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Voids play an important role in both transport properties and mechanical deformation of a granular material. It
remains challenging to quantify void spatial distributions, especially in realistic granular packing with irregular
grain shapes. This paper presents a three-dimensional (3D) framework for Voronoi analysis of realistic grain
packing, based on a combination of modern X-ray computed tomography (XCT), quantitative image processing
and computer simulation using the discrete element method (DEM). We also introduce an efficient and robust
parallel processing tool, PySVT, based on Set Voronoi tessellation (SVT). 3D reconstruction of a realistic Ottawa
sand assembly is conducted, and two numerical packings of ellipsoidal and spherical particles are generated to
reproduce the structure of the realistic packing with the same grain size distribution and global void ratio (or
porosity). A further comparison is made for a class of microstructural properties among these packings. For the
solid (particle) phase, analyses of particle shape characteristics and contact network indicate statistically signif-
icant deviation occurs between 2D and 3D particle characteristics, in particular sphericity and roundness. The
analyses for the void phase place an emphasis on the morphology of Voronoi cells and the local porosity. A
log-normal distribution is found to describe well both the local porosity and the reduced surface area of Voronoi
cells, which is in agreement with observations for numerical packings of non-realistic grains.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Granular materials are commonly encountered in nature, industry,
and engineering. The particulate arrangement (fabric) within a granu-
latematrix has been proven to exert a significant influence on the phys-
ical and mechanical behavior of a granular material [1–3]. For example,
in soils mechanics, there are indeed some fundamental understandings
of relationships between soil fabric and its mechanical behavior, but it
remains a challenge to quantify soil fabric in the laboratory. Significant
efforts have been focused on the two-dimensional (2D) quantification
of fabric quantities of granularmaterials. For example, Oda [4] managed
to quantify the local void ratio (porosity) distribution of sands from
magnified 2D images in the early 1970s, which might be the first quan-
titative evidence of the influence of fabric on granularmaterials. Then in
1976, Oda [5] further introduced detailed examination of the relation-
ship between the fabric of a granular assembly and itsmechanical prop-
erties, where the image was divided into polygons enclosed by straight
lines connecting the centers of gravity of the particles so that the area
occupied by solid particles and voids can be measured manually for
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each polygon. However, the method of aforementioned Oda's approach
to a large extent depends on the judgment of the operator when deter-
mining the centers of gravity of grains. Alternatively, Frost and Kuo [6]
utilized a Cambridge Instruments Quantimet Q570 image analysis sys-
tem to automatically calculate void ratios of sands. Nevertheless, one
major limitation of these 2D investigations is that 2D sections of a gran-
ular material are adopted to abstract 3D statistical information, inevita-
bly resulting in significant loss of accuracy. In addition, 2D observations
on thin sections are usually destructive to the structure of the system.
For example, the sliced profiles of two contacting particles are non-
contacted in 2D. Hence, it is demanding to propose 3D scenarios to
quantify realistic structures of particulate systems for further advancing
the understanding of granular mechanics.

Over the past decades, the rapid advancements of high-resolution
non-destructive imaging technologies, such as X-ray computed tomog-
raphy and magnetic resonance imaging, have been applied to investi-
gating the granular structure (e.g., Refs. [7–11]). With respect to
numerical methods, particle-based numerical simulation tools, espe-
cially the discrete element method (DEM) [12], provide a direct way
to observe and quantitatively measure grain-scale features and pro-
cesses. Moreover, DEM can be used to generate packings by specifying
the porosity or state-of-stress of the studied system, since particle exter-
nal stresses and stress paths can be controlled (e.g., Refs. [13–15]).
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Particularly, the X-ray computed tomography (XCT) has been ad-
vantageously applied to quantifying geometrical properties of individ-
ual particles in both two and three dimensions. For instance, statistical
methods based on spatial and image analyses have been also introduced
to provide quantitative measures on volume, surface area, curvature
and connectivity of particles [16]. Furthermore, XCT shows its potential
in obtaining internal and microstructure details, e.g., porosity [17,18],
and pore network [19–21], biomass distribution, bulk density, soil or-
ganic matter distribution, and transport parameters [22–25]. Hence, it
is possible to extract realistic pore networks of grain packings or any
other porousmedia [19,26,27] and investigate the local void ratio evolu-
tion of granular materials, which reflects the heterogeneity and anisot-
ropy of a packing [28]. However, it remains a challenge to quantify the
spatial characteristics of an entire network of the pore. As a
workaround, the entire space occupied by both grains and pores is
partitioned into a gap-free and non-overlapping pattern of cells. The
prevailing approaches in partition are Delaunay triangulation and
Voronoi tessellation, which provide dual patterns of partition. Delaunay
tessellation has void space shared by a set of particles, while Voronoi
tessellation associates void space to every single particle.

Remarkably, Voronoi tessellation can reproduce the anisotropy of
local particle distribution. The Voronoi-tessellation-based geometry
has also been employed in building the statistical mechanics theory
for granular packings [29]. Nevertheless, such kind of analysis has
been commonly conducted for sphere packings [30,31] or ellipsoid
packings [28,32]. For instance, Schaller et al. [33] reported a Voronoi
analysis of the packing of monosized frictional ellipsoids and demon-
strated that the local packing fraction distribution can be correlated
with the overall packing fraction. Schröder-Turk et al. [34] utilized
Minkowski tensors to quantify the characteristics of 3D sphere packing
in conjunction with a Voronoi tessellation. Recently, Zhao et al. [35]
explored the universal characteristics in sheared granular materials
composed of poly-superellipsoidal particles by using the Set Voronoi
tessellation. These aforementioned studies mainly focused on the geo-
metric characteristics and anisotropies of Voronoi cells of particles
with analytical shapes, while there have been few reports on the
Voronoi analysis of packings composed of complex realistic grains.

In this study, we present a novel framework of Voronoi analysis of
realistic grain packing reconstructed from X-ray computed tomography
(XCT) images. For the completeness of the presentation, a route of 3D
reconstruction of realistic grain assembly with the critical image pro-
cessing algorithms is introduced in Section 2. With regard to the pore
network structure, three possible schemes of Voronoi tessellation (ordi-
nary Voronoi tessellation, radical Voronoi tessellation, and Set Voronoi
tessellation) are summarized in Section 3, where we propose an effi-
cient and robust tool for the Set Voronoi tessellation of realistic grain
packings. With the proposed framework, we analyze three particulate
systems composed of realistic sands, spheres, and ellipsoids, respec-
tively, as a demonstration. The corresponding results are presented
and discussed in Section 4, in which physical characteristics (including
particle size distribution, particle shape characteristics and inter-
particle contacts) and morphological properties of Voronoi cells of the
three packings are examined and discussed at the microscopic scale.
In addition, a parametric analysis of Voronoi cells is carried out as well.

2. 3D reconstruction of realistic grain assembly

2.1. X-ray projection and sand assembly

A natural sand assembly (Ottawa-20/30, standard sand in the geo-
technical laboratory)was prepared for imaging and subsequentVoronoi
analysis. Sand particles were poured into a container with a dimension
of 12.20mm×12.20mm×16.80mm, followed by a scanning process of
a phoenix X-ray computed tomographer with an X-ray tube voltage of
150 kV and a current of 80 μA, which yields 1531 stacks of images
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with a resolution of 11 μm per pixel. A schematic diagram of the
acquisition process is shown in Fig. 1. The X-ray scan process outputs
a back-projected image that is a spatial reconstruction of the attenua-
tion coefficients based on integral linear projections [36]. With a se-
quence of projections (32-bit 2D cross-sections), it is straightforward
to obtain the corresponding 8-bit gray-scale images for further segmen-
tation. Although the captured image is a mapping of the material den-
sity under observation, it does not allow us to completely distinguish
between particles in the packed bed. Hence, image segmentation is per-
formed by a sequential image processing essentially as briefly depicted
in the following sections. Fig. 2 presents the flow chart of the image pro-
cessing and analysis procedure on the projection images. Interested
readers are referred to the literature, e.g., Ref. [37], and among others,
for more details on image processing.

2.2. 3D reconstruction of sand assembly

In the presence of digital noise, the subsequent image processing
may yield unexpected results, especially in the watershed segmenta-
tion. Hence, a 3D median filter with a dimension of 3 × 3 × 3 (voxels)
is first implemented as a low-pass filter in order to reduce the random
noise. Thresholding is then performed to segment the foreground (i.e.
solid particle phase) from the background (i.e. void or pore phase) to
obtain a binary image for each single CT slice, as shown in Fig. 4(b).
The threshold value is determined by the intensity histogram of the im-
ages based on Otsu's threshold method [38]. The above image process-
ing procedures are implemented in an extension of ImageJ [39] along
with supplementary plugins such as 3D Watershed Segmentation in
Java (programming language).

Segmentation is oneof themost critical steps in the process of reduc-
ing images to more useful information [37]. In our particular case, the
3Dwatershed segmentationmethod is chosen to identify separate geo-
graphical catchment basins based on the downhill flow of water to local
low points. Fig. 3 gives an example of distance transformation for two
touching particles. The key point of the segmentation process is to
find markers and locations of the particles [40]. A 3D distance map can
be built where a binary image is mapped to the image that specifies
the distance from each pixel to the nearest non-zero pixel. Once the
markers are defined, the process to label the particles with an index is
carried out using the flooding model, then an identification number is
assigned to each particle. The image processing workflow for a success-
ful volume segmentation using a marker-controlled watershed trans-
formation of two connected objects is shown in Fig. 4. As a result of
the high resolution and clarity of CT images, the 3Dvoxel representation
of particles captures morphology very well. Finally, a widely used sur-
face reconstruction method, Screened Poisson Reconstruction [41], is
then applied to creating smooth and watertight surfaces based on
surface voxels.

3. Voronoi tessellation

3.1. Ordinary Voronoi tessellation

Voronoi tessellation is originally proposed to tessellate a domain in-
cluding a given collection of points rather than spheres with sizes, as il-
lustrated in Fig. 5 for a two-dimensional case. Given a number of points
(called seeds) P={p1,p2,…,pn} in a domainΩ, for each point, its corre-
sponding Voronoi cell is defined as the region that consists of all points
closer to it that to any others, so that the entire space is partitioned
among these points. Mathematically, the ith Voronoi cell Ci is defined as

Ci ¼ x∈Ωj‖x−pi‖ ¼ min
j¼1

‖x−pj‖
� �

, i ¼ 1, 2, . . . ,Np ð1Þ

where x is an arbitrary point in the domain; Np is the number of points
in P; ∥ ⋅ ∥ denotes the Euclidean distance. Thus, the entire domain is



Fig. 1. Schematic diagram for the data acquisition process.

Fig. 2. Flow chart of image processing and analysis of X-ray CT images.

C. Zhang, S. Zhao, J. Zhao et al. Powder Technology 379 (2021) 251–264
composed of all cells ℂ= {C1,C2,…,CNp
} that are a series of convex and

non-overlapping cells bounded by planar surfaces. Each face of Voronoi
cells is derived from the planes bisecting and perpendicular to the
vectors connected by points, while the edges of cells are formed by
the intersection of these planes. Hence, in the ordinary Voronoi tessella-
tion technique, only the neighboring points are the necessary informa-
tion to construct a Voronoi cell, implying that a limited subdomain
needs searching.
3.2. Radical Voronoi tessellation

A prevailing extension of Voronoi tessellation, i.e., radical Voronoi
tessellation, also known as Laguerre Voronoi tessellation [42], helps to im-
pose the size of each cell via the introduction of a local radius r for each
Fig. 3. Extraction and identification of individual particles: (a) CT binary image of two touched p
basins of the two particles and (d) two labeled individual particles.
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seed point. Given a set of Np seed points P= {p1,p2,…,pn} with radii of
r1, r2, …, rn, respectively, a Voronoi cell Ci is expressed as

Ci ¼ x∈Ωjd x,pi, rið Þ ¼ min
k¼1

d x,pk, rkð Þf g
� �

, i ¼ 1, 2, . . . ,Np ð2Þ

where d(x,pi,ri) denotes the Euclidean distance between the geometri-
cal surface of pi and a point x, i.e.,

d x,pi, rið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖x−pi‖2−r2i

q
ð3Þ

Similar to the ordinary Voronoi tessellation, the radical Voronoi
tessellation partitions the entire packing space into a set of non-
overlapping convex polyhedra, where each polyhedron encloses a sin-
gle particle, as shown in Fig. 6(a). The separate plane between two
neighboring particles is the set of points with equal tangential distance
to the two spheres, rather than the bisecting plane. Thus, the polyhe-
dron face as part of the plane is guaranteed to be outside the particles
andwill not intersectwith any particles. The radical Voronoi tessellation
retains most of the features of the ordinary Voronoi tessellation, and it
recovers the Voronoi bisecting plane for mono-disperse particles.

3.3. Set Voronoi tessellation

Radical Voronoi diagrams are definedwith reference to the center of
the particles (i.e., distinct points), thereby only suitable for systems of
spherical particles including both mono-disperse and poly-disperse
spheres. For non-spherical particles, however, Voronoi diagrams based
on the particle centers cannot be carried out directly. To address this
issue, we introduce an alternative approach Set Voronoi tessellation pro-
posed by Schaller et al. [43], which constructs Voronoi cells on the basis
of boundary surfaces of the particle rather than that of the particle cen-
ter. One important step of Set Voronoi tessellation is to discretize the
articles, (b) distance transformation of the two particles, (c)watershed line and catchment



Fig. 4. Image processing on a typical CT slice: (a) original CT gray-scale image, (b) binary image after thresholding and (c) labeled image.

Fig. 5. Two dimensional illustration of an ordinary Voronoi diagram (solid) for a given set
of points in the plane and the dual Delaunay triangles (dashed).
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bounding surface of all particles in the domain into a sufficiently dense
set of vertices and then compute Voronoi diagrams of all these distinct
vertices by means of the ordinary Voronoi tessellation as mentioned
above. The Set Voronoi cell of each particle Pi is constructed by uniting
all these Voronoi cells of the vertices on the bounding surface of Pi.
Fig. 6. A representation of Voronoi diagram a system of mono-disperse spheres (a
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Theoretically, given a set of Np particles P in a 3D Euclidean space ℝ3,
the bounding surface of particle Pi is denoted by Si = ∂Pi, and the Set
Voronoi cell Ci is defined as the region of space closer to the bounding
surface Si of particle Pi than to any other particle Pj (i ≠ j), i.e.,

Ci ¼ x∈ℝ3jd x; Sið Þ ¼ min
k¼1

d x; Sið Þf g; Si ¼ ∂Pi

� �
ð4Þ

Note that the distance between a point x and the ith particle are cal-
culated from the point x to the nearest point on the bounding surface of
the particle, rather than to its center, referring to Fig. 6(b). Additionally,
the definition of particle Pi for Set Voronoi tessellation is valid for not only
convex but also non-convex shapes, since the discretization process of
each particle is employed and three dimensional Point Voronoi Tessella-
tion is adopted afterwards. Particles are fully enclosed by their Set
Voronoi cells, implying that the Set Voronoi cells may have curved sur-
faces (see e.g. the Voronoi surface of particle P2 in Fig. 6(b)), and their
shapes may be non-convex even for convex particles (e.g., particle P3
in Fig. 6(b)).

3.4. Surface sampling algorithm

With respect to Set Voronoi tessellation, points belonging to the par-
ticle surfaces are of our primary interest. Hence, it may be essential to
generate uniformly distributed points from reconstructed particle
), and the Set Voronoi diagram of a mixture of differently shaped objects (b).
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surfaces. Many effective surface sampling algorithms have been pro-
posed, such as Monte Carlo Sampling, Regular Recursive Sampling and
Poisson-disk Sampling [44–46]. In this study, Poisson-disk Sampling al-
gorithm is introduced. Given a reconstructed surface, this algorithm
computes a set of samples that are randomly distributed on the surface,
and the samples are at least a minimumdistance away from each other.
One advantage of this method is that it is capable of generating a target
number of surface points by controlling the minimum distance of sam-
ples. For a detailed description of this method, readers are referred to
Refs. [46–48].

3.5. A parallel processing tool for set Voronoi tessellation

Aparallel processing tool, PySVT, for Set Voronoi tessellation (SVT) is
proposed in a hybrid programming of C++and Python. The tool imple-
ments SVT of discrete surface points generated from poly-
superellipsoids or other irregular particles utilizing the Voro++ library
[49]. For brevity, we summarize major processing steps as follows:

(1) Initialization: After obtaining spatially discrete particle surface
points, Python script provides an interface to parse particle infor-
mation and global boundary conditions.

(2) Neighbor search: For efficiency, it is acceptable to assume the Set
Voronoi cell of given particle Pi is rather affected by the nearer
neighbors of particle Pi than by more distant particles. Therefore,
a neighbor list is built for particle Pi by searching for adjacency
particles within a distance Rs.

(3) AABB enlargement: A strategy is introduced to take into account
all possible surface points of neighboring particles, where the
axis-aligned bounding box (AABB) of particle Pi is enlarged in
all dimensions with a scaling coefficient, Φ. The surface points
of neighboring particles enclosed in the enlarged AABB are then
prepared for point Voronoi tessellation, as illustrated in Fig. 7.
Moreover, the boundary of the intersection between the en-
larged AABB and the global container is taken as the local compu-
tational domain. Note that the scaling coefficient, Φ might have
an influence on the SVT results, which will be discussed in the
following section.

(4) Parallel SVT: OpenMP is used for multi-threaded parallelism on
each particle with the purpose of taking full advantage of CPUs
and improving the speed of SVT processing. The assembly can
therefore be tessellated for multiple particles simultaneously
and independently.

(5) Post-processing: Finally, a triangulated representation of con-
structed Set Voronoi cells is obtained, and corresponding proper-
ties (e.g. cell surface area and volume) will be exported. It is
worth noting that the Voronoi cells are irregular polyhedrons
which are far more complicated than the enclosed particles.
Both cell surface area and volume are calculated by summing
Fig. 7. An exemplified local computational domain of particle Pi with an enlarged AABB.
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up all corresponding surface areas and volumes of the point
Voronoi cells from the particle surface points, respectively.
More details are depicted in our previous work [28].

4. Results and discussion

4.1. Realistic and numerical packings

A packing of Ottawa 20–30 sands with 3092 particles is recon-
structed following the procedure outlined in Section 2, as shown in
Fig. 8(a). The global porosity of this realistic packing is 0.578. To explore
microscopic characteristics of different systems and validate the appli-
cability of SVT, twomore DEM packings composed of spheres and ellip-
soids are prepared using an open-source DEM code, SudoDEM (https://
sudodem.github.io) [13,50,51,70]. Both packings have identical dimen-
sions along x- and y-axes (equal to 10mm),while the height of packings
is set up to control packings' porosity. The porosity of both numerical
packings is equal to that of the reconstructed sand assembly. The
detailed protocol of packing generation is depicted as follows. In the
initial configuration, the sand particles in the reconstructed packing
are replaced by equal-volume spheres or ellipsoids one-by-one with
the same positions. Note that the aspect ratios of ellipsoids are consis-
tent with that of the corresponding sand particles. By doing so, it is
not surprising to see overlapping particles at the above configuration.
Hence, it is essential to constrain the displacement of particles to
avoid excessive initial velocities of particles within certain time steps
during DEM cycling. Then, particles are unleashed to settle down freely
under gravity until reaching a relative equilibrium state, e.g., the unbal-
anced force ratio below a threshold (e.g., 1 × 10−5). After that, the top
wall moves downwards slowly with packing porosity approaching to
that of the sand packing such that the stress exerted on the top wall
keeps much less than (<5%) the gravity on the bottom wall. The values
of major parameters in the DEM simulations are selected in experience
[13] and listed in Table 1. Four side walls of the numerical packings are
assumed frictionless, while the coefficient of friction between particles
and the bottom wall is set to 1.0. Fig. 8 shows the snapshots of the
configurations for the three packing with reconstructed sands, spheres
and ellipsoids.

4.2. Voronoi parametric analysis

4.2.1. Effect of AABB scaling coefficient
Remarkably, it is sufficient to carry out SVT in an enlarged AABB of

particle Pi in most cases. Nevertheless, it remains difficult to determine
the extent of the enlarged AABB. To address this problem, we select
148 particles of the sand assembly with diameter distribution near D50

(i.e. 0.74 mm) to investigate the effect of the AABB scaling coefficient
Φ on the number of neighboring particles, Set Voronoi cell volume
and surface area.

As expected, the average number of particles contained in AABB in-
creases dramatically with the scaling coefficient, as shown in Fig. 9(a),
implying that the enlargement of local computational domain requires
more computing resources for an individual particle accordingly.
Hence, the accuracy of SVT computation is further examined. Quantita-
tively, a relative error ER under two adjacentΦs is introduced to evalu-
ate the variation of cell volume or surface area, given by

ER ¼ VΦi−VΦj

VΦi

����
���� or ER ¼ SΦi−SΦj

SΦi

����
���� ð5Þ

where V and S refer to cell volume and surface area, respectively; the
subscripts Φi and Φj denote scaling coefficients identical to i and j, re-
spectively. With different scaling coefficients ranging from 2.0 to 5.0,
the average relative errors of cell volume and surface area of 148 parti-
cles are calculated. As shown in Fig. 9(b), the average relative errors of
cell volume and surface area decrease evidently as the scaling

https://sudodem.github.io
https://sudodem.github.io


Fig. 8. Packs of 3092 particles with identical porosity using different particles: (a) reconstructed sands, (b) spheres and (c) ellipsoids.

Table 1
Major parameters used in the DEM simulations.

Simulation parameter Value

Particle density, ρ(kg/m3) 2650
Particle coefficient of friction, μ 0.5
Damping coefficient, α 0.3
Particle/wall normal stiffness, Kn(N/m) 1 × 108

Particle/wall tangential stiffness, Kt(N/m) 7 × 107
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coefficient increases. Furthermore, cell volume and surface area change
slightlywith average ER smaller than 0.1%when the scaling coefficient is
greater than 4. It implies that the corresponding Voronoi cell converges
and tends to be more accurate if the constructed local computational
domain is sufficiently large.
Fig. 9. The influence of neighbor search radius on the average number of neighboring particles,
volume and surface area.
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4.2.2. Voronoi resolution
It is essential to produce spatially discrete surface points for SVT in

thefirst place. For XCT scanned sands, a sampling algorithm is employed
to generate point clouds from the reconstructed particle surfaces. How-
ever, with a reconstructed particle surface, it is not clear that howmany
points are sufficient to guarantee the accuracy of SVT computation. The
influence of the number of surface points (i.e., resolution) on the accu-
racy of both volume and surface area of Voronoi cells is thus evaluated.

As shown in Fig. 10, it can be seen that there is no significant differ-
ence in both volume and surface area of Voronoi cells between Resolu-
tion 2000 and other higher resolutions, whilst one sees a clear deviation
between Resolution 800 and the other resolutions. The reason is that Set
Voronoi cell has more noise in a lower resolution [28]. Therefore, a
trade-off between accuracy and computational cost is performed. A
local domain consisting of approximately 60 particles is adequately
Voronoi cell volume and surface area: (a) average number of neighboring particles, (b) cell



Fig. 10. The volume and surface area of Set Voronoi cells with different resolutions: (a) cell volume and (b) cell surface area.
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large for realistic sands, which corresponds to an AABB scaling coeffi-
cient of 4. Moreover, a reasonable resolution of XCT-reconstructed par-
ticles is well capable of performing SVT, and Resolution 2000 is selected
for the subsequent analyses.

4.3. Particulate analysis

4.3.1. Particle size distribution
Particle size distribution (PSD) is one of the most fundamental and

important properties of granular materials, which can be obtained by
mechanical sieving tests at the laboratory. In sieve analysis, the particle
size is quantified by theminimum size of sieve aperture through which
the particle can pass. In this work, the following equivalent sphere
diameterD of the volume of particles is employed due to its wide appli-
cation in laser particle size analysis [52,53]

D ¼ 6
π
Vp

� �1=3

ð6Þ

where Vp is the particle volume. Compared with the sieve analysis
method, the advantage of analytical particle size lies in its repeatability
and flexibility. For example, characterization of the granular packing
provides details on the grain size distribution, which helps to observe
the evolution of particle size within crushable granular materials sub-
jected to loadings. Moreover, the equivalent spherical diameter has
been not only employed for particles with moderate distortion in shape
from sphere but also for irregular particles, even for star-shaped parti-
cles [54]. There might be more elegant definitions of particle size for
non-spherical particles, which is, however, beyond the scope of this
study.

Principal component analysis (PCA) is employed to determined
the major (long), intermediate, and minor axis orientations of each
particle. Using this orientation data an orthogonal rotation is applied
and each particle is rotated so that its principal axes were parallel to
the Cartesian axes. The major (a), intermediate (b) and minor
(c) dimensions of the particle are then taken to be a=max (x′)−min
(x′), b=max (y′)−min (y′) and c=max (z′)−min (z′), where x′, y′,
z′ are 1D arrays giving the particle's voxel coordinates following rotation.
Notethatthecenterofgravity(x0,y0,z0)andthemomentof inertialmatrix
(I) are given by Eq. (7) and Eq. (8) respectively.

x0 ¼ ∑ixi
Nv

, y0 ¼ ∑jyj
Nv

, z0 ¼ ∑kzk
Nv

ð7Þ
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I ¼
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

2
4

3
5 ð8Þ

where Nv denotes the number of voxels that make up the particle, and

Ixx ¼ ∑
j

yj−y0
� 	2

þ∑
k

zk−z0ð Þ2 ð9aÞ

Iyy ¼ ∑
i

xi−x0ð Þ2 þ∑
k

zk−z0ð Þ2 ð9bÞ

Izz ¼ ∑
i

xi−x0ð Þ2 þ∑
j

yj−y0
� 	2

ð9cÞ

Ixy ¼ Iyx ¼ ∑
i

xi−x0ð Þ∑
j

yj−y0
� 	

ð9dÞ

Ixz ¼ Izx ¼ ∑
i

xi−x0ð Þ∑
k

zk−z0ð Þ ð9eÞ

Iyz ¼ Izy ¼ ∑
j

yj−y0
� 	

∑
k

zk−z0ð Þ ð9fÞ

Fig. 11 illustrates the principal directions of a particle composed of
230535 voxels. The cumulative distribution of three principal axes
lengths and particle diameters D of the XCT-reconstructed sands are
plotted in Fig. 12(a). It can be seen that the curve of volume-
equivalent diameter D situates between the curves of intermediate
length and minor length. Besides, the experimental data is almost on
the analytical curve of D, suggesting that the equivalent-volume ap-
proach is applicable to quantifying the PSD of Ottawa 20–30 sand. The
histogram of particle size distribution of the volume-equivalent diame-
ter is plotted in Fig. 12(b), which shows a normal distributionwith sizes
mostly between 650 and 850 μm.

4.3.2. Particle shape characteristics
It remains a challenge to fully characterize particle morphology, es-

pecially for realistic complex particle shapes. Indeed, it is well-
acknowledged that the complex particle shape can not be fully captured
by a single descriptor. Nevertheless, a combination of several shape de-
scriptors may correlate better with a given mechanical characteristic of
a granular material. Blott and Pye [55] showed that the most important
aspects of particle shape can be characterized by using parameters
representing the form (e.g., sphericity), roundness (or angularity) and



Fig. 13. Cumulative distributions of shape parameters for Ottawa-20/30 sand.

Fig. 11. Illustration of a particle composed of 230505 voxels and the corresponding
principal directions x′y′z′ in the global coordinate system xyz.
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irregularity (e.g., convexity). With the reconstructed Ottawa 20–30
sand packing, we analyze the particle morphology with a focus on
four common shape descriptors including aspect ratio, sphericity,
roundness, and convexity, as depicted below.

As for aspect ratio, the elongation index (EI) and the flatness index
(FI) are calculated based on the principal dimensions, given by
Eq. (10a) and Eq. (10b), respectively.

EI ¼ b=a ð10aÞ

FI ¼ c=b ð10bÞ
where a, b, c are three principal dimensions introduced above. More-
over, sphericityΨ, defined as Eq. (11a), is adopted to describe the over-
all form of the particle irrespective of the sharpness of edges and
corners, thereby quantifying the degree of conformity of particle shape
to that of a sphere. Another measure to compute the compactness is
convexity, Cx, defined as the ratio of the particle to the volume of the
convex hull enclosing the particle, given in Eq. (11b). Following the def-
inition by Wadell [56], roundnessℛ is defined as the ratio of the aver-
age radius of curvature of the corners of the particle's silhouette to the
radius of themaximum inscribed sphere. Note that although roundness
is a 3D property, some approaches work with the maximum 2D projec-
tion plane (silhouette) of the particle looking for a trade-off between ac-
curacy and efficiency, e.g., Zheng et al. [57]. In the present work, we
evaluate area-based average roundness [58] by calculating the surface
Fig. 12. (a) Particle size distribution of 3092 particles based on Principal Componen
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mean curvatures based on the 3D surface coordinates and triangulated
mesh, given by Eq. (11c), since the local determination of roughness is
beyond the scope of this paper.

Ψ ¼
36πV2

p

� 	1
3

Sp
ð11aÞ

Cx ¼ Vp=VCH ð11bÞ

ℛ ¼
P

An
kins
kM

� �
P

Anð Þ ð11cÞ

where Sp refers to the surface area of a particle, and VCH denotes the vol-
ume of the convex hull enclosing the particle; kins and kM are the curva-
ture of the maximum inscribed sphere and the mean curvature of the
particle, respectively; and An is the area of the nth triangular facet.

Fig. 13 shows the cumulative distributions of shape parameters for
Ottawa-20/30 sand particles, where the results from Zheng et al. [57]
are plotted together for a comparison. Note that the shape parameters
are measured with full projections (2D) from the assemblies in Zheng
et al. [57]. Besides, the mean values of these shape parameters are listed
in Table 2. As can be seen in Fig. 13, the distributions of the elongation
index (EI) and theflatness (FI) are almost superimposed in 3Dmeasure-
ment, which is not surprising due to the equivalent physical meaning of
t Analysis and (b) histogram of particle size distribution of the sand assembly.



Table 2
Mean values of shape parameters from this study and Zheng et al. [57].

Sand Sphericity Roundness Convexity EI FI

Ottawa-20/30 (this study) 0.93 0.82 0.97 0.86 0.87
Ottawa-20/30 (Zheng et al.) 0.96 0.76 – 0.80 –

Fig. 15. Distribution of coordination number in sand, sphere and ellipsoid systems.
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these two parameters. However, there is a statistically significant devi-
ation between 2D and 3D roundness and sphericity indexes for the
sands. It demonstrates that quantifying non-spherical particle spheric-
ity and roundness based on 2D projection images results in a different
classification of particle morphology, compared with 3D results. The
main reason for such a deviation can be explained as follows. Even
though the maximum projection of particles shows the shortest and
longest axes of particles, it can not provide information in the third di-
rection. From this perspective, it is necessary to use 3D images to obtain
accurate measures of roundness and sphericity.

Furthermore, the aspect ratios of all sand particles are plotted in
Fig. 14(a). Notably, most particles fall into the category of “spheriod”
with EI and FI greater than 2/3 on the basis of classification proposed
by Zingg [59]. Fig. 14(b) shows the relationship between measured
sphericity and convexity values. Most sand particles have sphericity
and convexity values larger than 0.8. It is found that a strong correlation
holds between the sphericity and convexity values, even though sphe-
ricity and convexity describe compactness from different perspectives.

4.3.3. Coordination number
Coordination number (CN) is an indicator of the particles' associa-

tion with each other, which is one of the fundamental measurement re-
vealing the structure (fabric) of a granular material. CN herein refers to
the number of particles that are in contact with a certain particle. With
regard to voxel-represented realistic particles, the contact between two
particles is not always a point or a single continuous surface. Thus, iden-
tification of contact between particles involves analysis of the surface
voxels of each particle in the sand assembly, that is, recognizing
whether a particle of interest shares boundary voxels with its neighbor-
ing particles. Coordination number is calculated as the total number of
unique neighboring particle IDs, which is the total number of particles
in contactwith the particle of interest. It isworth noting that the present
approach may slightly overestimate the contact number due to the
roughness of particle surface, especially for very angular or rough gran-
ular materials [9,60,61].

The distribution of CN for the sand assembly is plotted against that
for the spherical and ellipsoidal packings in Fig. 15. The coordination
number distributions of the spherical and ellipsoidal systems show sig-
nificant differences from that of the sand assembly in shape and statis-
tics. Specifically, the three packings have the sameminimumCNof 3 but
Fig. 14. Aspect ratios of sand particles (a) and relat
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different maximum values (15, 12, 11 for the sand, ellipsoid and sphere
assemblies, respectively). It suggests that a CN of 3 is theminimum for a
frictional granular system tomaintain an equilibrium state regardless of
particle shape, while the maximum CN is significantly determined by
particle shape. Furthermore, nearly 20% of the CN of sand particles is
greater than 10, with an average CN of 8.39. In the sphere and ellipsoid
packing systems, the average CN are 6.42 and 6.67, respectively, which
are approximately identical. In general, natural sand has a greater CN
than numerical packing of spheres and ellipsoids due to irregularity in
particle shapes. The above observation also implies that the relationship
between CN and packing density may be more complicated for realistic
particle shapes, compared with the sphere and/or ellipsoid packings.

4.3.4. Contact network
Fig. 16 visualizes the connectivity with the ball-stick model for the

three packings. For better effects of visualization, the particle volume
has been scaled down to 30% of the original one, and inter-particle con-
tacts are represented by sticks. It is clear that particle shape plays an im-
portant role in the particle connectivity and the distribution of
coordination number. The contacts in the sands packing appear to be
more intensive than the other two packings, which implies that sands
have stronger connectivity than spheres and ellipsoids owing to the
particle angularity.

We further analyzed the topological properties for each packing as
an examination of the contact network. Topological distance of each sin-
gle particle is introduced to capture the inter-particle connectivity. For a
given particle, the particle topological distance between the particle and
itself is assumed to be unity. The contact network at the next topological
distance (i.e., l=2) consists of all particles that are in contact with par-
ticles at the topological distance of unity. Following this manner, the to-
pological distances of all particles within the entire packing can be
measured. The procedure repeats for all particles, and the average
ionship between sphericity and convexity (b).



Fig. 16. Visualization of connectivity with the ball-stick model for the three packings: (a) sand, (b) sphere, (c) ellipsoid. The ‘ball’ (blue) represents each particle and the ‘stick’ (yellow)
represents the contact between two particles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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number of particles Nc with different values of topological distance l is
calculated accordingly.

Given that the packing is not an infinite, periodic structure with no
boundaries (which is actually impossible for realistic packings), the
present procedure does not start with a given ‘central’ particle. This pro-
cedure repeats on all particles so that each particle is calculated as the
starting particle. Consequently, the boundary effect is mainly reflected
in the maximum topological distance. The minimum value represents
the average number of contacts of a given particle whereas the maxi-
mumvalue indicates that the topological distance reaches the boundary
of the packing. Contact values between minimum and maximum topo-
logical distances represent the valid range of contact network.

Fig. 17 shows the average number of particles as a function of topo-
logical distance l for the three packings. It can be seen that the number
of particles increases with topological distance until it reaches a certain
maximum value above which the number of particles starts to decrease
in the three packings. Notably, the average number of particles follows a
quadratic relationship with the topological distance l. Besides, Besides,
The maximum Nc appears at a topological distance l of 9. Furthermore,
we fit the distribution function to the following equation for each
packing

Nc ¼ 3TDl
2 þ blþ c ð12Þ

where TD is a descriptor of topological density and related to inter-particle
connectivity, and a larger TD corresponds to stronger inter-particle con-
nectivity; b and c are fitted coefficients. The magnitude of TD are 2.26,
Fig. 17. Distribution of the average number of particles in contact with a given particle at
different topological distances in sand, sphere and ellipsoid packings.
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1.43 and 1.11 for sand, sphere and ellipsoid packings, respectively, which
indicates that the sand packing displays more significant connectivity
than both sphere and ellipsoid packings when three packings possess
the same global porosity. We note that the topological densities are con-
sistently smaller than 10/3,which is the theoretical lower limit for Barlow
packings [62].

4.4. Void analysis

4.4.1. Voronoi cell morphological characteristics
The networks of Voronoi cells for the three packings are shown in

Fig. 18, where a horizontal slice from each packing is cut out for an ob-
servational comparison. Fig. 19 exemplifies four neighboring Voronoi
cells and the corresponding enclosed particles for each packing. It can
be observed that a Voronoi cell encloses a particle with a similar mor-
phological form to that of the particle, including orientations and sizes.
Diverse morphological characteristics of Voronoi cells of different pack-
ings indicate that some volume or face related properties of Voronoi
cells may be distinct. Hence, our analysis is focused on the Voronoi
cell properties in the following work.

4.4.2. Local porosity
Porosity (or packing fraction) has been employed as a macroscopic

variable to link with many characteristics of a granular material. In
early studies, possible correlations between microscopic structure and
packing fraction have been investigated formono-disperse sphere pack-
ings, e.g., an invariant distribution in local volume [63]. Recently, such a
universality has been comprehensively examined in the packings of
polydisperse sphere and non-sphere systems regardless of initial states
and loading conditions [35]. However, its validity remains to be verified
for general granular materials with real amorphous particles, which are
widely encountered in nature. Accordingly, we introduce local porosity
nl to examine the fluctuation of local volume which is defined as the
ratio of the volume of the void to that of the Voronoi cell enclosing the
given particle, given by

nl ¼ 1−
Vp

Vv
ð13Þ

where Vv denotes the Voronoi cell volume. The average porosity (n) of
the sample is defined as n ¼ 1

N∑
N
1 nl, where N is the number of Voronoi

cells. As pointed out by Bhatia et al. [64] and Alshibli [65], the average
local porosity is not equal to the global porosity ng for real soils. Never-
theless, with the uniqueness of Vornoi tessellation technique, the aver-
age porosity can be related to the global porosity in an implicit way,
e.g., using themachine learning to bridge them. The distribution of local



Fig. 18. Set Voronoi Tessellation for three systems (upper) with horizontal slices of Voronoi cells (lower): (a) sand, (b) sphere, and (c) ellipsoid, respectively.
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porosity nl (or local packing fraction (1 − nl)) is an important topic
in the context of a granular material [31,33,66]. The cumulative
distribution functions (CDFs) of local porosity nl are shown in
Fig. 20(a). It can be seen that the statistical distributions of local po-
rosity for the three packings present a similar pattern. According to
the recent studies on the random packings of ellipsoids, cylinders,
or superellipsoids [28,32,33,67], the probability distribution func-
tions of the reduced local Voronoi cell volume follow Gaussian (or
log-normal) distributions. Accordingly, we fit the probability distri-
bution functions (PDFs) of nl for the three packings by using a log-
normal distribution, given by
Fig. 19. Exemplified Voronoi cells enclosing extracted from t
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PDF nlð Þ ¼ 1
τ
ffiffiffiffiffiffi
2π

p
⋅nl

exp −
ln nlð Þ−μð Þ2

2τ2

 !
ð14Þ

where μ and τ are geometrical parameters, representing themean value
and standard deviation of correlation distribution function, respectively.
Themean values of local porosity nl are 0.450, 0.462 and 0.441 for sand,
sphere and ellipsoid systems, respectively. It can be seen that the local
porosity for the realistic sands packing follows a log-normal distribution
similar to the ideal-shapedparticles, e.g., ellipsoids reported in [28]. Cer-
tain deviation of nl among the three packings can also be observed,
he three systems: (a) sand, (b) sphere, and (c) ellipsoid.



Fig. 20. Cumulative distributions (a) and probability distributions of local porosity of the three systems: (b) sand, (c) sphere and (d) ellipsoid.
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which probably results from the difference in the particle shape since
the global porosity and individual particle volumes are controlled. Pre-
vious studies show that there is a unique distribution of local volume
for different packings with the same global porosity but different parti-
cle shapes [33,68], which may not be general enough for realistic com-
plex shapes, at least for the case in this work.

4.4.3. Voronoi cell reduced surface area
Another significant dimensionless quantity of a Voronoi cell is re-

duced surface area Sr [69], which is defined as

Sr ¼ 1−
Sp
Sv

ð15Þ

where Sp and Sv are the surface area of a particle and the correspond-
ing Voronoi cell, respectively. As shown in Fig. 21, similar to local po-
rosity, Sr also presents a one-peak distribution with a slightly
positive skewness for each packing. Thus, we find that their proba-
bility distributions can be described by the log-normal distribution
function as well, given by

PDF Srð Þ ¼ 1
τ
ffiffiffiffiffiffi
2π

p
⋅Sr

exp −
ln Srð Þ−μð Þ2

2τ2

 !
ð16Þ

Themean values of Sr wemainly focus on are 0.395, 0.516 and 0.381
for sand, sphere and ellipsoid systems, respectively. We notice that the
differences in Sr between the three systems seem to be larger than that
of the local porosity,which indicates that particle shape has a greater in-
fluence on the face related properties of Voronoi cells. Moreover, the
surface area and local porosity of the ellipsoids and corresponding
sand particles are slightly different in spite of the consistency of the as-
pect ratios (i.e. EI and FI), which might be associated to particle
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angularity. A further investigation on the details will be conducted in
our future work.
5. Summary

This paper introduces a 3D Voronoi analysis framework to quantify
the void spatial distribution within a granular packing composed of re-
alistic grains. In the framework, we proposed an efficient and robust
tool, PySVT, for Set Voronoi Tessellation, where either mathematically-
expressed particles (e.g., poly-superellipsoids) or raw point-clouds
from XCT reconstruction can be handled in parallel with a hybrid pro-
gramming of Python and C++. It is worth noting that PySVT has the ca-
pability of handling a larger number of particles due to its specific
parallelism.

A realistic assembly of Ottawa sand is reconstructed based on the
XCT data. Due to the dual relationships between particles and voids,
the characteristics of particles and their contact networks are examined
at the microscopic scale with emphasis placed on particle size distribu-
tion, coordination number, contact network, and particle shape (aspect
ratio, sphericity and convexity). To further investigate the effect of par-
ticle shape, another two numerical packings of spheres and ellipsoids
are generated with the same global porosity as the realistic sand assem-
bly by using SudoDEM (https://sudodem.github.io). With respect to
contact network, a quadratic relationship between the average number
of particles in contact with a given particle and the topological distance
is obtained for the three systems. Furthermore, PySVT is utilized to tes-
sellate these three packings, hereby yielding a triangulated representa-
tion of constructed Set Voronoi cells. A parametric analysis is conducted
to evaluate the effect of local computational domain and Voronoi reso-
lution on the results of SVT. It is found that a local domain consisting
of approximately 60 particles and 2000 surface points per particle are
reasonable for SVT of irregular particles by considering a trade-off

https://sudodem.github.io


Fig. 21. Cumulative distributions (a) and probability distributions of reduced surface area of the three systems: (b) sand, (c) sphere and (d) ellipsoid.
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between accuracy and efficiency. As for the properties of Voronoi cells,
we focus on the local porosity and reduced surface area. Both local
porosity and reduced surface area of Voronoi cells follow modified
log-normal distributions for the three packings. The three packings
possess almost the same global porosity, nevertheless, the local porosity
and reduced surface area are more-or-less different between the sys-
tems because of the effect of angularity and aspect ratios. These findings
should lead to a better understanding of the realistic grain packings and
are helpful in guiding the exploration of microscopic characteristics.
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