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A B S T R A C T

Heat generation and transfer in a granular material can be intricately coupled with their mechanical responses,
playing a key role in causing excessive large deformation, flow and failure of the material. The coupling may
manifest in various forms, including thermal induced stress, mechanically induced heat and thermally induced
melting in granular media. We propose a novel hierarchical multiscale modeling framework, TM-DEMPM, to
model the coupled thermo-mechanical behavior in granular media which may undergo large deformation and
flow. Material Point Method (MPM) is hierarchically coupled with Discrete Element Method (DEM) to offer
physics-based, natural scale-crossing simulations of thermo-mechanical granular responses without assuming
complicated phenomenological constitutive models. To offer speedup for the numerical solution, hybrid
OpenMP and GPU-based parallelization is proposed to take advantage of the hierarchical computing structure
of the framework. The proposed framework may provide an effective and efficient pathway to next-generation
simulation of engineering-scale large-deformation problems that involve complicated thermo-mechanical
coupling in granular media.
1. Introduction

Granular media are ubiquitous in nature and frequently important
to our daily life. A fascinating feature of granular media is their co-
existence of solid-like and fluid-like states which may rapidly switch
when they are subjected to changes of a variety of factors, including
pressure, density, loading and loading rate, saturation ratio, and tem-
perature variation. Importantly, these factors may combine in partial or
whole to dictate the behavior of granular media in a complicated cou-
pled manner that is challenging to model and understand. Of particular
interest to a wide range of engineering and industrial processes pertain-
ing to granular media is the coupled effect of thermal and mechanical
loads, where temperature variation can induce stress and strain changes
(i.e., thermally induced stress caused by grain expansion/contraction
due to temperature variation) and the mechanical deformation can
generate considerable heat in turn (i.e., mechanically induced heat by
inter-particle friction dissipation). The thermo-mechanical (TM) cou-
pling effect plays an important role in the engineering and industrial
performance of granular media. For example, shakedown matters due
to cyclic thermal variation induced stress in thermal energy storage
(TES) (Pintaldi et al., 2015) such as the packed-bed TES in concentrated
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solar power plants (Becattini et al., 2017) and thermal energy piles in
geotechnical engineering (Sani et al., 2019). In addition, deformation
and flow processes of granular media may generate considerable heat
which in turn influences their physical and/or material properties.
Typical examples include the powder-based tabletting process in phar-
maceutical manufacturing (Krok et al., 2016) and silo discharging in
chemical and mining engineering (Nguyen et al., 2009). A better under-
standing of the interplay between thermal and mechanical behaviors of
granular media could provide crucial theoretical bases for the design,
operation, and risk assessment of relevant applications and practices.

The thermo-mechanical coupling not only manifests by direct be-
havior changes through thermo-mechanical interplay, it also gives rise
to changes of thermal and/or mechanical properties of the material
or even physical phase changes that may further aggravate the com-
plexity of coupling process. For example, thermally induced melting,
as a typical phase transition phenomenon, may occur in cemented
granular media such as frozen soils in permafrost areas (Froitzheim
et al., 2021) and gas hydrate-bearing soils in submarine settings (Hyodo
et al., 2014). Modeling and understanding these typical TM processes
becomes critical for design, prediction and assessment of relevant
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geostructures during large deformation and failure of granular media.
In agricultural or powder industry, continuous discharging of grains
in a silo can accumulate heat to cause remarkable increase of tem-
perature, posing a serious trigger for dangerous silo explosion (Russo
et al., 2017). In chemical engineering, impregnation and calcination
performance depends crucially on heat transfer and flow properties of
granular media in rotary vessels (Saruwatari and Nakamura, 2022).
For frozen granular media in nature, the melting process of inter-
particle bonds can significantly weaken the strength of granular matrix,
triggering large deformation and flow of soils that may cause catas-
trophic geohazards and environmental disasters (Maslin et al., 2010).
For example, the dissociation of gas hydrates in submarine settings
may trigger potential geohazards during the course of exploitation,
ranging from submarine landslides to earthquakes and tsunamis, threat-
ening the operation and safety of offshore infrastructures and coastal
cities (Maslin et al., 2010). Thaw-induced landslides in permafrost areas
serve both as an awakening warning of global warming and an exacer-
bating factor by causing carbon release into the atmosphere (Froitzheim
et al., 2021). There are evidently pressing needs from both indus-
trial developments and environmental sustainability to advance our
understanding of thermo-mechanical response of granular media, in
particular when they reach the regime of large deformation and/or
flow.

Great efforts have been devoted to the study of thermo-mechanical
coupling in granular media from diversified communities of granular
physics, thermal processing industry, and chemical and geotechnical
engineering. A prevailing body of these studies have been based on
continuum mechanics based models and numerical approaches. They
typically smear the discrete nature of a granular material and con-
sider it as a continuum body with homogenized macroscopic responses
described by assumed phenomenological constitutive models (Na and
Sun, 2017; Liu et al., 2018). To treat an engineering scale bound-
ary value problem, these models are routinely implemented into a
continuum-based numerical approach such as Finite Element Method
(FEM) and its alternative mesh-free ones such as Material Point Method
(MPM) (Sulsky et al., 1995) and Smoothed Particle Hydrodynamics
(SPH) (Gingold and Monaghan, 1977) which are specifically useful for
large deformation problems (Bui et al., 2008; Lei et al., 2021). Despite
their great success, continuum constitutive models may face difficulties
in capturing the physical behavior of granular media under complex
loading conditions entangled with complicated coupling. When dealing
with problems involving large deformation and flow, even greater
challenges are posed to both model developments and their imple-
mentations. Micromechanics-based approaches and tools, represented
by Discrete Element Method (DEM) (Cundall and Strack, 1979), have
recently triggered growing interests by their capability of reproducing
various complex mechanical characteristics of granular media from a
particulate perspective, such as anisotropy and liquefaction (Guo and
Zhao, 2013), strain localization and failure (Chen et al., 2011), non-
coaxiality (Li and Yu, 2015) and the rich transitional behavior between
fluid and solid (Herrmann et al., 2013). Micromechanics approaches
can also facilitate the consideration of various coupling processes.
Indeed, DEM may accommodate the thermo-mechanical coupling with
proper network or pore-scale models (Nguyen et al., 2009; Gan et al.,
2012; Choo et al., 2013; Moscardini et al., 2018; Caulk et al., 2020).
It can further be coupled with other computational schemes such as
Computational Fluid Dynamics (CFD) and Lattice Boltzmann Method
(LBM) (Zhang et al., 2016) to simulate coupled hydro-mechanical
behavior of granular media. However, computational cost may be
an outstanding issue for DEM that limits its practical application for
large-scale problems.

Recent spotlights of modeling of granular media have more been
attracted by a class of hierarchical multiscale approaches that leverage
the strengths of both continuum- and discrete-based methods (Andrade
et al., 2011; Chen et al., 2011; Guo and Zhao, 2014; Liu et al., 2016).
2

They employ a hierarchical numerical coupling scheme where DEM is
typically employed to simulate the response of a representative volume
element (RVE) as a surrogate of the conventional constitutive model at
a material point to feed a continuum-based method, such as FEM (Guo
and Zhao, 2014; Liu et al., 2016; Desrues et al., 2019), SPFEM (Guo
et al., 2021) and MPM (Liang and Zhao, 2019), for solution of a bound-
ary value problem. The hierarchical coupling structure offered in these
approaches enables effective simulations of various engineering prob-
lems with complex boundary and initial conditions and yet effortlessly
capture the complicated granular material responses that are highly
loading path and state dependent. The hierarchical multiscale coupling
scheme can be a promising alternative for thermo-mechanical modeling
of granular media. Indeed, a hierarchical coupling of FEM and DEM for
thermo-mechanical modeling was proposed in our previous study (Zhao
et al., 2020), which is, however, limited to thermally induced small
deformation and stress regime. It is desirable to develop an alternative
multiscale approach that can rigorously tackle TM coupling of granular
media in the regime of large deformation and flow.

This work aims at developing an entirely new hierarchical multi-
scale framework to simulate coupled thermo-mechanical behavior in
large deformation and flow of granular media. The framework will be
built upon a pure mechanical hierarchical coupling formulation of MPM
and DEM (termed as DEMPM) that was developed for modeling large
deformation of granular media (Liu et al., 2017; Liang and Zhao, 2019;
Zhao et al., 2021). In DEMPM, a material point serves as an interface
for information exchange between the macro-scale MPM solver and
the meso-scale DEM solver. Notably, a velocity gradient at a given
material point can be obtained first from the MPM solver. It is then
passed on to the corresponding RVE assembly as constraints for a DEM
solution which is further used to extract required material responses
(e.g., stress) to feedback to the MPM solver. The new development in-
corporating thermo-mechanical coupling will be termed as TM-DEMPM
hereafter. To further consider thermo-mechanical coupling in diversi-
fied conditions, the generalized interpolation material point method
(GIMP) (Bardenhagen and Kober, 2004) will be adopted in TM-DEMPM
as the continuum MPM solver to solve both thermal and mechanical
fields in a staggered manner at the continuum scale, whereas physics-
based thermo-mechanical coupling is fully considered and rigorously
modeled at the RVE scale in the DEM solver. As will be demonstrated,
the proposed new framework presents three outstanding features when
granular media develop deformation en route to large deformation and
flow regime: (1) it is able to model thermally induced stress due to grain
expansion/contraction; (2) it can capture mechanically induced heat
due to inter-particle friction dissipation; and (3) it can handle thermally
induced melting at the contact scale. Consequently, TM-DEMPM offers
a computational pathway for physics-based, cross-scale modeling and
understanding of the thermo-mechanical responses of granular media.

The rest of the paper is organized as follows. Section 2 provides
the macroscopic formulation of TM modeling by GIMP, followed by the
mesoscopic formulation of TM coupling in DEM in Section 3. Section 4
introduces the hierarchical multiscale coupling and computing scheme.
Numerical examples are showcased in Section 5, where the TM-MPM
solver is benchmarked against analytical and FEM solutions prior to the
validation of TM-DEMPM, followed by three examples representative
of typical TM problems in granular media further presented to demon-
strate the predictive capabilities and features of the proposed approach,
including heat generation in biaxial compression, heat generation in
discharge of a granular silo, and melting induced column collapse.
Concluding remarks are summarized in Section 6. Tensorial indicial
notations and Einstein summation convention are followed in the study,
and boldface letters for matrices are used.

2. Thermo-mechanical modeling by GIMP

2.1. Governing equations and weak form formulation

The macroscopic thermo-mechanical response of granular media

is modeled in a continuum-based manner, by solving the following
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balance equations of energy and linear momentum in an updated
Lagrangian framework:

𝜌𝑐𝑇,𝑡 + 𝑞𝑖,𝑖 = 𝑄𝑡 (1)

𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖 = 𝜌𝑎𝑖 (2)

here 𝜌 is the bulk mass density; 𝑐 is the specific heat capacity; 𝑇 is
he temperature; 𝑡 is the time; 𝑞𝑖 is the heat flux; 𝑄𝑡 is a heat source or
ink; 𝜎𝑖𝑗 is the Cauchy stress tensor; 𝑏𝑖 is the body force per unit of mass
ossibly performed on materials (e.g., gravitational acceleration), and
𝑖 is the acceleration term; 𝑖, 𝑗 are sequential indices in {1, 2, 3} for 3D

or {1, 2} for 2D. Note that a latent heat term can be added in Eq. (1)
to further consider the effect of phase transition on heat transfer. To
avoid unnecessary defocusing of the study, the detailed implementation
is not presented in this paper. In future considerations, special attention
has to be paid to the different thermal behaviors of coarse and fine
soils during phase transition. Notably, the freezing point is widely
considered stationary for coarse soils during phase change, whilst it is
regarded as a function of temperature for fine soils (Michalowski and
Zhu, 2006).

According to the Fourier’s law for anisotropic heat conduction, the
heat flux 𝑞𝑖 can be written as (Onsager, 1931)

𝑞𝑖 = −𝑘𝑖𝑗𝑇,𝑗 (3)

where 𝑘𝑖𝑗 is the thermal conductivity tensor.
The following general boundary and initial conditions are consid-

red for a typical heat conduction and mechanical problem:

𝑇 (𝑡) = 𝑇̄ on 𝛤𝑇 (4a)

𝑞(𝑡)𝑖 = 𝑞𝑖 on 𝛤𝑞 (4b)

𝑇 (0) = 𝑇𝑟𝑒𝑓 (4c)

𝑢𝑖 = 𝑢̄𝑖 on 𝛤𝑢 (4d)

𝑖𝑗𝑛𝑗 = 𝑡𝑖 on 𝛤𝑡 (4e)

here 𝛤𝑇 and 𝛤𝑞 are the prescribed temperature and heat flux bound-
ries of the problem domain 𝛺, respectively; 𝑇̄ and 𝑞𝑖 are the prescribed
oundary temperature on 𝛤𝑇 and boundary heat flux on 𝛤𝑞 , respec-
ively; 𝑇𝑟𝑒𝑓 is the ambient or reference temperature; Eqs. (4a) and
4b) are Dirichlet (fixed temperature) and Neumann (fixed heat flux)
oundary conditions, respectively, while Eq. (4c) is the initial condition
or temperature distribution at the initial state. 𝑛𝑗 is the boundary
utward normal of the domain 𝛺; 𝑢̄𝑖 and 𝑡𝑖 are the prescribed material
isplacement on 𝛤𝑢 and boundary traction on 𝛤𝑡, respectively; Eqs. (4d)
nd (4e) are Dirichlet and Neumann boundary conditions, respectively.

Multiplying Eqs. (1) and (2) by a corresponding test function 𝜔(𝑇 )

with zeros on 𝛤𝑇 ) and 𝜔(𝑢)
𝑖 (with zeros on 𝛤𝑢), respectively, and

ntegrating over the entire domain 𝛺 by application of integration by
arts and Green’s formula, the weak form formulations of the governing
quations can be obtained as follows

𝛺
𝜔(𝑇 )
,𝑖 𝑘𝑖𝑗𝑇,𝑗d𝛺 + ∫𝛺

𝜔(𝑇 )𝜌𝑐𝑇,𝑡d𝛺 = ∫𝛺
𝜔(𝑇 )𝑄𝑡d𝛺 − ∫𝛤𝑞

𝜔(𝑇 )𝑞d𝛤 (5)

∫𝛺
𝜔(𝑢)
𝑖,𝑗 𝜎𝑖𝑗d𝛺 + ∫𝛺

𝜔(𝑢)
𝑖 𝜌𝑎𝑖d𝛺 = ∫𝛺

𝜔(𝑢)
𝑖 𝜌𝑏𝑖d𝛺 + ∫𝛤𝑡

𝜔(𝑢)
𝑖 𝑡𝑖d𝛤 (6)

.2. Spatial discretization in GIMP

Lagrangian material points and Eulerian background grid are two
ey ingredients for MPM discretization of a continuum domain. The
IMP formulation was proposed by Bardenhagen and Kober (2004) to
vercome the potential cell-crossing issue in the conventional MPM.
n the GIMP discretization, the continuum is spatially discretized into
finite set of subdomains occupied by material points with a certain

omain for each. The integration over the entire domain 𝛺 governed
y the weak forms in Eqs. (5) and (6) can be converted into the
3

ummation of integration over each subdomain 𝛺𝑝 of particles. A
hysical field 𝑓 (𝑥𝑖) can be obtained by interpolating the corresponding
alues 𝑓𝑝 carried on the material points in terms of the so-called particle
haracteristic function 𝜒𝑝(𝑥𝑖) (Bardenhagen and Kober, 2004), i.e.,

(𝑥𝑖) =
∑

𝑝
𝑓𝑝𝜒𝑝(𝑥𝑖), (7)

uch that the volume of a material particle is given by

𝑝 = ∫𝛺𝑝

𝜒𝑝d𝛺. (8)

ote that 𝜒𝑝(𝑥𝑖) satisfies the partition of unity property in the unde-
ormed configuration (Bardenhagen and Kober, 2004) and a ‘‘top-hat’’
unction is employed here. For the background grid, a physical field
(𝑥𝑖) can be also interpolated based on the corresponding value 𝑔𝐼 at
he grid node 𝐼 , i.e.,

(𝑥𝑖) =
∑

𝐼
𝑔𝐼𝑁𝐼 (𝑥𝑖) (9)

here 𝑁𝐼 (𝑥𝑖) is the grid shape function at node 𝐼 . Note that the
ubscripts 𝑝 or 𝐼 denote properties or functions associated with particle
or node 𝐼 hereafter.

The weak forms in Eqs. (5) and (6) can be rewritten into the
ollowing integration forms over all particles

𝐼
𝜔(𝑇 )
𝐼

∑

𝐽

∑

𝑝
𝑚𝑝𝑐𝑝𝜙𝐼𝑝𝑁𝐽𝑝𝑇𝐽 ,𝑡 =

∑

𝐼
𝜔(𝑇 )
𝐼

[

∑

𝑝
𝑉𝑝𝜙𝐼𝑝𝑄𝑡𝑝 +

∑

𝑝
𝑞𝑝ℎ

−1𝜙𝐼𝑝

]

+
∑

𝐼
𝜔(𝑇 )
𝐼

∑

𝑝
𝑉𝑝𝜙𝐼𝑝,𝑖𝑘𝑝𝑖𝑗𝑇𝑝,𝑗

(10)

𝐼
𝜔(𝑢)
𝐼

∑

𝐽

∑

𝑝
𝑚𝑝𝜙𝐼𝑝𝜙𝐽 𝑎𝑖𝐽 =

∑

𝐼
𝜔(𝑢)
𝐼

∑

𝑝
𝑚𝑝𝜙𝐼𝑝𝑏𝑖𝑝 +

∑

𝐼
𝜔(𝑢)
𝐼

∑

𝑝
𝑚𝑝𝜙𝐼𝑝𝑡𝑖𝑝ℎ

−1

−
∑

𝐼
𝜔(𝑢)
𝐼

∑

𝑝
𝑉𝑝𝜙𝐼𝑝,𝑗𝜎𝑝𝑖𝑗

(11)

here ℎ is the virtual boundary layer thickness serving for the bound-
ry integration (Zhang et al., 2011); 𝑚𝑝 is the mass of particle 𝑝; 𝜙𝐼𝑝 and
𝐼𝑝,𝑖 are the weighting and gradient weighting functions, respectively,
efined as

𝜙𝐼𝑝 =
1
𝑉𝑝 ∫𝛺𝑝

𝜒𝑝𝑁𝐼d𝛺 (12)

𝜙𝐼𝑝,𝑖 =
1
𝑉𝑝 ∫𝛺𝑝

𝜒𝑝𝑁𝐼,𝑖d𝛺 (13)

Although several other GIMP variations have been proposed in the
literature for better accuracy, e.g., CPDI (Sadeghirad et al., 2011) and
CPDI2 (Sadeghirad et al., 2013), the undeformed GIMP (uGIMP) (Bar-
denhagen and Kober, 2004) is adopted here as the macroscopic solver
of the proposed multiscale framework for simplicity in implementation
without losing generality.

Due to the arbitrariness of the test functions, the weak forms given
by Eqs. (10) and (11) can be simplified into the following semi-discrete
equations at node 𝐼 :
∑

𝐽
𝐶𝐼𝐽𝑇𝐽 ,𝑡 = 𝑄𝑒𝑥𝑡

𝐼 +𝑄𝑖𝑛𝑡
𝐼 (14)

∑

𝐽
𝑀𝐼𝐽 𝑎𝑖𝐽 = 𝑓 𝑒𝑥𝑡

𝑖𝐼 + 𝑓 𝑖𝑛𝑡
𝑖𝐼 (15)

with

𝐶𝐼𝐽 =
∑

𝑝
𝑚𝑝𝑐𝑝𝜙𝐼𝑝𝑁𝐽𝑝 𝑀𝐼𝐽 =

∑

𝑝
𝑚𝑝𝜙𝐼𝑝𝜙𝐽𝑝 (16)

𝑄𝑒𝑥𝑡
𝐼 =

∑

𝑝
𝑉𝑝𝜙𝐼𝑝𝑄𝑡𝑝 +

∑

𝑝
𝑞𝑝ℎ

−1𝜙𝐼𝑝 𝑄𝑖𝑛𝑡
𝐼 =

∑

𝑝
𝑉𝑝𝜙𝐼𝑝,𝑖𝑘𝑝𝑖𝑗𝑇𝑝,𝑗 (17)

𝑓 𝑒𝑥𝑡
𝑖𝐼 =

∑

𝑚𝑝𝜙𝐼𝑝𝑏𝑖𝑝 +
∑

𝑚𝑝𝜙𝐼𝑝𝑡𝑖𝑝ℎ
−1 𝑓 𝑖𝑛𝑡

𝑖𝐼 = −
∑

𝑉𝑝𝜙𝐼𝑝,𝑗𝜎𝑝𝑖𝑗 (18)

𝑝 𝑝 𝑝



Computers and Geotechnics 149 (2022) 104855S. Zhao et al.

s

𝐶

O
F
u
a
d

𝑣

w
p

𝑣

a
f

𝑥

t

3

3

3

c
b
O
p
2
a

𝐸

w
v
s

𝑄

t

3

t
p
t
e
h
t

𝑘

h
t
o

f

where 𝐶 and 𝑀 are the consistent heat capacity matrix and mass ma-
trix, respectively; 𝑄 and 𝑓𝑖 are heat and mechanical loads, respectively
(the superscripts ‘‘int’’ and ‘‘ext’’ denote internal and external loads,
respectively). To facilitate the computation, the scheme of lumped
matrix is employed, i.e.,

𝐶𝐼 =
∑

𝑝
𝑚𝑝𝑐𝑝𝜙𝐼𝑝 𝑀𝐼 =

∑

𝑝
𝑚𝑝𝜙𝐼𝑝 (19)

uch that,

𝐼𝑇𝐼,𝑡 = 𝑄𝑒𝑥𝑡
𝐼 +𝑄𝑖𝑛𝑡

𝐼 𝑀𝐼𝑎𝑖𝐼 = 𝑓 𝑒𝑥𝑡
𝑖𝐼 + 𝑓 𝑖𝑛𝑡

𝑖𝐼 (20)

2.3. Temporal discretization

We employ the Euler forward method to discretize the thermo-
mechanical coupled system (i.e., the semi-discrete equations in
Eqs. (20)) in time such that the MPM solver works in an explicit
manner. Indeed, this explicit MPM in conjunction with the scheme
of lumped matrix has been prevailingly adopted in the literature for
its straightforward numerical implementation (de Vaucorbeil et al.,
2020). In this scheme, the discrete equations for nodal temperature and
velocity are written as:

𝑇 (𝑡+𝛥𝑡)
𝐼 = 𝑇 (𝑡)

𝐼 + 𝑇 (𝑡)
𝐼,𝑡𝛥𝑡 (21)

𝑣(𝑡+𝛥𝑡)𝑖𝐼 = 𝑣(𝑡)𝑖𝐼 + 𝑎(𝑡)𝑖𝐼 𝛥𝑡 (22)

where the superscripts 𝑡 and 𝑡 + 𝛥𝑡 indicate the variables at the start
and end of the processing timestep hereafter, respectively. For the
mechanical part, the movement of material points can be solved ac-
cording to the kinematic fields of the background grid. Two direct
candidate methods are considered here, i.e., the so-called FLIP (FLuid
Implicit Particle Brackbill and Ruppel, 1986) method and PIC (Particle
In Cell Harlow, 1964) method, where particle velocity is updated as

𝑣(𝑡+𝛥𝑡)𝑖𝑝 = 𝑣(𝑡)𝑖𝑝 +
∑

𝐼
𝑎(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝𝛥𝑡 for FLIP (23)

𝑣(𝑡+𝛥𝑡)𝑖𝑝 =
∑

𝐼
𝑣(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝 +

∑

𝐼
𝑎(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝𝛥𝑡 for PIC (24)

ne major difference between the FLIP and PIC methods is that the
LIP method uses the grid accelerations only while the PIC method
ses the updated grid velocities. Stomakhin et al. (2013) suggested
combination of the FLIP and PIC methods by regrading PIC as a

amping term as follows:
(𝑡+𝛥𝑡)
𝑖𝑝 = 𝑣(𝑡)𝑖𝑝 +

∑

𝐼
𝑎(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝𝛥𝑡 − 𝛼𝑃𝐼𝐶

(

𝑣(𝑡)𝑖𝑝 −
∑

𝐼
𝑣(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝
)

(25)

here 𝛼𝑃𝐼𝐶 ∈ [0, 1] is the PIC fraction. With grid damping 𝛼𝑔 and
article damping 𝛼𝑝, the damped particle velocity reads

(𝑡+𝛥𝑡)
𝑖𝑝 = 𝑣(𝑡)𝑖𝑝 +

∑

𝐼
𝑎(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝𝛥𝑡 − (𝛼𝑃𝐼𝐶 + 𝛼𝑝)𝑣

(𝑡)
𝑖𝑝 + (𝛼𝑃𝐼𝐶 − 𝛼𝑔)

∑

𝐼
𝑣(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝 (26)

nd the particle position is updated with a general second-order FLIP
ormulation (Nairn, 2015)
(𝑡+𝛥𝑡)
𝑖𝑝 = 𝑥(𝑡)𝑖𝑝 +

∑

𝐼
𝑣(𝑡+𝛥𝑡)𝑖𝐼 𝜙(𝑡)

𝐼𝑝𝛥𝑡

− 𝛥𝑡
2

(

∑

𝐼
𝑎(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝𝛥𝑡 + (𝛼𝑃𝐼𝐶 + 𝛼𝑝)𝑣

(𝑡)
𝑖𝑝 + (𝛼𝑃𝐼𝐶 − 𝛼𝑔)

∑

𝐼
𝑣(𝑡)𝑖𝐼 𝜙

(𝑡)
𝐼𝑝

)

(27)

Similarly to the FLIP and PIC methods on velocity update in the
mechanical part, two possible schemes can be formulated to update the
particle temperature, i.e.,

𝑇 (𝑡+𝛥𝑡)
𝑝 = 𝑇 (𝑡)

𝑝 +
∑

𝐼
𝜙(𝑡)
𝐼𝑝𝑇

(𝑡)
𝐼,𝑡𝛥𝑡 (28)

𝑇 (𝑡+𝛥𝑡)
𝑝 =

∑

𝐼
𝜙(𝑡)
𝐼𝑝𝑇

(𝑡+𝛥𝑡)
𝐼 (29)

where the former uses only the incremental temperature of nodes,
whereas the latter is a direct remapping of nodal temperatures. The
4

temperature given by Eq. (29) is the so-called remapped temperature,
which is smoother than that given by Eq. (28) (Tao et al., 2016). In
this work, the fluctuating particle temperature is tracked to update the
nodal temperature, while the smooth particle temperature is taken as
an input for the representative volume elements (RVEs). Detail will be
introduced in Section 4.

In addition, the timestep should be chosen sufficiently small to
maintain numerical stability and convergence in the coupled thermo-
mechanical system. In the proposed staggered coupling algorithm, both
the mechanical and thermal solvers adopt the same timestep satisfying
the following constrains (Tao et al., 2016; Lei et al., 2021):

𝛥𝑡 <
𝑙𝑒

√

𝐸∕𝜌
for mechanical (30)

𝛥𝑡 <
𝑙2𝑒𝜌𝑐
𝑏𝑘

for thermal (31)

where 𝐸 is Young’s modulus, which can be estimated from odometer
tests for an RVE packing (see Section 5.2.2 for detail); 𝑏 is an adjustable
factor, with a default value of 1; 𝑙𝑒 is the minimum element size of a
mesh; 𝑘 is the mean thermal conductivity, i.e., average of the diagonal
erms of the thermal conductivity tensor 𝑘𝑖𝑗 .

. Thermo-mechanical coupling in DEM

.1. Thermal response of an RVE assembly

.1.1. Heat generated by friction
Heat can be generated due to friction dissipation at inter-particle

ontacts during various granular flow processes. Note that heat can
e generated through different dissipation processes and mechanisms.
nly sliding friction is considered here for simplicity as it has been re-
orted experimentally to dominate the friction dissipation (Zhai et al.,
019). For a single timestep 𝛥𝑡, the total amount of heat within an
ssembly due to friction dissipation is quantified by

𝑓 =
∑

𝑐
𝑓 (𝑐)
𝑡 𝑣(𝑐)𝑡 𝛥𝑡 (32)

here 𝑓 (𝑐)
𝑡 and 𝑣(𝑐)𝑡 are friction (tangential force) and relative tangential

elocity at contact 𝑐 during the present timestep. Therefore, the heat
ource is given by

=

∑𝑁
𝑖=1 𝐸

(𝑖)
𝑓

𝑉 𝑁𝛥𝑡
(33)

where 𝑁 is the DEM iteration number for a given strain loading; 𝑉 is
he volume of the assembly.

.1.2. Thermal conductivity tensor
We follow our previous study (Zhao et al., 2020) to construct

he fabric-based conductivity tensor for an assembly of non-spherical
articles. The derivation is based on such a fundamental assumption
hat heat flows through an imaginary heat pipe joining the center of
ach contacted particle (heat reservoir) through the contact (another
eat reservoir) as schematically illustrated in Fig. 1(a). Accordingly, a
hermal conductivity tensor 𝑘𝑖𝑗 can be given as

𝑖𝑗 =
1
𝑉

𝑀
∑

𝑝=1

𝑟(𝑝)𝑖 𝑟(𝑝)𝑗

𝛼(𝑝)𝑙(𝑝)
(34)

where 𝑉 is the volume of the assembly; 𝑟𝑖 is the vector along the 𝑝th
eat pipe; 𝑙 is the branch vector joining the two adjacent particles at
he contact of the heat pipe, and 𝛼 is the thermal resistance per length
f the heat pipe.

We note that it is non-trivial to derive an elegant theoretical solution
or the thermal conductivity tensor 𝑘𝑖𝑗 of granular media (Choo et al.,

2013). Porosity has been regarded as one of the key factors influencing
𝑘 . The effective thermal conductivity has been frequently assumed to
𝑖𝑗
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Fig. 1. (a) Heat conduction through an inter-particle contact; (b) thermally induced contact force due to particle expansion.
follow an empirical relation with porosity (Zhang and Wang, 2017),
without consideration of the anisotropic nature of materials in an
engineering setting, e.g., in geotechnical engineering. Further appraisal
is needed to rigorously consider the various physical attributes in de-
riving a robust expression for effective thermal conductivity of granular
media.

Remarks: In the conventional TM modeling with pure DEM, e.g., (Nguyen
et al., 2009; Choo et al., 2013), the inter-particle heat transfer has to be
modeled at the particle scale for heat flows with remarkable increase in com-
putational cost. By contrast, in the present proposed TM coupling scheme,
heat transfer is captured at the mesoscopic/RVE scale (the effect of fabric
change can be considered, e.g., on thermal conductivity tensor) and solved in
MPM at the continuum scale, which helps to develop the homogenized model
with TM coupling and significantly boost the computational efficiency.

3.2. Mechanical response of an RVE assembly

3.2.1. Basic contact model
DEM modeling of granular media commonly postulates a force–

displacement law in conjunction with Coulomb’s friction condition
governing inter-particle contacts (Cundall and Strack, 1979). A simple
linear spring contact model is employed here to establish the rela-
tion between contact force and relative displacement for each pair of
contacting grains as follows

𝑓 𝑛
𝑖 = − 𝑘𝑛𝑢

𝑛
𝑖 (35a)

𝛥𝑓 𝑡
𝑖 = − 𝑘𝑡𝛿𝑢

𝑡
𝑖 (35b)

where 𝑓 𝑛
𝑖 and 𝑓 𝑡

𝑖 are normal and tangential contact forces along the
normal 𝑛𝑐𝑖 and the tangential 𝑡𝑐𝑖 directions at contact 𝑐, respectively,
referring to Fig. 1(b); 𝛥𝑓 𝑡

𝑖 is the incremental tangential contact force
at the current timestep; 𝑘𝑛 and 𝑘𝑡 are the normal and tangent contact
stiffness, respectively; 𝑢𝑛𝑖 is the penetration depth along contact nor-
mal, 𝛿𝑢𝑡𝑖 is the relative tangential displacement of the two contacting
particles at the current timestep. The Coulomb condition of friction is
applied to constraining the tangential contact force according to,

|𝒇 𝑡
| ≤ 𝜇|𝒇 𝑛

| (36)

where 𝜇 is the coefficient of friction.

3.2.2. Thermal expansion contact model
For a dry cohesionless granular assembly, the thermally induced

stress within an assembly depends on expansion or contraction of
particles caused by temperature change. For simplicity, the change of
particle size is assumed to be governed by the following relation (Var-
gas and McCarthy, 2007; Zhao et al., 2017; Zhao and Feng, 2019):

(0)
5

𝑅𝑖 = 𝑅𝑖 (1 + 𝛽𝛥𝑇 ) (37)
where 𝑅(0)
𝑖 is the initial principal length of a particle at the reference

temperature; 𝑅𝑖 is the current principal length of a particle at a tem-
perature change 𝛥𝑇 with respect to the reference temperature; 𝛽 is the
linear thermal expansion coefficient. As a consequence, the thermally
induced change in particle profile yields an additional penetration 𝛿𝑑𝑖,
referring to Fig. 1(b).

3.2.3. Thermally sensitive bond contact model
For cemented granular media such as frozen soils in permafrost

areas and gas hydrate-bearing soils in submarine settings, particles
are bonded together through the ice or ice-like cementation. Such icy
bonds are sensitive to temperature change which may cause phase
transformation. Such process of inter-particle bonds can be readily
considered via proper modification of the contact models (Brown et al.,
2014; Shen et al., 2016). For simplicity yet without losing generality,
we introduce the following thermally sensitive bond contact model that
governs the bond breakage upon heating:

𝐹𝑛 > 𝐹𝑛𝑏, 𝐹𝑛𝑏 = 𝛽𝑏𝑘𝑛𝑅 (38)

|𝐹𝑡| > 𝐹𝑡𝑏, 𝐹𝑡𝑏 = 𝜇𝑏𝐹𝑛𝑏 (39)

where 𝛽𝑏 is defined as the breakage strength coefficient with respect
to normal contact stiffness 𝑘𝑛; 𝑅 is the average radius of the two
contacting particles; 𝜇𝑏 is a threshold coefficient of the maximum shear
force at breakage with respect to the normal breakage force, which
is assumed independent of temperature. Once either condition of the
above inequalities is met, the bond breaks and can no longer sustain
tension. Note that herein we only consider bond breakage subjected
to tension and shear, while neglecting bond failure caused by twisting
and/or compression. The breakage strength coefficient is a function of
temperature 𝑇 , which can be simply defined as

𝛽𝑏 =

{ 𝛽𝑎(𝑇𝑠−𝑇 )
𝑇𝑠

, if 𝑇 ≤ 𝑇𝑠,

0, otherwise
(40)

where 𝛽𝑎 is a tuned parameter, and 𝑇𝑠 is a threshold for temperature
change. Both 𝛽𝑎 and 𝑇𝑠 are assumed to be constant in the numerical
examples in this work. More elegant models will be investigated in our
future work.

3.2.4. Periodic cell, deformation and stress
An RVE assembly is assumed to be sufficiently small to capture

the response of a material point from the macroscopic perspective and
meanwhile sufficiently large to yield a representative response with
respect to discrete grains. To reduce the boundary effect from rigid
boundaries (e.g., rigid confining walls), periodic boundary conditions
are employed in the DEM simulations (Thornton, 2000; Yang et al.,
2014; Radjai, 2018). Typically, a parallelepiped-shaped cell is adopted
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Fig. 2. Two-dimensional illustration of periodic cell (‘solid’) and its neighbor images
‘open-dashed’) aligned in a lattice form, after (Zhao et al., 2021).

s the simulation domain of an RVE as shown in Fig. 2, where a
arallelogram-shaped RVE cell and its neighbor images are illustrated
n 2D. To describe the deformation of an RVE cell, global Cartesian
oordinates (𝑥𝑖) and local oblique Cartesian coordinates (𝑋𝑖) are in-

troduced, which are also known as Eulerian (spatial) and Lagrangian
(material) coordinates in continuum mechanics, respectively.

A deformation (gradient) tensor 𝐻𝑖𝑗 can be introduced to convert
material position between the global and local coordinates, such that

𝑥𝑖 = 𝐻𝑖𝑗𝑋𝑗 (41a)

𝑋𝑗 = 𝐻−1
𝑗𝑘 𝑥𝑘 (41b)

where 𝐻𝑖𝑗 has columns as the basis vectors of the cell, while 𝐻−1
𝑖𝑗 is for

the inverse transformation. The material time derivative for Eq. (41a)
reads

̇ 𝑖 = 𝐻̇𝑖𝑗𝑋𝑗
⏟⏟⏟

𝑣ℎ𝑖

+ 𝐻𝑖𝑗𝑋̇𝑗
⏟⏟⏟

𝑣𝑓𝑖

(42)

where 𝑣ℎ𝑖 is the affine mean-field velocity due to the macroscopic
homogeneous deformation of the RVE cell; 𝑣𝑓𝑖 is the non-affine velocity
or fluctuating velocity, i.e., particle velocity driven by the resultant
force on the particle.

Given a particle 𝑝 in the RVE cell, its position may change to
𝑝′ outside the RVE cell. With the periodic boundary condition that
particles move and periodically cross the boundaries (cell bases) to stay
within the cell, the image 𝑝′ in other cells can be periodically shifted
back to the RVE cell in the local coordinate system by

𝑋𝑖(𝑝′) = 𝑋𝑖(𝑝) + 𝑃𝑖 (43)

with

𝑃𝑖 = 𝑝𝑖𝑗 𝑙𝑗 (44a)

𝑝𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

⌊

𝑋𝑖(𝑝′)
𝑙𝑗

⌋, if 𝑖 = 𝑗,

0, otherwise
(44b)

here 𝑃𝑖 is the periodic (shifted) vector; 𝑝𝑖𝑗 is a diagonal matrix with
eriod number for the corresponding axis as the diagonal; 𝑙𝑗 is the base
ength of the cell along 𝑋𝑗 , as shown in Fig. 2; ⌊∗⌋ denotes rounding
own to the nearest integer. With Eq. (43), the mean-field velocity
ℎ𝑖(𝑝′) and the fluctuating velocity 𝑣𝑓𝑖(𝑝′) at the image 𝑝′ of a particle
can be written as

𝑣ℎ𝑖(𝑝′) = 𝑣ℎ𝑖(𝑝) + 𝐻̇𝑖𝑗𝑃𝑗 (45a)

(𝑝′) = 𝑣 (𝑝) (45b)
6

𝑓𝑖 𝑓𝑖
hich suggests that the mean-field velocity 𝑣ℎ𝑖 is non-periodic while the
luctuating velocity 𝑣𝑓𝑖 is periodic in the presence of periodic boundary
onditions.

The additional velocity arisen from the homogeneous deformation
f the RVE cell is obtained in the global coordinate system:

𝑣ℎ𝑖 = 𝐿𝑖𝑗𝑥𝑗 (46a)

𝑖𝑗 = 𝐻̇𝑖𝑘𝐻
−1
𝑘𝑗 (46b)

here 𝐿𝑖𝑗 is the velocity gradient tensor of the cell deformation.
In the present proposed framework, an RVE is subjected to small

eformation increments through strain-controlled loading during each
EM step. The strain tensor 𝜖𝑖𝑗 of the periodic cell (RVE) is taken to
easure the homogenized deformation of the assembly, i.e.,

𝑖𝑗 =
1
2
(𝐻 ′

𝑖𝑗 +𝐻 ′
𝑗𝑖) − 𝛿𝑖𝑗 (47)

here 𝐻 ′
𝑖𝑗 is the deformation gradient tensor with respect to the

eference configuration. The volumetric strain 𝜖𝑣 and the deviatoric
train 𝜖𝑞 are given by

𝑣 = 𝜖𝑖𝑖 (48a)

𝜖𝑞 =
√

2
3𝑛−2

𝜖′𝑖𝑗𝜖
′
𝑖𝑗 (48b)

in which 𝜖′𝑖𝑗 is the deviatoric strain tensor, 𝜖′𝑖𝑗 = 𝜖𝑖𝑗 −
1
𝑛 𝜖𝑣𝛿𝑖𝑗 ; 𝑛 = 2 or

for 2D or 3D, respectively. Note that for strain-controlled loading at
ach DEM step, the velocity gradient 𝐿𝑖𝑗 is prescribed.

The homogenized stress tensor 𝜎𝑖𝑗 within an RVE assembly can
e expressed from contact forces and fluctuating velocities of parti-
les (Christoffersen et al., 1981; Radjai, 2018), i.e.,

𝑖𝑗 =
1
𝑉

∑

𝑐∈𝑉
𝑓 𝑐
𝑖 𝑏

𝑐
𝑗 +

1
𝑉

∑

𝑝∈𝑉
𝑚𝑝𝑣

𝑝
𝑓𝑖𝑣

𝑝
𝑓𝑗 (49)

here 𝑉 is the volume of the assembly; 𝑓 𝑐
𝑖 and 𝑏𝑐𝑗 are the contact

orce and the branch vector, respectively; 𝑚𝑝 is the mass of particle
. It is worth noting that the contact force-related term denotes stress
ransmission through contact force networks, whereas the fluctuat-
ng velocity-related term reflects the kinetic stress associated to the
omenta transferred by particles.

. Multiscale coupling and computing scheme

.1. Macro–micro bridging and coupling

In conventional thermo-mechanical coupling studies, thermally-
ependent constitutive models are commonly employed to capture the
hermo-mechanical response of granular media (e.g., soils) from a phe-
omenological perspective. It is typical to consider thermally induced
xpansion/contraction in the deformation of a continuum exposed to
emperature change, such that the thermally induced stress can be
aken into account in terms of the following stress–strain relation,

̇ = 𝑫 ∶ 𝝐̇ (50)

𝝐̇ = 1
2
[𝑳 +𝑳𝑇 ] − 𝛽𝑇̇ 𝑰 (51)

here 𝝈̇ and 𝝐̇ are rate tensors of stress and strain, respectively; 𝑫 is a
ourth-order material tensor; 𝑇̇ is the rate of temperature change; 𝛽 is
he linear thermal expansion coefficient; 𝑰 is the unit tensor.

The hierarchical multiscale modeling framework (Guo and Zhao,
2014; Liang and Zhao, 2019; Zhao et al., 2020) provides an ideal
setting to couple the thermo-mechanical responses at the particulate
scale in a seamless and physical manner. Indeed, DEM-simulated RVEs
can be introduced to bridge the macroscopic and microscopic thermo-
mechanical responses for a granular medium. At the macroscopic scale,
both deformation and temperature can be obtained by solving the
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Fig. 3. Illustration of the solution procedure for hierarchical multiscale modeling of thermo-mechanical response in granular media.
corresponding boundary and initial value problems with a continuum-
based numerical method, e.g., MPM in this work. Out of the solution,
the deformation (strain and its rate) and temperature can be extracted
for each material point and are passed onto the attached RVE assembly
as boundary conditions. Subjected to the imposed boundary conditions
of deformation and temperature, DEM computation is performed for
each RVE to find the thermo-mechanical response for the material
point at the constrained state which are returned to the material point
to advance the continuum solution. Note that in such a hierarchical
multiscale modeling scheme, the DEM solver may run explicitly with a
different timestep 𝛥𝑡𝐷𝐸𝑀 than that of the MPM solver. Nevertheless, it
is suggested to take the same timestep for the heat generation problems
to be treated here.

4.2. Solution procedure

Fig. 3 illustrates the computation procedure of the proposed hier-
archical TM-DEMPM framework. The major solution steps are summa-
rized as follows:

(1) Establishing a simulation domain with material points and a
background grid, and attaching an RVE assembly to each material
point;

(2) Computing shape functions 𝜙𝐼𝑝, 𝜙𝐼𝑝,𝑖 for each material point, and
mapping particle mass, momentum and temperature to nodes;
7

(3) Applying deformation gradient and temperature to the attached
RVE, then running DEM simulations for RVEs to obtain cor-
responding stress and heat source, and updating temperature
gradient and heat flux;

(4) Computing nodal force, temperature load (heat load), and updat-
ing nodal temperature;

(5) Updating particle momentum and position, remapping tempera-
ture, and going back to Step (2) for the next timestep.

4.3. Hybrid OpenMP and GPU-based parallelization

Between the MPM and DEM solvers in the proposed TM frame-
work, the DEM solver is much more computationally intensive than
the MPM one. To tackle the challenge, a hybrid OpenMP and GPU-
based parallelization is proposed with pseudocode listed in Algorithm
1. For the MPM solver, each for-loop is parallelized with OpenMP,
whereas a thread-block-wise approach (Zhao et al., 2021) is employed
to accelerate RVE DEM simulations on GPUs. Note that the MPM solver
can be readily enhanced on GPUs for further acceleration (Dong et al.,
2015), which is, however, beyond the scope of this work.

5. Numerical examples

The TM-MPM is first benchmarked against analytical and FEM solu-
tions for one- and two-dimensional transient problems of thermoelastic
materials in Section 5.1, followed by the validation of the TM-DEMPM
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Algorithm 1: Pseudocode of the proposed TM-DEMPM frame-
work.
1 Discretizing the domain and attaching RVEs;
2 foreach timestep do
3 foreach node I {OpenMP acceleration} do
4 Cleaning all physics quantities such as mass,

momentum, temperature, etc;
5 foreach material point p {OpenMP acceleration} do
6 foreach neighbor node I do
7 Computing shape function;
8 Setting general boundary conditions;
9 foreach node I {OpenMP acceleration} do
10 Mapping particle mass, momentum and temperature to

nodes;
11 foreach material point p {OpenMP acceleration} do
12 Obtaining deformation gradient and temperature;
13 foreach block 𝑖 in the Grid of Blocks of threads {GPU

acceleration} do
14 if 𝑖 < 𝑁𝑝 then
15 Applying deformation gradient and temperature;
16 Running the RVE DEM simulation on Block 𝑖;

17 foreach material point p {OpenMP acceleration} do
18 Obtaining stress and heat source;
19 Updating temperature gradient and heat flux;
20 Applying traction boundary condition;
21 foreach node I {OpenMP acceleration} do
22 Computing nodal force, heat load, and updating nodal

temperature;
23 foreach material point p {OpenMP acceleration} do
24 Updating momentum and position, remapping

temperature;

implementation for one- and two-dimensional thermo-mechanical cou-
pling problems in Section 5.2. Three examples representative of typical
thermo-mechanical problems in granular media are further presented
to demonstrate the predictive capabilities and features of the proposed
approach, including heat generation in biaxial compression tests, heat
generation in discharge of a granular silo, and melting induced column
collapse in Section 5.3.

5.1. Benchmarks of the TM-MPM

5.1.1. Transient TM response of a semi-infinite bar
We consider a half-space infinite thermoelastic body subjected

to transient heat transfer (or the so-called Danilovskaya Problem)
(Danilouskaya, 1950). It can be simplified into a one-dimensional
bar when the entire free surface is exposed to a uniform ambient
temperature. Such a semi-infinite bar with an initial temperature of
𝑇0, shown in Fig. 4, is subjected to heating at a constant temperature
𝑇1 at its free end (i.e., 𝑇 (0, 𝑡) = 𝑇1). The evolution of temperature at
any point 𝑥 is given by

𝑇 (𝑥, 𝑡) = 𝑒𝑟𝑓𝑐
( 𝑥
2
√

𝛼𝑡

)

(𝑇1 − 𝑇0) + 𝑇0 (52)

with

𝑒𝑟𝑓𝑐(𝑥) = 1 − 2
√

𝜋 ∫

𝑥

0
𝑒−𝜂

2
d𝜂 (53)

where 𝑒𝑟𝑓𝑐(𝑥) is the complementary error function.
The simulation setup is depicted in Fig. 4. The semi-infinite bar is

modeled as a finite length of 𝐿 = 6 m in MPM, which is discretized
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Fig. 4. MPM model of the semi-infinite bar with a point A of interest.

into 300 quadrilateral cells with one material point for each. The initial
temperature 𝑇0 and heating temperature 𝑇1 are set to 0 and 100 ◦C,
respectively. For the sake of convenience, the material parameters such
as material density 𝜌, specific heat capacity 𝑐, Young’s modulus 𝐸
and thermal conductivity coefficient 𝑘 are all set to be unit, while
the Poisson’s ratio 𝜈 and linear thermal expansion coefficient 𝛽 are set
to be 0 and 1 × 10−6∕◦C, respectively. No grid and particle damping
is introduced, while the PIC fraction 𝛼𝑃𝐼𝐶 is set to a small number,
i.e., 0.0001 here. The simulation runs 3 s in total with a fixed timestep
of 1 × 10−4 s.

Fig. 5 shows the evolution of temperature, normal stress and dis-
placement at point A (𝑥 = 1 m). The normal stress 𝜎𝑥 and displacement
𝑢𝑥 are normalized to be dimensionless as 𝑢 and 𝜎, respectively, to ease
the deduction of the analytical solutions for comparison (Balla, 1991).
The predicted temperature is found to be consistent with the analytical
solution in Eq. (52). Applying the assumed material properties, the
dimensionless normal stress 𝜎 and dimensionless displacement 𝑢 at
Point A read

𝜎 = 𝜎𝑥∕(𝛽𝑇1), 𝑢 = 𝑢𝑥∕(𝛽𝑇1) (54)

As shown in Fig. 5, the simulated dimensionless normal stress 𝜎 and di-
mensionless displacement 𝑢 are in a good agreement with the analytical
results. As reported in Tao et al. (2016), certain oscillations are found
in the simulated 𝜎 due to spurious noises introduced by the full FLIP
scheme in Fig. 5(b), which can be mitigated by advanced techniques
including XPIC (Hammerquist and Nairn, 2017). Overall, the numerical
realization has been well implemented for the TM coupling in MPM
overall.

5.1.2. Transient TM response of a 2D plate
We consider a 1 m-by-1 m square plate with an initial temperature

of 𝑇0 = 0 ◦C. Its x-displacement at the left boundary and y-displacement
at the bottom boundary are fixed, while the other two boundaries are
free. The plate is assumed to be an isotropic, linearly thermo-elastic
material, with material density 𝜌 = 1 kg∕m3, specific heat capacity
𝑐 = 1 J/(kg K), Young’s modulus 𝐸 = 1 Pa, thermal conductivity
coefficient 𝑘 = 0.1 W/(m K), Poisson’s ratio 𝜈 = 0.25, and linear thermal
expansion coefficient 𝛽 = 1 × 10−6∕◦C. The plate is subjected to a
sudden heating at both the left and bottom boundaries with a constant
temperature 𝑇1 = 1 ◦C. For the present transient problem, it is non-
trivial to obtain the analytical solution of the coupled TM responses.
Thus, a commercial FEM solver Abaqus/Explicit has been employed
to prepare the benchmarked results. The domain is discretized into
40 × 40 elements or cells for FEM and MPM, respectively, as shown in
Fig. 6(a). Each cell has a single material point in MPM, corresponding to
a quadrilateral element with reduce integration for FEM. The dynamic
simulations run for 0.5 s with a fixed timestep of 1 × 10−3 s. Note that
no damping is introduced in either simulation. Figs. 6(b) and (c) show
the temperature contours from MPM and FEM simulations at 𝑡 = 0.5 s.
Evidently, the prediction of temperature distribution made by MPM is
consistent with that by FEM.

Fig. 7 presents a further quantitative comparison of the evolutions
of temperature and stress for three monitored points in the plate as
shown in Fig. 6(a): A at the plate center with 𝑥 = 𝑦 = 0 m, B at
(0.1, 0) m, and C at (0.1, 0.1) m. As is shown, the MPM predictions
are in good agreement with the FEM simulation. The two benchmark
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Fig. 5. (a) Dimensionless displacement and temperature, (b) Dimensionless normal stress at 𝑥 = 1 m.
Fig. 6. (a) Mesh and boundary conditions; temperature distributions simulated by MPM (b) and FEM (c) at 𝑡 = 0.5 s.
examples indicate the TM coupling has been correctly implemented in
the proposed GIMP scheme.

5.2. Verification of the TM-DEMPM

5.2.1. One dimensional heat conduction
To validate the integrated coupled TM-DEMPM framework, we first

consider a rod fixed at both ends with a length of 𝐿 = 1 m and
initial temperature 𝑇0, as shown in Fig. 8(a). It is subjected to a
sudden heating at the right end (𝑥 = 𝐿) while maintaining a reference
temperature at the left end (𝑥 = 0), i.e., 𝑇1 = 𝑇0 = 0 ◦C and 𝑇2 = 100 ◦C.
The transient temperature across the rod can be obtained analytically
by the following:

𝑇 (𝑥, 𝑡) = 𝑇0 + (𝑇1 − 𝑇0)
𝑥
𝐿

+
2(𝑇1 − 𝑇0)

𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
𝑒−(

𝑛𝜋
𝐿 )2 𝑘𝑡

𝜌𝑐 sin( 𝑛𝜋𝑥
𝐿

) (55)

To facilitate the theoretical derivation, the thermo-mechanical response
of the rod is assumed to be quasi-statically coupled. The thermally
induced axial stress 𝜎𝑥(𝑥, 𝑡) and displacement 𝑢(𝑥, 𝑡) across the rod can
be analytically obtained in the following approximate integration:

𝜎𝑥(𝑥, 𝑡) = −𝐾 1
𝐿 ∫

𝐿

0
𝛽𝑇 (𝑥, 𝑡)d𝑥

= −
𝑇1 + 𝑇0

2
𝐾𝛽 +

4𝐾𝛽(𝑇1 − 𝑇0)
𝜋2

∞
∑

𝑛=0

1
(2𝑛 + 1)2

𝑒−
(2𝑛+1)2𝜋2

𝐿2
𝑘𝑡
𝜌𝑐

(56)

𝑢(𝑥, 𝑡) = 𝛽 ∫

𝑥

0
𝑇 (𝑥, 𝑡)d𝑥 −

𝛽𝑥
𝐿 ∫

𝐿

0
𝑇 (𝑥, 𝑡)d𝑥

=
𝛽𝑥(𝑇1 − 𝑇0)

2𝐿
(𝑥 − 𝐿) −

2𝛽𝐿(𝑇1 − 𝑇0)
𝜋2

×
∞
∑ (−1)𝑛

2
𝑒−(

𝑛𝜋
𝐿 )2 𝑘𝑡

𝜌𝑐 (cos 𝑛𝜋𝑥
𝑥

− 𝑥
𝐿

cos(𝑛𝜋) + 𝑥
𝐿

− 1)

(57)
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𝑛=1 𝑛
where 𝛽 is the linear thermal expansion coefficient; 𝐾 is the axial
stiffness of the rod which can be estimated from the first component
of the stiffness matrix 𝐷𝛼𝛽𝛾𝜙. By assuming uniform deformation, the
averaged stiffness tensor can be obtained by partial derivative of the
stress tensor with respect to the deformation as (Wren and Borja, 1997;
Luding, 2004)

𝐷𝛼𝛽𝛾𝜙 = 1
𝑉

∑

𝑐∈𝑉
(𝑘𝑛𝑛𝑐𝛼𝑙

𝑐
𝛽𝑛

𝑐
𝛾 𝑙

𝑐
𝜙 + 𝑘𝑡𝑡

𝑐
𝛼𝑙

𝑐
𝛽 𝑡

𝑐
𝛾 𝑙

𝑐
𝜙) (58)

where 𝑘𝑐𝑛 and 𝑘𝑐𝑡 are the normal and tangential contact stiffness at
contact 𝑐, respectively.

As shown in Fig. 8(b), the rod is uniformly discretized into 50
cells with single material point for each. A constant confining stress
𝜎0 of 100 kPa is applied to both the upper and lower boundaries.
Simulations are conducted using both TM-DEMPM approach and TM-
MPM for the purpose of comparison. For the TM-DEMPM, identical
RVE packings after isotropic consolidation with a confining stress of
100 kPa are attached to each material point of the MPM. The detail
on the consolidation of the RVE packing is not presented here for
brevity. Interested readers are referred to the conventional procedures
for DEM simulations in the literature, e.g., (Zhao et al., 2018). As
the focus is placed on the response along the bar, a regular pack-
ing of 400 mono-sized disks (with radius 𝑟 = 5 mm), as shown in
Fig. 8(c), is employed to maintain a constant fabric during loading,
thereby ensuring an almost invariant bulk Young’s modulus for a better
comparison with the analytical solutions. Note that 400 particles are
adequate to yield homogeneous response of a 2D RVE as reported
in the previous study (Guo and Zhao, 2014), and particle number
is thus set to 400 for all RVEs at the rest simulations through this
work. Moreover, following our previous study (Zhao et al., 2020), a
fictitious third dimension 𝑧𝑝 = 75 mm for the 2D RVE packing is
introduced to calculate the RVE volume involved in the computation
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Fig. 7. (a) Temperature, (b) stress at three different points A, B and C.
Fig. 8. (a) A simplified granular rod; (b) Cells and boundary conditions; (c) Material-point assigned RVE with regular packing of disks.
Table 1
Material properties for TM-MPM and TM-DEMPM simulations.

Parameter TM-DEMPM TM-MPM

Material density 𝜌, kg/m3 2650 2650
Specific heat capacity 𝑐, J/(kg K) 1∕2650 1∕2650
Young’s modulus 𝐸, Pa – 1.33 × 107

Thermal conductivity coefficient 𝑘, W/(m K) 0.1 0.1
Poisson’s ratio 𝜈 – 0
Linear thermal expansion coefficient 𝛽, ∕◦C 1 × 10−4 1 × 10−4

Inter-particle contact stiffness 𝑘𝑛, 𝑘𝑡, N/m 1 × 106 –
Inter-particle coefficient of friction 𝜇 0.001 –

of stress. The material properties are selected from the literature for
both DEMPM and pure MPM simulations, listed in Table 1, which will
be used in all remaining simulations of the study unless otherwise
stated. Note that the gravitational force is not considered in the quasi-
static simulations due to negligible inertia effects. The particles are
assumed almost frictionless to ensure relatively small deviations in the
material properties (e.g., Young’s modulus) among all RVEs during the
simulation, thereby rendering it reasonable to use constant material
properties in the analytical solutions. Both simulations run 1.0 s with
a fixed timestep of 1 × 10−4 s.

Fig. 9 shows the evolutions of temperature, axial stress and displace-
ment across the rod from the TM-MPM and TM-DEMPM simulations. As
shown in Fig. 9(a) and (d), the temperature from the simulated results
10
are evidently consistent with the analytical ones for both TM-MPM
and TM-DEMPM cases. For the axial stress and displacement, slight
deviations between the simulated and analytical results are observed.
Note that the analytical solution has been derived based on the as-
sumption of a quasi-static condition (it is non-trivial to derive transient
solutions), while the simulations have been conducted under transient
conditions. Interestingly, it is observable that a stress wave propagates
across the rod and relaxes with time (see Fig. 9(b) and (e)). Moreover,
the simulated axial stress is in a good agreement with the analytical one
after 0.4 s for both TM-MPM and TM-DEMPM, suggesting the rod has
reached a quasi-static equilibrium. As for the displacement in Fig. 9(c)
and (f), the simulated and analytical results match reasonably well with
each other, in consideration of the possible discrepancy between the
analytical (quasi-static) and exactly transient solutions.

5.2.2. Two-dimensional heat conduction
We further consider a two-dimensional square specimen composed

of dense discrete particles with an initial temperature of 𝑇0 = 0 ◦C. All
its boundaries (length of 𝐿 = 1 m for each) are exposed to heat source
with a constant temperature of 𝑇1 = 100 ◦C. The normal displacement
of all boundaries is fixed. The entire domain is discretized into 40 × 40
cells with single material point for each, as shown in Fig. 10(a).
The RVE attached to each material point is identical and consists of
400 disks with radii uniformly ranging between [0.25, 0.5] mm. The
other DEM parameters are adopted the same as for the example in
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Fig. 9. Evolution of temperature, axial stress and displacement across the rod simulated from the TM-MPM (a–c, left) and the TM-DEMPM (d–f, right).
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Section 5.2.1. The RVE packing is consolidated to a confining stress of
100 kPa. The corresponding configuration and contact force network
at the end of consolidation are shown in Fig. 10(b). For the present
problem, the analytical temperature at a point (𝑥, 𝑦) of the plate is given
as (Tao et al., 2016)

𝑇 (𝑥, 𝑦, 𝑡) = 𝑇1 −
16(𝑇1 − 𝑇0)

𝜋2

∞
∑

𝑚=0

∞
∑

𝑛=0

𝑒−
𝜋2(𝑚2+𝑛2)

𝐿2
𝑘𝑡
𝜌𝑐

(2𝑚 + 1)(2𝑛 + 1)

× sin
(2𝑚 + 1)𝜋𝑥

𝐿
sin

(2𝑛 + 1)𝜋𝑦
𝐿

(59)

where 𝑥 and 𝑦 are Cartesian coordinates with the origin in the lower-left
corner of the specimen.

To render a reasonable comparison between the TM-MPM and TM-
DEMPM results, the elastic properties in TM-MPM are estimated based
on a uniaxial compression test of the RVE packing. Fig. 10(c) shows
the increments of both stress and strain during the compression of a
single RVE packing, where almost linear stress–strain relations can be
11

t

obtained for small-strain response of the RVE: 𝛥𝜎𝑦𝑦∕𝛥𝜖𝑦𝑦 = 𝐾 + 𝐺 ≈
2.4 MPa and 𝛥𝜎𝑥𝑥∕𝛥𝜖𝑦𝑦 = 𝐾 − 𝐺 ≈ 2.18 MPa. Therefore, the Poisson’s
atio 𝜈 and Young’s modulus 𝐸 can be estimated as 𝜈 = (𝐾−𝐺)∕(𝐾+𝐺) ≈
.18 and 𝐸 = 2𝐾(1 − 𝜈) ≈ 12.00 MPa, respectively, in 2D (Meille
nd Garboczi, 2001). They are then introduced as the inputs for the
M-MPM simulations.

Fig. 11 shows the evolutions of temperature and stress at Point
from both the TM-MPM and TM-DEMPM simulations. It can be

een that both simulated temperatures match well with the analytical
olution. For the stress, it is not surprising that 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are identical
n the TM-MPM simulation due to the symmetry of the problem. By
ontrast, 𝜎𝑥𝑥 shows a slight deviation from 𝜎𝑦𝑦 for the TM-DEMPM
imulation, which is attributed to the intrinsic anisotropy of granu-
ar assembly for the RVE. Meanwhile, the bulk modulus of granular
edia is loading-dependent such that the TM-DEMPM results differ

lightly from that of the TM-MPM simulation. Detailed discussion on
he response of granular media is beyond the scope of this work.
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Fig. 10. (a) Mesh and boundary conditions, (b) an RVE packing with an isotropic stress of 100 kPa (the red segments denote the contact force network), and (c) stress increment
𝛥𝜎 with loading strain 𝜖𝑦𝑦 for uniaxial compression test on the RVE packing.
Fig. 11. Evolution of (a) temperature (the inset denotes the contour at 𝑡 = 0.5 s) and (b) stress (𝜎𝑥𝑥, 𝜎𝑦𝑦) at the plate center simulated from TM-MPM and TM-DEMPM.
5.3. Simulations of typical thermo-mechanical problems

5.3.1. Heat generation in biaxial compression
Three typical thermo-mechanical coupling problems of engineering

relevance are chosen to showcase the predictive capability of our
proposed TM-DEMPM. Considered first is a simulation of biaxial com-
pression tests on two 1 m-by-2 m specimens with dense and loose
initial states, respectively. Fig. 12(a) illustrates the simulation setup
wherein a confining stress of 𝜎𝑥𝑥 = 100 kPa is applied at both lateral
sides, and the loading plates of the specimen are assumed to be rough.
The domain of the specimen is discretized into 10 × 20 square cells
with 4 material points for each cell. The same protocol of RVE packing
generation in Section 5.2.2 is used to prepare different RVE packings
by setting different inter-particle coefficients of friction 𝜇 during the
consolidation to obtain dense and loose specimens. Two RVE packings
with a void ratio (i.e., void volume over solid volume) of 0.165 (dense)
and 0.236 (loose), respectively, are prepared by setting 𝜇 = 0.01 and
𝜇 = 0.5, respectively. Snapshots of the two RVE packings aggregated
with contact force network at the end of consolidation are shown in
Figs. 12(b) and (c). The coefficient of friction 𝜇 is set to 0.5 prior to
shearing for both specimens. The other material parameters are the
same as in Section 5.2.2 except for the following: thermal resistance
1 × 103 K/(W m) for an initial thermal conductivity of 1.6 W/(m K),
and specific heat capacity 670 J/(kg K) for quartz (Zhao et al., 2020).

The simulation adopts a timestep of 0.001 s. The loading plate is
pushed downwards with a constant velocity of 0.02 m/s. The sim-
ulation is terminated when a target loading strain 𝜖𝑦𝑦 = 20.0% is
attained. Fig. 13 shows the evolution of the vertical reaction stress 𝜎𝑦𝑦
on the loading plate for both dense and loose specimens during the
12
compression. The dense and loose specimens are found to experience
softening and hardening responses during the shearing, respectively,
before reaching relatively stable values, which is consistent with the
laboratory observation on sands.

Fig. 14 records the progressive deformation of the specimen at four
different loading strain levels, where both volume (specimen profile)
variation and shear band are reproduced qualitatively against the well-
known experimental observation, e.g., in Evans and Frost (2010). In
particular, the shear band identified by deviatoric strain 𝜖𝑞 shows the
dense specimen is sheared more intensively within the shear band
than the loose one at the same level of loading strain. Moreover, the
shearing also triggers an apparent friction dissipation, as evidenced by
the higher temperature profile in the shear zone. Interestingly, it can
be seen that the region experienced noticeable temperature increase
is slightly larger than the shear zone, probably due to heat diffusion.
Luong (2007) measured temperature increase due to friction dissipation
within silica sands under cyclic loading in triaxial tests using infrared
thermography, where the temperature increase amounts up to 5 ◦C at
a similar level of stress as this work. Compared with the experimen-
tal measure, our simulated temperature increase of up to 1.6 ◦C is
quantitatively reasonable. Overall, the proposed framework provides an
alternative pathway for simulating thermal evolution and its interaction
with mechanical response within granular materials involving large
deformation, e.g., pharmaceutical powder tabletting (Krok et al., 2016)
where temperature matters during mechanical handling.

5.3.2. Heat generation in discharge of a granular silo
Temperature increase has been well observed in granular mate-
rials discharging out of a silo. The discharge of a granular material
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Fig. 12. (a) Mesh, (b) Dense RVE packing, and (c) Loose RVE packing.
Fig. 13. Evolution of the vertical stress 𝜎𝑦𝑦 on the loading plate with the loading strain
𝜖𝑦𝑦 for the dense and loose specimens.

(e.g., sands) is simulated to preliminarily showcase the capability of
the proposed TM-DEMPM framework. As shown in Fig. 15(a), a 1 m
wide silo with an opening of 0.2 m is placed 1 m above the ground. A
granular sample discretized by 1088 material points with four material
points for each cell (0.05 m × 0.05 m) is filled into the silo, and is
then discharged freely through the hopper under gravity (𝑔 = 9.8 m∕s2)
(denoted as free discharge). In addition to free discharge under gravity,
a comparison case denoted by forced discharge, as shown in Fig. 15(b),
is presented to simulate forced granular flow by a loading plate pushing
down with a constant downward velocity 𝑣 = 0.2 m∕s. Note that the
gravity is also applied in the forced discharge case. Both silo walls and
ground are assumed to be rigid with a constant frictional coefficient of
0.5.

For simplicity without losing generality, the same material proper-
ties as for the biaxial compression tests in Section 5.3.1 are selected,
and the RVE packing with a void ratio of 0.243 (see Fig. 15(b)) is
prepared after consolidation with a confining stress of 10 kPa. It is
worth noting that the confining stress is selected with a similar average
stress level within the granular material under gravity. The damping 𝛼𝑝,
𝛼𝑔 and the PIC fraction 𝛼𝑃𝐼𝐶 are all set to 0.1. The simulations run for
12 s and 2 s with a fixed timestep of 1 × 10−4 s for the free and forced
discharges, respectively.

Fig. 16 shows the sequential snapshots of discharging processes for
the free and forced cases. It is evident that the forced case discharges
much faster than the free one, accompanied by a larger increase in
temperature. Specifically, the most heated part is found near the hop-
per outlet for the free discharge, while the silo core is heated more
13
significantly for the forced discharge due to the compression exerted by
the loading plate. Moreover, it appears that the declined walls at the
hopper outlet is heated severely. These observations are qualitatively
consistent with the simulations by thermally-coupled pure DEM in the
literature (Nguyen et al., 2009). Furthermore, the RVE deformation at
the two points of interest (A and B in Fig. 15) is tracked and shown
in Fig. 17 for the final states. Notably, RVEs A and B suffer from
considerably different deformations for both discharge cases, where
RVE A remains in the silo while RVE B stays on the ground at different
stress levels. RVE A is sheared more severely in the forced discharge due
to an external compression, compared with that in the free discharge.
As for RVE B which is situated near the base center (symmetric axis) of
the granular heap on the ground, the domain is extremely slender with
a slight skew.

5.3.3. Melting induced column collapse
In addition to heat generation due to friction dissipation, heat can

in turn influence the granular structure through thermal induced ex-
pansion/contraction of grains as demonstrated in our benchmark tests
in Section 5.1 and melting/weakening of inter-particle cementation
in ‘icy’ granular media. For simplicity, a thermally induced melting
model of ‘icy’ contacts is introduced and applied to column collapse
tests in this section. The inter-particle cementation is modeled by a
bond contact model with strength sensitive to temperature as given in
Section 3.2.3.

To offer a preliminary understanding on how the strength parameter
𝛽𝑏 affects the macroscopic strength of a specimen, three groups of
biaxial compression tests are conducted with a confining stress of 10,
25 and 50 kPa, respectively, where the selected confining stresses are
consistent with the stress level within the granular column in the
following column collapse tests. The corresponding RVE packings to
these three confining stresses are prepared with the same protocol
and material parameters in Section 5.3.1, with a consolidated void
ratio of 0.251, 0.240 and 0.232, respectively, which can be regarded
as medium-dense specimens. Note that the bond contact model is
not activated until the consolidation procedure ends in the specimen
preparation, and the bonds are installed only at contacts with non-zero
contact forces. However, a complete sensitivity analysis for the bond
contact model is beyond the scope of this study. We simply set the bond
strength parameter 𝛽𝑏 to be [0, 0.01, 0.02] for the three tests in each
group (𝛽𝑏 = 0 for no bonds), whereas 𝜇𝑏 is fixed to 0.5 throughout the
rest of this section.

Fig. 18 shows the evolution of the vertical stress 𝜎𝑦𝑦 on the loading
plate with different bond strength parameter 𝛽𝑏 for the three confining
stress cases. It is evident that both the peak and residual stresses
increase with the bond strength parameter 𝛽𝑏 for a given confining

stress. The specimen initially with no bonds (𝛽𝑏 = 0) experiences
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Fig. 14. Evolution of shear bands with deviatoric strain 𝜖𝑞 and temperature 𝛥𝑇 (◦C) for the dense (left) and loose (right) specimens during shearing.
Fig. 15. Illustration of simulation setup of granular silo discharging: (a) free discharge, (b) forced discharge and (c) the initial RVE packing. A and B are two points of interest
for tracking. Note: the background grid is not shown in (a) and (b).
a mild stress softening before approaching a critical state, while the
strength-enhanced specimens initially with bonds have a marked stress
14
softening. In addition to the enhanced peak stress, one more feature of
the initially bonded specimens is exhibited by their residual stress or
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Fig. 16. Temperature increase 𝛥𝑇 in a granular silo during discharging: (a) free discharge and (b) forced discharge.
Fig. 17. Configuration of deformed RVEs with contact force networks at points A and B for (a) free discharge and (b) forced discharge.
critical stress. With a larger confining stress, the bonds are more prone
to breakage, thereby the residual stress is likely approaching to that of
the specimen without bonds, e.g., by comparing the specimens (𝛽𝑏 = 0
and 0.01) in Fig. 18(c).

To simulate the column collapse test, the simulation setup is il-
lustrated in Fig. 19 with the following protocol. A granular column
with a dimension of 2 m × 2 m is set to stand on a frictional ground
(friction coefficient of 0.5) confined by two lateral plates: one heating
plate on the left that will maintain a constant temperature, and one
removable plate on the right that will be removed to trigger the collapse
of a column. The entire domain of the granular column is discretized
into 20-by-20 cells with four material points in each. Identical RVE
packings with a confining stress of 10 kPa are attached to these material
15
points. In the presence of gravity (𝑔 = 9.8 m∕s2), the granular column
experiences a small settlement to reach a state of static equilibrium
with a lateral confinement. It is worth noting that the contact bonds
are inactivated during the course of self-weight equilibrium. After that,
collapse is triggered by removing the plate on the right side while the
heating temperature and the bond strength are activated.

For simplicity, the heating temperature is set to 50 ◦C, and the
threshold temperature 𝑇𝑠 is set to 10 ◦C, see Eq. (40), that is associated
to the bond strength parameter 𝛽𝑏. The heat capacity and initial heat
conductivity are set to 1 J/(kg K) and 100 W/(m K), respectively. The
other material properties adopt the same values as in Section 5.3.1.
Five column collapse tests are conducted with different bond strength
parameters 𝛽 = 0, 0.02, and 0.1. Depending on whether the bonds
𝑏
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Fig. 18. Evolution of the vertical stress 𝜎𝑦𝑦 on the loading plate with the loading strain 𝜖𝑦𝑦 with different bond strength parameter 𝛽𝑏 at a confining stress of (a) 10 kPa, (b)
25 kPa and (c) 50 kPa.
Fig. 19. Simulation setup for column collapse tests.

are meltable or not, cases are denoted as ‘melting’ or ‘no melting’,
respectively (‘melting’ means that 𝛽𝑏 varies with temperature). For the
case without bonds (𝛽𝑏 = 0), neither ‘melting’ nor ‘no melting’ is
applicable. The PIC fraction 𝛼𝑃𝐼𝐶 is set to 0.01. A fixed timestep of
1 × 10−4 s is employed, and simulations run 3 s and 20 s for cases with
𝛽𝑏 = 0 and 𝛽𝑏 ≠ 0, respectively.

The evolution of normalized mechanical energy and the snapshots
of the columns during collapse are shown in Figs. 20 and 21, respec-
tively. The potential energy 𝐸𝑝 =

∑𝑁
𝑖=1 𝑚𝑖𝑔ℎ𝑖 and the kinetic energy

𝐸𝑘 =
∑𝑁

𝑖=1 0.5𝑚𝑖𝑣2𝑖 are normalized by the initial potential energy, where
𝑚𝑖, 𝑣𝑖 and ℎ𝑖 are the mass, velocity and position (with the ground as
the datum) of the 𝑖th material point, and 𝑁 is the total number of
material points. Compared with the cases of ‘no melting’ in Fig. 20,
in the presence of inter-particle bonds, a granular column can have
sufficient tensile strength to maintain its stability after the right plate
is removed. Specifically, for 𝛽𝑏 = 0, slumping mass experiences a
significant increase in kinetic energy immediately after the right plate
is removed, before the material reaches a perfectly straight slope as
shown in Fig. 21(a). By contrast, a sudden failure occurs when the
plastic deformation develops to some degree in the ‘no melting’ case
of 𝛽𝑏 = 0.02 as an example. A column can be stable when the bond-
enhanced tensile strength is sufficiently large, see the ‘no melting’ case
of 𝛽𝑏 = 0.1.

As for the melting cases, the inter-particle bonds can ‘melt’ as a
function of temperature in the thermal field, where the behavior of a
granular column may be significantly different from the ‘no melting’
cases. Taking the case 𝛽 = 0.02 in Fig. 20 as an example, both ‘melting’
and ‘no melting’ columns undergo collapse once the right plate is
16
removed, both experiencing almost identical energy evolution during
the beginning 3 s. After that, the behaviors become divergent with the
contribution of thermal field, where the ‘melting’ case exhibits a lower
potential energy. In other words, the ‘melting’ has a minor effect on
the collapse process during the beginning 3 s due to the less-enhanced
column, e.g., the case 𝛽𝑏 = 0.02, see Fig. 21(b). However, for highly-
enhanced columns, e.g., 𝛽𝑏 = 0.1, a sudden failure occurs when the
bonds ‘melt’ completely near the heat source side at around 15 s, see
Figs. 20 and 21(c).

6. Summary

We proposed a novel hierarchical multiscale computational frame-
work, TM-DEMPM, for effective simulation of complex thermo-
mechanical (TM) coupling responses of granular media undergoing
large deformation or flow. As a significant extension of our previous
work based on coupled FEM with DEM for small strain problems, this
new framework leverages the strength of both continuum-based MPM
and micromechanics-based DEM. It is demonstrated that the new TM-
DEMPM can effectively capture a variety of fundamental TM behaviors
of granular media, such as thermally induced stress, mechanically
induced heat and thermally induced melting, from a physics-informed
scale-crossing perspective as outlined below:

• The thermally induced stress can be physically modeled by the
expansion or contraction of individual particles.

• The mechanically induced heat is associated to the inter-particle
friction dissipation at the microscopic scale.

• The thermally induced melting is captured by a temperature-
sensitive bond contact model at the microscopic scale, which
conveniently serves as a bridge for the macroscopic deformation
and thermal conduction.

The proposed framework has been rigorously benchmarked before
being successfully applied to simulating three selected problems, in-
cluding heat generation in biaxial compression tests, free and forced
discharge of granular silos, and column collapse of ‘icy’ granular media,
as representative examples of the three features mentioned above,
respectively.

The proposed framework has a broad range of potential fields
of application, such as energy pile design, slope stability analysis in
permafrost areas, grain storage in agricultural industry, and powder
tabletting in pharmaceutical industry. In practice, nevertheless, it is
common to encounter the involvement fluid within granular media.
It would be interesting to further extend the proposed framework to
consider the thermo-hydro-mechanical (THM) coupling as an all-in-one

toolkit. Moreover, although the formulation has been presented in 2D,
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Fig. 20. Evolution of mechanical (potential and kinetic) energy normalized by the initial potential energy during collapse.
Fig. 21. Snapshots of column collapse tests for (a) 𝛽𝑏 = 0, no bonds, (b) 𝛽𝑏 = 0.02, melting, and 𝛽𝑏 = 0.1, melting.
the proposed framework can be readily extended for 3D simulations.
It is also noteworthy that though the proposed staggered algorithm
for thermo-mechanical coupling adopts the same timestep for both
the thermal and mechanical solvers in the present study, it is indeed
flexible to choose different timesteps, which can be effective and useful
in simulating practical problems that involve significant differences in
time scale between thermal conduction and mechanical deformation.
17
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