex primitives, making it
difficult to properly implement the curvature-based contact
model, e.g., the Hertz-Mindlin model [32–36]. Another pop-
ular alternative is to discretize particle surfaces into a grid of
sub-domains, with the assumption that at most one solution
of contact exists in a subdomain and thus the iterative-based
optimization methods [37–39] can apply. In so doing, the
contact solution is sensitive to the resolution (amount) of
subdomains, incurring high computational cost if a high res-
olution is needed, especially for highly non-convex realistic
particles.

Another branch of contact approach for generic irregular-
shaped particles (non-convex in particular) is the node-to-
surface method [40–42]. The basic idea is to discretize the
surface of one particle into a set of nodes to turn the contact

detection into an equivalent problem of determining if any
surface node of the particle is intruding into another parti-
cle. Such kind of algorithm searches for contact solutions
in a brute-force manner that is robust but not sufficiently
efficient in general. The node-to-surface approach has been
successfully adopted in the level-set based DEM [16,17] and
spherical-harmonics basedDEM[18,19].Although thenode-
to-surface approach for contact detection is straightforward,
the definition of contact geometric features in the contact
resolution step remains some divergence and debates. For
example, in the level set-DEM [16,17], the contact normal
orientation is computed from the spacial derivatives of the
level set function and the contact overlap is calculated as
the distance from the intruding node to the intruded particle
surface. However, in the spherical harmonics-DEM [19], the
contact normal orientation is defined as the mean of the sur-
face normal orientations, respectively, at the intruding node
and the surface projection point. The contact force is eval-
uated based on the contact volume, which is approximated
from the predefined prisms that surround the intruding nodes.
As discussed in Feng [21], contacts between non-convex and
irregular-shaped particles are much more complex than cur-
rently assumed. The definitions of contact geometric features
in these aforementioned studies [16,19] are not in a consis-
tent but an ad-hoc fashion, which may result in an energy
increase for an elastic impact and therefore becomes a source
for potential numerical instability.

It is also worth noting that for general (concave) poly-
hedra, besides the aforementioned clump approach and
node-to-surface approach, some other algorithms for con-
tact detection and resolution are available in the literature
[10,43–47], such as the polygon-based contact approach [10],
the mesh Boolean approach [46], node-to-node approach
[45], and surface-to-surface contact approach [47]. Polyhe-
dra are flexible to model arbitrary-shaped particles, while
the computational efficiency degrades significantly with
increasing shape complexity. These polyhedra-based contact
approaches are developed particularly for polyhedra and thus
may not be applicable to other types of geometries, such as
quadrics and spherical harmonics.

In this work, we develop a signed distance field (SDF)
approach for DEMmodeling of generic irregular-shaped par-
ticles. This approach is built on the node-to-surface approach
[40,48] for contact detection, but brings the following three
new features: 1) particle models are proposed to inherit
from a generic interface that provides an SDF function and
a surface projection function. The contact detection and
resolution algorithms are consistently developed and imple-
mented based on this generic interface, providing a universal
applicability to any classes of shapes that implement this
interface. We will demonstrate that the implementation of
this SDF-based generic interface renders it easy to generate
classical geometries, including poly-super-ellipsoid, poly-
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super-quadrics, spherical harmonics and polyhedron and also
facilitates the integration of existing level set particle mod-
els; 2) the contact behavior is derived from the theory of
contact potential, therefore the total energy of two particles
is conserved during the entire colliding process if there is no
damping or friction. The energy-conserving contact theory
is beneficial to the numerical stability and enables quantita-
tive energy analysis of a DEM simulation; 3) we also offer
quantitative analysis of the memory consumption and com-
putational efficiency of the aforementioned particle models,
aiming to provide some guidance on the selection of particle
models for real applications.

The rest of the paper is organized as follows. Sec-
tion 2 presents the methodology of the SDF-based contact
approach, including the particle model interface, contact
algorithms and contact theory. Section 3 provides the exem-
plified particle models, including poly-super-ellipsoid, poly-
super-quadrics, spherical harmonics, polyhedron and level
set. Section 4 describes a weighted spherical centroidal
Voronoi tessellation (WSCVT)-based scheme for particle
surface discretization and reconstruction. Section 5 shows
several example DEM simulations to verify and demonstrate
the capabilities of the SDF-based approach, and Sect. 6 fur-
ther discusses about the computational aspects, e.g., memory
consumption and computational efficiency. Finally, Sect. 7
summarizes the concluding remarks.

2 Unified SDF-DEM framework

2.1 SDF description of particles

An SDF is such a function d = �(x): R3 → R that maps
a point x to a signed value d. As illustrated in Fig. 1, in the
SDF approach, a particle model inherits from an SDF-based
generic interface that provides two basic functions:

• Signed distance function: it returns the sign distance at
a query point. Without loss of generality, the signed dis-
tance is taken as positive if the point is inside the particle
surface and negative otherwise. The zeroth isosurface of
the SDF is taken to conveniently represent the particle
surface.

• Surface projection function: it defines the projection of a
given point onto the particle surface. For example, point
P is projected onto the surface of Particle A at point Q as
shown in Fig. 1. The surface projection function is used
to determine contact point.

Conventionally, as in the case of level set-DEM [16], a
signed distance is defined as the shortest distance from query
point to particle surface, and the surface projection point is
the point that provides the shortest distance. In this work,

Fig. 1 Illustration of the SDF model for DEM. (Color figure online)

we adopt a broad-sense definition for signed distance which
can be either the shortest distance from the query point to
the particle surface, the radial distance from the query point
to the particle surface, or any other distance that satisfy the
condition that the SDF isosurfaces are non-self-intersection.
The extended SDF may lose some properties (e.g., the gra-
dient is of norm length) possessed by the conventional SDF
defined upon Euclidean distances, while rendering it capable
to accommodate various types of particle models and typi-
cally efficient for discrete element modeling. With particle
shape described by SDF, in this work, the particle properties,
such as mass and moment of inertia, are calculated from the
triangle mesh reconstructed for the particle surface (i.e., the
zeroth isosurface of the SDF). Exemplified particle models
with concrete signed distance function and surface projection
functionwill be presented in Sect. 3. The approach of particle
surface discretization and reconstruction will be presented in
Sect. 4.

2.2 Contact detection

The node-to-surface approach [16,19,41,42] is adopted to
detect the contacts between SDF-based particles. As shown
in Fig. 2, for two particles in query, Particle A is described
by an SDF, whereas the surface of Particle B is discretizied
with a set of nodes. The contact detection problem becomes
equivalent to determining if there exists a surface node on
Particle B that intrudes into Particle A, which can be easily
accomplished by checking the distance signs of the surface
nodes.

2.3 Contact resolution

In this work, the contact normal descriptions, including the
contact geometric features and contact normal forces, are
derived from the distance-potential-based energy-conserving
contact theory. For contact shear and frictional forces, the
linear-spring model with Coulomb’s law is adopted.
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Fig. 2 Illustration of the node-to-surface approach for contact detec-
tion. (Color figure online)

2.3.1 Normal force

For two particles in contact, it is assumed that Particle A is
in its reference configuration and is located at the origin, and
the configuration of Particle B is characterized by its posi-
tion x and orientation θ with respect to the body coordinates
of Particle A. In reference to the energy-conserving contact
theory proposed by Feng [21,46], the inter-particle contact
(normal) force Fn and moment Mn can be characterized as

Fn = −∂w(x, θ)

∂x
(1)

Mn = −∂w(x, θ)

∂θ
(2)

where w(x, θ) denotes the contact potential. As the moment
can be represented by a force pair, it is convenient to leave
out the contact moment term by translating the contact force
from the origin to the so-called contact point xc, given by

xc = n × Mn

Fn
+ λn (3)

where Fn is the magnitude of contact normal force, n =
Fn/Fn is the contact normal orientation, and λ is a free
parameter. It is also worth noting that the contact normal is
not defined as a prior but is calculated from the direction of
contact normal force, and thus it may not be orthogonal to the
surface of any particle. The integration of energy-conserving
contact theory with the node-to-surface contact algorithm,
including the choice of contact potential and parameter λ for
contact point, is elaborated as following.

In this work, we define the contact potential w(x, θ) as a
function of the signed distances di , such that

w(x, θ) =
Pi∈B→A∑

Pi

kiF(di ) (4)

where ki is a stiffness-dependent parameter, F(di ) is a func-
tion that satisfies F(0) = 0, and Pi ∈ B → A represents the

surface nodes of Particle B that intrude into Particle A. In par-
ticular, a three-halves-power formulation of contact potential
can be written as

F(di ) = 2

3
βd3/2i (5)

which resembles a Hertzian-like nonlinear contact force-
displacement formulation and is adopted in this work for the
example DEM simulations. Parameter β is a coefficient to
account for the effect of surface nodes distribution; it can be
taken as 1 for evenly distributed surface nodes or as a function
of the squared node spacing (i.e., distance between adjacent
surface nodes) for an uneven distribution. Since the contact
potential is defined upon intruding nodes, it is convenient
to set the reference point of the contact potential exactly at
the intruding nodes. Benefiting from the fact that the signed
distance di is rotation-invariant with respect to the intruding
node Pi , the contact moment with respect to this choice of
reference point becomes zero. Therefore, the contact normal
behavior can be simplified as

Fn =
Pi∈B→A∑

Pi

Fn,i (6)

Fn,i = −kiF ′(di )
∂di
∂x

(7)

ni = Fn,i/Fn,i (8)

xc,i = xPi + λni (9)

where the subscript i indicates the node index. Note that Eq.
(9) defines the contact point xc,i only on the line that passes
the reference point Pi and points to direction ni . In this work,
the exact contact point and thus the parameter λ are obtained
as follows. As shown in Fig. 3, for an intruding node Pi , the
middle of the node and its corresponding surface projection
point Qi is first obtained as point Mi . The contact point is
then defined as the projection (i.e., Ei in Fig. 3) of thismiddle
point onto the line defined by Eq. (8).

In implementation, the derivative term in Eq. (7) is cal-
culated using the finite difference approach by translating
Particle B with a tiny displacement, respectively, in each
dimension. The sampling interval (i.e., the tiny displacement)
is taken as the average node spacing multiplied by a user-
define parameter (e.g., 1.0e-6 used in this work). Such an
adoption of sampling intervalmakes it relatively independent
from particle size. In addition, the effect of sampling inter-
val on the differential would become minor if the sampling
interval gets reasonably small, making the results relatively
independent from the exact value of sampling interval (i.e.,
the user-define parameter). Another factor that might affect
the robustness of the numerical differentiation is the com-
plexity (e.g., the smoothness of the isosurfaces) of particle
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Fig. 3 Illustration of the definition of contact point. (Color figure
online)

SDF, where the effect can be mitigated by taking small sam-
pling interval. It is worth noting, however, that the use of too
small sampling interval may lead to truncation errors due to
limited machine precision and thus may bring a potential of
numerical instability.

2.3.2 Tangential force

In the node-based linear-spring model for tangential contact
force, each intruding node is assumed to carry a tangential
force, which is updated incrementally according to

Fs = F0
s − ktδs (10)

Ft = F0
t − ktδt (11)

where Fs and Ft are the tangential contact forces in the
tangential directions s and t , respectively; the superscript
0 indicates the tangential forces at the previous timestep; kt
is the contact tangential stiffness; and δs and δt , respectively,
are the relative displacements in the contact tangential direc-
tions. The tangential contact force is tracked in two tangential
directions to facilitate the transformation of contact frictional
force due to contact plane rotation [49]. Specifically, when a
contact is first activated, the tangential direction s is initial-
ized as the projection of the global x or y direction (whichever
is not parallel with the contact normal) onto the contact plane,
and the tangential direction t is initialized as t = s×n. Then,
for each time step, due to rigid particle motion and thus the
rotation of contact plane, tangential direction s is updated
accordingly with two rotations, given by

s1 = s∗ − s∗ × (n∗ × n) (12a)

s2 = s1 − s1 × ω̄�t (12b)

s = s2/||s2|| (12c)

where the first rotation, which gives s1, is about the line com-
mon to the previous and present contact planes; the second
rotation, which gives s2, is about the present contact normal;
* denotes the values of previous time step; ω̄ is the projection
of the average spin velocity of the two particles in contact
onto the contact normal; and �t is the timestep. Lastly, the
tangential direction t is obtained from t = s × n. Note that
each intruding node Pi will have a tangential contact force,
whereas the subscript i is left out in the equations for sim-
plicity. The relative displacements δs and δt are calculated
as

δs = vrel · s�t (13)

δt = vrel · t�t (14)

vrel = vcA − vcB + ωA × bA − ωB × bB (15)

where vrel is the relative velocity at a contact point; vcA and
vcB are the velocities of the centroid of particle A and B,
respectively; ωA and ωB are the spin velocities of particle A
and B, respectively; bA and bB are the corresponding branch
vectors, i.e., the vector starting from particle centroid and
directed towards contact point; and symbol · indicates the
dot production. In implementation, at each time step, the con-
tact normal and contact point will be calculated first via Eqs.
(8) and (9), respectively. Then, the tangential directions will
be updated accordingly via Eq. (12) to account for the rota-
tion of contact interface due to rigid particle motion. Next,
the relative velocity of the particle surfaces at the contact
point is calculated via Eq. (15). Finally, the relative tangen-
tial displacements are computed from Eqs. (13) and (14),
respectively.

To further incorporate the Coulomb’s law of friction [34,
50], the tangential contact forces are constrained as

F ′
st,i = min

(√
F2
s,i + F2

t,i , μFn,i

)
(16)

F ′
s,i = F ′

st,i
Fs,i√

F2
s,i + F2

t,i

(17)

F ′
t,i = F ′

st,i
Ft,i√

F2
s,i + F2

t,i

(18)

where the symbol prime ′ is used to indicate the updated tan-
gential contact force based on the Coulomb’s law of friction,
the subscript i indicates the node index, Fst is the total tan-
gential contact force, and μ is the friction coefficient. It is
worth noting that the present Coulomb-based tangential con-
tact force model does not fully consider the complete force
history and the partial slip effect when slide occurs, which
will not make much difference in the cases of continuous
loading but will in the cases of small-strain cyclic loading
(e.g., ratcheting). This is a difficult problem in DEM which
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is often overlooked, and currently there is not perfect solution
for it.

3 Exemplified particle models

The proposed unified SDF-based framework is applicable to
recovering a broad range of particle models as special cases,
such as poly-super-ellipsoid, poly-super-quadrics, spherical
harmonics, polyhedron, and level set, that have been prevail-
ingly employed to model non-spherical particles in the DEM
community. Thanks to the unified framework, it is allow-
able to use all of these particle models together in one DEM
simulation for a better performance in terms of shape repre-
sentation accuracy, memory consumption and computational
efficiency.

3.1 Poly-super-ellipsoid

The surface of a poly-super-ellipsoid particle can be formu-
lated as [4]

f (x) =
(∣∣∣∣

x

rx

∣∣∣∣

2
ε1 +

∣∣∣∣
y

ry

∣∣∣∣

2
ε1

) ε1
ε2

+
∣∣∣∣
z

rz

∣∣∣∣

2
ε2 − 1 = 0 (19)

where rx , ry , and rz are the semi-major axis lengths in the
direction of x , y, and z, respectively; and ε1 and ε2 are the
shape parameters determining the blockiness of the parti-
cle. A poly-super-ellipsoid particle is convex if ε1 and ε2 are
within range (0, 2), and is non-convex otherwise. The semi-
major axis length rx is taken as rx− for negative x and rx+
for positive x (same for ry and rz). Figure 4 shows an exam-
ple of poly-super-ellipsoid particle. The poly-super-ellipsoid
degrades to a superellipsoid if rx− and rx+ , ry− and ry+ , rz−
and rz+ are, respectively, equal.

Fig. 4 An exemplified poly-super-ellipsoid particle (rx− = 0.5, rx+ =
1.0, ry− = 1.5, ry+ = 0.5, rz− = 1.0, rz+ = 1.5, ε1 = ε2 = 1.5): a
particle surface, b SDF at cross-section y-o-z. (Color figure online)

Given a query node P , the surface projection function is
defined, in a radial distance fashion, as

xQ = (xQ, yQ, zQ) = (cxP , cyP , czP ) (20)

where x , y, and z are the coordinates, respectively, in each
dimension; subscripts P and Q indicate points P and Q,
respectively; and c is a scaling coefficient that makes point
Q satisfy Eq. (19). By casting point Q into Eq. (19), the
coefficient c can be solved as

c =
(

1

f (xP ) + 1

) ε2
2

(21)

The SDF is then defined as the distance between points P
and Q that

�(xP ) = (c − 1)||xP || (22)

where ||xP || represents the Euclidean norm length of xP .

3.2 Poly-super-quadrics

The surface of a poly-super-quadrics particle is formulated
as

f (x) =
∣∣∣∣
x

rx

∣∣∣∣

2
εx +

∣∣∣∣
y

ry

∣∣∣∣

2
εy +

∣∣∣∣
z

rz

∣∣∣∣

2
εz − 1 = 0 (23)

where rx , ry , and rz are the semi-major axis lengths in
the direction of x, y, and z, respectively; and εx , εy and
εz are the shape parameters determining the blockiness of
the particle. Similar to the poly-super-ellipsoid case, a poly-
super-quadrics particle is convex if εx , εy and εz are within
range (0, 2), and is non-convex otherwise. The semi-major
axis length rx is taken as rx− for negative x and rx+ for pos-
itive x (same for ry , rz , εx , εy and εz). Figure 5 shows an
example of poly-super-quadrics particle.

Fig. 5 An exemplified poly-super-quadrics particle (rx− = 0.5, rx+ =
1.0, ry− = 2.5, ry+ = 0.5, rz− = 1.7, rz+ = 0.5, εx− = 0.5, εx+ = 1.0,
εy− = 1.5, εy+ = 1.0, εz− = 1.2, εz+ = 0.8): a particle surface, b SDF
at cross-section y-o-z. (Color figure online)
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For the poly-super-quadrics particle model, the surface
projection function is written as

xQ = (xQ, yQ, zQ) = (cx xP , cy yP , czzP ) (24)

where cx , cy , and cz are the scaling coefficients that make
point Q satisfy Eq. (23), and are calculated as

ci =
(

1

f (xP ) + 1

) εi
2

(25)

where i = x , y, z, indicating the dimensions. And, the SDF
is calculated as

�(xP ) = sgn(− f (xP ))||xP − xQ || (26)

where sgn(x) represents the sign of variable x .

3.3 Spherical harmonics

Spherical harmonics, as a three-dimensional variant of the
two-dimensional Fourier series, has been popularly adopted
to characterize particle morphology and generate virtual par-
ticles [51–54]. Given a star-shaped particle, its surface points
can be expressed in spherical coordinates (r , θ , φ) and char-
acterized by a function r(θ, φ), where r is the radial distance,
and θ and φ are the polar and azimuth angles, respectively.
In general, a radial distance function can be represented by
spherical harmonics, that

r(θ, φ) =
N∑

n=0

n∑

m=−n

an,mY
m
n (θ, ϕ), θ ∈ [0, π ], φ ∈ [0, 2π)

(27)

with

Ym
n (θ, ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)m
√
2
√

(2n+1)(n+m)!
4π(n−m)! P−m

n (cos θ) sin(−mϕ) if m < 0√
2n+1
4π Pm

l (cos θ) if m = 0

(−1)m
√
2
√

(2n+1)(n−m)!
4π(n+m)! Pm

n (cos θ) cos(mϕ) if m > 0

(28)

where N is the spherical harmonics order; n and m are the
spherical harmonics basis indexes; an,m are the spherical
harmonics coefficients, and Pm

n (cos θ) is the associated Leg-
endre polynomial function of variable cos θ . Figure 6 shows
an example of spherical harmonics particle.

For the SDF-based spherical harmonics particle model,
the surface project function is formulated as

xQ = (xQ, yQ, zQ) = (cxP , cyP , czP ) (29)

Fig. 6 An exemplified spherical harmonics particle: a particle surface,
b SDF at cross-section y-o-z. (Color figure online)

Fig. 7 An exemplified polyhedron particle: a particle surface, b SDF
at cross-section y-o-z. (Color figure online)

with the scaling coefficient c calculated as

c = r(θP , φP )

||xP || (30)

The SDF is calculated as

�(xP ) = r(θP , ϕP ) − ||xP || (31)

3.4 Polyhedron

Polyhedronhas beenpopularly adopted inDEMformodeling
irregular-shaped particles [26,55]. The surface of a polyhe-
dron can be described by a set of trianglemesh. Thus, the SDF
of a polyhedron can be defined as the shortest distance from
the query point to the trianglemesh,whereas the point provid-
ing the shortest distance is taken as the surface projection.
The SDF of a polyhedron has been prevailingly employed
in computer graphics with popularly implemented libraries
[56,57]. An open-source code, libigl (A simple C++ geome-
try processing library) [58], is adopted in this work to obtain
the SDF of polyhedral particles. The SDF function in libigl
implements the axis-aligned bounding box hierarchy algo-
rithm, which offers an efficient and robust way to query the
signed distance and surface projection. Figure 7 shows an
example of polyhedron particle.

3.5 Level set

Level set is a prevalent method to capture the motion of inter-
faces in many areas of computational physics [59–61]. It
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has been previously adopted by Kawamoto et al. [16,17] to
develop the level set-based particle model in DEM for mod-
eling realistic particles. In this work, we show that the level
set particle model can also be integrated into the proposed
unified SDF-based framework via the generic SDF-based
particle interface. For the sake of completeness, the following
provides a brief introduction to the level set model.

Considering a cuboid domain with dimensions Lx ×Ly ×
Lz , the domain is discretized into a uniformgrid of Nx×Ny×
Nz locations with spacing intervals lx , ly and lz , respectively,
in each dimension. The matrix that stores the distance values
at the grid of locations is denoted as �i jk , where i , j and k
indicate the indices of the grid nodes. Given a query point
P , the indices of the grid cell that encloses this point are first
obtained by

I Dx = min(Nx − 2,max(0,floor((xP − xC )/lx ))) (32)

I Dy = min(Ny − 2,max(0,floor((yP − yC )/ly))) (33)

I Dz = min(Nz − 2,max(0,floor((zP − zC )/lz))) (34)

where I Dx , I Dy , and I Dz are the indices; xC , yC , and zC
are the coordinate of the lowest corner of the cuboid domain;
and floor(x) indicate the largest integer smaller than x . Note
that the indices are assumed to start from 0, and they are
constrained between 0 and Nx − 2 to prevent the error of out
of array range. The signed distance of point P can then be
calculated as

�(xP ) =
1∑

a=0

1∑

b=0

1∑

c=0

[(1 − a)(1 − x) + ax]

[(1 − b)(1 − y) + by][(1 − c)(1 − z) + cz]
�[I Dx+a][I Dy+b][I Dz+c] (35)

where x , y, z represent the local coordinates of point P with
respect to the grid cell, and are calculated as

x = min(1,max(0, (xP − xC )/lx − I Dx ) (36)

y = min(1,max(0, (yP − yC )/ly − I Dy) (37)

z = min(1,max(0, (zP − zC )/lz − I Dz) (38)

The surface projection point Q is calculated as

xQ = (xQ, yQ, zQ) = (xP , yP , zP ) − �(x p)
∇�(x p)

||∇�(x p)||
(39)

where ∇�(x p) = (∇x�,∇y�,∇z�) represent the gra-
dients of �(x p) with respect to dimensions x , y and z,

Fig. 8 An exemplified level set particle: a particle surface reconstructed
using marching cubes algorithm based on the discrete level set values,
b SDF at cross-section y-o-z. (Color figure online)

respectively, and are calculated as

∇x�(x p) =
1∑

a=0

1∑

b=0

1∑

c=0

[2a − 1][(1 − b)(1 − y) + by]

[(1 − c)(1 − z) + cz]�[I Dx+a][I Dy+b][I Dz+c]
(40)

∇y�(x p) =
1∑

a=0

1∑

b=0

1∑

c=0

[(1 − a)(1 − x) + ax][2b − 1]

[(1 − c)(1 − z) + cz]�[I Dx+a][I Dy+b][I Dz+c]
(41)

∇z�(x p) =
1∑

a=0

1∑

b=0

1∑

c=0

[(1 − a)(1 − x) + ax]

[(1 − b)(1 − y) + by][2c − 1]
�[I Dx+a][I Dy+b][I Dz+c] (42)

An example of level set particle is shown in Fig. 8.

4 Particle surface discretization and
reconstruction

For continuous-function particle models such as poly-super-
ellipsoid, poly-super-quadrics and spherical harmonics, the
particle surface needs to be discretized into query nodes
for contact detection. Given a particle surface parameterized
with spherical coordinates (θ , φ), it is ready to discretize
the surface by drawing samples in the parametric space,
e.g., the equal angle grid approach, the icosahedral subdi-
vision approach and the Fibonacci or golden spiral lattice
approach [12]. Nonetheless, these conventional sampling
approaches have some limitations. For example, equal angle
grid approach may result in severely dense points in the
vicinity of poles, whereas the other two could provide a per-
fectly even point distribution (in the unit sphere parametric
space) but may still suffer from the non-distance-preserving
issue [12]. To approachmore uniform sampling, a novel sam-
pling scheme is proposed here based on weighted spherical
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centroidal Voronoi tessellation (WSCVT) to offer two extra
advantages: (1) it can be used to obtain an arbitrary number
of surface points, and (2) it offers a novel way to control the
local density of the points.

4.1 Methodology ofWSCVT

In general, a Voronoi tessellation (VT) is a partition of a
domain into regions based on the distances to points in a spe-
cific subset of the domain. The points are often calledVoronoi
seeds, and the regions are called Voronoi cells. Each Voronoi
seed has a corresponding Voronoi cell, which consists of
all points closer to that seed than to any other. Centroidal
Voronoi tessellation (CVT) is a typical tessellation in which
the seed of a Voronoi cell coincides with its centroid (i.e., the
arithmetic mean or center of Voronoi cell). More specially,
a weighted CVT is the tessellation in which each centroid is
weighted according to a certain function [62]. Different from
conventional VT that is defined in Cartesian space, spherical
VT is a variant of VT in which the Voronoi seeds, separation
distance and the Voronoi cells are defined on a unit sphere.
Figure 9 shows an example of a spherical VT. In the spheri-
cal VT, the distance between two points are measured as the
great-arc distance, i.e., the length of theminor arc of the great
circle on the unit sphere. Each Voronoi cell then consists of a
set of great arcs. On the basis of spherical VT, the spherical
CVT and weighted spherical CVT could be defined accord-
ingly. Interested readers are referred to Larrea et al. [63] for
more detail.

In the WSCVT-based sampling scheme, each Voronoi
seed is selected as a sample of parametric coordinate (θ, φ).
Surface points are then calculated from these parametric
coordinates based on the specific spherical parametrization.
Figure 10 shows two examples of the particle surface recon-
structed based on WSCVT. The first example is weighted by

Fig. 9 Example of spherical CVT. The black dots represent Voronoi
seeds, and the spherical polygons represent the Voronoi cells. The color
is randomly selected for visualizing different Voronoi cells. (Color fig-
ure online)

constant. In this case, the acquired parametric coordinates
are evenly distributed in the unit sphere space. The result of
constantWSCVT is similar to that of the golden spiral lattice
approach [21]. The second example is weighted by the radial
distance of particle surface points. In this case, the Voronoi
seeds at the area with large radial distance (i.e., the area in
blue) are specified with relatively small weights, whereas the
seeds at the area with small radial distance (i.e., the area in
red) are specified with larger weights. Consequently, the area
with large radial distance is sampled with more points and
vice versa, and the resultant point samples on particle surface
would be more evenly distributed after scaled by the radial
distance. The radial distance-based seed weights could mit-
igate the non-distance-preserving issue of the golden spiral
lattice sampling scheme.

4.2 Construction algorithm

The weighted centroid of triangle and centroid of spherical
polygon are critical ingredients to construct WSCVT and are
introduced as follows. Given a triangle with vertices denoted
as A, B and C , the weighted centroid is the location O that
satisfies

dw(xO , xA, wA) = dw(xO , xB, wB) = dw(xO , xC , wC )

(43)

where xA, xB , xC and xO are the coordinates of points A,
B, C and O , respectively; w is the corresponding weights at
the vertices; and dw is the weighted distance function, given
by

dw(xO , xA, wA) = ||xA − xO ||2 − wA (44)

where the symbol ||x|| indicates the Euclidean distance.
The weighted centroid of a triangle may not always exist

for a certain set ofweights. Toovercome this issue, an approx-
imation of the weighted centroid of a triangle is introduced
as a workaround. As shown in Fig. 11(a), the weighted mid-
dles of each edge of the triangle are first obtained as OAB ,
OBC and OCA, where the weighted middle OAB of edge AB
is defined as the point that satisfies dw(xOAB , xA, wA) =
dw(xOAB , xB, wB) on the edge. One can then draw three
lines through the weighted middle of each edge and perpen-
dicular to the corresponding edge to obtain the intersection
of each pair (see e.g., Ix , Iy and Iz). Finally, the algorithmic
mean of these three intersections is taken as theweighted cen-
troid of the triangle. In addition, since WSCVT is defined on
a unit sphere, the weighted centroid of the triangle is nor-
malized by its Euclidean distance to snap it onto the unit
sphere.
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Fig. 10 Illustrations of surface
point sampling based on the
WSCVT: a weighted by
constant, and b weighted by
radial distance. The vertices on
the unit sphere represent the
sampled parametric coordinates,
and the irregular-shaped
triangular mesh represents the
reconstructed particle surface.
(Color figure online)

(a) (b)

Fig. 11 Illustration of the calculation of aweighted centroid of triangle
and b centroid of spherical polygon for WSCVT. (Color figure online)

As shown in Fig. 11(b), the centroid of spherical polygon
is calculated as

xOV = N
i Ai xOi

N
i Ai

(45)

where Ai is the planar (Euclidean) area of triangle ViVi1O
′
V

with O ′
V being an initial guess of the centroid which can be

taken as the algorithmic mean of all vertices of the spheri-
cal polygon; xOi is the centroid of triangle ViVi1O

′
V ; and the

subscript i indicate the index and N is the total number of ver-
tex.Also, xOV will be normalized by its Euclidean distance to
snap to the unit sphere. It should be noted that, for simplicity
and efficiency, the calculation of weighted centroid of trian-
gle and centroid of spherical polygon has been simplified by
using Euclidean distance and planar area instead of the exact
great-circle distance and spherical area,which, however,may
introduce negligible errors for adequate Voronoi seeds.

With the definition of weighted centroid of triangle and
centroid of spherical polygon, a modified algorithm from
Larrea et al. [63], Yang et al. [64] is proposed to construct
WSCVT as described in Algorithm 1. Based on the radial
distance of surface points, the weight reads

w = S

πNr2
(46)

where S is the surface area of particle; N is the number of
Voronoi seeds; and r is the radial distance of the particle sur-
face point in the radial direction of corresponding Voronoi
seed. Other formulations of weights for surface point sam-
pling with desired patterns (e.g., sharp corner preserving)
merit further exploration but is beyond the scope of thiswork.

Algorithm 1 Weighted spherical centroidal Voronoi tessel-
lation (WSCVT)
Input: Weight function that defines on unit sphere.
Output: Voronoi seeds and cells.
1: Initialize a random set of Voronoi seeds.
2: Update the weights of the Voronoi seeds based on their current posi-

tions.
3: Compute the Delaunay triangulation of the Voronoi seeds using the

convex hull algorithm.
4: Compute the weighted centroid of each Delaunay triangle.
5: Obtain the Voronoi cell that corresponds to a Voronoi seed, by col-

lecting all the weighted centroids of Delaunay triangles containing
the Voronoi seed and sorting the centroids in counter-clockwise
order. Repeat this step for all Voronoi seeds.

6: Move the Voronoi seeds to the centroids of the corresponding
Voronoi cells.

7: Repeat steps 2-6 until difference between the Voronoi seeds and
Voronoi cell centroidss are within a preset tolerance or a maximum
number of iterations is reached.

5 Simulation demos

To validate and demonstrate the capabilities of the unified
SDF-based DEM framework, we provide a series of rep-
resentative simulations, including (1) random packing, (2)
column collapse, (3) nut spinning into bolt, and (4) triax-
ial compression. They represent some of classical problems
ranging from dynamic, quasi-static to multi-contacts in com-
putational particle mechanics.
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Fig. 12 Snapshots of granular packing for different particle models. The packing consists of 500 particles, which are colored by their indicies for
visualization. (animation in supplementary). (Color figure online)

5.1 Random packing

In the random packing example, particles are iteratively
inserted into the top part of a box container with a 1.0-by-1.0
m base. Meanwhile, the particles are allowed to settle down
under gravity and reach equilibrium. Cases of different par-
ticle models, i.e., the particle models described in Sect. 3,
are considered. In all cases, the particles are assumed to have
an equivalent size (the diameter of equal volume sphere) of
0.1 m and density 2,650 kg/m3. The normal stiffness param-
eter ki is 2 KN/m1/2, shear stiffness kt is 10 KN/m, and
the contact frictions μ is 0.3. Parameter β (i.e., in Eq. (5))
is taken as 1 for simplicity. It should be noted that in the
context of energy-conserving contact theory, the unit and
magnitude of the contact normal stiffness parameter ki are
different from those of the conventional-sense stiffness of
linear spring contact model. In practice, the contact stiffness
needs to be determined through a calibration process. The
classical velocity-based damping force and moment [13,14]
are considered with the damping coefficient being 3.0. The
poly-super-ellipsoid, poly-super-quadrics and spherical har-
monics particles are discretized with 1,000 surface nodes,
whereas the polyhedron and level set particles take the ver-
tices of the (reconstructed) surface triangle mesh as surface
nodes. Figure 12 shows the snapshots of the particle pack-
ing for different particles models, where the packing consists
of 500 particles. In all cases, the particles eventually form a
stable configuration without observable unrealistic overlaps,
indicating the good capability and stability of the SDF-based

DEM approach for modeling irregular-shaped particles and
accommodating various particle models.

For quantitative verification, the packing density is cal-
culated and compared with the results of existing numerical
simulations andphysical experiments. This time,we consider
a special case of poly-super-ellipsoid with ηrx± = ηry± =
rz± , and ε1 = ε2 = ζ , where η and ζ are the aspect ratio and
blockiness indices, respectively. As depicted in Fig. 13, η less
than 1 gives oblate particles and grater than 1 gives prolate
particles. The packing density of this type of super-ellipsoid
has been previously studied in Donev et al. [65], Jiao et al.
[66], Delaney and Cleary [67], Zhou et al. [68], Zhao et al.
[69], the results of which will be adopted as the benchmarks
of the present SDF-based DEM. Following the packing pro-
cedure, packings of particles with different aspect ratios and
blockiness are generated. Specially, 8,000 frictionless parti-
cles of size 0.05m are used in this case, while the othermodel
parameters are kept the same. Figure 14 plots the relation-
ship between the packing solid volume fraction, aspect ratios
and blockiness. The evolution of solid volume fraction with
aspect ratio increasing from 0.4 to 2.5 presents an “M”-like
profile, and it presents a “V”-like profile for the solid volume
fraction and blockiness (within range 0.4∼1.4) relationship.
The results of the SDF-based DEMmatches reasonably well
with those in the literature. The shown dependency in the
results are mainly due to the inconsistent contact theories
and contact parameters used in these works. For example,
the common normal contact approach with single maximum
penetration is adopted in Zhao et al. [69], whereas this work
employs the SDF-based contact approach.
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Fig. 13 Snapshots of granular packing of 8,000 super-ellipsoid particles with different aspect ratios and blockiness. (Color figure online)

(a) (b)

Fig. 14 Packing solid volume fraction of super-ellipsoid particles with different a aspect ratios and b blockiness. (Color figure online)

5.2 Column collapse

The column collapse test involves 1, 250 spherical harmon-
ics particles of (equivalent) size 0.005 m. The particles are
packed into a box container with a 0.04-by-0.04m base using
the rain-falling approach, and the height of the packing is
approximately 0.08 m after equilibrium. After packing and
equilibrium, the collapsing process is triggered by remov-
ing one of the lateral boundary of the box container. The
simulation lasts for 10 s, which is deemed to be sufficient
for the particles to reach equilibrium by observing the par-
ticle velocity and trajectory. In this example, the following
model parameters are used: normal stiffness parameter ki is
100 N/m1/2, shear stiffness kt is 10 KN/m, parameter β is 1.
Two contact frictions μ, i.e. 0.1 and 0.3, are considered, to
reproduce the effect of contact friction on the repose angle.
The particle density is 265, 000 kg/m3, which is artificially
enlarged by two orders from the conventional density of sand
particles to accommodate a timestep of 1.0×10−4 s. Similar
to the random packing example, the particles are discretized
with 1000 surface nodes and the damping coefficient is 3.0.

Figure 15 shows several snapshots of particle configura-
tions during the reposing process. The particle packing of
contact friction 0.3 is observed to be slightly higher than that
of contact friction 0.1. This phenomenon is reasonable as

contact friction enhances the packing porosity. With time
elapsing, the particles rearrange steadily during the very
beginning 0.3 s. After that, the particles slow down and
gradually reach equilibrium. Figure 16 shows the zoom-in
snapshots of the particle configurations at the end of repos-
ing and the corresponding repose angle. The particles with
contact friction 0.3 exhibits a repose angle higher (25◦ v.s.
11◦) than the particles with contact friction 0.1. The effect of
contact friction on the repose angle of a granular material can
be well captured and reproduced by the SDF-based DEM.

5.3 Nut spinning into bolt

In the example of nut spinning into bolt, the bolt is fixed
whereas the nut can move and spin along the track of the
bolt, as shown in Fig. 17. The nut and bolt are modeled with
polyhedrons,which consist of 5,196 and 8,170 facets, respec-
tively. The bolt has a slightly smaller average node spacing
and thus is taken as the particle contains the intruding nodes,
whereas the nut is intruded. Nonetheless, reversing choice
of the intruding and intruded particles would not make a
difference to the results as the nut and bolt are discretized
with high accuracy and their average node spacings are close
to each other. In this typical example, the motion of nut
is highly sensitive to the accuracy and stability of contact
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Fig. 15 Snapshots of particle configurations during the collapsing process. The example involves 1,250 particles. The left column represents the
case of contact friction 0.1, and right column represents the case of contact friction 0.3. (animation in supplementary). (Color figure online)

detection and resolution, due to the complex multi-contacts
between the nut and bolt. If the surfaces of nut and bolt
are discretized inaccurately or the contact behavior is evalu-
ated inappropriately, it would result in numerical instability,
such as nut vibrating or being trapped within the bolt tracks.
For the case without damping and friction, the velocity of
the nut can be solved from the energy conserving equation
mg�h + 0.5Izω2

z + 0.5mv2z = 0, where �h represents the
vertical translation of the nut and can be related to the nut
velocity through ∂�h/∂t = vz . In addition, the spin velocity

and translational velocity of the nut are correlated through
rωz/vz = 2πr/h, where r represent the inside radius of the
nut ring and h represents the span of one resolution of the
bolt track. Thereby, the analytic solution of the nut velocity
during the spinning process can be obtained by solving these
equations. The normal stiffness parameter is 2 KN/m1/2 and
the shear stiffness is 10 KN/m. Parameter β is taken as 1
for simplicity, and no damping or friction is introduced. The
particle density is 7, 850 kg/m3 and the timestep is fixed at
1.0×10−4 s. Figure 18 plots the spin velocity of the nut based
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Fig. 16 Zoom-in snapshots of the particle configurations at the end of
collapsing and the corresponding repose angle. (Color figure online)

Fig. 17 Sketch of nut spinning into bolt under gravity and without
damping or friction. (Color figure online)

Fig. 18 Spin velocity of the nut along the vertical direction. (animation
in supplementary). (Color figure online)

on analytic solution and DEM simulation, which agree well
with each other. The results indicate the good performance, in
terms of accuracy and stability, of the proposed SDF-based
DEM for simulating particles of complex shapes and with
multiple inter-particle contacts.

Fig. 19 Snapshots of the particle configurations a after random packing
and b during triaxial shearing. The specimen consists of 1,250 particles.
(animation in supplementary). (Color figure online)

5.4 Triaxial compression

Similar to the column collapse example, the triaxial compres-
sion test also involves 1, 250 spherical harmonics particles of
size 0.005 m. After obtaining the packing, the particles are
first compressed with a given isotropic confining pressure,
and are then sheared by moving the top wall downwards at
a speed of 0.002 m/s meanwhile maintaining the lateral con-
fining pressure constant via servo control [70,71]. Figure 19
shows the snapshots of the particle configurations after equi-
librium and during shearing. The shearing process lasts for
10 s, which accounts for a final axial strain of about 25%.
In this example, the model parameters are kept the same as
those in the column collapse example. Three levels of con-
fining pressure, namely 100 kPa, 200 kPa and 300 kPa, are
considered.

Figure 20 shows the evolution of deviatoric stress ratio
and volumetric strain during the shearing process. Herein,
the deviatoric stress is given by

p = 1

3
σi i , q =

√
3

2
σ ′
i jσ

′
i j , σ ′

i j = σi j − pδi j (47)

where σ ′
i j is the deviatoric part of stress tensor σi j with p

as the mean stress and δi j as Kronecker delta. The stress
tensor σi j is calculated from the contact forces of each of
the confining walls divided by the wall areas, respectively.
The axial strain is defined as εz = ln(H0/H) and the volu-
metric strain is defined as εv = ln(V0/V ), where H and V ,
respectively, are the height and volume of the packing, with
the subscript 0 indicating their initial values and a negative
value of volumetric strain indicatingdilatationof the packing.
For all three levels of confining pressure, the deviatoric stress
first increases rapidly before dropping gradually, whereas the
volumetric strain first exhibits a slight contraction followed
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(a) (b)

Fig. 20 Evolution of a deviatoric stress ratio and b volumetric strain with increasing axial strain during shear. (Color figure online)

(a) (b) (c)

Fig. 21 Microscopic responses of the irregular-shaped particles after isotropic compression and at 5% axial strain during shearing: a coordination
number, b contact normal force distribution, and c contact shear force distribution. (Color figure online)

(a) (b)

Fig. 22 The force-displacement profiles with different numbers of surface nodes for a spherical particles and b irregular-shaped particles, respec-
tively. (Color figure online)
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(a) (b)

Fig. 23 Illustration of a relationship between the radial distance and
shortest distance and b its effect on the contact normal. (Color figure
online)

with pronounced dilation. The response of the irregular-
shaped particles is similar to the behavior of medium dense
sands well observed in laboratory tests. Figure 21 presents
the microscopic responses, including coordination number,
contact normal force distribution, and contact shear force
distribution, of the irregular-shaped particles after isotropic
compression and at 5%axial strain during shearing.Anotable
decrease in the coordinationnumber is observed,which is due
to the dilation behavior of the particles. The contact shear
force increases significantly due to the shearing, indicating
a good number of contact friction mobilization. The results
indicate the good capability of the SDF-based DEM for sim-
ulating quasi-static geomechanical problems.

6 Discussions

6.1 Sensitivity to surface discretization

Within the adopted energy-conserving contact theory, con-
tact forces are calculated from the derivatives of contact
potential and are carried by multiple intruding nodes; thus,
the contact stiffness parameter ki in Eq. (7) and equivalent
overall contact stiffness between two particles are different
from the convectional-sense contact stiffness. In addition,
the contact behavior between two particles may also be
affected by the number and layout of surface nodes. To gain
insight into the force-displacement profile and its sensitivity
to surface discretization, we perform a single contact test by
gradually pushingParticle B towards Particle A, as illustrated
in the embedded images in Figs. 22a and 22b for spheri-
cal and general irregular-shaped particles, respectively. The
irregular-shaped particles are simulated by spherical harmon-
ics particle model. Particle A is fixed at the origin, whereas
Particle B is placed on the top of Particle A with their
centroids align with the z axis. Particle B is then pushing
downwards into Particle A, to cause a collision with increas-
ing penetration. Both particles have a unit (equivalent) size,

and the particles surfaces are discretized into different num-
bers of evenly distributed nodes using WSCVT described in
Sect. 4. For example, in the spherical case, the surface dis-
cretization of 1000 points corresponds to an angular distance
of about 3.5◦ between two adjacent surface nodes. The con-
tact parameter ki is set to 1 N/m1/2, and β is taken as 1/Ns

with Ns being the number of surface nodes to account for the
change of node spacing.

Figure 22 shows the force-displacement results for the
cases of spherical and irregular-shaped particles with dif-
ferent numbers of surface nodes. In the cases of 100 and
200 surface nodes, the force-displacement profile exhibits
notable variations and fluctuations. The force-displacement
profile gradually converges to a smooth and power-law-like
curve with the number of surface nodes increased to 500
and more. Hence, particles are discretized with 1000 surface
nodes in the example simulations toweigh a balance between
efficiency and accuracy. With sufficient surface nodes, the
force-displacement profile can bewell fitted by a power func-
tion with an order of about 1.5, indicating that the adopted
three-halves-power contact potential can well reproduce the
characteristic feature of the conventional Hertzian contact
model. Nonetheless, in practice the contact stiffness parame-
ter needs to be determined through a calibration process and
we are preparing a separate future work trying to establish
a connection between the contact stiffness parameter of the
potential-based contact models and that of classical contact
models, including linear spring contact model and non-linear
Hertzian contact model. More choices on the formulations of
contact potential and the corresponding overall inter-particle
contact behavior will be also explored in the future.

6.2 Radial distance v.s. shortest distance

In the poly-super-ellipsoid and spherical harmonics parti-
cle models, we have been utilizing the radial distance to
defined the SDF, while the radial distance may not neces-
sarily be the shortest distance from the point to the surface.
For example, Fig. 23 shows a comparison between the radial
distance and the shortest distance field. For a query point
P , the surface projection Q is defined as the intersection
between the particle surface and the radial line that passes the
particle centroid OA and query point P . The radial distance-
based SDF is defined as the distance between point P and
Q, whereas the shortest distance is the length PQ′. Fig-
ure 24 shows an example of the radial distance-based SDF
and the shortest distance-based SDF. In comparison with
the shortest distance-based SDF, the contours of the radial
distance-SDFare slightly skewed towards the origin, present-
ing amaximumof signed distance at the vicinity of the origin.
Nonetheless, the difference between the radial distance-SDF
and the shortest distance-based SDF gradually vanishes with
points moving from the origin to the surface. For points close
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Table 1 Memory consumption of basic DEM objects and different particle models

DEM objects Properties to store Memory consumption

Particle Mass, moment of inertia, position, rotation quaternion, velocity, spin, etc. ∼1,000 bytes

Contact Contact point, normal, tangential, forces, moments, particle indices, etc. ∼500 bytes

Poly-super-ellipsoid 6 axis lengths, 2 shape parameters 64 bytes

Poly-super-quadrics 6 axis lengths, 6 shape parameters 96 bytes

Spherical harmonics 81 spherical harmonics coefficients for an oder of 8 648 bytes

Polyhedron (2×1,000-4)×3 facet connectivity, an axis-aligned bounding box hierarchy tree ∼48,168 bytes

Level set 21×21×21 SDF values for a grid of same size, 3 coordinate values, 3 grid spacing values 74,136 bytes

Surface nodes 1,000×3 coordinate values for nodal spacing of ∼1/20 particle size 24,000 bytes

All values are stored in double precision (i.e., 8 bytes). It is presumed that the particle surface is discretized with 1,000 nodes

to the particle surface, the radial distance-based SDFdeviates
from the shortest distance-based SDF by a factor of cosα,
where α is the angle from the radial direction to tangential
plane of the surface at the projection point Q. As a conse-
quence, the resultant contact forces may deviate by a factor
of cosα, which may not become an issue as in DEM the
contact stiffness of particles is usually determined through a
calibration process.

To gain insight into the difference in the contact normal of
using radial distance and shortest distance, one can create a
local coordinate system with the origin being intruding node
P , y′ directed to the particle centroid, and x ′ perpendicu-
lar to y′, as illustrated in Fig. 23(b). It can be derived that
∂d
∂ y′

P
= 1 and ∂d

∂x ′
P

≈ rdθ cot α
(r−d)dθ ≈ cot α, where d is the SDF

of node P , r is the radial distance of point Q and d << r
for infinitesimal intruding depth. Thereby, considering only
the two-dimensional cut-plane, the contact normal is close
to (cot α, 1), i.e., (cosα, sin α), which is the direction from
the intruding point to the surface point giving the shortest
distance. In this regard, the adopted energy-conserving con-
tact theory provides similar results to the conventional-sense
definition of contact normal, while the former offers a robust
and flexible way to reproduce complex contact behavior by
modifying the contact potential.

6.3 Memory consumption

Comparing with the conventional DEM, the SDF-based
approach requires extra memory to store surface nodes and
node-based multiple contacts. The memory consumption of
basic DEM objects and different particle models are sum-
marized in Table 1. The results indicate that the classical
polyhedron and level set particle models may require sig-
nificant memory for storing shape properties, whereas the
poly-super-ellipsoid, poly-super-quadrics and spherical har-
monics particle models are rather memory friendly. The
surface nodes of the particles and node-based multiple con-
tacts would significantly increase the memory consumption

of an SDF-based DEM simulation as compared to con-
ventional DEM, which reduces the affordable number of
particles for a given workstation. For instance, for a particle
shape with spherical harmonics order 8 and 1,000 surface
nodes, it requires 24,648 bytes of memory. Thereby, along
with other particle properties (e.g., mass, moment of inertia,
position, rotation quaternion, velocity, etc.), a particle would
consume roughly 25 kilobytes of memory. With respect to
the contact information, in our present implementation, a
contact would consume roughly 0.5 kilobytes of memory,
to store the information about the contact geometric fea-
tures and contact forces. Given a node-based contact with ten
intruding nodes, the memory usage would be about 5 kilo-
bytes, which is tenfold that of the conventional single-contact
case per particle pair. In addition, considering a particulate
system with a mean coordination number of 8, the mem-
ory usage for the contacts of each particle would be about
5×8/2=20 kilobytes. Putting all together, for the distance-
potential-based framework, each particle would consume
about 45 extra kilobytes of memory comparing with con-
ventional DEM. According to our simulations, the memory
consumption of the DEM environment (e.g., functions and
global variables) was around 10 megabytes, which means
that the particle shape and node-based contacts would domi-
nate the memory usage. One gigabytes of memory would be
able to accommodate approximately 22,000 particles. The
affordable number of particles would reduce to one fourth
for the case of level set particles (with SDF grid of dimen-
sion 21×21×21).

6.4 Computational efficiency

To investigate the computational efficiency of the SDF-based
DEM, the time cost of signed distance query for different par-
ticle models is measured and plotted in Fig. 25. The results
indicate that the level set particle model presents the best
performance in terms of computational efficiency, whereas
the polyhedron particle model is the worst. Comparing with
the level set particle model, the poly-super-ellipsoid and
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Fig. 24 Illustration of the difference between the radial distance-based SDF and shortest distance-based SDF for poly-super-ellipsoid particle: a
radial distance-based SDF, b shortest distance-based SDF, and c the absolute difference between the two SDFs, at cross-section y-o-z. (Color figure
online)

Fig. 25 Time cost per million trials of signed distance query for dif-
ferent particle models (on one Intel i7-10700 CPU with one core). The
label Polyhedron-F8000 indicates that the polyhedron has 8000 facets.
(Color figure online)

poly-super-quadrics particle models are approximately 10
times more computationally expensive, and 30 times for the
case of spherical harmonics particle model. In addition, it
is noted that the computational efficiency of the poly-super-
ellipsoid, poly-super-quadrics, spherical harmonics and level
set particle models are generally independent from the shape
complexity of a particle, whereas the computational effi-
ciency of the polyhedron particle model are heavily affected
by the shape complexity, in terms of the number of vertices
and facets of the polyhedron. The time cost of signed distance
query of polyhedron particle model is (in log-log scale) lin-
early proportional to the number of facets.

Computational time costs of the example DEM simula-
tions presented in the previous section are summarized in
Table 2. All simulations have been run on one Intel i7-10700
CPU with 16 logic cores. In the present implementation, the
DEM code is paralleled with OpenMP. The results of the
same simulation albeit with just one core show that the per-
formance gain with 16 cores is about tenfold.

7 Summary

In this paper, we proposed a unified SDF-based framework
for contact detection and resolution among arbitrary particle
shapes in DEM. The framework describes particle shapes
using a generic SDF-based interface, which features two
basic functions, namely a signed distance function and a
surface projection function, for querying a signed distance
and mapping its corresponding surface point for a given a
query point, respectively. To facilitate particle surface dis-
cretization and reconstruction, we proposed aWSCVT-based
point sampling scheme to handle an arbitrary number of sur-
face points efficiently and to offer a flexible way to control
the local density of the points. With the SDF-based descrip-
tion of particle shapes, contact detection can be conveniently
implemented by the node-to-surface algorithm, i.e., check-
ing the distance signs of the surface nodes of one particle
with respect to another. The energy-conserving contact the-
ory is adopted to derive the geometric features and interaction
forces at contact. It is noteworthy that a novel contact poten-
tial carried on each intruding node can be introduced in terms
of signed distance. The three-halves-power contact potential
is proposed to approximate the Hertzian contact behavior in
a more efficient manner.

To demonstrate the robustness and capability of the pro-
posed framework, illustrative particle models have been
developed using classical geometries, including poly-super-
ellipsoid, poly-super-quadrics, spherical harmonics andpoly-
hedron. The level set particle model is also described and
integrated into this framework. A series of representative
simulations, including randompacking, column collapse, nut
spinning into bot and triaxial compression tests, are exem-
plified to verify and validate the framework. The memory
consumption and computational efficiency of these parti-
cle models have been also discussed. It is illustrated that
polyhedron particle model is flexible in reproducing com-
plex shapes, whereas the level set particle model has the best
computational efficiency but may consume extreme amount
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of memory. The poly-super-ellipsoid, poly-super-quadrics
and spherical harmonics particle models are rather memory
friendly andpresent themediumcomputational performance.
As demonstrated, the SDF-based framework is a promis-
ing general-purpose alternative to model arbitrary-shaped
particles (non-convex particles in particular) accurately and
efficiently in DEM, which is flexible for users to pursue
desired optimal performance.
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