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Abstract
Computational modeling in geotechnical engineering frequently needs sophis-
ticated constitutive models to describe prismatic behavior of geomaterials sub-
jected to complex loading conditions, and meanwhile faces challenges to tackle
large deformation in many geotechnical problems. The study presents a mul-
tiscale approach to address both challenges based on a hierarchical coupling
of the smoothed particle finite element method (SPFEM) and the discrete ele-
ment method (DEM) (coined SPFEM/DEM). In the approach, SPFEM serves as
a solver for the global boundary value problem, in which the material consti-
tutive responses are derived from the DEM solution of representative volume
elements (RVEs) attached to the SPFEM nodes to avoid phenomenological con-
stitutive assumptions. The approach is capable of modeling large deformation
because of use of SPFEM, which discretizes the domain with a set of Lagrangian
nodes and employs Delaunay triangulation for efficient remeshing on the nodes.
In addition, as the RVEs are associated with the nodes due to the nodal integra-
tion technique in SPFEM, the interpolation of RVEs from the oldmesh to the new
one is bypassed, which is otherwise infeasible. The smoothing operation in nodal
integration further offers a remedy for regularizing mesh dependency in simula-
tion of strain localization problems. Two examples, namely, general failure of a
footing and flow of an unstable slope, are used to demonstrate the potential of the
proposedmethod in solving large deformation and providing reliable predictions
on collapse and failure of geotechnical problems.
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1 INTRODUCTION

Numerical modeling plays an increasingly important role in geotechnical analysis and design today, and meanwhile, it
faces ever growing challenges arising from many aspects of the material behavior and complexity of practical problems.
Specifically, geomaterials are composed of discrete particles varying in mineralogical composition, morphology, and size,
and exhibit inherent multiscale nature that dictates many macroscopic mechanical responses of these materials. Math-
ematical formulations of their mechanical behaviors, i.e., constitutive models, have been the backbone for numerical
analysis. It remains a formidable task to propose a mathematical model general and robust enough to account for a wide
spectrum of material behaviors, ranging from critical state and anisotropy1,2 to non-coaxiality3,4 and cyclic hysteresis, and
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among other salient features.Meanwhile, modern geotechnical practice has pushed the boundary of geotechnical analysis
and design from conventional small strain serviceability to large deformation and even failure. One outstanding example is
in offshore geotechnics where soils that bear offshore structures, such as anchors and rigs, have to work in large deforma-
tion to provide required bearing capacity. Other examples include the post-failure analysis of a slope and pile penetration
into soils5 where large deformation of soils is a reality. Modeling of large deformation has proven to be challenging for
conventional mesh-based numerical methods, such as the finite element method (FEM). Moreover, most available soil
models are developed based on small-strain assumption and calibrated by small-to-medium-strain laboratory tests. Their
applicability for the large-deformation regime may be questionable.
Over the past four decades, the discrete element method (DEM) has proven to be an effective tool for constitutive mod-

elers and theoreticians to derive material responses from grain assemblies and gain micromechanical insights of material
behavior. DEMhelps to provide detailed evolution ofmicrostructures (termed fabric) and other state variables of themate-
rials under mechanical loading from small-strain to large-deformation regimes.6–8 Nevertheless, DEM is believed to best
serve as virtual element tests to supplement small-scale laboratory tests. With the constraint of the accessible computing
power, it remains impractical in solving engineering-scale problems. Given the challenge in developing sophisticated geo-
materialmodels and the limitation ofDEM, a hierarchicalmultiscale FEM/DEMapproach has recently been proposed,9–13
in which FEM is utilized to solve engineering-scale boundary value problems (BVPs) and the FE Gauss quadrature points
are embedded with representative volume elements (RVEs) solved by DEM for the derivation of material constitutive
responses. Since the DEM simulation of the RVEs can reproduce complexmechanical behaviors of the geomaterials under
various loading paths, the onerous task to develop phenomenological constitutive models is avoided. The approach has
been successfully applied in studies of shear failure of geostructures,14–16 compaction band formation in high-porosity
sandstones,17,18 and coupled thermo-hydro-mechanical problems.19–22
Despite all the merits mentioned before, the multiscale FEM/DEM approach is inept at modeling large deformation

because of the use of conventional FEM. It hence inevitably suffers from mesh distortion under large deformations,
which deteriorates the numerical results and may force the computation to terminate before completion. To meet the
challenge of solving large-deformation problems, various remeshing techniques have been proposed, e.g. the remesh-
ing and interpolation technique with small strain (RITSS)23 and the !ℎ-adaptive arbitrary Lagrangian Eulerian (ALE).24
Besides, many advanced meshfree methods have been developed or adapted from other disciplines for geotechnical engi-
neering applications, such as the smoothed particle hydrodynamics (SPH),25,26 the material point method (MPM),27,28
and the peridynamics.29,30 To enhance the capability of FEM/DEM in modeling large deformation, it is intuitive to seek
suitable remeshing techniques for use in the FEMmodule for the coupled FEM/DEM. However, typical remeshing tech-
niques do not work in a multiscale modeling context, as they require remapping of state variables when a new mesh is
generated. In the context of coupled FEM/DEM, it is the physical microstructures represented by the RVEs that have to
be interpolated from the old mesh to the new one, which is simply impossible. An alternative solution is to replace FEM
with one of those meshfree methods that does not require remapping of state variables or microstructures. For instance,
MPM, with all the material information carried by the material points, appears to be a ready candidate. Indeed, some
attempts have been made to couple MPMwith DEM and its excellence in solving large-deformation geomechanical prob-
lems has been demonstrated by examples including granular column collapse, failure of footing foundation, and pipe-soil
interaction.31,32
This contribution will present another option for multiscale modeling of large-deformation geomechanical problems

by replacing the FEM with the smoothed particle FEM (SPFEM)33–36 to bring new features into multiscale modeling.
SPFEM has been developed based on an integration of the particle FEM (PFEM)37,38 and the smoothed FEM (SFEM).39
The PFEM discretizes the continuum domain with a set of nodes (or called particles) and employs the Delaunay tri-
angulation for the efficient construction of mesh on the nodes. The nodes will deform with the material following the
Lagrangian description and remeshing takes place at a certain interval of loading steps depending on the deformation
of the mesh. As remeshing is invoked, the method is capable of modeling large deformations. The PFEM was originally
developed to study fluid dynamics problems,37 and later finds success in the application of a variety of problems, includ-
ing fluid–structure interaction,40 non-linear solid mechanics,41 and coupled multiphysics problems.42 A state-of-the-art
review of the method can be found in [43]. In addition to the PFEM, SPFEM follows the SFEM (the node-based SFEM
in particular) using a nodal integration technique originally proposed for meshfree methods,44 which enables the mate-
rial state variables to be stored at the nodes instead of the Gauss quadrature points. Consequently, remap of state vari-
ables in FEM or PFEM is no longer required in SPFEM, which makes the hierarchical coupling of SPFEM and DEM
feasible. It is also worth mentioning that SPFEM possesses several advantages compared with MPM and other mesh-
free methods. For example, the imposition of essential boundary conditions in MPM or SPH generally requires extra
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efforts or workarounds,45 which is not as straightforward as in SPFEM. In addition, most MPM implementations have
adopted an explicit time integration scheme, which may not be as efficient as the implicit scheme when dealing with
(quasi-)static problems. Furthermore, SPFEM features a smoothing operation that renders it immune to volumetric lock-
ing, even when low-order elements are used.39 This also makes it less vulnerable to mesh/discretization sensitivity for
simulating strain localization problems than conventional FEM or MPM as to be shown in this study. SPFEM has been
recently applied to the modeling of large deformations of geomaterials in geotechnical engineering, e.g. in the footing,33
the landslide,36 and the column collapse problems.34 It is noted that in the above studies, a soil constitutive model was
necessary to be used with the SPFEM. In the current SPFEM/DEM approach, this phenomenological model can be totally
bypassed.
The rest of the paper is organized as follows. The approach and formulation is first introduced in Section 2. Then the

implementation of the method is validated in Section 3with two benchmark tests, before it is applied to the study of large-
deformation problems in Section 4, where two demonstrative examples are presented. Finally, the study is concluded in
Section 5 with some outlook discussions.

2 APPROACH AND FORMULATION

The two ingredients of the coupled SPFEM/DEM approach, namely, the SPFEM and the DEM will be briefly introduced
in the following. It is noted that SPFEM is a combination of the PFEM37,38 and the SFEM,39 which renders the method a
variant of the classical FEM, so that most FE formulations apply in SPFEM.

2.1 Governing equation and FE formulation

The BVP is governed by the balance of momentum equation, which writes:

#$%,% + &$ = ' )̈$ (1)

where #$% is the stress tensor, &$ is the body force due to gravity, ' is the density, )$ is the displacement, and a superimposed
dot or double-dot denotes the first- or second-order time derivative of the quantity.
For the time integration, the Newmark scheme has been employed46

)̇++1$ = )̇+$ + (1 − -)∆/)̈+$ + -∆/)̈++1$ (2)

)++1$ = )+$ + ∆/)̇+$ +(12 − 0)∆/2)̈+$ + 0∆/2)̈++1$ (3)

where the superscripts + + 1 and + indicate the quantity at two consecutive time steps; ∆/ is the time step increment; 0
and - are two parameters associated with the integration scheme, which is unconditionally stable when 1∕2 ≤ - ≤ 20.
With the aid of the displacement predictor

)̂++1$ = )+$ + ∆/)̇+$ +(12 − 0)∆/2)̈+$ (4)

and )̈++1$ = ()++1$ − )̂++1$ )∕(0∆/2), Eq. (1) can be reformulated as
#++1$%,% + &$ + '̃)̂++1$ = '̃)++1$ (5)

where '̃ = '∕(0∆/2).
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The variational form can be obtained by multiplying a test function 45 on both sides of Eq. (5) and applying the diver-
gence theorem

∫Ω 4789:Ω+ ∫Ω '̃(458 ⋅ 5):Ω = ∫Γ/ 458 ⋅ = :Γ + ∫Ω 458 ⋅ > :Ω+ ∫Ω '̃458 ⋅ 5̂ :Ω (6)

where 47 is the gradient of the test function; = is the traction exerted on the Newmann boundary Γ/. With a proper dis-
cretization function? so that 45 = ?45@ where the subscript @ indicates discrete values defined at FEnodes, the following
semi-discrete form can be obtained from Eq. (6) by eliminating 458@ on both sides

∫Ω A89:Ω+ ∫Ω '̃?8?:Ω 5@ = ∫Γ/ ?8= :Γ + ∫Ω?8>:Ω+ ∫Ω '̃?8?:Ω 5̂@ (7)

where A = ∇? is the strain-displacement matrix. For the non-linear problem, it is more convenient to reformulate the
above equation in the incremental form by iterative schemes with C ← Cold +EAF5G and 5G ← 5oldG + F5G, which yields
the following compact form (the subscript @ has been discarded hereafter for brevity)

H∆5 = I (8)

where9old and 5old are the stress and the displacement at the previous iteration in the Newton’s method;E is thematerial
tangent modulus; ∆5 is the nodal displacement increment to be solved for the current iteration; the stiffness matrix H
and the residual force vector I are expressed as

H = ∫Ω A8EA:Ω⏟⎴⎴⎴⏟⎴⎴⎴⏟HN
+O: ∫Ω '̃?8?:Ω⏟⎴⎴⎴⏟⎴⎴⎴⏟HP

(9)

I = ∫Γ/ ?8= :Γ + ∫Ω?8>:Ω⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟Q ext
−∫Ω A89old :Ω⏟⎴⎴⎴⏟⎴⎴⎴⏟Q int

+O:HP(5̂ − 5old) (10)

where HN and HP denote the material stiffness matrix and the mass matrix, respectively; Q ext and Q int are the external
and the internal nodal forces, respectively; a flag argument O: is introduced into the inertia-related terms to differentiate
(quasi-)static (O: = 0) or dynamic (O: = 1) cases.
In the dynamic case, the matrix H could be easily ill-conditioned when the stiffness and the mass matrices have entry

values differing in orders of magnitude. It would be more advantageous to adopt an explicit scheme, where Eq. (1) can be
written in the following matrix form

R5̈ = Q ext − Q int (11)

where

R = ∫Ω '?8?:Ω (12)

The mass matrix is usually diagonalized using HRZ-lumping47 for the ease of computation. In the present SPFEM, the
nodal mass is calculated by multiplying the density of the material with the area of the node (for 2D, see Eq. (14)). After
finding the acceleration, the velocity and the displacement are updated with the velocity Verlet time integration, which
corresponds to a special case of theNewmark schemewith - = 1∕2 and 0 = 0 in Eqs (2) and (3). The velocity Verlet scheme
possesses second-order accuracy but is only conditionally stable, so that the time step increment has to be set sufficiently
small to satisfy the CFL condition.
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F IGURE 1 Illustration of the smoothing domain around
a node.

2.2 SPFEM formulation

SPFEM employs a node-based strain smoothing technique following the smoothed FEM (SFEM, see [39]), wherematerial
history-dependent state variables, e.g. the plastic strain in a plasticity model or the microstructure in an RVE model, are
associated with nodes instead of Gauss quadrature points as in FEM and PFEM. In the context of SPFEM/DEM approach,
it means that the RVEs are attached to the nodes, and the deformation for each RVE is linked to the deformation of the
respective node. As a beneficial result, remap of history variables (or RVEs) after remeshing can be averted. Similar to
the PFEM, the mesh in SPFEMwill be constructed by Delaunay triangulation on the cloud of nodes. Hence, only triangle
elements are involved. As illustrated in Figure 1, the smoothing domain of a node is generated by connecting the centroids
of triangles and the middle of edges around that node. The smoothed strain-displacement matrix Ã% and the smoothing
area S% at the node % will then be33–35

Ã% = 1S%
∑

T∈sur. tri.STAT (13)

S% = ∑
T∈surr. tri.ST (14)

where the summation is over the surrounding triangle elements sharing the same node;ST and AT are the weighting area
and the strain-displacement matrix of each triangle, respectively. It is noted that for triangle elements,ST is 1/3 of the area
of each triangle.
The strain at the node % can be evaluated from

7% = Ã%5 (15)

Accordingly, thematerial stiffnessmatrix and the internal force vector in Eqs (9) and (10) will be reformulated by replacingA with Ã
HN = ∫Ω Ã8EÃ :Ω = V%∑

% Ã8% E%Ã%S% (16)

Q int = ∫Ω Ã890 :Ω = V%∑
% Ã8% 90%S% (17)

where V% is the total number of nodes in the whole domain.
Another essential element of the SPFEM or PFEM is the application of alpha-shapes48 to properly identify the domain

boundary. PFEM discretizes the problem domain with a set of nodes and applies the Delaunay triangulation to construct
the mesh on the nodes. The nodes will displace with the deformation of the material. As a result, PFEM belongs to
the Lagrangian approach which has advantages over the Eulerian approach in modeling history-dependent materials
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and tracking interfaces in large-deformation problems. However, when remeshing takes place in large deformations, the
mesh topology as well as the problem domain may change abruptly. Since a Delaunay triangulation always results in a
convex domain, alpha-shapes are commonly used to examine each triangle element and determine if it belongs to the
physical domain. Following,49 a triangle will be deemed as non-physical and removed from the mesh, if its circumra-
dius is greater than Wℎ, where ℎ is the characteristic spacing of the mesh, e.g. the mean length of all the triangle edges;
and W is a user-defined parameter and is generally problem-specific but in a typical range of 1.2 to 1.6 for most practical
problems.50

2.3 Frictional contact

For simplicity, only contact between a deformable body and a rigid surface is considered, where the former and the latter
are treated as the slave and the master boundaries, respectively, for the contact detection. The problem is solved by the
penalty method.51 The normal and the tangential contact forces at a node are calculated as

Q cont+ = −X+ Y+ Z+ (18)

Q cont/ = {−X/ Y/ Z/, if ||Q cont/ || ≤ [ ||Q cont+ ||[X+ Y+ sign(Y/) Z/, otherwise (19)

where X+ and X/ are the penalty parameters for the normal and the tangential directions, denoted by Z+ and Z/, respec-
tively; Y+ is the penetration depth (contact occurs only if Y+ < 0); Y/ is the accumulated relative tangential displacement
at the contact; [ is the frictional coefficient. For the implicit scheme, the contact stiffness is required which is given by

\cont+ = X+ Z8+Z+ (20)

\cont/ = {X/ Z8/ Z/, if ||Q cont/ || ≤ [ ||Q cont+ ||[ X+ sign(Y/) Z8/ Z+, otherwise (21)

The contact stiffness matrix and the contact force will be included in the governing equation

H = HN + O:HP +H] (22)

I = Q ext − Q int + Q cont + O:HP(5̂ − 50) (23)

where the global contact stiffness matrix H] and the contact force vector Q cont are assembled from all the nodes in the
domain

H] = ∑
V%

(\cont+ + \cont/ )
(24)

Q cont = ∑
V%

(Q cont+ + Q cont/ )
(25)

For the explicit scheme, Eq. (11) will also include the contact force term

R5̈ = Q ext − Q int + Q cont (26)
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2.4 DEMmodel

For the DEMmodule, a popular open-source code YADE52 has been used, where 2D simulations on the RVE packings with
circular particles and periodic boundaries were performed to qualitatively approximate the plane-strain behavior of sands.
Whereas 2D simulations have been adopted in the study to minimize the computational cost, the framework is equally
applicable to 3D scenarios (see [18, 53]). In the DEMmodel, the inter-particle contact is described by a simple linear force-
displacement law, in conjunction with the Coulomb friction. The normal stiffness ^+ and the tangential stiffness ^/ are
calculated as:

{^+ = _` !∗^/ = b` ^+ (27)

where _` and b` are two user-defined parameters; !∗ = 2!1!2∕(!1 + !2) is the common radius of the two particles (with
radii !1 and !2, respectively) in contact. To model cohesive granular materials, all the existing contacts are assigned with
a contact bond, the strength of which is given by ` ×min(!1, !2)2, where ` is a cohesion strength parameter.17 The contact
bonds permit the transmission of tensile forces at the contacts, but nomoments as opposed to the parallel bonds,54 andwill
break permanently once either the tensile force or the shear force exceeds a certain threshold, leaving a purely frictional
contact. Other typical DEM input parameters include the inter-particle contact friction angle d, the damping ratio e and
the particle density 'f. These parameters are self-explanatory and will not be discussed in detail to avoid distraction of
the presentation. Interested readers are referred to the YADEmanual.52
In the multiscale approach, the boundary conditions for the local RVE packings are prescribed by the displacement

gradients )$,% according to the SPFEM solution. After the DEM computation on the RVE packings, twomacroscopic quan-
tities, the Cauchy stress #$% and the tangent modulus N$%^g are extracted via homogenization, and returned to SPFEM (i.e.
to formulate Eqs (16) and (17)) to complete the computation cycle. The homogenization is given by55

#$% = 1h V∑̀
` :$̀ i%̀ (28)

N$%^g = 1h V∑̀
`
(^++$̀ :%̀+`̂ :g̀ + ^//$̀ :%̀/`̂ :g̀ ) (29)

where h is the volume of the RVE packing, V` is the total number of contacts, :$̀ is the branch vector connecting the
centroids of the two particles in contact, i$̀ is the contact force, +$̀ and /$̀ are the unit vectors along the normal and the
tangential directions at a contact, respectively. It is noteworthy that the tangent operator N$%^g is derived from the RVE
packing by assuming a uniform strain within the packing55 and is only required by the implicit scheme using Eq. (8), but
unnecessary for the explicit scheme using Eq. (11). Another point worth mentioning is that the deformation described by
the displacement gradient contains both strain and rotation, and the homogenized stress from Eq. (28) is corotational and
objective. Hence, it is needless to resort to other stress rate measures such as the Jaumann rate.19
For the presentation of results, the mean stress f (compressive stress and strain treated as positive following the con-

vention in soil mechanics) and the deviatoric stress j are defined (for 2D):
f = −12#$$ (30)

j = √12 O$%O$% (31)

where O$% is the deviatoric part of the stress tensor. Similarly, the two strain measures, the volumetric strain kl and the
deviatoric strain kj, are given by

kl = −k$$ (32)
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F IGURE 2 Coupling procedure of the
SPFEM/DEM approach.

kj = √2T$%T$% (33)

where the strain tensor k$% is the symmetric part of the displacement gradient )$,%; and T$% is the deviatoric part of k$% .
2.5 Coupling and computational procedure

The coupling between the SPFEM and the DEM is realized in the way that when the global governing equation is solved
by the SPFEM, the method will resort to the DEM for the stress update at the nodes. The coupling procedure for the
SPFEM/DEM computation is illustrated in Figure 2 and summarized below:

(i) Discretize the domain with a cloud of nodes; attach RVEs to each node with a given initial condition;
(ii) Construct the mesh on the nodes using Delaunay triangulation with a suitable computational geometry library, e.g.

CGAL56 has been used in this study;
(iii) Invoke alpha-shapes to identify boundaries and remove non-physical elements;
(iv) Solve the governing equation with SPFEM; for the explicit scheme, find the solution of Eq. (11) directly and move to

step (v); for the implicit scheme, use the Newton’s method to tackle non-linearity of Eq. (8):
(a) Find a trial solution;
(b) Apply the displacement gradients at the nodes as the boundary condition on each RVE and solve the RVE with

DEM to update the stiffness and the stress;
(c) Update the frictional contact force and the stiffness, if there is any, the global stiffness matrix and the residual

force vector;
(d) Update the solution and determine if convergence has been reached; if not, return back to substep (a).

(v) Update the nodal positions, the RVEs attached to the nodes, and the boundary conditions; move to step (ii) for the
next loading step until all the steps are finished.

3 VALIDATION

The implementation of the SPFEM and the coupled SPFEM/DEM has been first validated by two classical problems,
namely, the sliding block test and the biaxial shear test. As the two tests are either static or quasi-static, the implicit
approach proves to be a better option, and the inertia-related terms in Eqs (9) and (10) can be omitted in the computation
by setting O: = 0.
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F IGURE 3 Mesh and boundary conditions for the sliding
block test.

(A) (B)

F IGURE 4 Deformed mesh for the sliding block test: (a) FEM solution, and (b) SPFEM solution.

3.1 Sliding block test

The sliding block test is a conventional benchmark test for frictional interface problemswhere a plane strain elastic block is
pulled to deform on a rigid frictional surface. The problemwas first analyzed by57 and later referenced by some subsequent
studies.58,59 The size of the block is 4 units in length and 2 units in height. The material is elastic with a Young’s modulus
of 1000 units and a Poisson’s ratio of 0.3. The block is resting on a horizontal surface roughened in a coordinate range from
0.2 to 3.8with a frictional coefficient [ = 0.5, and the two corners are supported by rollers. On the top surface in the same
range, a uniformly distributed compressive pressure of 200 units is applied. The right surface of the block is subjected to
a pulling traction of 60 units. No gravity is considered. The dimension, the boundary condition, as well as the mesh to be
used by SPFEM are illustrated in Figure 3, where the random unstructured mesh was generated by Gmsh.60
The deformed shape of the block subjected to the prescribed loading is shown in Figure 4, where an FEM solution using

Escript61 with contact elements is also provided for comparison. Figure 5 presents the normal and the shear traction
along the frictional surface. It is seen that the results from the present FEM and SPFEM solutions are in good agreement
with those obtained from the literature.57–59 It is also interesting to find that the shear traction changes from positive to
negative at a coordinate around 1.2, suggesting a complicated deformation pattern of the elastic body under the compound
loading conditions.

3.2 Biaxial shear test

The proceeding sliding block test has been devoted to the validation of the implementation of SPFEM. The coupling
between SPFEM and DEM will be examined in this subsection by the biaxial shear test. A number of biaxial shear tests
have been done previously using FEM/DEM.10,62 The results will be used for comparison with the present study.
The first step in a multiscale analysis is the preparation of a proper RVE. Following the previous studies,10 the RVE

consists of 400 cohesionless circular particles with their radii ranging from 3mm to 7mm. The parameters for the DEM
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F IGURE 5 Boundary traction along the frictional
contact surface.

TABLE 1 DEMmodel parameters for the biaxial shear test
Radius (mm) mn (kg/m3) op (MPa) qp p (kPa) r (rad) s
3–7 2650 800 0.8 0 0.5 0.1

model are summarized in Table 1. The RVE was isotropically consolidated to a mean stress level of f0 = 100 kPa and an
initial void ratio of T0 = 0.178 prior to be embedded to each of the nodes in SPFEM (or Gauss points in FEM). The prepared
RVE is shown in Figure 6, on which the force chains are superimposed and represented by line segments with their widths
proportional to the magnitudes of the normal contact forces.
The sand specimen has a dimension of 0.05m in width and 0.1m in height. It is supported by rollers at the flat bottom,

which is only fixed at the center to prevent rigid bodymotion. The two lateral surfaces are subjected to a confining pressure
of 100 kPa. Incremental vertical displacements are prescribed on the top surface to load the specimen, where horizontal
movements are allowed (i.e. smooth boundary). Gravity is also ignored. To investigate the effect of mesh sensitivity, three
meshes with different densities are considered and illustrated in Figure 7. The coarse one has a total of 80 nodes and
129 triangle elements, the medium-fine one 288 nodes and 516 triangle elements, and the fine one 612 nodes and 1134
triangle elements. It is noted that the topology of the meshes remains unchanged in FEM/DEM simulations but may alter
in SPFEM/DEM due to the mesh reconstruction process activated in the latter approach.
The global axial stress-strain responses from the simulations are collectively shown in Figure 8, where the nominal

axial stress is defined as the resultant axial force divided by the width of the specimen, and the nominal axial strain is
the vertical displacement normalized by the original height. The RVE response from a separate pure DEM biaxial shear
test on the RVE is also presented in the figure, which can be seen as the constitutive response of the material. A typical

F IGURE 6 RVE packing after isotropic consolidation for the biaxial shear test.
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F IGURE 7 Coarse, medium-fine and fine meshes for the biaxial shear test. The inset shows that the RVEs are attached to the nodes in
SPFEM/DEM and the Gauss points in FEM/DEM.

F IGURE 8 Nominal axial stress-strain responses of
the biaxial shear test predicted by FEM/DEM and
SPFEM/DEM using three different meshes.

strain softening behavior for dense sands under biaxial shear has been observed in all the cases. It is found that all the
curves reach a same peak stress of about 280 kPa at a strain level of 1.8% and their pre-peak behaviors are almost identical
to that of the RVE response, though their post-peak responses deviate from each other. Albeit the strong fluctuations in
the RVE post-peak response, the global responses from the coupled simulations are relatively smooth and generally have
smaller post-peak strengths due to the occurrence of strain localizationwithin the specimen, whichwill be discussed later.
In addition, as has been demonstrated in previous studies, the use of a finer mesh yields a softer post-peak response in
FEM/DEM simulations.10 Nevertheless, the present SPFEM/DEM study shows that the method is less prone to the mesh
size dependency as the three post-peak curves using the coarse to fine meshes are quite close and are generally lower
than the FEM/DEM results. The relative mesh insensitivity of the SPFEM/DEM approach is probably attributable to the
smoothing operation applied in the approach. As the FEM/DEM result gets closer to the SPFEM/DEM result when the
mesh is refined, it is reasonably concluded that the SPFEM/DEM will predict better results than the FEM/DEM given a
same mesh.
The shear deformation within the specimen is presented in Figure 9 in terms of the deviatoric strain contour at an axial

strain level of 9%. Strain localization is clearly observable in all the simulation cases where a single shear band takes place
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F IGURE 9 Contour of the deviatoric strain at 9% nominal axial strain.

TABLE 2 DEMmodel parameters for the footing problem
Radius (mm) mn (kg/m3) op (MPa) qp p (kPa) r (rad) s
3–7 2650 600 0.8 100 0.5 0.1

in the specimen. However with FEM/DEM, the width of shear band is apparently dependent on the mesh size — a finer
mesh leads to a thinner shear band andmore concentrated strain localization. In contrast, the SPFEM/DEM results using
the three meshes show a similar shear band width, which is consistent with the stress-strain results shown in Figure 8,
and is indicative of the capability of SPFEM in regularizing the solution for strain localization problems.

4 LARGE-DEFORMATION GEOMECHANICAL PROBLEMS

The competence of the SPFEM/DEM approach in solving large-deformation geomechanical problems is demonstrated in
this section with the following two examples.

4.1 General failure of footing

The study of the bearing capacity of a footing and its failure pattern is classical in geotechnical engineering. This example
analyzes a rigid strip footing driven vertically into a cohesionless soil. The base of the footing is assumed to be perfectly
rough. Only half of the domain is treated by assuming symmetry of the problem. The size of the half domain is 5m in both
width and depth. The half width of the footing is t = 0.5 m. There is no surcharge applied on the surface but gravity is
included in the simulation which yields a stress level ranging from 0 to 100 kPa within the domain (the bulk unit weight
of the soil is taken as -u = 20 kN/m3). Themicroscopic parameters used in the RVE (with 400 circular particles) are listed
in Table 2. A small inter-particle cohesion was introduced to stabilize the packing at low stress levels. For reference, the
constitutive responses of the RVE subjected to the biaxial shear test are shown in Figure 10 considering three different
confining pressure levels in the same range as in the footing problem. It is seen that the soil is generally dilative and a
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F IGURE 1 0 Drained biaxial shear responses of the RVE assigned to the footing problem under different confining pressure levels and
the corresponding Mohr’s circles at their peak stress states.

F IGURE 1 1 (a) In-situ vertical stress profile (the dashed square indicates the region where alpha shapes are applied); (b) Probability
density of the coefficient of earth pressure at rest.

small softening response has been observed. From their Mohr’s circles at the peak stress states, it is estimated that the
cohesion of the soil is negligible and its peak friction angle vf is approximately 28.5◦ (note that the two circles with small
stress levels are used for the fitting as they are more relevant in the shallow footing problem).
The in-situ stress state of the soil is prepared by allowing the soil to settle under gravity. During this phase of com-

putation, the horizontal degrees of freedom (DOFs) of the nodes on the two vertical sides and the vertical DOFs of the
nodes on the bottom side are restricted. The initial RVE was isotropically consolidated to f0 = 10 kPa and T0 = 0.192
before assigned to the nodes of the entire domain. The profile of the vertical stress #l after equilibrium is presented in
Figure 11, along with the distribution of the coefficient of earth pressure at rest ^0. It is found that ^0 is largely around 0.5
(≈ 1 − sinvf) within the whole domain, and the few deviations are located at the surface of the domain where the stress
level is close to 0. The initial mesh used in the simulation can also be seen from Figure 11(a), which contains 2690 nodes
and 5268 triangle elements. Note that as a non-uniform mesh is used, alpha shapes are applied only to the region around
the footing as indicated by the dashed square in the figure. After equilibrium is reached, the footing is pushed downwards
to mobilize its bearing capacity and to trigger failure of the foundation eventually. Since the problem is quasi-static, the
implicit scheme has been used with the flag parameter O: set to 0.
The evolution curves of the resultant vertical stress on the footing from SPFEM/DEM and FEM/DEM simulations

are collectively plotted in Figure 12. Additional results using a coarse mesh (800 nodes and 1532 triangle elements) are
supplemented to examine the mesh sensitivity of the two approaches. The ultimate bearing capacity of a shallow footing
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F IGURE 1 2 Evolution of the resultant vertical stress on the footing. The cross marker × indicates where program aborts due to mesh
tangling.

F IGURE 1 3 Deformation field of the foundation simulated by (a) FEM/DEM at : = 0.21 m; (b) SPFEM/DEM at : = 0.15 m; and (c)
SPFEM/DEM at : = 0.3m. The inset in (a) is a zoomed plot of the region with notable mesh tangling.
under general failure can be estimated using the Terzaghi’s equation j) = -utV- (note that t is the half width of the
footing) in the absence of cohesion and surcharge. The bearing capacity factorV- is a function of the soil friction angle, but
its determination varies significantly according to different methods. The value provided in [63] is followed here, i.e.V- =18 from interpolation when the soil friction angle is 28.5◦. Therefore, the ultimate bearing capacity is estimated to be j) =180 kPa. From Figure 12, it is encouraging to see that SPFEM/DEM predicts very close values to the Vesić’s result and the
prediction is evidentlymesh insensitive. On the contrary, FEM/DEMgivesmuch larger predictions on the bearing capacity
than SPFEM/DEM, and its results show clearlymesh dependency—a finermesh yields a lower prediction. It is reasonably
expected that the FEM/DEM prediction will continue decreasing with further mesh refinement and get closer to the
SPFEM/DEM prediction eventually. These findings are consistent with that from the biaxial shear test in Section 3.2 (i.e.
Figure 8), corroborating the ability of SPFEM/DEM to remedy mesh dependency in strain localization problems. Albeit
the merit, severe deterioration of the mesh quality is observed in SPFEM/DEM after :∕t = 70% (where : is the footing
settlement), which renders the simulation results afterwards less reliable. For improvement, it is suggested to further
refine the mesh which, however, will not be attempted in the study due to the limit of accessible computing resources.
The deformation fields simulated by the two approaches are selectively shown in Figure 13 in terms of the deviatoric

strain contours. It is noted that the FEM/DEM simulation was terminated at : = 0.21 m caused by mesh tangling. Its
deformation field at this stage is shown in Figure 13(a), where a general failure pattern can be roughly identified, i.e. the
failure zone is composed of an inverted triangle wedge, a thick spiral slip curve propagating from the lower vertex of the
wedge up to the surface of the foundation, and some tributary shear bands between the footing edge and the spiral curve.
The local mesh tangling can be clearly seen from the zoomed plot. The simulation results of SPFEM/DEM at two levels
of settlement are shown in Figure 13(b–c). The deformation pattern is in general similar to that given by FEM/DEM, and
mesh tangling can be effectively avoided in SPFEM/DEM even at large deformations.
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F IGURE 14 In-situ vertical stress profile of the slope (the dashed rectangle indicates the region where alpha shapes are applied).

F IGURE 1 5 Slip surface predicted by the Bishop method. The determined factor of safety of the slope is 0.826.

Finally, it isworthmentioning that since the number of nodes is only about half of the number of elements in a typical 2D
Delaunay triangulation, the SPFEM/DEM approach involves much less RVEs and is thus more computationally efficient
than the FEM/DEM approach with the same discretization.

4.2 Slope failure

The post-failure deformation of a slope is crucially important for related risk assessment and hazard mitigation. In this
example, the SPFEM/DEM approach will be employed to study the flow behavior of an initially unstable slope. The geom-
etry of the slope is shown in Figure 14, where its dimension is presented as 4m in height and 4:5 in slope angle. The initial
mesh for this problem has 2135 nodes and 4127 triangle elements. The soil properties are the same as that in the footing
problem, i.e. the same RVE parameters as in Table 2 and the bulk unit weight of 20 kN/m3. The initial stress state of the
slope is prepared by allowing the soil to settle under gravity as well, but all the nodes in the domain except the ones on
the bottom, which are fixed in both directions, only have vertical DOFs considering the special geometry. The distribution
of ^0 is found similar to that in Figure 11(b) because of the same protocol applied in generating the initial stress state.
After the preparation of the in-situ state, the horizontal DOFs of the nodes other than that on the bottom and the two
vertical sides (the three boundaries are fixed in space) will be released on the second phase of computation. Given that
the internal friction angle of an RVE packing with round particles is typically smaller than 4/5 (see Figure 10) and the
cohesion is negligible, the slope is regarded as unstable and expected to fail under gravity. This problem is dynamic and
solved by the implicit scheme with O: switched to 1. The implicit scheme allows us to use a relatively large time step size,
which is chosen as ∆/ = 10−3 s.
For comparison, limit equilibrium analysis was first conducted using the Bishop method available in the freeware

D-Stability.64 The soil properties are assigned as close as possible to that in the study: the bulk unit weight 20 kN/m3,
the friction angle 28.5◦, the cohesion 1 kPa, and the dilation angle 0◦. Note that a small cohesion is introduced. Otherwise,
it will result in a surface failure of the slope. The influence of the dilation angle on the slip surface is found negligible, but
increasing the dilation angle from 0◦ to 30◦ will increase the factor of safety from 0.826 to 0.94. The slip surface predicted
by the Bishop method is shown in Figure 15, which starts from the toe and propagates towards the top surface near the
crest of the slope.



Guo et al 663

F IGURE 1 6 Horizontal displacement and deviatoric strain contours at (a) / = 0.3 s, (b) / = 0.6 s, and (c) / = 1 s.
The complete process of the failure initiation and the post-failure flow can be well modeled by the SPFEM/DEM. The

contours of the horizontal displacement )y and the deviatoric strain kj at three time instants are shown in Figure 16. At
the early stage (/ = 0.3 s), a slip surface penetrating through the slope is clearly observable from the two contours, which
agrees fairly well with that predicted by the Bishop method. However, as time evolves, a progressive failure is observed.
The slip surface shifts leftwards, and more soil mass slips down and deposits at the base. At / = 1 s, the maximum runout
distance is around 1.2m.
From the contours of the deviatoric strain, it is seen that large shear localization or shear banding happens at the

slip surface. The deformation level can reach as high as 100% inside the shear band at / = 0.6 s and 1 s. Especially the
locations close to the toe have undergone extremely large shear deformation (kj > 300% at / = 1 s). The RVEs associated
with the two nodes marked in Figure 16(c) are picked up to show the changes of their microstructures in Figure 17. As
the two nodes have a similar initial burial depth, their initial stress states are close to each other, so are the two RVEs at/ = 0 s. The contact normal distribution in the rose diagram showsmoderate anisotropy (the shape of the dashed gray lines
deviatesmoderately from a circle). At the final state (/ = 1 s), both nodes have experienced large deformation and rotation,
but reveals different deformation modes. The mode for Node A is more similar to a biaxial shear, accompanied with rigid
body rotation. The contact normal distribution at / = 1 s shows large anisotropy, with themajor principal direction aligned
vertically (solid red lines). In contrast, themode for Node B exactly resembles a simple shear. Themajor principal direction
of its contact normal distribution matches that of a simple shear at around 120◦.
5 CONCLUSIONS

The study has presented an extension to the multiscale FEM/DEM approach previously developed by the authors by
replacing FEM with SPFEM, aiming to solve large-deformation geomechanical problems. The approach features a hier-
archical coupling of SPFEM and DEM, in which the former is used to discretize the problem domain and to solve the
governing equations, whereas the latter is employed to derive the material constitutive relations by solving local RVEs
embedded at the SPFEM nodes. Since SPFEM is essentially a combination of PFEM and SFEM, it inherits some merits
of both methods. The major inherited benefits, which make the coupled approach suitable for the purpose of the study,
include the capabilities to model large deformations through remeshing and to bypass interpolation of state variables
with the nodal integration technique. The approach has been validated first and then applied to the study of two classical
geomechanical problems. The key findings from the study are summarized below.
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F IGURE 17 The initial (/ = 0 s) and the final (/ = 1 s) microstructures at the two selected locations, reflected by the attached RVEs.
(1) An integrated framework is formulated, which can solve both (quasi-)static and dynamic problems using either the

implicit or the explicit scheme.
(2) Similar as FEM/DEM, SPFEM/DEM does not require presumed phenomenological constitutive models, and can pro-

vide micromechanical insights to macroscopic observations such as failure of geostructures involving strain localiza-
tion.

(3) Comparedwith FEM, SPFEM is able to yieldmesh insensitive results in strain localization problems due to its smooth-
ing operation.

(4) With the same discretization, SPFEM/DEM ismore computationally efficient than FEM/DEMas the number of nodes
is only about half of the number of elements in a typical 2D Delaunay triangulation. Hence, SPFEM/DEM involves
much less RVEs than FEM/DEM.

(5) The predictions of the bearing capacity of a footing and the slip surface of an unstable slope made by SPFEM/DEM
possess satisfactory accuracy with reference to the limit equilibrium analyses.

The approach, however, is not without limitations. First, it is better suited for problems with free surfaces, as sur-
face tracking is difficult with frequent remeshing. Second, while relatively coarse meshes have been adopted in the
study due to the limited accessible computing power, fine meshes are required for most large-deformation problems
as the spacing of nodes can change abruptly in these scenarios, which on the other hand will impose a large compu-
tational burden on the approach. On the bright side, the approach fits perfectly well for parallel computing, with its
hierarchical structure closely conforming with the divide-and-conquer strategy (i.e. the domain is divided into non-
interactive RVEs that can be solved individually). The alleviation of the multiscale computation by MPI or GPU tech-
nologies is demonstrated elsewhere,13,19 65 which shows the prospects of the approach in solving engineering-scale
problems.
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