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ABSTRACT: We present a critical state sand plasticity model accounting for the effect of fabric and its
evolution, and apply it to modelling the non-coaxial behaviour and shear localisation phenomenon in sand. The
model is developed within the framework of Anisotropic Critical State Theory. A novel fabric evolution law is
further proposed to guide the fabric anisotropy evolving towards a unique critical state under continuous shear.
The yield surface, hardening law and dilatancy relation of the model feature an explicit dependence on the
fabric anisotropy, and are hence affected by its evolution during the deformation of sand. The model formulation
leads naturally to a non-coaxial flow rule which enables it to capture the non-coaxial behaviour in sand with ease.
We have further applied the model to the prediction of shear localisation in sand. We identify two competing
mechanisms dictating the occurrence and further development of shear band in sand, one attributable to the
evolution of fabric and the other imposed by the boundary constraints. The study helps to shed light on the
fundamental understanding of sand behaviour such as non-coaxility and the phenomenon of strain localisation.

1 INTRODUCTION

Soil fabric affects important soil behaviour including
strength, dilatancy and critical state. Fabric anisotropy
in sand changes constantly with the strain to estab-
lish a compatible internal structure with the applied
stress and exhibits unique characteristics at critical
state (Zhao & Guo 2013, Guo & Zhao 2013). Accurate
modelling of sand behaviour needs to fully consider the
evolving nature of fabric during the loading course.
The majority of existing studies on fabric anisotropy
have either considered a constant fabric tensor in the
model formulation, or have been based on the rota-
tion of yield surface. Yield surface rotation cannot
adequately account for the anisotropic nature of sand
related to particle orientation, contact normal and void
space distribution, since the direction and magnitude
ofrotation are associated with the initial stress state but
not these physical properties of soil. Despite the conve-
nience and simplicity it may offer, the employment of
a constant fabric tensor ignores the evolution of fabric
anisotropy during the deformation of the soil, which
gives rise to inconsistent predictions with experimen-
tal and numerical observations. It may also lead to
non-uniqueness of critical state line.

This paper presents a general three-dimensional
critical state sand plasticity model with full account
of the effect of fabric and its evolution recently devel-
oped by the authors (Gao et al. 2014). The model

has been developed within the Anisotropic Critical
State Theory proposed by Li & Dafalias (2012). It
features an explicit dependence of the yield surface,
the hardening law and the dilatancy relation on fab-
ric anisotropy. With a novel fabric evolution law being
proposed, all these are further made dependent on the
evolution of fabric. The model formulation naturally
leads to a non-coaxial flow rule. It shows excellent
predictive capacity in reproducing the typical sand
behaviour observed in laboratory tests, and provides
convincing physical explanations on such phenomena
as non-coaxiality.

In addition to characterisation of material behaviour
in sand, we have applied the model to simulating
boundary value problems. Widely regarded as an
important precursor to catastrophic failures such as
landslides and debris flow, strain localisation in sand
has received much attention in the research community
of geomechanics. The occurrence and development of
strain localisation has to be closely with important
microstructure such as soil fabric and fabric evolu-
tion. While the influence of initial fabric anisotropy
on strain localisation has been treated before, the corre-
lation between fabric evolution and strain localisation
remains an untouched topic. We have implemented
the newly developed sand plasticity model considering
fabric evolution in a displacement finite element code
and have applied it to predicting the shear localisation
in sand under plane strain compression. Based on the
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simulation of the such a well-designed boundary value
problem, the interaction between fabric evolution and
shear localisation in sand is investigated.

2 SAND PLASTICITY MODEL ACCOUNTING
FOR FABRIC EVOLUTION

2.1 Model formulation

2.1.1 Elastic relations

The influence of fabric anisotropy on the elastic
behaviour of sand is neglected here. The follow-
ing isotropic pressure-sensitive elastic relations are
employed

 (297—ep L 21+v)
G=Co g VP K=Ggas s

M
where G and K are respectively the elastic shear and
bulk modulus. Gy is a material constant. e is the
void ratio and v is the Poisson’s ratio (taken as a
constant). p=o0;/3 and oj; is the stress tensor. p,
denotes the atmospherical pressure. The following
incremental elastic relations are employed to describe
the nonlinear elasticity for sand:
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where s;; = deviator stress; ej; = deviator elastic strain;
€, = volumetric elastic strain.

2.1.2  VYield function

To account for the influence of fabric anisotropy, the
following fabric-dependent yield function is employed
in the model (Gao et al. 2014):

R
g(9)

where the first term R/g(0) is a normalised shear
stress, while the second term denotes a generalized
shear resistance involving the influence of fabric
anisotropy through 4. R =, /3r;7;;/2 is the stress ratio
tensor (r; = (0 — pd;)/p=si/p; 8; =Kronecker
delta); H is a hardening parameter whose evolu-
tion law depends on the stress as well as internal
variables including the density and fabric; 4, is a
non-negative model constant. When k&, = 0, the yield
function degenerates to a conventional isotropic yield
surface in the stress space; g(6) is an interpolation
function dependent on the Lode angel 6 of r;; viz:
g(0) = YIETHAE DI D) here ¢ = M, /M,
denotes the ratio between the critical state stress ratio
in triaxial extension M, and that in triaxial compres-
sion M,. Serving as an important component, 4 in
Eq. (3) denotes a fabric anisotropy variable defined
by the first joint invariant of the fabric tensor Fj; and
the loading direction tensor n;;:
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where Fj; is is a symmetric traceless fabric tensor
whose norm F’ =, /F;;F;; represents the degree of fab-
ric anisotropy. A normalised fabric tensor F; is used
such that F is unity at critical state. The deviatoric unit
loading direction tensor n;; is defined by

Nij - Nmn(smn(szj/'g
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where /= R/g(6). At critical state, n;; and F;; become
co-directional (Li & Dafalias 2012), F reaches a criti-
cal state value of 1, which results in A = 1. In this case,
the yield function in Eq. (3) becomes an isotropic crit-
ical state failure surface again. An isotropic critical
state failure surface does not necessarily mean the crit-
ical state fabric is isotropic, which has been confirmed
by DEM simulations (Zhao & Guo 2013, Guo & Zhao
2013).

2.1.3  Fabric evolution, plastic hardening law and
dilatancy relation
The following dilatancy relation is followed:

dy R
D= 1+
Mog® "t 390
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where d; and m are two model constants. ¢ is the dil-
tatancy state parameter defined by Li and Dafalias
(2012)

(=1 —ea(A-1) ®

where e, is a model parameter. ¥ = e — e, is the state
parameter defined by Been and Jefferies (1985).
The following fabric evolution law is proposed:

dFij = (\)©ij = (\ky(ni; — Fyy) ©)

where A is the plastic multiplier. & is a positive model
constant representing the rate of fabric evolution. The
fabric evolves with the plastic deformation accord-
ing to Eq. (9), which renders the fabric tensor tending
towards coaxiality with the loading direction n;;. The
following hardening law is employed:

G(1— cpe)

aH = (N, = ()
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where ¢;, and n are two positive model parameters.

2.1.4 Non-coaxial associated flow rule in the
deviatoric space

The yield function in Eq. (3) includes the joint invari-

ant 4, which naturally produces non-coaxial deforma-

tion for associated flow rule. This is demonstrated as
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follows. By assuming an associated flow rule in the
deviatoric stress space, the plastic strain rate will be
dependent on the derives of the yield function with
respect to the stress tensors. Based on Eq. (3) one can
easily obtain:
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It is readily seen that the inclusion of fabric anisotropy
viz A4 in the yield function leads to df'/dr; consisting
of two parts. The first part Nj; is apparently coaxial
with the direction of the stress ratio r; (or equiva-
lently to the direction of the stress 0. The second
part involves fabric anisotropy F; which is generally
non-coaxial with 7;; as long as fabrlc anisotropy is non-
zero. This naturally addresses the non-coaxiality in soil
modelling. Granular media generally exhibit an appre-
ciable amount of non-coaxial deformation with the
stress during early stage of shearing, which may grad-
ually diminish with the shearing to high strain level.
This can indeed be reasonably explained by the second
part of Eq. (11).

2.1.5 Incremental stress-strain relation

Based on the above formulations, the following incre-
mental stress strain relation can be determined based
on the yield function and the elasticity relation

doi; = Dyjrder (13)
where the elastoplastic stiffness tensor is

Dj,jkl = ijk;l — h()\)(QG'n'ljj + 2/3KD(51;J~)HM (14)

where Cyy=K8;8u +2G(8y8y — 18;0u). D=5

is the dilatancy. A(}) is the Heaviside step func-
tion where 2(A > 0)=1 and (X <0)=0. Iy can be
expressed by the deviator unit loading direction tensor
Nj;, the derivatives based on the consistency condition
of yield function and the plastic modulus K,,. For detail
of the expression please refer to Gao et al. (2014).

2.2 Model calibration and verification

The model has been carefully calibrated based on
experimental data on dry-deposited Toyoura sand
reported by Yoshimine et al. (1998). Figure 1 presents
a comparison of stress-strain relations and stress path
between the experimental results and model pre-
diction for an undrained test, which shows a good
coincidence.
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Figure 1. A comparison of model simulations and test data
of the undrained behavior of dry-deposited Toyoura sand
under different principal stress angle.

3 PREDICTING THE NON-COAXIAL
BEHAVIOUR IN SAND

As mentioned before, the proposed model features a
natural non-coaxial flow rule in Eq. (11) by including
an evolving fabric tensor into the yield function. This
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flow rule can facilitate the explanation of non-coaxial
behaviour in sand. Indeed, according to Eq. (11), the
plastic strain increment involves a component that
does not align with the stress direction (the second
term of the right-hand side of the equation), and
consequently, the phenomenon of non-coaxiality may
be easily handled. The non-coaxial behaviour can be
caused by two cases: (a) the soil fabric and the load-
ing direction are initially not coaxial to each other;
(b) the changes of stresses and the soil fabric are
not synchronised. A typical example of case (b) can
be found in a typical rotational shearing test where
the fabric tends to align its major principal axes to
be coaxial with that of the loading direction, in an
attempt to reach an optimum internal rearrangement to
bear the load. The change of fabric is however always
lagging behind the stress change due to its passive
nature, which leads to non-coaxial stress and fabric
tensor. Figure 2 demonstrates an example of the model
prediction of non-coaxial behaviour for Toyoura sand
under undrained shear. In the figure, a(o) is defined
by the relative angle between the direction of the major
principal stress o; and the vertical direction, while
a(e) is defined by the relative angle between the major
principal strain €; and the vertical direction. The dif-
ference between the two angles, a(€) — a(o), serves
as a measure of non-coaxiality in sand and its varia-
tion with shear strain in presented in Figure 2. There
is a good qualitative coincidence between the model
simulations and the experimental data.

We further note that there is only change of prin-
cipal values of fabric tensor during the development
of plastic strain when o =0° and o =90°. The direc-
tion of the fabric will align with the stress direction
during the loading course for the two cases. The
predicted sand response is thus coaxial, which is con-
sistent with Gutierrez & Ishihara (2000). In all the
other cases, distinct different between a(€) and «(o)
in the order of average 4 to 5 degrees is found, indict-
ing a clear evidence of non-coaxiality. The difference
becomes smaller after the peak when the fabric tends to
rotate towards the direction of stress. The non-coaxial
behaviour is expected to entirely disappear at very
large strain level. It is also observed that the with b =0
the test data show the o =30° cases gives the max-
imum difference, while our model prediction points
to the case of @ =45°. The possible reason may be
that sand fabric in the tested samples is not rigorously
cross-anisotropic at the initial state. In general, the cur-
rent model captures the general trend of «(€) > (o)
which is frequently observed in sand (Yoshimine et al.
1998).

4 MODELLING THE SHEAR LOCALISATION
IN SAND: THE ROLE OF FABRIC
EVOLUTION

Strain localization is frequently observed in sand and
is considered an important precursor related to major
geohazards such as landslides, debris flow and failures
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Figure 2. Test data and model simulations for the
non-coaxial behavior of Toyoura sand under undrained
rotational shear at =1 and b =1 (b: intermediate principal
stress ratio).

of relevant geo-structures. It is meanwhile recognised
that the fabric in sand, representing an important
internal structure, will constantly evolve during the
loading course. There have been no previous studies
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Figure 3. The finite element mesh used for simulation
of biaxial compression of Toyoura sand with (a) smooth
boundary and (b) rough boundary conditions.

investigating the correlation between strain localisa-
tion in sand and the fabric and its evolution which
supposed to be extremely important towards better
understanding the phenomenon of strain localisation.
We employ the anisotropic sand model presented in
previous sections in conjunction with finite element
method to investigate the strain localisation in sand
under plane strain compression, highlighting the role
played by fabric evolution.

The proposed model has been successfully imple-
mented in the finite element package ABAQUS
through the user-material interface (UMAT) using an
explicit integration method (Zhao et al. 2005). The
implemented model is then used to investigate the
strain localisation for Toyoura sand under plain strain
compression treated experimentally by Tatsuoka et al.
(1990). The dimension of the plane strain sand sample
is h x w=10.5cm x 4 cm. The domain is disretized
by 42 x 16 four-nodes plane strain elements. A con-
stant confining pressure is applied to the horizontal
direction of the sample and an incremental vertical dis-
placement is applied to the top end of the sample.
Two types of boundary conditions are considered:
smoothed boundary (left figure in Figure 3) and rough
boundary (right figure in Figure 3). The bedding angle
« is indicated in the figure. The initial void ratio dis-
tribution is assumed to be uniform throughout the
sample. We take the case of bedding angle of o =45°
as a demonstrative example.

Gao and Zhao (2013) have found that for such
a homogeneous sample with symmetric loading and
boundary conditions, the anisotropic fabric can serve
as a symmetry breaker triggering the strain localisa-
tion in the sample. Due to the non-coaxiality of the
fabric with respect to the stress, a non-coaxial strain
field is induced in each element with its major princi-
pal direction aligning with the an angle to the left of
the vertical direction, which triggers the occurrence of
localisation.

4.1  Smooth boundary

Figure 4 shows the development of shear band in
sand sample with smooth boundary for the case of
a=45°. Evidently a single asymmetric shear band
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Figure 4. Distribution of shear strain for a«=45° with
smooth boundary at (a) the peak stress state €, =4.2%,
(b) €, =12% with evolving fabric and (c) €, = 12% with
constant fabric (¢, = Ah/h = global vertical strain).
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Figure 5. Evolution of shear band for sand sample under
plane compression with & =45° and rough boundary at four
strain levels (considering fabric evolution): (a) €, =2.8%);
(b) €4, =5.8%; (c) €, =8.4% and (d) €, = 15.5%.

is initialed around the peal global stress state and
becomes intensely localised at the post-peak stage.
Its orientation is close to the zero extension direc-
tion defined by (Roscoe 1958), which was termed by
Tatsuoka et al. (1990) as Type-b shear band (align-
ing close to the bedding plane direction). When the
fabric is fixed as a constant (by setting kr =0), a
similar pattern of shear band is found, however with
more intensely concentrated shear strain within the
band than considering fabric evolution. This indi-
cates the sand may adapt its internal structure through
the process of fabric evolution to alleviate the strain
concentration.

4.2 Rough boundary

Figure 5 shows the evolution of shear bands for the case
of rough boundary, « =45° and considering fabric
evolution. Strain localisation is found initiated before
the peak global stress state. With rough boundary
conditions, a shear band orientating to a Type-a pat-
tern according to (Tatsuoka et al. 1990) (align close
to the perpendicular direction of the bedding plane)
develops substantially first, the failure of which is
governed by the Coulomb’s condition rather than the
zero-extension mechanisms in the smooth boundary
case. When ¢, reaches 5.8% (beyond the peak stress
state), the second Type-b shear band starts to develop
considerably while the first Type-a band continue to
intensity, which leads to an cross shape double bands
pattern at higher strain levels. The firstly occurring
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(b) O (d)

Figure 6. Evolution of shear band for sand sample under
plane compression with « =45° and rough boundary at four
strain levels (the fabric is fixed as a constant): (a) €, =2.2%;
(b) €, =4.5%; (c) €, =7.8% and (d) €, = 15.6%.

Type-b band remains the dominant one between the
two. The overall shape of the two bands nevertheless
appears to be symmetric.

To highlight the effect of fabric evolution, a com-
parison case with fixed fabric is presented in Figure 6.
While the figure shows a similar occurrence sequence
that a Type-a shear band occurs first followed by a
Type-b shear band, the Type-a shear band appears to
be more dominant than in the previous evolving fab-
ric case which attracts the major localised strain in
the post-peak development of localisation. The Type-b
band only has limited development due to the inabil-
ity of self-adjusting through fabric evolution of the
sample. The final resultant double bands pattern is
hence a rather asymmetric cross-shape one.

4.3 Two competing mechanisms for shear band

Further investigations reveal that fabric evolution and
the structural constraint imposed by the boundary
conditions constitute two competing physical mech-
anisms governing the shear band formation. Fabric
evolution may help a soil sample to adjust within itself
to reduce non-coaxial response and render the sample
to resist the external load more optimally to relieve
strain localisation, while the structural constraint by
the boundary tends to exert more biased stress on the
sample which leads to intensified strain localisation
on the existing shear band(s). Detailed examination of
such quantities including the reaction force imposed
on the sample by the top/bottom boundary ends and
the evolution of anisotropic variable 4 confirms the
above explanations (Gao & Zhao 2013).

5 CONCLUSIONS

A sand plasticity model accounting for fabric aniso-
tropy and its evolution has been developed within

the Anisotropic Critical State Theory (ACST). It was
demonstrated the model possesses a natural non-
coaxial flow rule with the inclusion of fabric aniso-
tropy in the yield surface and could characterise the
non-coaxial behaviour in sand reasonably well. The
model has been further applied to the prediction of
strain localisation in sand under plane strain compres-
sion wherein the important role of fabric evolution is
highlighted.
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