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1 INTRODUCTION 

Cross anisotropy is commonly observed in geomaterials and has been known to have a 
significant influence on the strength of these geomaterials (Casagrande & Carrilo, 1944; 
Duncan & Seed, 1966; Arthur & Menzies, 1972; Oda et al., 1978; Abelev & Lade, 2004). 
Numerous experimental data have proved that the strength of geomaterials varies 
considerably with direction. Yong & Silvest (1979), for example, have found the unconfined 
compression strength of sensitive clay varies continuously with loading directions and the 
minimum strength observed is about 60% to 75% of the maximum. Similar observations were 
reported by Kirkgard & Lade (1991, 1993) from true triaxial tests on San Francisco Bay 
Mud, by Nishimura et al. (2007) on natural London clay and by Niandou et al. (1997) and 
Duveau et al. (1998) on sedimentary rocks. The degree of strength anisotropy (e.g., difference 
in strength at different direction) is significantly higher in rocks than in soils. Indeed, strength 
anisotropy of geomaterials is important to a variety of geotechnical structures, such as 
footings, retaining walls and slopes. Oda et al. (1978) have investigated the bearing capacity 
of two model strip foundations built on the same sand, and found the difference in bearing 
capacity for the model with load perpendicular to the bedding plane and the other one with a 
parallel load to the bedding plane can reach as much as 34%. Proper consideration of cross 
anisotropy in the evaluation of the soil/rock strength appears to be necessary.  

Most well-received failure criteria in the literature have been isotropic ones (e.g., 
Matsuoka & Nakai, 1974; Lade & Duncan, 1975; Lade, 1977; van Eekelen, 1980). Despite 
their popularity, these isotropic criteria may find difficulties in interpreting the yielding and 
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failure for anisotropic soils/rocks. In a comparison of experimental data on isotropically 
consolidated San Francisco Bay Mud against predictions by Lade’s (1977) isotropic failure 
criterion, Kirgard & Lade (1993) have found Lade’s isotropic criterion can fit reasonably well 
for the failure stress points of specimens with Lode’s angle θ  in the range from 0D  to 90D  in 
the octahedral plane, but leads to An appreciable discrepancy, however, has been observed 
between Lade’s failure surface and the failure data points for tests conducted with θ  greater 
than 90D  wherein Lade’s failure criterion generally overestimates the strength of the 
specimen. An anisotropic failure criterion is indeed necessary to take into account the 
influence of cross anisotropy in cases like this. 

In this paper, we propose a novel anisotropic failure criterion. As will be shown in the 
following section, this new criterion differs in essence from the existing anisotropic failure 
criteria appearing recently, such as those proposed by Duveau et al. (1998), Pietruszczak & 
Mroz (2000, 2001), Liu & Carter (2003), Abeleve & Lade (2004), Guo & Stolle (2005), Lade 
(2007, 2008), Lee & Pietruszczak (2008), Mortara (2009) and Schweiger et al. (2009). All 
model parameters introduced in the new criterion can be conveniently calibrated by 
conventional laboratory tests. It is general and robust enough to be capable of describing the 
failure behavior for a wide range of soils and rocks with cross-anisotropy. 

2 THE GENERAL ANISOTROPIC FAILURE CRITERION 

We propose the following failure criterion for geomaterials with cross anisotropy 
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where fM  is the frictional coefficient of the material which depends on its peak frictional 

angle ϕ . 1I , 2I  and 3I  are the three invariants of a transformed stress tensor ijσ  defined 
below (see Fig.1a for the transformation based on the meridian plane) 
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where ijδ  is the Kronecker delta. ijσ  is the commonly referred Cauchy stress tensor. As is 
shown in Fig. 1(a) in the meridian plane, the transformation essentially renders that q q=  

and ( )0
n

f r rp q M p p pσ= = +⎡ ⎤⎣ ⎦  , where p  and q  are the commonly referred mean stress 
and shear stress, and p  and q  are their corresponding transformed values. n  is a exponential 
constant and rp  a reference pressure. 0σ  denotes the triaxial tensile strength of the material, 
or equivalently the cohesion of the material. α  is an interpolation constant as shown in Fig. 
1(b). If 1α = , the underlying isotropic failure criterion of Eq. (1) (e.g., when ( ) 1f A = ) 
becomes identical to the extended Mises criterion. When 0α = , it coincides with the 
Matsuoka-Nakai (or so-called Spatial Mobilized Plane, SMP in brief) curve-sided triangle 
(Matsuoka and Nakai, 1974). The anisotropic failure criterion proposed in Eq. (1) has been 
based on an isotropic one originally developed by Yao et al. (2004). Key to the new failure 
criterion is the addition of the function ( )f A  defined below to introduced the influence of 
anisotropy 
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where d  and β  are material constants. A  is an anisotropic variable reflective of the 
influence of loading direction with respect to fabric, defined as follows 
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where ij ij ijs pσ δ= − , 3ij ij kk ijd F F δ= − . ijF  denotes a fabric tensor representing the inherent 
anisotropy in a material. For materials with cross anisotropy, it is common ijF  adopts the 
following form 
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where Δ  is a scalar that characterizes the magnitude of the cross-anisotropy. Its value ranges 
from zero when the material is absolutely isotropic, to unity when the degree of anisotropy is 
the maximum. For materials with cross anisotropy, A  in Eq. (4) can be rewritten specifically 
for different loading conditions, in terms of the intermediate principal stress ratio b  and the 
relative angle between stress direction and axis of cross anisotropy (for detail, please refer to 
Gao et al., 2010). Note that when ( ) 1f A ≡ , the anisotropic failure criterion expressed in Eq. 
(1) becomes identical to the underlying isotropic failure criterion as in Yao et al.(2004). The 
primary effect of the function ( )f A  is to change the shape of the underlying isotropic failure 

surface in the deviatoric plane. When ( ) 1f A > , it plays a role in Eq. (1) in expanding the 

failure surface with respect to the isotropic one, and to shrink it when ( ) 1f A < .  
 

(a) (b) 

Fig. 1. Illustration of stress transformation in the meridian plane (a) and interpolation of failure 
surface in the deviatoric plane (b). 

Model parameters introduced in the criterion can be calibrated using conventional 
laboratory tests, such as conventional and true triaxial compression/extension tests and 
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rotational shear tests. Detailed procedures on their calibration can be referred to Gao et al. 
(2010), wherein specific examples on determining the model parameters for a soil or rock 
based on data from triaxial tests and/or rotational shear tests have been provided.  

3 VALIDATION WITH EXPERIMENTAL DATA 

To demonstrate the generality and robustness of our failure criterion, we have chosen a total 
of two clays, four sands and two rocks reported in the literature to validate our model 
prediction. According to the procedures outlined in Gao et al. (2010), the model parameters 
for these materials are calibrated and summarized in Tab. 1 below. 

Table 1 Summary of model parameters calibrated for soils and rocks under study in this paper 

Materials (Data source) fM  rp  0σ  n  α  d  β  
Isotropically consolidated San Francisco 
Bay Mud (Kirkgard & Lade, 1993) 1.45 67 kPa 0 0.83 0.49 0.013 -7.69 

Clay K0-consolidated San Francisco Bay Mud 
(Lade & Kirkgard, 2000) 1.38 —* 0 1 0 0.058 1.44 
Cambria Sand (Ochiai & Lade, 1983) 1.62 — 0 1 0.48 0.014 -3.57 
Dense Santa Monica Beach Sand  
(Abelev & Lade, 2004) 1.87 — 0 1 0.33 -0.05 -1 
Toyoura Sand (Lam and Tatsuoka, 1988; 
Tatsuoka et al., 1990) 1.68 — 0 1 0.17 0.05 -2.6 Sand 

Dry-pluviated Santa Monica Beach Sand 
(Lade et al., 2008) 1.63 — 0 1 0.36 -0.04 0 

Touremire Shale (Niandou et al., 1997) 1.58 50 MPa 2.5 MPa 0.54 — 0.5 -1.5 Rock 
Angers Schist (Duveau et al., 1998) 2.36 100 MPa 8 MPa 0.76 — 2.5 -1.52 

* — : not specified. 

 

 
(a) 

 
(b) 

Fig. 2. Comparison of the isotropic and anisotropic failure criteria with experimental data for 
isotropically consolidated San Francisco Bay Mud (Kirkgard & Lade, 1993), (a) in the deviatoric 
plane, and (b) in the φ-b diagram. 

3.1 Isotropically Consolidated San Francisco Bay Mud (Kirkgard & Lade, 1993) 

The anisotropic failure criterion proposed in Section 2 is first employed to predict the 
anisotropic strength of isotropically consolidated San Francisco Bay Mud tested by Kirkgard 
& Lade (1993). The test data are compared in Fig. 2 against the predictions by the anisotropic 
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failure criteria in Eq. (1) as well as the underlying isotropic failure criterion (by using 
( ) 1f A ≡  and the same α  value in Eq. (1)) in the deviatoric plane for which 167 kPap =  

and the plane of bϕ ∼  where ϕ  is the peak friction angle of the soil. As is shown, the 
anisotropic criterion captures the overall trend of the test data in the deviatoric plane 
reasonably well, with only a slight underestimation of the soil strength in Sector II (see Fig. 
2(a) for the different sections defined in the deviatoric plane. The same zonation of sections is 
followed for all subsequent figures on the description of deviatoric plane). In contrast, the 
isotropic criterion clearly overestimates the strength at large, particularly in Sector III. The 
tested bϕ ∼  relation and the corresponding predictions of the two failure criteria are also 
shown in Fig. 2(b). The isotropic criterion gives a single bϕ ∼  relation for all sections which 
significantly overestimates the value of friction angle in Sectors II and III. In contrast, the 
prediction of the anisotropic failure criterion is in good accordance with the test data in 
Sectors I and II, only slightly overestimates the value of friction angle in Sector III with a 
maximum difference of 4D  at 1b =  in sector III, about 10%  of the measured friction angle. 

 

3.2 K0-Consolidated San Francisco Bay Mud (Lade & Kirkgard, 2000) 

A series of torsion shear tests have been carried out by Lade & Kirkgard (2000) on K0-
consolidated San Francisco Bay Mud using hollow cylinder torsion shear apparatus. Various 
stress paths were applied to achieve the full range of stress rotation from 0ζ = D  to 90ζ = D  
where ζ  is the rotation angle between the direction of major principal stress and the axis of 
bedding plane of the soil. As there are insufficient test results available in the meridian plane, 
we assume here 1n =  and 0 0 kPaσ =  for simplicity. fM  is calculated based on the peak 

friction angle at 0b =  ( 34.1cϕ = D ), which corresponds to the conventional triaxial 
compression shear mode. d  and β  are determined based on the results at 0.5b =  and 

1.0b =  by assuming 0α = . Presented in Fig. 3 is the comparison between the test data and 
the prediction of the anisotropic criterion. The anisotropic failure criterion performs better in 
the prediction of high b  regime than the isotropic one does. It slightly overestimates the 
values of friction angle when 0.1 0.4b< < . Lade & Kirkgard (2000) have remarked that the 
K0-consolidated samples of San Francisco bay mud appear to retain the original in-situ fabric 
which is essentially different from that in the isotropically consolidated remolded specimens 
tested by Kirkgard & Lade (1993). 

 

 

Fig. 3. Comparison between model predictions and torsion shear test results on K0-consolidated San 
Francisco Bay Mud (Lade & Kirkgard, 2000) in the φ-b diagram. 
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3.3 Cambria Sand (Ochiai & Lade, 1983) 

The anisotropic failure criterion has also been employed to predict the strength of Cambria 
sand with comparison against the test data obtained by Ochiai & Lade (1983). All the triaxial 
test results are projected onto the same deviatoric plane with a mean stress 334 kPap = . As 
shown in Fig. 4(a), for Cambria sand, the effect of anisotropy on the failure curve in the 
deviatoric plane appears to be relatively small, while the two criteria produce very close 
predictions. In the bϕ ∼  plane, however, the variation of friction angle with b  demonstrates 
an appreciable dependence on anisotropy in all three sectors, as is shown in Fig. 4(b). The 
isotropic failure criterion fails to capture this property of Cambia sand. We also notice that 
the prediction by Lade’s anisotropic failure criterion (Lade, 2008) slightly underestimates the 
ϕ  value between 0.7b =  and 1.0b =  in all three sectors. Our anisotropic failure criterion 
captures the trend of bϕ ∼  relation better in both Sector I and Sector II. It only slightly 
overestimates the value of ϕ  at 0.3b =  to 1.0b =  in Sector III by about 1D . 

 

 
(a) 

 
(b) 

Fig. 4. Comparisons of the test data on Cambria Sand (Ochiai & Lade, 1983) with predictions by the 
isotropic and anisotropic failure criteria in (a) the deviatoric plane and (b) the φ-b diagram. Variation 
of the friction angles shows more significant anisotropic effect than that of the strength in the 
deviatoric plane does. 

3.4 Dense Santa Monica Beach Sand (Abelev & Lade, 2004) 

True triaxial tests have been carried out by Abelev & Lade (2004) on dense Santa Monica 
Beach sand deposited with a cross-anisotropic fabric. All tests have been performed with a 
constant effective cell pressure of 3 50 kPaσ =  and a constant value of b . Shear banding was 
observed in the hardening regime in the midrange of b  values in each sector of the deviatoric 
plane. Model predictions by our model and the isotropic criterion are compared to the test 
data in Fig. 5. As is shown, our anisotropic criterion demonstrates an overall better fitting to 
the acquired test data than the isotropic failure criterion in both the deviatoric plane and the 

bϕ ∼  diagram. Nevertheless, we also observe in Fig. 5(b) that the peak friction angle of the 
sand in the midrange of b  values is overestimated by the anisotropic failure criterion in all 
three sectors. The formation of shear banding may be the attributable to this difference. 
Indeed, according to Abelev & Lade (2004) and Lade (2007, 2008), occurrence of shear 
banding may reduce the strength measured from the boundary of the samples. The anisotropic 
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criterion is therefore expected to serve as a target of strength that the material could have 
attained if the deformation were uniform in the tested sample. We also comment that the 
prediction by Lade’s anisotropic failure criterion (Lade, 2008) in the deviatoric plane is 
roughly the same as our prediction for this sand; whereas for the bϕ ∼  relation, the 
prediction by Lade (2008) appears to be slightly better. 

 

 
(a) 

 
(b) 

Fig. 5. Failure of dense Santa Monica Beach sand predicted by the isotropic and anisotropic failure criteria 
in comparison with test data (Abelev & Lade, 2004), in (a) the deviatoric plane and (b) ϕ-b diagram in three 
sectors. The anisotropic criterion overestimates the strength in the midrange of b due to shear banding. 

3.5 Toyoura Sand (Lam & Tatsuoka, 1988) 

Lam & Tatsuoka (1988) carried out true triaxial tests on Toyoura sand with a constant cell 
pressure of 3 98 kPaσ =  where the sand samples have been prepared by the air-pluviating 
method to introduce initial cross-anisotropic fabric. Shear banding has been observed in their 
testing. The predicted strength by our model is compared to the test data in Fig. 6(a). In the 
deviatoric plane, the anisotropic failure criterion provides a better correlation with the test 
data than the isotropic criterion does. It does, however, slightly overestimate the strength in 
the midrange of b  values in Sector II and Section III, which is similar to the case of Santa 
Monica Beach sand.  

Tatsuoka et al. (1990) have later carried out triaxial compression tests on Toyoura sand for 
which it is also interesting to make a comparison with our model prediction. Presented in Fig. 
6(b) is the variation of the friction angle with the loading direction in term of ξ  (the angle 
between the direction of major principal stress and the axis of bedding plane of the soil, same 
as the ζ  in the rotoational shear case) at a constant confining pressure of 98 kPa  obtained by 
the triaxial compression tests (Tatsuoka et al., 1990), in close comparison with the predictions 
by the isotropic and anisotropic failure criteria. Note that two set of data are presented in the 
figure which correspond to samples with different initial void ratios. Since the strength of 
sand is known to be affected by the initial void ratio as well as confining pressure, the data in 
Fig. 6(b) have been normalized by the friction angle at 0ξ = D  (denoted as 0ϕ ) for 
consistency. No shear banding has been observed in the triaxial compression tests. As is 
shown in Fig. 6(b), the prediction by the anisotropic failure criterion for the triaxial tests on 
Toyoura sand compares favorably with the test data, whilst the constant prediction by the 
isotropic criterion deviates from the test data by a large extent when ξ  becomes greater. 
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 (a)  
(b) 

Fig. 6. Prediction of the strength of Toyoura Sand by the isotropic and anisotropic failure criteria in 
comparison with (a) the true triaxial test results by Lam & Tatsuoka (1988) in the deviatoric plane; and 
(b) the triaxial compression test results by Tatsuoka et al. (1990) in the 0/ϕ ϕ ξ−  diagram. 

3.6 Santa Monica Beach Sand (Lade et al., 2008) 

 

 
(a) 

 
(b) 

Fig. 7. Comparison between the torsion shear test results on dry-pluviated Santa Monica Beach sand 
(Lade et al., 2008) with the predictions by the isotropic/anisotropic failure criteria in (a) the 

( )z zθ θσ σ σ−∼ diagram, and (b) the φ-b diagram. 

A total of 34 torsion shear tests have been carried out by Lade et al. (2008) on dry-pluviated 
Santa Monica Beach sand. The tests were conducted under drained conditions at a cell 
pressure of 200 kPa  applied to both the inner and outside cell walls. For comparison with the 
torsion shear tests, 11 true triaxial tests have also performed in the cubic triaxial apparatus 
with four different confining pressures. Since the curvature of the failure curve in the 
meridian plane can not be determined based on the available test data, n  is set to be unity 
here. fM  is calculated based on the average value of the friction angles obtained in the 
conventional triaxial compression tests performed in the torsion shear apparatus and the cubic 
triaxial apparatus respectively ( 34.1cϕ = D ). The friction angle obtained in true triaxial tests at 
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1b =  ( 46eϕ = D ), which corresponds to the shear modes of 60θ = D  and 0ξ = D , is used to 
determine the parameter α . Shear banding has been observed in most of the torsion shear 
tests by Lade et al. (2008). To minimize the influence of shear banding, we only select the 
results obtained at 1b = , which corresponds to the shear mode of 180θ = D  and 0ξ = D , for 
determining the parameter d  by setting 0β = . The predictions are presented in Fig. 7. While 
both the isotropic criterion and the anisotropic criterion capture the test data reasonably well 
in the plane of ( )z zθ θσ σ σ− ∼  in Fig. 7(a), it is in the bϕ ∼  plane that the difference can be 
better depicted. As shown in Fig. 7(b), the isotropic failure criterion clearly overestimates the 
measured strength when 0.3b > . The anisotropic failure criterion, on the other hand, can 
capture the overall trend of strength variation with b  better. Noticeable overestimation, 
though, is still observed in the range of 0.3 0.85b< <  where shear banding comes into effect.  

3.7 Touremire Shale (Niandou et al., 1997) 

A comparison has also been made between predictions by our anisotropic failure criterion 
with the triaxial test data on the Touremire shale in Niandou et al. (1997), which is shown in 
Fig. 8. The prediction by the isotropic criterion is also shown for the convenience of 
comparison. As is seen in Fig. 8(a), the anisotropic failure criterion satisfactorily captures the 
p q∼  relation at different loading directions for Touremire shale. Its predictions also agree 

well with the test data at most confining pressure levels, only with a slight overestimation on 
the strength at a low confining pressure of 1 MPacσ =  when 0ξ > D  and a moderate 
underestimation for the case of 20 MPacσ =  (Fig. 8(b)). The observed deviation may be 
possibly due to the fact that the anisotropic variable A  introduced in this paper is assumed to 
be only a measure of the stress direction relative to the material fabric orientation but 
independent on the mean stress. According to Niandou et al. (1997), the degree of strength 
anisotropy is greater at lower confining pressure levels than that at higher ones. This 
pressure-dependent strength anisotropy has also been observed by Lade & Abelev (2005) in 
sand. A potential improvement of the current anisotropic failure criterion may be done by 
incorporating the effect of mean stress in the criterion, e.g., via the anisotropic variable A .  

 

 
(a) 

 
(b) 

Fig. 8. Comparison between the triaxial compression test data on the Touremire shale (Niandou et al., 
1997) and the prediction of the anisotropic and underlying isotropic failure criteria in (a) the p-q 
diagram with different loading directions and (b) the ξ-q diagram with different confining pressures. 
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3.8 Angers Schist (Duveau et al., 1998) 

Another rock, the Angers schist reported in Duveau et al. (1998), has been used to validate 
our failure criterion. The test data for Angers schist are more scattered compared to those for 
the Touremire shale (Fig. 9). Our anisotropic failure criterion, with the chosen parameters, 
can reasonably capture the overall trend of the data set in both the p q∼  and qξ ∼  planes. In 
the qξ ∼  plane as shown in Fig. 9(b), the criterion slightly overestimates the strength at all 
range of ξ  except 0ξ = D  and 90D . The isotropic failure criterion fails to capture the strength 
variation with loading directions for both rocks in either the p q∼  plane or the qξ ∼  plane. 
 

 
(a) 

 
(b) 

Fig. 9. Comparisons of the triaxial compression test data on the Angers schist (Duveau et al., 1998) 
with the prediction of the anisotropic and underlying isotropic failure criteria in (a) the p-q diagram 
with different loading directions and (b) the ξ-q  diagram with different confining pressures. 

4 CONCLUSION AND DISCUSSION 

The new anisotropic failure criterion presented in this paper has been demonstrated to be 
general and robust enough to provide excellent predictions on the strength anisotropy for a 
wide range of soils and rocks.  The introduction of the anisotropic variable A  in terms of the 
invariants and joint invariants of the stress tensor and the fabric tensor appears to be effective 
in characterizing the effect of fabric anisotropy. Parameters introduced in the criterion can be 
conveniently calibrated by conventional laboratory tests. We note that the usefulness of this 
criterion is not limited to geomaterials only. For any materials that exhibit appreciable 
strength anisotropy, such as concrete, ceramics, porous metals, polymers and solid metals, it 
can be equally useful. The specific procedures in determining the required parameters may 
differ from those mentioned in this paper, though, depending on the availability of routine 
tests for these different materials. Meanwhile, we have mentioned that shear banding has 
been observed in the hardening regime in true triaxial tests on sand (Wang & Lade, 2001; 
Abelev & Lade, 2003) in the midrange of b  values (from about 0.18 to approximately 0.85). 
The occurrence of shear banding in the hardening regime prevents the attainment of a smooth 
peak on the stress-strain relation for which a failure criterion tends to fit with. For the range 
of b  where shear banding occurs, the current anisotropic failure criterion slightly 
overestimates the strength of the soils in the deviatoric plane. In this case, the prediction of 
strength by our criterion can be regarded as a targeted upper bound that a soil can achieve if 
the deformation is uniform in the tested sample. In addition, the anisotropic failure criterion 
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presented here can be easily extended for constitutive modeling of geomaterials as well, by 
simply considering it as the yield function with suitable hardening rules specified, as is the 
way done by Pietruszczak et al. (2002) and Azami et al. (2009). It is also possible to 
introduce a cap in the meridian plane for the proposed failure criterion for various useful 
purposes in constitutive soil modeling. 
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